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Abstract

A vertex algebra is an algebraic counterpart of a two-dimensional conformal field

theory. We give a new definition of a vertex algebra which includes chiral algebras as a

special case, but allows for fields which are neither meromorphic nor anti-meromorphic.

To any complex torus equipped with a flat Kähler metric and a closed 2-form we associate

an N = 2 superconformal vertex algebra ( N = 2 SCVA) in the sense of our definition.

We find a criterion for two different tori to produce isomorphic N = 2 SCVA’s. We show

that for algebraic tori isomorphism of N = 2 SCVA’s implies the equivalence of the

derived categories of coherent sheaves corresponding to the tori or their noncommutative

generalizations (Azumaya algebras over tori). We also find a criterion for two different tori

to produce N = 2 SCVA’s related by a mirror morphism. If the 2-form is of type (1, 1),

this condition is identical to the one proposed by Golyshev, Lunts, and Orlov, who used an

entirely different approach inspired by the Homological Mirror Symmetry Conjecture of

Kontsevich. Our results suggest that Kontsevich’s conjecture must be modified: coherent

sheaves must be replaced with modules over Azumaya algebras, and the Fukaya category

must be “twisted” by a closed 2-form. We also describe the implications of our results

for BPS D-branes on Calabi-Yau manifolds.
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1 Introduction

1.1 Physicist’s mirror symmetry

A physicist’s Calabi Yau is a triple (X,G,B), where X is a compact complex manifold

with a trivial canonical bundle, G is a Ricci-flat Kähler metric on X, and B is a class

in H2(X,R/Z) which is in the kernel of the Bockstein homomorphism H2(X,R/Z) →
H3(X,Z). The class B can be lifted to a class b ∈ H2(X,R), and a closed 2-form B

representing it is known as the B -field.

Physicists believe that there is a procedure which associates to any such triple an N = 2

superconformal vertex algebra ( N = 2 SCVA). The precise definition of an N = 2 SCVA

is rather complicated and will be given in Section 3. Roughly speaking, it is a Euclidean

quantum field theory on a two-dimensional manifold R × S1 whose Hilbert space is acted

upon by a unitary representation of the infinite-dimensional Lie super-algebra with even

generators Ln, L̄n, Jn, J̄n, n ∈ Z, odd generators Q±
r , Q̄

±
r , r ∈ Z + 1

2 , and the following

nonvanishing Lie brackets:

[Lm, Ln] = (m− n)Lm+n +
d

4
(m3 −m)δm,−n,

[L̄m, L̄n] = (m− n)L̄m+n +
d

4
(m3 −m)δm,−n,

[Lm, Jn] = −nJn+m, [L̄m, J̄n] = −nJ̄n+m

[Jm, Jn] = dmδm,−n, [J̄m, J̄n] = dmδm,−n

[Lm, Q
±
r ] =

(m
2

− r
)
Q±
r+m, [L̄m, Q̄

±
r ] =

(m
2

− r
)
Q̄±
r+m

[Jm, Q
±
r ] = ±Q±

r+m, [J̄m, Q̄
±
r ] = ±Q̄±

r+m,

{Q+
r , Q

−
s } =

1

4
Lr+s +

1

8
(r − s)Jr+s +

d

8

(
r2 − 1

4

)
δr,−s,

{
Q̄+
r , Q̄

−
s

}
=

1

4
L̄r+s +

1

8
(r − s)J̄r+s +

d

8

(
r2 − 1

4

)
δr,−s.

(1)

Here d = dimCX, and {·, ·} denotes the anti-commutator. This algebra is a direct sum of

two copies of the celebrated N = 2 super-Virasoro algebra with central charge c = 3d. If

one omits Jn, J̄n and all the odd generators from the definition of the N = 2 SCVA, one

gets a structure which we call a conformal vertex algebra (CVA), and which is also known

as a conformal field theory on R × S1 ∼= C∗. Thus an N = 2 SCVA is a conformal field

theory on C∗ with some additional structure.

Heuristically, the construction of an N = 2 SCVA from a triplet (X,G,B) proceeds as

follows. To any Kähler manifold (X,G) equipped with a closed 2-form B one can associate

a two-dimensional classical field theory on R×S1 , the so-called N = 2 supersymmetric σ -

model. For reader’s convenience, the definition of the σ -model is given in Appendix A. The

space of solutions of the corresponding classical equations of motion is an infinite-dimensional
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symplectic supermanifold with a symplectic action of two copies of the N = 2 super-

Virasoro algebra with zero central charge (see [29, 8], and Appendix A). It can be argued

that consistent quantization of this classical field theory is possible only for c1(TX) ≥ 0 ,

e.g. when X is a Fano manifold or a Calabi-Yau manifold. In the Fano case ( c1(TX) > 0 )

the quantized σ -model is an N = 2 field theory, but not a superconformal one, because

only a finite-dimensional subalgebra of the classical N = 2 super-Virasoro algebra survives

quantization. The same happens if c1(TX) = 0 but G is not Ricci-flat. If c1(TX) = 0

and G is Ricci flat, both N = 2 super-Virasoro algebras survive quantization (though

the central charges become nonzero), and therefore the quantized σ -model is an N = 2

superconformal field theory, i.e. an N = 2 SCVA. One can also argue that this N = 2

SCVA in fact depends only on the image of B in H2(X,R/Z), i.e. on B.
The actual quantization of the σ -model is feasible only for very special (X,G,B). In

particular, if X is a complex torus, the corresponding N = 2 SCVA can be constructed

for any flat G and any B ∈ H2(X,R/Z). The quantization of the σ -model for a flat

complex torus is sketched in Appendix A.

Two physicist’s Calabi-Yaus are said to be mirror if there exists an isomorphism of the

corresponding conformal vertex algebras which acts on the algebra (1) as the so-called mirror

involution:

Ln → Ln, Q±
r → Q∓

r , Jn → −Jn, (2)

L̄n → L̄n, Q̄±
r → Q̄±

r , J̄n → J̄n.

Such a morphism of N = 2 SCVA’s will be called a mirror morphism.

Mirror symmetry defined in this way acts pointwise on the moduli space of physicist’s

Calabi-Yaus. If one drops G and B from the definition of a physicist’s Calabi-Yau,

then mirror symmetry becomes a correspondence between two families of Kähler manifolds

with a trivial canonical bundle whose Hodge numbers are related by hp,q = h′d−p,q. The

latter notion of mirror symmetry is much weaker than the physicist’s mirror symmetry.

Nevertheless, much of the mathematical work on mirror symmetry up to now has focused on

this weaker notion, since it proved hard to make sense of the σ -model.

As mentioned above, the quantum σ -model is manageable when X is a complex torus,

so one could hope to understand mirror symmetry in detail in this particular case. This is

what this paper aims to do. Although from the physical point of view mirror symmetry for

complex tori appears to be rather trivial, we will see that its study sheds considerable light

on the Homological Mirror Symmetry Conjecture (HMSC), a subject to which we now turn.
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1.2 Homological mirror symmetry

String theory makes highly nontrivial predictions about the enumerative geometry of a

Calabi-Yau X in terms of its mirror X ′. The success of these predictions seems quite

mysterious from a purely mathematical standpoint. In an insightful paper [23], M. Kontse-

vich formulated a conjecture which relates the properties of a Calabi-Yau with those of its

mirror and suggested that it captures the essence of mirror symmetry. Subsequently this

conjecture was reinterpreted in physical terms [32]. In this subsection we remind the main

features of Kontsevich’s conjecture.

Let X be a complex algebraic variety (or a complex manifold). Denote by OX the

sheaf of regular functions (or the sheaf of holomorphic functions). Recall that a coherent

sheaf is a sheaf of OX –modules that locally can be represented as a cokernel of a morphism

of holomorphic vector bundles. Coherent sheaves form an abelian category which will be de-

noted by Coh(X). To any abelian category we can associate a certain triangulated category

called the bounded derived category. We denote by Db(X) the bounded derived category of

coherent sheaves on X. Roughly speaking, the category Db(X) is a factor-category of the

category of bounded complexes of coherent sheaves by the subcategory of acyclic complexes

(i.e. complexes with trivial cohomology sheaves).

On the other hand, it has been proposed [12, 23] that to any compact symplectic manifold

Y one can associate a certain category whose objects are (roughly speaking) vector bundles

on Lagrangian submanifolds equipped with unitary flat connections. The morphisms in

this category have been defined when Lagrangian submanifolds intersect transversally. This

conjectural category is called the Fukaya category and denoted F(Y ). The category F(Y )

is not an abelian category; rather, it is supposed to be an A∞ -category equipped with a

shift functor. For an introduction to A∞ -categories see [21]. An A∞ –category is not a

category in the usual sense, because the composition of morphisms is not associative. The set

of morphisms between two objects in an A∞ –category is a differential graded vector space.

To any A∞ –category one can associate a true category which has the same objects but the

space of morphisms between two objects is the 0 –th cohomology group of the morphisms

in A∞ –category. Applying this construction to F(Y ), we obtain a true category F0(Y )

which is also called the Fukaya category. Kontsevich [23] also constructs a certain triangulated

category DF0(Y ) out of F(Y ). We will call it the derived Fukaya category. Conjecturally,

the category F0(Y ) is a full subcategory of DF0(Y ).

A physicist’s Calabi-Yau (X,G,B) is both a complex manifold and a symplectic manifold

(the symplectic form being the Kähler form ω = GI ). Thus we can associate to it a

pair of triangulated categories Db(X) and DF0(X). The Homological Mirror Symmetry

Conjecture (HMSC) asserts that if two algebraic Calabi-Yaus (X,G,B) and (X ′, G′,B′)
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are mirror to each other, then Db(X) is equivalent to DF0(X
′), and vice versa.

The Homological Mirror Symmetry Conjecture can be reinterpreted in physical terms.

To every N = 2 superconformal field theory one can associate the set of BPS D-branes, or

more precisely two sets: the set of A-type D-branes and the set of B-type D-branes. This is

reviewed in more detail in Section 6. These sets are equipped with a rather intricate algebraic

structure: that of an A∞ –category. This structure encodes the properties of correlators in a

topological open string theory (see [16] and references therein). A mirror morphism between

two N = 2 superconformal field theories identifies the A-type D-branes of the first theory

with the B-type D-branes of the second theory, and vice versa. Now suppose that an N = 2

superconformal field theory originates from a physicist’s Calabi-Yau (X,G,B). In this case

there is evidence that A-type D-branes are closely related to objects of the Fukaya category,

while B-type D-branes are related to coherent sheaves on X. To prove the Homological

Mirror Symmetry Conjecture it would be sufficient to show that the derived Fukaya category

of (X,G,B) (resp. the derived category of X ) can be recovered from the A∞ -category

of A-type D-branes (resp. B-type D-branes). Conversely, proving the HMSC would likely

result in an improved understanding of BPS D-branes.

So far the Homological Mirror Symmetry Conjecture (with some important modifications,

see Section 6 for details) has been proved only for dimC X = dimX ′
C

= 1, i.e. for the elliptic

curve [31]. Two features make this case particularly manageable. First, the N = 2 SCVA

for the elliptic curve is known, so one knows the precise conditions under which (X,G,B)

is mirror to (X ′, G′,B′). Second, all objects and morphisms in the Fukaya category can be

explicitly described.

In this paper we perform a check of the HMSC for the case when both X and X ′ are

algebraic tori of arbitrary dimension. We will see that for algebraic tori of dimension higher

than one the HMSC as formulated by Kontsevich can not be true in general. The main

reason is that both the derived category of coherent sheaves and the derived Fukaya category

do not depend on the B-field, while in the physical mirror symmetry it plays an essential role.

However, a certain modification of the HMSC which takes into account the B-field passes

our check and has a good chance to be correct. This modification is suggested both by our

results on the N = 2 SCVA for complex tori, and by consideration of BPS D-branes. The

modified HMSC conjecture is formulated in Section 6. It reduces to the original HMSC when

the B-field vanishes for both manifolds related by the mirror morphism.

The implications of our results for BPS D-branes on Calabi-Yau manifolds are briefly

described in Section 2 and in more detail in Section 6.
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1.3 Vertex algebras and chiral algebras

Vertex algebras play a key role in physicist’s mirror symmetry. A vertex algebra is an alge-

braic counterpart of a two-dimensional conformal field theory. In the mathematical literature

the terms vertex algebra and chiral algebra are used interchangeably. Roughly speaking, a

chiral algebra is a vector superspace V together with a map Y : V → EndV [[z, z−1]] sat-

isfying a number of properties [19]. One says that Y maps states to quantum fields. The

definition of a chiral algebra first appeared in the work of Borcherds [6], but its origins go

back to the classic paper of Belavin, Polyakov, and Zamolodchikov [5] where an algebraic

approach to two-dimensional conformal field theory was proposed.

From a physical viewpoint, chiral algebras are conformal field theories such that all fields

are meromorphic (do not depend on z̄ ). Only very special conformal field theories have this

property. Moreover, a generic conformal field theory does not factorize as a tensor product

of two chiral algebras, one depending on z and another on z̄, despite some claims to the

contrary in the physics literature. For example, the quantization of the σ -model associated

to a flat torus yields a conformal field theory which factorizes in this manner only for very

special values of G and B.

Thus in order to give a precise meaning to physicist’s mirror symmetry, we need to find

a sufficiently general definition of a vertex algebra allowing for fields which depend both on

z and z̄. To avoid confusion, we will refer to these more general objects as vertex algebras,

while vertex algebras in the sense of [19] will be called chiral algebras.

Once both z and z̄ are allowed, they need not enter only in integer powers, so Y will

take values in a space of “fractional power series in z and z̄ with coefficients in End(V ) ”,

rather than in End(V )[[z, z̄, z−1, z̄−1]]. The necessity of fractional powers can be seen by

inspecting the conformal field theories associated to flat tori. Because of this, the definition

of a vertex algebra is not a trivial extension of the definition of a chiral algebra.

We hope that our definition of a vertex algebra will be of some interest to physicists as well

as mathematicians. Its advantage over the more standard definitions of conformal field theory

is that it is purely algebraic and based on the notion of Operator Product Expansion (OPE).

In contrast, other rigorous definitions take Wightman axioms as a starting point. These

axioms have an analytic flavor and do not make reference to OPE. In fact, the existence of

OPE does not follow from Wightman axioms (except in some very special cases), and has to

be postulated separately. Another advantage of our definition is that it does not require an

inner product on the state space. Thus it is capable of describing ”non-unitary” conformal

field theories which find applications in statistical mechanics.
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2 Summary of results

2.1 Physicist’s mirror symmetry for complex tori

Let T be a 2d -dimensional real torus U/Γ, where U ∼= R2d is a real vector space, and

Γ ∼= Z2d is a lattice in U. Let I be a (constant) complex structure on T, G be a

flat Kähler metric on T, and b ∈ H2(T,R). We will represent b by a constant 2-form

B which is uniquely determined by b. In this simple case there is a well-known explicit

construction of the corresponding N = 2 SCVA which we denote V ert(Γ, I,G,B). We

review this construction in Section 4. The relation of this construction to the quantized

σ -model is explained in Appendix A.

Our first result describes when two different quadruples (Γ, I,G,B) and (Γ′, I ′, G′, B′)

yield isomorphic N = 2 SCVA’s. To state it, we first introduce some notation. Let Γ∗ =

Hom(Γ,Z) be the dual lattice in U∗, and T ∗ be the dual torus U∗/Γ∗. There is natural

pairing l : Γ ⊕ Γ∗ → Z. There is also a natural Z -valued symmetric bilinear form q on

Γ ⊕ Γ∗ defined by

q((w1,m1), (w2,m2)) = l(w1,m2) + l(w2,m1), w1,2 ∈ Γ, m1,2 ∈ Γ∗.

Given G, I,B, we can define two complex structures on T × T ∗ :

I(I,B) =

(
I 0

BI + ItB −It

)
, (3)

J (G, I,B) =

(
−IG−1B IG−1

GI −BIG−1B BIG−1

)
. (4)

The notation here is as follows. We regard I and J as endomorphisms of U ⊕ U∗,

and write the corresponding matrices in the basis in which the first 2d vector span U,

while the remaining vectors span U∗. In addition, G and B are regarded as elements of

Hom(U,U∗), and It denotes the endomorphism of U∗ conjugate to I.

It is easy to see that J depends on G, I only in the combination ω = GI, i.e. it

depends only on the symplectic structure on T and the B-field. There is also a third natural

complex structure Ĩ on T ×T ∗, which is simply the complex structure that T ×T ∗ gets

because it is a Cartesian product of two complex manifolds:

Ĩ =

(
I 0

0 −It

)
.

This complex structure will play only a minor role in what follows. Note that I coincides

with Ĩ if and only if B(0,2) = 0.

7



Theorem 2.1 V ert(Γ, I,G,B) is isomorphic to V ert(Γ′, I ′, G′, B′) if and only if there

exists an isomorphism of lattices Γ ⊕ Γ∗ and Γ′ ⊕ Γ
′∗ which takes q to q′, I to I ′,

and J to J ′.

Our second result describes when (T, I,G,B) is mirror to (T ′, I ′, G′, B′).

Theorem 2.2 V ert(Γ, I,G,B) is mirror to V ert(Γ′, I ′, G′, B′) if and only if there is an

isomorphism of lattices Γ ⊕ Γ∗ and Γ′ ⊕ Γ
′∗ which takes q to q′, I to J ′, and J

to I ′.

2.2 Applications to homological mirror symmetry

Let us now explain the implications of these results for the HMSC. First, note that if both

B and B′ are of type (1, 1), the criterion for mirror symmetry is identical to the one

proposed in [14]. In that work, this criterion was taken as a definition of mirror symmetry

for algebraic tori. We now see that this definition agrees with the physical notion of mirror

symmetry and can be generalized to non-algebraic tori and arbitrary B -fields.

Second, Theorem 2.1 allows us to make a check of the HMSC. Suppose the

tori (T1, I1, G1, B1) and (T2, I2, G2, B2) are both mirror to (T ′, I ′, G′, B′). Then

V ert(Γ1, I1, G1, B1) is isomorphic to V ert(Γ1, I1, G1, B1), and by Theorem 2.1 there is

an isomorphism of lattices Γ1 ⊕ Γ∗
1 and Γ2 ⊕ Γ∗

2 which intertwines q1 and q2, I1 and

I2, and J1 and J2.

On the other hand, if we assume that both (T1, I1) and (T2, I2) are algebraic, then

HMSC implies that Db((T1, I1)) is equivalent to Db((T2, I2)). The criterion for this equiv-

alence is known [30, 28]: it requires the existence of an isomorphism of Γ1⊕Γ∗
1 and Γ2⊕Γ∗

2

which intertwines q1 and q2, and Ĩ1 and Ĩ2. Clearly, since I 6= Ĩ in general, this

condition is in conflict with the one stated in the end of the previous paragraph. Instead, we

only have the following result:

Corollary 2.3 If V ert(Γ1, I1, G1, B1) is isomorphic to V ert(Γ2, I2, G2, B2), both (T1, I1)

and (T2, I2) are algebraic, and both B1 and B2 are of type (1, 1), then Db((T1, I1)) is

equivalent to Db((T2, I2)).

In Section 5 we also prove the following result.

Theorem 2.4 Let (T1, I1, G1, B1) be a complex torus equipped with a flat Kähler metric

and a B-field of type (1, 1). Let (T2, I2) be another complex torus. Let Ĩ1 and Ĩ2 be the

product complex structures on T1 ×T ∗
1 and T2 ×T ∗

2 . Suppose there exists an isomorphism

of lattices g : Γ1 ⊕ Γ∗
1 → Γ2 ⊕ Γ∗

2 mapping q1 to q2 and Ĩ1 to Ĩ2. Then on T2 there

8



exists a Kähler metric G2 and a B-field B2 of type (1, 1) such that V ert(Γ1, I1, G1, B1)

is isomorphic to V ert(Γ2, I2, G2, B2) as an N = 2 SCVA.

Combining this with Theorem 2.1 and the criterion for the equivalence of Db((T1, I1)) and

Db((T2, I2)), we obtain a result converse to Corollary 2.3.

Corollary 2.5 Let (T1, I1, G1, B1) be an algebraic torus equipped with a flat Kähler metric

and a B-field of type (1, 1). Let (T2, I2) be another algebraic torus. Suppose Db((T1, I1))

is equivalent to Db((T2, I2)). Then on T2 there exists a Kähler metric G2 and a B-field

B2 of type (1, 1) such that V ert(Γ1, I1, G1, B1) is isomorphic to V ert(Γ2, I2, G2, B2) as

an N = 2 SCVA.

If dimC T = 1, then the B-field is automatically of type (1, 1). Therefore the HMSC

passes the check in this special case. Of course, this is what we expect, since the HMSC is

known to be true for the elliptic curve [31]. On the other hand, for dimC T > 1 we seem to

have a problem.

Not all is lost however, and a simple modification of the HMSC passes our check. The

modification involves replacing (T, I) with a noncommutative algebraic variety, or more

precisely, replacing the structure sheaf of (T, I) with an Azumaya algebra over (T, I).

Let us remind the definition and basic facts about Azumaya algebras. Let A be an

OX –algebra which is coherent as a sheaf OX –modules. Denote by Coh(A) the abelian

category of sheaves of (right) A –modules which are coherent as sheaves of OX –modules,

and by Db(A) the bounded derived category of Coh(A).

We will be interested in a simple case of this situation when A is an Azumaya algebra.

Recall that A is called an Azumaya algebra if it is locally free as a sheaf of OX –modules,

and for any point x ∈ X the restriction A(x) := A ⊗OX
C(x) is isomorphic to a matrix

algebra Mr(C).

A trivial Azumaya algebra is an algebra of the form End(E) where E is a vector

bundle. Two Azumaya algebras A and A′ are called similar (or Morita equivalent) if

there exist vector bundles E and E′ such that

A⊗OX
End(E) ∼= A′ ⊗OX

End(E′)

It is easy to see that in this case the categories Coh(A) and Coh(A′) are equivalent, and

therefore the derived categories Db(A) and Db(A′) are equivalent as well.

Azumaya algebras modulo Morita equivalence generate a group with respect to tensor

product. This group is called the Brauer group of the variety and is denoted by Br(X).

There is a natural map

Br(X) −→ H2(X,O∗
X).

9



This map is an embedding and its image is contained in the torsion subgroup of H2(X,O∗
X ).

The latter group is denoted by Br′(X) and called the cohomological Brauer group of X.

The well-known Grothendieck conjecture asserts that the natural map Br(X) −→ Br′(X)

is an isomorphism for smooth varieties. This conjecture was proved for abelian varieties [17];

we will assume that it is true in general.

Let X be an algebraic variety over C, and let B ∈ H2(X,R/Z). Let β : H2(R/Z) →
H2(X,O∗

X ) be the homomorphism induced by the canonical map R/Z −→ O∗
X . We have

the following commutative diagram of sheaves:

0 −→ Z −→ R −−−→ R/Z −→ 0
∥∥ y yβ

0 −→ Z −→ OX
exp(2πi·)−−−→ O∗

X −→ 0

Suppose β(B) is a torsion element of H2(X,O∗
X ), and consider an Azumaya algebra

AB which corresponds to this element. The derived category Db(X,AB) does not depend

on the choice of AB because all these algebras are Morita equivalent. Thus we can denote

it simply Db(X,B).

Remark 2.6 It appears that a similar triangulated category can be defined even when β(B)

is not torsion. Any element a ∈ H2(X,O∗
X ) gives us an O∗

X gerbe Xa over X. Consider

the derived category Db
Qcoh(Xβ(B)) of quasicoherent sheaves on this gerbe. Now our trian-

gulated category can be defined as a full subcategory of Db
Qcoh(Xβ(B)) consisting of weight-1

objects with some condition of finiteness, which replaces coherence.

A sufficient condition for the equivalence of Db(X1,B1) and Db(X2,B2) for the case

of algebraic tori is provided by the following theorem [30].

Theorem 2.7 Let (T1, I1) and (T2, I2) be two algebraic tori. Let B1 ∈ H2(T1,R/Z) and

B2 ∈ H2(T2,R/Z), and suppose β maps both B1 and B2 to torsion elements. If there

exists an isomorphism of lattices Γ1 ⊕ Γ∗
1 and Γ2 ⊕ Γ∗

2 which maps q1 to q2, and I1

to I2, then Db((T1, I1),B1) is equivalent to Db((T2, I2),B2).

Remark 2.8 It appears plausible that this is also a necessary condition for Db((T1, I1),B1)

to be equivalent to Db((T2, I2),B2).

Remark 2.9 It appears plausible that the theorem remains true even when β(B1) and

β(B2) have infinite order, see Remark 2.6.

Combining Theorem 2.7 with our Theorem 2.1, we obtain the following result.
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Corollary 2.10 Suppose V ert(Γ1, I1, G1, B1) is isomorphic to V ert(Γ2, I2, G2, B2), both

(T1, I1) and (T2, I2) are algebraic, and both B1 and B2 are mapped by β to torsion

elements. Then Db((T1, I1),B1) is equivalent to Db((T2, I2),B2).

This corollary suggests that we modify the HMSC by replacing Db(X) with Db(X,B).

Once we decided to include the B-field, it seems unnatural to assume that the Fukaya cat-

egory is independent of it. D-brane considerations suggest a particular way to “twist” the

Fukaya category with a B-field (see Section 6). Let us denote this “twisted” category by

F(Y,B). Here Y is a compact symplectic manifold, and B ∈ H2(Y,R/Z) is in the ker-

nel of the Bockstein homomorphism H2(Y,R/Z) → H3(Y,Z). The modified HMSC asserts

that if (X,G,B) is mirror to (X ′, G′,B′), then Db(X,B) is equivalent to DF0(X
′,B′).

Corollary 2.10 shows that this conjecture passes the check which the original HMSC fails.

If both B and B′ vanish, the modified HMSC reduces to the original HMSC. Thus one

could ask if it is possible to set the B-field to zero once and for all and work with the original

HMSC. This is highly unnatural for the following reason. Suppose we have a mirror pair of

physicist’s Calabi Yaus which both happen to have zero B-fields. Now let us start varying the

complex structure of the first Calabi-Yau. It can be seen in the case of complex tori and can

be argued in general that the corresponding deformation of the second Calabi-Yau generally

involves both the Kähler form and the B-field. Thus if we have a family of Calabi-Yaus

with zero B-field and varying complex structure, the mirror family of Calabi-Yaus will have

nonzero B-field for almost all values of the parameter.

For example, in the case of the elliptic curve, the usual Teichmüller parameter τ takes

values in the upper half-plane. The mirror elliptic curve has vanishing B if and only if τ

can be made purely imaginary by a modular transformation.

In the case of the elliptic curve, the effect of the B-field on the HMSC is relatively minor.

It has no effect on the derived category of coherent sheaves because h0,2 = 0. The objects

of the Fukaya category are also unmodified in this case (see Section 6), and the only change

in the definition of morphisms is to complexify the symplectic form. For higher-dimensional

varieties, the modification of the Fukaya category is more serious.

2.3 Physical applications

Transformations of the target space metric and the B -field which leave the conformal field

theory unchanged are known as T-duality transformations. For a real torus T n = Rn/Γ,

Γ ∼= Zn, such transformations form a group isomorphic to O(n, n,Z) [29, 24]. The main

novelty of this work is that we consider complex tori, and study transformations of G,B,

and the complex structure which leave the N = 2 superconformal field theory unchanged

or induce a mirror morphism.
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Our results have implications for the study of BPS D-branes on Calabi-Yau manifolds, a

subject which received much attention recently (see [10] and references therein). They suggest

that BPS D-branes of type B are best thought of as objects of the derived category of coherent

sheaves when the B-field is zero. When the B-field is nonzero but the corresponding class in

H2(X,O∗
X ) is a torsion class, the derived category of coherent sheaves should be replaced

with the derived category of a certain noncommutative algebraic variety (an Azumaya algebra

over X ). When the class of the B-field in H2(X,O∗
X ) has infinite order, it appears that

B-type D-branes should be regarded as objects of the derived category of ”coherent” sheaves

on a gerbe over X.

Note a similarity with the results of [20, 4] where it was shown that in the presence of a B-

field D-brane charges on a smooth manifold X are classified by the K-theory of an Azumaya

algebra over X, or more generally by the K-theory of a Dixmier-Douady algebra over X.

The main differences are that Refs. [20, 4] work in a C∞ -category, the D-branes are not

required to be BPS, and the focus is on D-brane charges rather on D-branes themselves.

In Section 6 we describe the effect of a closed B-field on BPS D-branes of type A (the

ones associated to flat unitary bundles on special Lagrangian submanifolds in a Calabi-Yau).

This subject was previously studied by Hori et al. [18] for the case of a single D-brane, i.e.

when the rank of the bundle is one. Hori et al. find that the restriction of the B-field to

the Lagrangian submanifold must vanish. We find that this restriction is too strong: it is

sufficient to require the restriction of the B-field to have integer periods. For the higher rank

case we argue that in general the unitary bundle on the Lagrangian submanfold is projectively

flat rather than flat. Correspondingly, the restrictions on the B-field are even weaker.

3 Superconformal vertex algebras

3.1 Quantum fields

Let V be a vector superspace over C. The parity of an element a ∈ V is denoted p(a)

and takes values in integers modulo 2.

Definition 3.1 The space of quantum fields in one formal variable with values in End(V )

is a vector superspace whose elements have the form

∑

h∈J

∑

n,n̄∈Z

C(h+n,h+n̄)z
−h−nz̄−h−n̄,

where J is some subset of [0, 1) (different for different elements), C(h+n,h+n̄) ∈ End(V ),

and the following conditions are satisfied:

a) the set J is countable;
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b) for any element v ∈ V there is a finite subset Jv ⊂ J such that

C(h+n,h+n̄)(v) = 0

for all h ∈ J\Jv and all n, n̄ ∈ Z ;

c) for any element v ∈ V there is an integer N such that Ch+n,h+n̄(v) = 0 for all

h ∈ J if n > N or n̄ > N.

The space of quantum fields in one formal variable with values in End(V ) is denoted

QF1(V ).

Given an element A(z, z̄) of QF1(V ), we will denote the coefficient of z−h−nz̄−h−n̄ in

A(z, z̄) by A(h+n,h+n̄).

The intersection of QF1(V ) with End(V )[[z, z−1]] (resp. End(V )[[z̄, z̄−1]] ) will be

called the space of meromorphic (resp. anti-meromorphic) fields. We will denote by A(z)

(resp. A(z̄) ) meromorphic (resp. anti-meromorphic) fields. The coefficient of z−n in A(z)

(resp. the coefficient of z̄−n in A(z̄) ) will be denoted A(n).

Definition 3.2 The space of quantum fields in two formal variables with values in End(V )

is a vector superspace whose elements have the form

∑

(h,g)∈J

∑

n,n̄,m,m̄∈Z

C(h+n,h+n̄,g+m,g+m̄)z
−h−nz̄−h−n̄w−g−mw̄−g−m̄,

where J ∈ [0, 1)2, C(h+n,h+n̄,g+m,g+m̄) ∈ End(V ), and the following conditions are satis-

fied:

a′) the set J is countable;

b′) for any element v ∈ V there is a finite subset Jv ⊂ J such that

C(h+n,h+n̄,g+m,g+m̄)(v) = 0

for all (h, g) ∈ J\Jv and all n, n̄,m, m̄ ∈ Z ;

c′) for any element v ∈ V and any (h, g) ∈ J, there is an integer N such that

C(h+n,h+n̄,g+m,g+m̄)(v) = 0,

C(h+m,h+m̄,g+n,g+n̄)(v) = 0,

for n > N and any n̄,m, m̄ ∈ Z, and

C(h+n,h+n̄,g+m,g+m̄)(v) = 0,

C(h+m,h+m̄,g+n,g+n̄)(v) = 0,

for n̄ > N and any n,m, m̄ ∈ Z.
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The space of quantum fields in two formal variables with values in End(V ) is denoted

QF2(V ).

Item (c′) in the definition of QF2(V ) ensures that given an element C(z, z̄, w, w̄) of

QF2(V ), one can substitute z = w, z̄ = w̄ and get a well-defined element of QF1(V ).

This element will be denoted C(w, w̄, w, w̄). Note that in general a product of two fields

A(z, z̄) ∈ QF1(V ) and B(w, w̄) ∈ QF1(V ) does not belong to QF2(V ), precisely because

(c′) is not satisfied. In this situation one says that the product of A(z, z̄) and B(w, w̄)

has a singularity for z = w, z̄ = w̄.

If an element A(z, z̄, w, w̄) ∈ QF2(V ) does not contain nonzero powers of z̄ (resp. z )

we will say that this field is meromorphic (resp. anti-meromorphic) in the first variable, and

write it as A(z,w, w̄) (resp. A(z̄, w, w̄) ). Fields in two variables (anti-)meromorphic in

the second variable are defined in a similar way.

3.2 The definition of a vertex algebra

We set

iz,w
1

(z − w)h
=

∞∑

j=0

(−h
j

)
(−1)jwjz−j−h, iz̄,w̄

1

(z̄ − w̄)h
=

∞∑

j=0

(−h
j

)
(−1)jw̄j z̄−j−h,

iw,z
1

(z − w)h
=

∞∑

j=0

(−h
j

)
e−iπh(−1)jzjw−j−h, iw̄,z̄

1

(z̄ − w̄)h
=

∞∑

j=0

(−h
j

)
eiπh(−1)j z̄jw̄−j−h,

where (−h
j

)
=

(−h)(−h − 1) · · · (−h− (j − 1))

j!
.

These are formal power series expansions of the functions (z−w)−h and (z̄− w̄)−h in the

regions |z| > |w|, |z| < |w| and |z̄| > |w̄|, |z̄| < |w̄|.

Definition 3.3 A vertex algebra structure on a vector superspace V consists of the follow-

ing data:

(i) an even vector |vac〉 ∈ V.

(ii) a pair T, T̄ of commuting even endomorphisms of V annihilating |vac〉.

(iii) a parity-preserving linear map

Y : V → QF1(V ), Y : a 7→ Y (a) = a(z, z̄).

These data must satisfy the following requirements.
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1. Y (|vac〉) = id ∈ End(V ).

2. [T, a(z, z̄)] = ∂a(z, z̄), [T̄ , a(z, z̄)] = ∂̄a(z, z̄).

3. a(z, z̄)|vac〉 = ezT+z̄T̄a.

4. For any a, b ∈ V there are integers N,M, real numbers hj ∈ [0, 1), j = 1, . . . ,M,

and quantum fields Cj(z, z̄, w, w̄) ∈ QF2(V ), j = 1, . . . ,M, such that

a(z, z̄)b(w, w̄) =
M∑

j=1

iz,w
1

(z − w)hj+N
iz̄,w̄

1

(z̄ − w̄)hj+N
Cj(z, z̄, w, w̄), (5)

(−1)p(a)p(b)b(w, w̄)a(z, z̄) =

M∑

j=1

iw,z
1

(z − w)hj+N
iw̄,z̄

1

(z̄ − w̄)hj+N
Cj(z, z̄, w, w̄). (6)

The map Y is called the state-operator correspondence. The coefficient of z−αz̄−β in

Y (a) is called the (α, β) component of Y (a) and denoted by a(α,β).

The last requirement in the definition of a vertex algebra is called the Operator Product

Expansion (OPE) axiom. It contains two important ideas. The equality (5) says that the

product of two fields in the image of Y has only power-like singularities for z = w, z̄ = w̄.

The difference of (5) and (6) means, roughly speaking, that the fields in the image of Y are

mutually local, in the sense that their supercommutator vanishes when z 6= w and z̄ 6= w̄.

This is particularly clear when all hi are equal to zero. Then the supercommutator of

a(z, z̄) and b(w, w̄) is proportional to

1

((N − 1)!)2
δ(N−1)(z −w)δ(N−1)(z̄ − w̄) +

1

(N − 1)!
δ(N−1)(z −w) iz̄,w̄

1

(z̄ − w̄)N

+
1

(N − 1)!
δ(N−1)(z̄ − w̄) iz,w

1

(z − w)N
, (7)

where δ(k)(z − w) is the kth derivative of the formal delta-function defined as a formal

power series

δ(z −w) = z−1
∑

n∈Z

( z
w

)n
.

Given any two elements of QF1(V ), we will say that they are mutually local if for their

products the OPE formulas (5,6) hold for some N,M ∈ Z, hj ∈ [0, 1), j = 1, . . . ,M,

and Cj ∈ QF2(V ), j = 1, . . . ,M.

Vertex algebras as defined above are a generalization of chiral algebras as defined in [19]

in the following sense. First, any chiral algebra is automatically a vertex algebra, with

T̄ = 0 and the image of Y consisting of meromorphic fields only. Second, if we consider the

subspace in V consisting of vectors which are mapped to meromorphic fields, the restriction
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of T and Y to this subspace specifies on it the structure of a chiral algebra. Similarly,

the restriction of T̄ and Y to the anti-meromorphic sector yields another chiral algebra.

Moreover, all meromorphic fields supercommute with all anti-meromorphic fields. Thus any

vertex algebra contains a pair of commuting chiral subalgebras. All these facts are proved in

Appendix B.

The OPE formulas simplify when one of the fields is meromorphic or anti-meromorphic.

For example, the OPE of a meromorphic field a(z), a ∈ V, with a general field b(w, w̄), b ∈
V, has the following form (see Appendix B for proof):

a(z)b(w, w̄) =

N∑

j=1

iz,w
1

(z −w)j
Dj(w, w̄)+ : a(z)b(w, w̄) :, (8)

(−1)p(a)p(b)b(w, w̄)a(z) =

N∑

j=1

iw,z
1

(z −w)j
Dj(w, w̄)+ : a(z)b(w, w̄) : .

Here N is some integer, Dj(w, w̄) ∈ QF1(V ), and : a(z)b(w, w̄) : is an element of

QF2(V ) defined as follows:

: a(z)b(w, w̄) := a(z)+b(w, w̄) + (−1)p(a)p(b)b(w, w̄)a(z)−,

where we set

a(z)+ =
∑

n≤0

a(n)z
−n, a(z)− =

∑

n>0

a(n)z
−n. (9)

The field : a(z)b(w, w̄) : is called the normal ordered product of a(z) and b(w, w̄). Since

it belongs to QF2(V ), one can set z = w and get a well-defined field in one variable

: a(w)b(w, w̄) : . The difference between the right-hand side of (8) and : a(z)b(w, w̄) : is

called the singular part of the OPE.

Similarly, one can define the normal ordered product of an anti-meromorphic field with

a general field. The normal ordered product of two general fields is not defined.

Let us consider now the OPE of two meromorphic fields a(z) and b(z). We already

mentioned that meromorphic fields form a chiral algebra, thus the OPE (8) simplifies even

further:

a(z)b(w) =

N∑

j=1

iz,w
1

(z − w)j
Dj(w)+ : a(z)b(w) :,

(−1)p(a)p(b)b(w)a(z) =
N∑

j=1

iw,z
1

(z − w)j
Dj(w)+ : a(z)b(w) : .
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Here Dj(w), j = 1, . . . , N, are meromorphic elements of QF1(V ). Exchanging a(z) and

b(w) we get

b(w)a(z) =

N∑

j=1

iw,z
1

(w − z)j
Cj(z)+ : b(w)a(z) :,

(−1)p(a)p(b)a(z)b(w) =
N∑

j=1

iz,w
1

(w − z)j
Cj(z)+ : b(w)a(z) :,

where Cj(z), j = 1, . . . , N, are meromorphic elements of QF1(V ).

In general, the normal ordered product is not supercommutative, i.e.

: a(z)b(w) : 6= (−1)p(a)p(b) : b(w)a(z) : .

Neither is it associative, in the sense that in general

: a(z) : b(z)c(z) :: 6= :: a(z)b(z) : c(z) : .

We will define the normal ordered product of more than two (anti-)meromorphic fields in-

ductively from right to left:

: a1(z)a2(z) . . . an(z) :=: a1(z) : a2(z) . . . an(z) :: .

An important special case where the normal ordered product of meromorphic fields is super-

commutative is when the fields Dj(w) do not depend on w, i.e. are constant endomor-

phisms of V. This follows directly from the above OPE formulas. One can also show that

if pairwise OPE’s of meromorphic fields a(z), b(z), and c(z) have this property, then their

normal ordered product is associative [9]. For example, the normal ordered product of free

fermion and free boson fields is supercommutative and associative [19, 9].

Another important special case is the OPE of a meromorphic field and an anti-

meromorphic field. In this case one can also define two normal ordered products, : a(z)b(w̄) :

and : b(w̄)a(z) : . But it follows easily from the equations (8) and analogous equations for

the OPE of an anti-meromorphic field and a general field, that in this case the singular part of

the OPE vanishes, the normal ordered product coincides with the ordinary product, and that

consequently all meromorphic fields supercommute with all anti-meromorphic fields. Thus

: a(z)b(w̄) := (−1)p(a)p(b) : b(w̄)a(z) : .

This is discussed in more detail in Appendix B.

The singular part of the OPE of two meromorphic fields a(z) and b(z) completely

determines and is determined by the supercommutators of a(n) and b(m) for all n,m ∈ Z.
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Explicit formulas which enable one to pass from the OPE to the supercommutators and back

can found in [19].

When writing the OPE of two meromorphic fields we will use a shortened notation in

which only the singular part of the OPE is shown. To indicate this, the equality sign is

replaced by ∼ . In addition, we will only write the first of the OPE’s in (8), and cor-

respondingly will omit the symbol iz,w, as is common in the physics literature. Similar

notation is used for the OPE of two anti-meromorphic fields. Thus instead of

a(z)b(w) =

N∑

j=1

iz,w
1

(z − w)j
Dj(w)+ : a(z)b(w) :

we will write

a(z)b(w) ∼
N∑

j=1

Dj(w)

(z −w)j
.

We conclude this subsection by defining morphisms of vertex algebras. A morphism from

a vertex algebra (V, |vac〉, T, T̄ , Y ) to a vertex algebra (V ′, |vac〉′, T ′, T̄ ′, Y ′) is a morphism

of superspaces f : V → V ′ such that

f(|vac〉) = |vac〉′, fT = T ′f, f T̄ = T̄ ′f,

and

Y ′(f(a))f(b) = f(Y (a)b) ∀a, b ∈ V.

3.3 Conformal vertex algebras

Definition 3.4 Let V = (V, |vac〉, T, T̄ , Y ) be a vertex algebra. Conformal structure on V
is a pair of even vectors L, L̄ ∈ V such that

(i) L(z, z̄) = L(z) =
∑

n∈Z

Lnz
−n−2, L̄(z, z̄) = L̄(z̄) =

∑

n∈Z

L̄nz̄
−n−2.

(ii) L−1 = T, L̄−1 = T̄ .

(iii) L(z)L(w) ∼ c/2

(z − w)4
+

2L(w)

(z − w)2
+
∂L(w)

z − w
,

L̄(z̄)L̄(w̄) ∼ c̄/2

(z̄ − w̄)4
+

2L̄(w̄)

(z̄ − w̄)2
+
∂̄L̄(w)

z̄ − w̄
.

(iv) for any a ∈ V

[L0, a(z, z̄)] = z∂a(z, z̄) + (L0a)(z, z̄), [L̄0, a(z, z̄)] = z̄∂̄a(z, z̄) + (L̄0a)(z, z̄).

(10)

Here c, c̄ ∈ C. A vertex algebra with a conformal structure is called a conformal vertex

algebra (CVA).
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The numbers c and c̄ are called the holomorphic and anti-holomorphic central charges

of the CVA. The reason for this name is the following. The OPE’s (10) are equivalent to the

following commutation relations for all n,m ∈ Z [19]:

[Lm, Ln] = (m− n)Lm+n + c
m3 −m

12
δm,−n,

[L̄m, L̄n] = (m− n)L̄m+n + c̄
m3 −m

12
δm,−n,

[Ln, L̄m] = 0.

Hence the components of L(z) and L̄(z) form two commuting Virasoro algebras. The

Virasoro algebra is the unique central extension of the Witt algebra (the algebra of the

infinitesimal diffeomorphisms of a circle). In the present case the central charges of the two

Virasoro algebras are c and c̄.

Note that axiom 3 in the definition of a vertex algebra implies that both Ln and L̄n

annihilate |vac〉 for all n ≥ −1.

A morphism f from a CVA (V, |vac〉, Y, L, L̄) to a CVA (V ′, |vac〉′, Y ′, L′, L̄′) is a

morphism of the underlying vertex algebras which satisfies

f(L) = L′, f(L̄) = L̄′.

A conformal vertex algebra is almost the same as a conformal field theory. Namely, a

physically acceptable conformal field theory is a conformal vertex algebra whose state space

V is equipped with a positive-definite Hermitian inner product, and the following additional

constraints are satisfied:

(v) The space V splits as a direct sum of the form

⊕j∈JWj ⊗ W̄j,

where J is a countable set, and Wj and W̄j are unitary highest-weight modules

over the meromorphic and anti-meromorphic Virasoro algebras, respectively.

(vi) The vacuum vector is the only vector in V annihilated by both L0 and L̄0.

The conformal vertex algebras we will be working with satisfy these constraints and

therefore are honest conformal field theories. However, we prefer not to stress the “real”

aspects of conformal field theories in this paper.

Furthermore, in order for a conformal field theory to admit a string-theoretic interpre-

tation, it must be defined on a Riemann surface of arbitrary genus. (The above axioms

define a conformal field theory in genus zero.) This does not require new data, but imposes

additional, so-called sewing, constraints. We will work in genus zero only, and therefore will

neglect the sewing constraints.
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3.4 N=1 superconformal vertex algebras

Definition 3.5 Let V = (V, |vac〉, Y, L, L̄) be a conformal vertex algebra with central

charges c, c̄. N = 1 superconformal structure on V is a pair of odd vectors Q, Q̄ ∈ V

such that

(i) Q(z, z̄) = Q(z) =
∑

r∈Z+ 1

2

Qr

zr+3/2
, Q̄(z, z̄) = Q̄(z̄) =

∑

r∈Z+ 1

2

Q̄r

z̄r+3/2
.

(ii) The following OPE’s hold true:

L(z)Q(w) ∼ 3

2

Q(w)

(z − w)2
+
∂Q(w)

(z − w)
,

Q(z)Q(w) ∼ c/6

(z − w)3
+

1

2

L(w)

(z − w)
,

and similar OPE’s for the anti-meromorphic fields with z,w, c, ∂ replaced with

z̄, w̄, c̄, ∂̄.

The fields Q(z) and Q̄(z̄) are called left-moving and right-moving supercurrents, respec-

tively. A CVA with an N = 1 superconformal structure is called an N = 1 superconformal

vertex algebra ( N = 1 SCVA).

N = 1 superconformal structure is also known as (1, 1) superconformal structure.

Omitting Q̄, one obtains the definition of (1, 0) superconformal structure. Morphisms of

N = 1 SCVA’s are defined in an obvious way.

The OPE’s of Q(z), Q̄(z̄) with themselves and L(z), L̄(z̄) are equivalent to the following

commutation relations:

[Lm, Qr] =
(m

2
− r
)
Qr+m, [L̄m, Q̄r] =

(m
2

− r
)
Q̄r+m,

{Qr, Qs} =
1

2
Lr+s +

c

12

(
r2 − 1

4

)
δr,−s, {Q̄r, Q̄s} =

1

2
L̄r+s +

c̄

12

(
r2 − 1

4

)
δr,−s.

As usual, the barred generators supercommute with the unbarred ones. Thus Ln, L̄n, Qr, Q̄r

form an infinite-dimensional Lie super-algebra which is a direct sum of two copies of the

N = 1 super-Virasoro algebra with central charges c and c̄.

3.5 N=2 superconformal vertex algebras

Definition 3.6 Let V = (V, |vac〉, Y, L, L̄) be a conformal vertex algebra with central

charges c, c̄. N = 2 superconformal structure on V is a pair of even vectors J, J̄ ∈ V

and four odd vectors Q+, Q−, Q̄+, Q̄− ∈ V such that
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(i) J(z, z̄) = J(z) =
∑

n∈Z

Jn
zn+1

, J̄(z, z̄) = J̄(z̄) =
∑

n∈Z

J̄n
z̄n+1

,

Q+(z, z̄) = Q+(z) =
∑

r∈Z+ 1

2

Q+
r

zr+3/2
, Q̄+(z, z̄) = Q̄+(z̄) =

∑

r∈Z+ 1

2

Q̄+
r

z̄r+3/2
,

Q−(z, z̄) = Q−(z) =
∑

r∈Z+ 1

2

Q−
r

zr+3/2
, Q̄−(z, z̄) = Q̄−(z̄) =

∑

r∈Z+ 1

2

Q̄−
r

z̄r+3/2
;

(ii) the following OPE’s hold true:

L(z)Q±(w) ∼ 3

2

Q±(w)

(z − w)2
+
∂Q±(w)

(z − w)
,

L(z)J(w) ∼ J(w)

(z − w)2
+

∂J(w)

(z − w)
,

J(z)J(w) ∼ c/3

(z − w)2
,

J(z)Q±(w) ∼ ± Q±(w)

(z − w)
,

Q+(z)Q−(w) ∼ c/12

(z − w)3
+

1

4

J(w)

(z −w)2
+

1

8

∂J(w) + 2L(w)

(z − w)
,

Q±(z)Q±(w) ∼ 0,

and similar OPE’s for the anti-meromorphic fields with z,w, c, ∂ replaced with

z̄, w̄, c̄, ∂̄.

The fields J(z) and J̄(z̄) are called left-moving and right-moving R-currents, the fields

Q±(z) and Q̄±(z̄) are called left-moving and right-moving supercurrents, respectively. A

CVA with N = 2 superconformal structure is called an N = 2 superconformal vertex

algebra ( N = 2 SCVA).

The above OPE’s together with the OPE’s for L(z), L̄(z) are equivalent to the commutation

relations (1) if we set c = c̄ = 3d.

N = 2 superconformal structure is also known as a (2, 2) superconformal structure.

If one omits the anti-meromorphic currents J̄(z̄), Q̄±(z̄), one gets the definition of a (2, 0)

superconformal structure.

Given an N = 2 SCVA, one can obtain an N = 1 SCVA by setting Q = Q+ + Q−,

Q̄ = Q̄++Q̄−. Thus an N = 2 SCVA can be regarded as an N = 1 SCVA with additional

structure.

Morphisms of N = 2 SCVA’s are defined in an obvious way. A mirror morphism

between two N = 2 SCVA’s is an isomorphism between the underlying N = 1 SCVA’s

which induces the following map on Q±, Q̄±, J, J̄ :

f(Q+) = Q−′

, f(Q−) = Q+′

, f(J) = −J ′,

f(Q̄+) = Q̄+′

, f(Q̄−) = Q̄−′

, f(J̄) = J̄ ′.
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This map acts as an outer automorphism on the algebra (1). A composition of two mirror

morphisms is an isomorphism of N = 2 SCVA’s.

4 N=2 SCVA of a flat complex torus

The purpose of this section is to describe an N = 2 SCVA canonically associated to a

complex torus endowed with a flat Kähler metric and a constant 2-form. None of this

material is new, and everything can be found, in one form or another, in standard string

theory textbooks [24, 29]. We simply translate these standard constructions into the language

of vertex algebras.

4.1 Vertex algebra structure

Let U be a real vector space of dimension 2d. Let Γ ∼= Z2d be a lattice in U. Let

Γ∗ ⊂ U∗ be the dual lattice Hom(Γ,Z). Let T = U/Γ, T ∗ = U∗/Γ∗. Let G be a metric

on U, i.e. a positive symmetric bilinear form on U. Let B be a real skew-symmetric

bilinear form on U. Let l be the natural pairing Γ × Γ∗ → Z. The natural pairing

U ×U∗ → R will be also denoted l. Let Z∗ be the set of nonzero integers. Let the vectors

e1, . . . , e2d ∈ U be the generators of Γ. The components of an element w ∈ Γ in this basis

will be denoted by wi, i = 1, . . . , 2d. The components of an element m ∈ Γ∗ in the dual

basis will be denoted by mi, i = 1, . . . , 2d. We also denote by Gij , Bij the components

of G, B in this basis. It will be apparent that the superconformal vertex algebra which

we construct does not depend on the choice of basis in Γ. In the physics literature Γ is

sometimes referred to as the winding lattice, while Γ∗ is called the momentum lattice.

Consider a triple (T,G,B). To any such triple we will associate a superconformal ver-

tex algebra V which may be regarded as a quantization of the supersymmetric σ -model

described in Appendix A.

The state space of the vertex algebra V is

V = Hb ⊗C Hf ⊗C C [Γ ⊕ Γ∗].

Here Hb and Hf are bosonic and fermionic Fock spaces defined below, while C [Γ ⊕ Γ∗]

is the group algebra of Γ ⊕ Γ∗ over C.

To define Hb, consider an algebra over C with generators αis, ᾱ
i
s, i = 1, . . . , 2d, s ∈ Z∗

and relations

[αis, α
j
p] = s

(
G−1

)ij
δs,−p, [ᾱis, ᾱ

j
p] = s

(
G−1

)ij
δs,−p, [αis, ᾱ

j
p] = 0. (11)
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If s is a positive integer, αi−s and ᾱi−s are called left and right bosonic creators, re-

spectively, otherwise they are called left and right bosonic annihilators. Either creators or

annihilators are referred to as oscillators.

The space Hb is defined as the space of polynomials of even variables ai−s, ā
i
−s, i =

1, . . . , 2d, s = 1, 2, . . . , The bosonic oscillator algebra (11) acts on the space Hb via

αi−s 7→ ai−s·, ᾱi−s 7→ āi−s·,
αis 7→ s

(
G−1

)ij ∂

∂aj−s
, ᾱis 7→ s

(
G−1

)ij ∂

∂āj−s
,

for all positive s. This is the Fock-Bargmann representation of the bosonic oscillator algebra.

The vector 1 ∈ Hb is annihilated by all bosonic annihilators and will be denoted |vacb〉.
The space Hb will be regarded as a Z2 -graded vector space with a trivial (purely even)

grading. It is clear that Hb can be decomposed as Hb⊗ H̄b, where Hb (resp. H̄b ) is the

bosonic Fock space defined using only the left (right) bosonic oscillators.

To define Hf , consider an algebra over C with generators ψis, ψ̄
i
s, i = 1, . . . , 2d, s ∈

Z + 1
2 subject to relations

{ψis, ψjp} =
(
G−1

)ij
δs,−p, {ψ̄is, ψ̄jp} =

(
G−1

)ij
δs,−p, {ψis, ψ̄jp} = 0. (12)

If s is positive, ψi−s and ψ̄i−s are called left and right fermionic creators respectively,

otherwise they are called left and right fermionic annihilators. Collectively they are referred

to as fermionic oscillators.

The space Hf is defined as the space of skew-polynomials of odd variables θi−s, θ̄
i
−s, i =

1, . . . , 2d, s = 1/2, 3/2, . . . , The fermionic oscillator algebra (12) acts on Hf via

ψi−s 7→ θi−s·, ψ̄i−s 7→ θ̄i−s·,
ψis 7→

(
G−1

)ij ∂

∂θj−s
, ψ̄is 7→

(
G−1

)ij ∂

∂θ̄j−s
,

for all positive s ∈ Z + 1
2 . This is the Fock-Bargmann representation of the fermionic

oscillator algebra. The vector 1 ∈ Hf is annihilated by all fermionic annihilators and will

be denoted |vacf 〉. The fermionic Fock space has a natural Z2 grading such that |vacf 〉
is even. It can be decomposed as Hf ⊗ H̄f , where Hf (resp. H̄f ) is constructed using

only the left (right) fermionic oscillators.

For w ∈ Γ, m ∈ Γ∗ we will denote the vector w⊕m ∈ C [Γ⊕Γ∗] by (w,m). We will

also use a shorthand |vac,w,m〉, for

|vacb〉 ⊗ |vacf 〉 ⊗ (w,m).

To define V, we have to specify the vacuum vector, T, T̄ , and the state-operator cor-

respondence Y. But first we need to define some auxiliary objects. We define the operators
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W : V → V ⊗ Γ and M : V → V ⊗ Γ∗ as follows:

W i : b⊗ f ⊗ (w,m) 7→ wi(b⊗ f ⊗ (w,m)), Mi : b⊗ f ⊗ (w,m) 7→ mi(b⊗ f ⊗ (w,m)).

We also set

Y j(z) =

∞∑′

s=−∞

αjs
szs

,

Ȳ j(z̄) =

∞∑′

s=−∞

ᾱjs
sz̄s

,

∂Xj(z) =
1

z

(
G−1

)jk
Pk − ∂Y j(z), (13)

∂̄Xj(z̄) =
1

z̄

(
G−1

)jk
P̄k − ∂̄Ȳ j(z̄), (14)

ψj(z) =
∑

r∈Z+ 1

2

ψjr

zr+1/2
, (15)

ψ̄j(z̄) =
∑

r∈Z+ 1

2

ψ̄jr

z̄r+1/2
, (16)

where a prime on a sum over s means that the term with s = 0 is omitted, and Pk and

P̄k are defined by

Pk =
1√
2
(Mk + (−Bkj −Gkj)W

j), P̄k =
1√
2
(Mk + (−Bkj +Gkj)W

j).

Note that we did not define Xj(z, z̄) themselves, but only their derivatives. The reason

is that the would-be field Xj(z, z̄) contains terms proportional to log z and log z̄, and

therefore does not belong to QF1(V ).

The vacuum vector of V is defined by

|vac〉 = |vac, 0, 0〉.

The operators T, T̄ ∈ End(V ) are defined by

T = Pjα
j
−1 +

∞∑

s=1

Gjkα
j
−1−sα

k
s +

∑

r= 1

2
, 3
2
,...

(
r +

1

2

)
ψj−1−rψ

k
r ,

T̄ = P̄jᾱ
j
−1 +

∞∑

s=1

Gjkᾱ
j
−1−sᾱ

k
s +

∑

r= 1

2
, 3
2
,...

(
r +

1

2

)
ψ̄j−1−rψ̄

k
r .

The state-operator correspondence is defined as follows. The state space V is spanned

by vectors of the form

αj1−s1 . . . α
jn
−sn

ᾱj̄1−s̄1 . . . ᾱ
j̄n̄
−s̄n̄

ψi1−r1 . . . ψ
iq
−rq ψ̄

ī1
−r̄1 . . . ψ̄

īq̄
−r̄q̄ |vac,w,m〉, (17)
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where n, n̄, q, q̄ are nonnegative integers, s1, . . . , sn, s̄1, . . . , s̄n̄ are positive integers, and

r1, . . . , rq, r̄1, . . . , r̄q̄ are positive half-integers. This vector is mapped by Y to the following

quantum field:

∑

(w′,m′)∈Γ⊕Γ∗

ǫw,m′ T (w,m) pr(w′,m′)z
−2G−1(k,k′) z̄−2G−1(k̄,k̄′) exp

(
kjY

j(z)+ + k̄j Ȳ
j(z̄)+

)

:

n∏

l=1

∂slXjl(z)

(sl − 1)!

n̄∏

l̄=1

∂s̄l̄X j̄l̄(z̄)

(s̄l̄ − 1)!

q∏

t=1

∂rt−1/2ψit(z)

(rt − 1
2)!

q̄∏

t̄=1

∂r̄t̄−1/2ψ̄īt̄(z̄)

(r̄t̄ − 1
2)!

:

exp
(
kjY

j(z)− + k̄j Ȳ
j(z̄)−

)
. (18)

Here k, k̄, k′, k̄′ are elements of U∗ defined by

kj =
1√
2
(mj + (−Bjk −Gjk)w

k), k̄j =
1√
2
(mj + (−Bjk +Gjk)w

k),

k′j =
1√
2
(m′

j + (−Bjk −Gjk)w
′k), k̄′j =

1√
2
(m′

j + (−Bjk +Gjk)w
′k),

the operator T (w,m) is a translation on the lattice Γ ⊕ Γ∗ :

T (w,m) : (a, b) 7→ (a+ w, b+m),

and the operators pr(w′,m′) : V → V are projections onto the subspace Hb⊗Hf ⊗ (w′,m′).

Finally, ǫw,m′ is a sign equal to exp(iπl(w,m′)). We also remind that for any meromorphic

quantum field a(z) the fields a(z)+ and a(z)− are defined by (9), and there is a similar

definition for the anti-meromorphic fields. Thus Y j(z)± and Ȳ j(z̄)± are given by

Y j(z)− =
∑

s>0

αjs
szs

, Y j(z)+ =
∑

s<0

αjs
szs

Ȳ j(z̄)− =
∑

s>0

ᾱjs
sz̄s

, Ȳ j(z̄)+ =
∑

s<0

ᾱjs
sz̄s

.

One can easily check that (18) is indeed a well-defined quantum field. Furthermore, the

vector (17) is unchanged when the bosonic oscillators are permuted, and is multiplied by the

parity of the permutation when the fermionic oscillators are permuted. For the map Y to

be well-defined, (18) must have the same property. To see that this is indeed the case, note

that the OPE of the fields ψj and ∂Xj is given by

∂Xj(z)∂Xk(w) ∼
(
G−1

)jk

(z − w)2
,

ψj(z)ψk(w) ∼
(
G−1

)jk

(z − w)
,

∂Xj(z)ψi(z) ∼ 0, (19)
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and similarly for the anti-meromorphic fields. It follows that the singular part of the OPE for

ψj , ψ̄j , ∂Xj , ∂̄Xj and their derivatives is proportional to the identity operator, and therefore

their normal ordered product is supercommutative.

To facilitate the understanding of (18), we list a few special cases of the state-operator

correspondence.

The state αj−s|vac, 0, 0〉 is mapped by Y to

1

(s− 1)!
∂sXj(z).

The state ᾱj−s|vac, 0, 0〉 is mapped to

1

(s− 1)!
∂̄sXj(z̄).

The state ψj−s|vac, 0, 0〉 is mapped to

1

(s− 1
2)!
∂s−1/2ψj(z).

The state ψ̄j−s|vac, 0, 0〉 is mapped to

1

(s− 1
2)!
∂̄s−1/2ψ̄j(z̄).

The state |vac,w,m〉 is mapped to

∑

(w′,m′)∈Γ⊕Γ∗

ǫw,m′ T (w,m) z−2G−1(k,k′) z̄−2G−1(k̄,k̄′) exp
(
kjY

j(z)+ + k̄j Ȳ
j(z̄)+

)

exp
(
kjY

j(z)− + k̄jȲ
j(z̄)−

)
pr(w′,m′).

Checking that (V, |vac〉, T, T̄ , Y ) satisfies the vertex algebra axioms is a tedious but

straightforward exercise which we leave to the reader. Implicitly, the axioms are verified in

most textbooks on string theory, for example in [29, 24].

4.2 N = 2 superconformal structure

We first define an N = 1 superconformal structure on V by setting

L(z) =
1

2
: G (∂X(z), ∂X(z)) : −1

2
: G (ψ(z), ∂ψ(z)) : ,

L̄(z̄) =
1

2
: G
(
∂̄X(z̄), ∂̄X(z̄)

)
: −1

2
: G
(
ψ̄(z̄), ∂̄ψ̄(z̄)

)
: ,

Q(z) =
i

2
√

2
: G (ψ(z), ∂X(z)) : ,

Q̄(z̄) =
i

2
√

2
: G
(
ψ̄(z̄), ∂̄X(z̄)

)
: .
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It can be easily checked that all these fields are in the image of Y, that L−1 = T, L̄−1 = T̄ ,

and that they satisfy the OPE’s specified in the Definition 3.5. The central charges turn out

to be c = c̄ = 3d.

To define an N = 2 superconformal structure, we need to choose a complex structure

I on U with respect to which G is a Kähler metric. Let ω = GI be the corresponding

Kähler form. Then the left-moving supercurrents and the U(1) current are defined as

follows:

Q±(z) =
i

4
√

2
: G (ψ(z), ∂X(z)) : ± 1

4
√

2
: ω (ψ(z), ∂X(z)) : ,

J(z) = − i

2
: ω(ψ(z), ψ(z)) : .

The right-moving currents Q̄±(z̄) and J̄(z̄) are defined by the same expressions with ∂X

replaced by ∂̄X and ψ replaced by ψ̄. We omit the check that the OPE’s of these currents

are as specified in the Definition 3.6. In checking the OPE’s the relations (19) are useful.

5 Morphisms of toroidal superconformal vertex algebras

5.1 Isomorphisms of N = 1 SCVA’s

Let (T,G,B) and (T ′, G′, B′) be a pair of 2d -dimensional real tori equipped with flat

metrics and constant B-fields. Given G and B, we define a flat metric on T ×T ∗ by the

formula

G(G,B) = 2

(
G−BG−1B BG−1

−G−1B G−1

)
.

The meaning of this formula is that the value of G on a pair of vectors x1⊕y1 and x2⊕y2,

xi ∈ U, yi ∈ U∗, i = 1, 2, is

2
(
x1 y1

)(G−BG−1B BG−1

−G−1B G−1

)(
x2

y2

)
.

G(G,B) is obviously a symmetric form on U ⊕ U∗, and its positive-definiteness follows

from the positive-definiteness of G and the identity

G = R(G,B)t

(
G 0

0 G

)
R(G,B), (20)

where

R(G,B) =

(
−1 −G−1B G−1

1 −G−1B G−1

)
.
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We will use a shorthand G(G,B) = G and G(G′, B′) = G′. Recall also that we have

canonical Z -valued symmetric bilinear forms on Γ⊕Γ∗ and Γ′ ⊕Γ′∗ denoted by q and

q′, respectively (see Section 2).

In this subsection we prove

Theorem 5.1 N = 1 SCVA’s corresponding to (T,G,B) and (T ′, G′, B′) are isomor-

phic if and only if there exists an isomorphism of lattices Γ⊕Γ∗ and Γ′ ⊕Γ′∗ which takes

q to q′, and G to G′.

The “if” part of this theorem is proved in many string theory papers, see for example [25,

34]. Below we outline a construction of the isomorphism of N = 1 SCVA’s given an

isomorphism of lattices and then prove the “only if” part of the theorem.

Let g be an isomorphism of Γ ⊕ Γ∗ with Γ′ ⊕ Γ′∗. We will write it as follows:

g =

(
a b

c d

)
,

where a ∈ Hom(Γ,Γ′), b ∈ Hom(Γ∗,Γ′), c ∈ Hom(Γ,Γ′∗), d ∈ Hom(Γ∗,Γ′∗). The

“realified” maps from U,U∗ to U ′, U ′∗ will be denoted by the same letters. Let us also set

H = G + B. Both V and V ′ are tensor products of the group algebra of the respective

lattice and bosonic and fermionic Fock spaces. The vertex algebra isomorphism f : V → V ′

respects this tensor product structure. C[Γ ⊕ Γ∗] is mapped to C[Γ′ ⊕ Γ′∗] in an obvious

way:

f :

(
w

m

)
7→
(
a b

c d

)(
w

m

)
.

The mapping of Fock spaces is defined by the substitutions

(
ai−s

āi−s

)
7→ M(g,H)ij

(
aj−s

āj−s

)
, s = 1, 2, . . . ,

(
θi−s

θ̄i−s

)
7→ M(g,H)ij

(
θj−s

θ̄j−s

)
, s =

1

2
,
3

2
, . . . ,

where

M(g,H) =

(
a− bHt 0

0 a+ bH

)
.

In particular, f preserves the bosonic and fermionic vacuum vectors.

Let us now indicate why this mapping is an isomorphism of N = 1 SCVA’s. The

statement that g takes q to q′ is equivalent to

atc+ cta = btd+ dtb = 0, atd+ ctb = idΓ∗ , (21)
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where at denotes the conjugate of a, etc.

The statement that g takes G to G′ is equivalent to

H ′ = (c+ dH)(a+ bH)−1, (22)

where H ′ = G′ + B′,H = G + B. To show this, let us denote the right-hand side of the

above equation by H ′′, let G′′ and B′′ be the symmetric an anti-symmetric parts of H ′′,

and let G′′ = G(G′′, B′′). In view of (20) we have

G′′ = R(G′′, B′′)t

(
G′′ 0

0 G′′

)
R(G′′, B′′).

Let us multiply this equation by gt from the left and by g from the right and use the

identity

R(G′′, B′′)g = M(g,H)R(G,B), (23)

which can be easily proved using (21). We get

gtG′′g = R(G,B)tM(g,H)t

(
G′′ 0

0 G′′

)
M(g,H)R(G,B).

We now use another easily checked identity:

G′′ =
[
(a+ bH)t

]−1
G(a+ bH)−1 =

[
(a− bHt)t

]−1
G(a− bHt)−1, (24)

and obtain

gtG′′g = G.

On the other hand, we know that gtG′g = G. Thus G′′ = G′, and hence G′′ = G′, B′′ =

B′,H ′′ = H ′. This proves (22). As a consequence of G′′ = G′ and (24), we obtain a useful

formula relating G′ and G :

G′ =
[
(a+ bH)t

]−1
G(a+ bH)−1 =

[
(a− bHt)t

]−1
G(a− bHt)−1. (25)

Using these relations, one can easily check that the map f intertwines Y and Y ′, i.e.

Y ′(f(a), z, z̄) = f Y (a, z, z̄)f−1, ∀a ∈ V. (26)

In particular, we have

f−1

(
∂X ′i(z)

∂̄X ′i(z)

)
f = M(g,H)ij

(
∂Xj(z)

∂̄X
j
(z)

)
, (27)

f−1

(
ψ

′i(z)

ψ̄
′i(z)

)
f = M(g,H)ij

(
ψj(z)

ψ̄j(z)

)
.
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These relations and the definition of L(z), L̄(z̄), Q(z), Q̄(z̄) imply that the N = 1 super-

conformal structure is also preserved:

L′(z) = fL(z)f−1, Q′(z) = fQ(z)f−1, (28)

L̄′(z̄) = fL̄(z̄)f−1, Q̄′(z̄) = fQ̄(z̄)f−1.

Hence f is an isomorphism of N = 1 superconformal vertex algebras.

In the remainder of this subsection we prove the “only if” part of the theorem. Let

(T,G,B) and (T ′, G′, B′) be two real tori equipped with a flat metric and a constant

B-field. Thus T = U/Γ and T ′ = U ′/Γ′, where U and U ′ are real vector spaces

and Γ and Γ′ are lattices of maximal rank in the respective spaces. Clearly, for the

N = 1 SCVA’s to be isomorphic, the central charges of the corresponding super-Virasoro

algebras must agree, hence dimU = dimU ′. We pick an isomorphism of U and U ′ and a

basis in U. Let V = (V, Y, |vac〉, L, L̄,Q, Q̄) and V ′ = (V ′, Y ′, |vac′〉, L′, L̄′, Q′, Q̄′) be the

corresponding N = 1 SCVA’s. Let f : V → V ′ be an isomorphism of N = 1 SCVA’s.

This means that the equations (26) and (28) hold true. In particular, f preserves the form

of the OPE.

Consider the “Hamiltonians” L0, L̄0 ∈ End(V ). A short computation yields:

L0 =
1

8
G(Z,Z) − 1

4
q(Z,Z) +Nb +Nf , L̄0 =

1

8
G(Z,Z) +

1

4
q(Z,Z) + N̄b + N̄f .

Here Z = (W,M) is regarded as an element of End(H) ⊗R (U ⊕ U∗), and we defined

Nb =
∞∑

s=1

G (α−s, αs) , Nf =
∑

r=1/2,3/2,...

rG (ψ−r, ψr) ,

N̄b =

∞∑

s=1

G (ᾱ−s, ᾱs) , N̄f =
∑

r=1/2,3/2,...

rG
(
ψ̄−r, ψ̄r

)
.

The operators Nb, Nf , N̄b, N̄f commute with each other. For what follows it is important

to know their spectrum in Fock space. One can show that the Fock space decomposes

into a tensor sum of the joint eigenspaces of Nb, Nf , N̄b, N̄f , and that all the eigenvalues

are nonnegative. Furthermore, the spectrum of Nb, N̄b is integer, and the spectrum of

Nf , N̄f is half-integer. Finally, the only vector in Hb⊗Hf annihilated by all four operators

is |vacb〉 ⊗ |vacf 〉. (All of these facts are standard and can be easily proved using the

commutation relations for the oscillators.)

Note also that the spectrum of the operator G(Z,Z) is nonnegative because G is a

positive-definite form. The only vector in C [Γ ⊕ Γ∗] annihilated by G(Z,Z) is (0, 0).

Now let us find all the eigenvectors of L0, L̄0 with eigenvalues (1/2, 0). Suppose a ∈ V

is such an eigenvector. Since L0, L̄0 commute with Z = (W,M), we may assume that a
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is an eigenvector of Z with an eigenvalue z = (w,m), where w ∈ Γ,m ∈ Γ∗. In view of

the above we have three possibilities:

Case 1. Nb a = N̄b a = Nf a = N̄f a = 0,

1

2
G(z, z) − q(z, z) = 2,

1

2
G(z, z) + q(z, z) = 0.

Case 2. Nb a = N̄b a = Nf a = 0,

(
N̄f −

1

2

)
a = 0,

G(z, z) = q(z, z) = 0.

Case 3. Nb a = N̄b a = N̄f a = 0,

(
Nf −

1

2

)
a = 0, (29)

G(z, z) = q(z, z) = 0.

The first case is ruled out, because we must have q(z, z) = −1, in contradiction with

the fact that q is an even form.

In the second case, we must have z = 0. Then from the formulas for L0, L̄0 we see that

such a vector has eigenvalues (0, 1/2) rather than (1/2, 0). Hence this case is also ruled

out.

In the third case, we must have z = 0. Furthermore, it is easy to see that all vectors

satisfying (29) must also satisfy

αisa = ᾱisa = 0, i = 1, . . . , 2d, s = 1, 2, . . . ,

ψ̄ira = 0, i = 1, . . . , 2d, r = 1/2, 3/2, . . . ,

ψira = 0, i = 1, . . . , 2d, r = 3/2, 5/2, . . . .

It follows that a must have the form

a =

(
2d∑

i=1

ci ψ
i
−1/2

)
|vac, 0, 0〉,

where ci, i = 1, . . . , 2d, are arbitrary complex numbers. A similar argument shows that all

eigenvectors of L0, L̄0 with eigenvalues (0, 1/2) have the form

(
2d∑

i=1

c̄i ψ̄
i
−1/2

)
|vac, 0, 0〉,

where c̄i, i = 1, . . . , 2d, are arbitrary complex numbers.

Now recall that L′
0f = fL0 and L̄′

0f = fL̄0. This implies that f identifies the

(1/2, 0) eigenspace of (L0, L̄0) with the (1/2, 0) eigenspace of (L′
0, L̄

′
0), and (0, 1/2)

eigenspace of (L0, L̄0) with the (0, 1/2) eigenspace of (L′
0, L̄

′
0). Thus there exist two
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invertible complex matrices F ij and F̄ ij such that

ψ
′i
−1/2|vac, 0, 0〉 = f

(
F ijψ

j
−1/2|vac, 0, 0〉

)
,

ψ̄
′i
−1/2|vac, 0, 0〉 = f

(
F̄ ij ψ̄

j
−1/2|vac, 0, 0〉

)
.

Applying Y ′ to both sides of this equation and using (26), we obtain:

ψ
′i(z) = f F ijψ

j(z) f−1, ψ̄i(z̄) = f F̄ ij ψ̄
j(z̄) f−1.

An immediate consequence of this is the transformation law for fermionic oscillators:

ψ
′i
r = f F ijψ

j
r f

−1, ψ̄
′i
r = f F̄ ij ψ̄

j
r f

−1, r ∈ Z +
1

2
.

Compatibility with the commutation relations of the fermionic oscillators then requires:

F TG′F = G, F̄ TG′F̄ = G.

(Alternatively, one may derive this by comparing the OPE of ψ(z), ψ̄(z̄) with themselves

and the OPE of ψ′(z), ψ̄′(z̄) with themselves.)

Now let us turn to bosonic oscillators. Consider the OPE of Q(z) with ψ(z) :

Q(z)ψi(w) ∼ i

2
√

2

∂Xi(w)

(z − w)
.

Since f preserves the OPE and takes Q(z) to Q′(z), and ψ(w) to F−1ψ′(w), we infer

that

∂X
′i(z) = f F ij∂X

j(z) f−1.

Similarly, the OPE of Q̄(z̄) with ψ̄(w) implies that

∂̄X̄
′i(z̄) = f F̄ ij ∂̄X̄

j(z̄) f−1.

These formulas imply the following transformation laws for bosonic oscillators:

α
′i
n = f F ijα

j
n f

−1, ᾱ
′i
n = f F̄ ij ᾱ

j
n f

−1, n ∈ Z.

Another consequence is the transformation law of Z :

Z ′ = f gZ f−1,

where g ∈ HomR(U ⊕ U∗, U ′ ⊕ U ′∗) is defined by

g = R(G′, B′)−1

(
F 0

0 F̄

)
R(G,B),
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and Z and Z ′ are regarded as elements of End(C[Γ⊕Γ∗])⊗R (U ⊕U∗) and End(C[Γ′⊕
Γ′∗])⊗R (U ′⊕U ′∗). Now note that Z and Z ′ are in fact “realifications” of some elements

in End(C[Γ⊕ Γ∗])⊗Z (Γ⊕ Γ∗) and End(C[Γ′ ⊕ Γ′∗])⊗Z (Γ′ ⊕ Γ′∗). This means that g is

a “realification” of an element of HomZ(Γ ⊕ Γ∗,Γ′ ⊕ Γ′∗), which we also denote g.

It remains to show that g takes q to q′ and G to G′. To this end notice that the

transformation laws for the oscillators imply

N ′
b = fNbf

−1, N ′
f = fNff

−1, N̄ ′
b = fN̄bf

−1, N̄ ′
f = fN̄ff

−1.

Then it follows from L′
0 = fL0f

−1 and L̄′
0 = fL̄0f

−1 that for all x ∈ Γ ⊕ Γ∗ we have

q′(gx, gx) = q(x, x),

G′(gx, gx) = G(x, x).

This concludes the proof of the theorem.

5.2 Isomorphisms of N = 2 SCVA’s

The goal of this subsection is to prove Theorem 2.1 which we restate below. Given a metric

G on U, a compatible complex structure I on U, and B ∈ Λ2U∗, we define a pair of

commuting complex structures on U ⊕ U∗ as follows:

I(I,B) =

(
I 0

BI + ItB −It

)
,

J (G, I,B) =

(
−IG−1B IG−1

GI −BIG−1B BIG−1

)
.

The complex structure J can be expressed in terms of the Kähler form ω = GI and B :

J (ω,B) =

(
ω−1B −ω−1

ω +Bω−1B −Bω−1

)
.

We will use a simplified notation I(I,B) = I, I(I ′, B′) = I ′, etc. The complex structures

I,J and the symmetric forms G, q are related by an identity

G = −2qIJ ,

where G and q are understood as elements of HomR(U,U∗).

Theorem 5.2 V ert(Γ, I,G,B) is isomorphic to V ert(Γ′, I ′, G′, B′) as an N = 2 SCVA

if and only if there is an isomorphism of lattices Γ ⊕ Γ∗ and Γ′ ⊕ Γ
′∗ which takes q to

q′, I to I ′, and J to J ′.
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To prove this theorem, note that f : V → V ′ is an isomorphism of N = 2 SCVA’s

if and only if it is an isomorphism of the underlying N = 1 SCVA’s, and maps J(z)

to J ′(z) and J̄(z̄) to J̄ ′(z̄). Now suppose f is an isomorphism of N = 1 SCVA’s

underlying V ert(Γ, I,G,B) and V ert(Γ′, I ′, G′, B′). By Theorem 5.1 we know that there

exists g ∈ Hom(Γ ⊕ Γ∗,Γ′ ⊕ Γ′∗) which takes q to q′, and G to G′. To prove the

theorem, it is sufficient to show that f maps J(z), J̄(z̄) correctly if and only if g maps

I to I ′ and J to J ′. In fact, since G = −2qIJ and G′ = −2q′I ′J ′, it is sufficient

to show that f maps J(z), J̄(z̄) correctly if and only if g maps I to I ′.

Using the transformation law (27) for the fields and the formula (25) relating G and

G′, one can easily see that f maps J(z) to J ′(z) if and only if

I ′ = (a− bHt)I(a− bHt)−1. (30)

Similarly, f maps J̄(z̄) to J̄ ′(z̄) if and only if

I ′ = (a+ bH)I(a+ bH)−1. (31)

On the other hand, I(I,B) can be written as

I(I,B) = R(G,B)−1

(
I 0

0 I

)
R(G,B). (32)

This and the identity (23) imply that I ′ = gIg−1 if and only if

(
I ′ 0

0 I ′

)
= M(g,H)

(
I 0

0 I

)
M(g,H)−1.

This matrix identity is equivalent to (30,31), which proves the theorem.

Let us also note the following simple corollary of this theorem.

Corollary 5.3 Let (T, I,G,B) be a complex torus equipped with a flat Kähler metric and a

B-field of type (1, 1). Let T ′ = U ′/Γ′ be another torus of the same dimension and I ′ be a

complex structure on T ′ . Let Ĩ and Ĩ ′ be the product complex structures on T×T ∗ and

T ′ × T
′∗ . Suppose there exists an isomorphism of lattices g : Γ ⊕ Γ∗ → Γ′ ⊕ Γ

′∗ mapping

q to q′ and Ĩ to Ĩ ′. Then on T ′ there exists a Kähler metric G′ and a B-field of

type (1, 1) such that V ert(Γ, I,G,B) is isomorphic to V ert(Γ′, I ′, G′, B′) as an N = 2

SCVA.

To show this, we define H ′ using (22) and set G′ and B′ to be the symmetric and skew-

symmetric parts of H ′, respectively. Then it follows from (25) that G′ is positive-definite.

By Theorem 5.1 the N = 1 SCVA corresponding to (T,G,B) is isomorphic to N = 1
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SCVA corresponding to (T ′, G′, B′) . Using that fact that g intertwines Ĩ to Ĩ ′ it is

easy to show that H ′I ′ + I
′tH ′ = 0, which means that G′ is a Kähler metric and B′

has type (1, 1) . In particular, Ĩ ′ = I ′. Then it follows from the identity G′ = −2q′I ′J ′

and the fact g intertwines G, q,I and G′, q′,I ′ that g also intertwines J and J ′.

Theorem 5.2 then implies that V ert(Γ, I,G,B) is isomorphic to V ert(Γ′, I ′, G′, B′) as an

N = 2 SCVA.

5.3 Mirror morphisms of N = 2 SCVA’s

In this subsection we establish a criterion for the existence of a mirror morphism between

two complex tori equipped with flat Kähler metrics and B-fields.

Theorem 5.4 V ert(Γ, I,G,B) is mirror to V ert(Γ′, I ′, G′, B′) if and only if there is an

isomorphism of lattices Γ ⊕ Γ∗ and Γ′ ⊕ Γ
′∗ which takes q to q′, I to J ′, and J

to I ′.

The proof is very similar to that of Theorem 5.2. Again it is sufficient to show that if f

is an isomorphism of the underlying N = 1 SCVA’s, and g the corresponding isomorphism

of lattices, then

fJ(z)f−1 = −J ′(z), f J̄(z̄)f−1 = J̄ ′(z̄)

is equivalent to

gJ g−1 = I ′. (33)

The first of these is equivalent to

I ′ = (a+ bH)I(a+ bH)−1 = −(a− bHt)I(a− bHt)−1. (34)

On the other hand, J (G, I,B) can be written as

J (G, I,B) = R(G,B)−1

(
−I 0

0 I

)
R(G,B),

which together with (23) and (32) implies that (33) is equivalent to

M(g,H)

(
−I 0

0 I

)
M(g,H)−1 =

(
I ′ 0

0 I ′

)
.

This is obviously equivalent to (34). This concludes the proof.
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6 Homological mirror symmetry with B-fields

6.1 Mirror symmetry and D-branes

As explained in Section 2, Kontsevich’s conjecture must be modified if the B-field does not

vanish. When the image of B in H2(X,O∗
X ) is torsion, our results on complex tori suggest

that the bounded derived category Db(X) should be replaced with Db(X,B), the bounded

derived category of coherent modules over an Azumaya algebra. The similarity class of the

Azumaya algebra is determined by the image of B in H2(X,O∗
X ). (Presumably, when B

does not map to a torsion class, the proper analogue of Db(X) is some “coherent” subcat-

egory of the derived category of quasicoherent sheaves on a gerbe over X, see Remark 2.6.)

However, this does not provide any hint as to what the modification of the Fukaya category

might be. In this section we explain some string theory lore which suggests a particular

definition of the Fukaya category in the presence of the B-field. A similar proposal has been

made in [2].

The ordinary σ -model whose quantization yields an N = 2 superconformal vertex

algebra is a classical field theory on a two-dimensional manifold Σ = R × S1 (“the world-

sheet”). Let us replace S1 with an interval I = [0, 1] and consider the same σ -model on

a worldsheet with boundaries R× I. This procedure is referred to as passing from closed to

open strings. Now, in order to make the space of solutions of the Euler-Lagrange equations

a symplectic supermanifold, one has to supply boundary conditions for the fields of the σ -

model on both ends of the interval. In addition one requires that these boundary conditions

preserve N = 2 superconformal symmetry. To be more precise, while the classical σ -model

on R × S1 has two copies of the N = 2 super-Virasoro algebra (with zero central charge)

as its classical symmetry, the σ -model on R × I is required to be symmetric only with

respect to a single N = 2 super-Virasoro algebra. There are two essentially different classes

of such boundary conditions, called A and B boundary conditions. The B-type boundary

conditions preserve the “diagonal” super-Virasoro subalgebra whose generators are given by

Ln + L̄n, Jn + J̄n, Q+
r + Q̄+

r , Q−
r + Q̄−

r , n ∈ Z, r ∈ Z +
1

2
.

The A-type boundary conditions preserve a different subalgebra whose generators are

Ln + L̄n, −Jn + J̄n, Q−
r + Q̄+

r , Q+
r + Q̄−

r , n ∈ Z, r ∈ Z +
1

2
.

Superconformally-invariant boundary conditions for a σ -model are called supersymmetric

(or BPS, for Bogomolny-Prasad-Sommerfeld) D-branes. Thus we have BPS D-branes of types

A and B. Note that the mirror involution (2) exchanges the two types of D-branes.

D-branes are understood best when the B-field is zero. In this case one can construct

examples of the B-type boundary conditions by starting from a holomorphic submanifold of
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the Calabi-Yau manifold X. More generally, one can start from a holomorphic submanifold

M ⊂ X and a holomorphic bundle on M equipped with a compatible connection. On

the other hand, examples of the A-type boundary conditions (with zero B-field) can be

constructed starting from a Lagrangian submanifold L ⊂ X (with respect to the Kähler

form), a trivial unitary bundle E on L, and a unitary flat connection on E.

Note that one can choose different boundary conditions for the Euler-Lagrange equations

on the two ends of the interval I. The only constraint is that both boundary conditions

must be of the same type (A or B). If this condition is violated, then the symmetry of the

corresponding classical field theory is only some subalgebra of the N = 2 super-Virasoro

algebra, namely an N = 1 super-Virasoro algebra.

After quantization, σ -model on R×I is supposed to yield a superconformally invariant

quantum field theory on the same manifold. The axioms of such quantum field theories have

not been formulated yet, and we will not attempt it here. Suffice it to say that physicists

expect that any B-type D-brane can be consistently quantized, while A-type boundary con-

ditions may lead to “anomalies,” i.e. inconsistencies in the quantization procedure. One can

argue that anomalies are absent if the A-type D-brane originates from a special Lagrangian

submanifold. We remind that a special Lagrangian submanifold in a Calabi-Yau manifold

with a Kähler metric is defined by two properties: it is Lagrangian, and the restriction of

a nonzero section of the canonical bundle to the submanifold is proportional to its volume

form.

Thus to any physicist’s Calabi-Yau with zero B-field one can associate two sets: the set

of B-type D-branes, and the set of (non-anomalous) A-type D-branes. The former set has

many elements in common with the set of coherent sheaves on X. The latter set resembles

the set of objects the Fukaya category of X. Moreover, there are heuristic arguments using

path integrals showing that either A or B-type D-branes form an A∞ –category (see [16] and

references therein). Thus, conjecturally, to every physicist’s Calabi-Yau with zero B-field one

can canonically associate a pair of A∞ –categories, the categories of A- and B-type D-branes.

Assuming there are shift functors on them, one can define the corresponding triangulated

categories as in [23].

It is natural to conjecture that for B = 0 the triangulated category associated with

A-type (resp. B-type) D-branes is equivalent to DF(X) (resp. Db(X) ) [32, 10]. There

are several pieces of evidence supporting this conjecture. First, as we have already remarked,

F(X) and Coh(X) have many objects in common with the categories of A and B-type

D-branes, respectively. Second, using path integrals one can argue [33] that the category of

B-type D-branes is independent of the Kähler form, while the category of A-type D-branes

is independent of the complex structure on X if ω is fixed. For further evidence see [10]
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and references therein.

If this conjecture is true, then Kontsevich’s conjecture has a natural explanation. Suppose

we have a mirror pair of physicist’s Calabi-Yaus X and X ′, both with zero B-field. The

corresponding N = 2 SCVA’s are related by a mirror morphism. Since a mirror morphism

of N = 2 SCVA’s acts on the N = 2 super-Virasoro by the mirror involution, it exchanges

the A and B-type boundary conditions. Hence it induces an equivalence of Db(X) with the

derived Fukaya category DF0(X
′), and vice versa.

6.2 Fukaya category with a B-field

Now let us generalize this to nonzero B-fields. We already know the effect of a B-field

on Db(X) : the sheaf OX is replaced with a certain sheaf of noncommutative algebras.

This agrees with the string theory lore that the B-field makes the D-brane worldvolume

noncommutative [7, 11].

The effect of the B-field on the Fukaya category seems rather different. Let us start by

recalling the definition of the set of objects of the Fukaya category [23]. Let (X,ω) be

a symplectic manifold of dimension 2d. We fix an almost complex structure I on X

compatible with ω and thereby obtain a Hermitian metric on X. (If X is a physicist’s

Calabi-Yau, it automatically comes equipped with a compatible complex structure). More-

over, we assume that c1(T
hol
X ) = 0 . In this case the line bundle Λd(Ωhol

X ) is trivial and has

a nowhere vanishing holomorphic section Ω which is called a calibration.

Naively, an object of the Fukaya category should be a triple (L,E,∇), where L is

a Lagrangian submanifold, E is a trivial unitary vector bundle on L, and ∇ is a flat

connection on E. From the physical point of view, such a triple allows one to define an

A-type boundary condition for the classical σ -model, and therefore it is an A-type D-

brane [33, 26].

The naive definition of an object does not allow one to define a nontrivial shift functor

and A∞ structure. This difficulty can be overcome as follows [23]. For any point x ∈ L

the tangent space TxL is a Lagrangian subspace of TxX. The Grassmannian of Lagrangian

subspaces has fundamental group equal to Z. Each Lagrangian submanifold comes with a

Gauss map from L to LG, where LG → X is a fibration whose fiber over x is the

Grassmannian of Lagrangian subspaces of TxX. Consider a fibration L̃G → X covering

LG→ X such that its fiber is the universal cover of the fiber of LG→ X. (As mentioned

in [23], there is a canonical choice of such a fibration if c1(T
hol
X ) = 0. ) Instead of L, we will

consider pairs (L, i), where i is a lift of the Gauss map to L̃G. Not every Lagrangian L

admits such a lift, so not any Lagrangian submanifold can be extended to an object of the

Fukaya category. Note that any Lagrangian L comes equipped with two natural d -forms:
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the volume form and the restriction of the calibration Ω . The latter is defined up to a

multiplicative constant. Their quotient is a nowhere vanishing function f which maps L

to C∗ . One can show that the Gauss map admits a lift to L̃G if and only if the image f(L)

is contractible. For example, any special Lagrangian L has a lift, because by definition of

speciality the function f is constant for any such L .

To summarize, we can define an object of the Fukaya category in the absence of the

B-field as a quadruple (L, i,E,∇), where L and i are as above, and (E,∇) is a trivial

complex vector bundle on L with a unitary flat connection. The natural fiberwise action of

Z on L̃G → X induces an action of Z on such quadruples. One hopes that this action

extends to a shift functor from the Fukaya category to itself.

Now let us try to guess how the definition of the Fukaya category should be modified

when B 6= 0. Let B be a closed 2-form on X representing B ∈ H2(X,R/Z). (Since we

assumed that B is in the kernel of the Bockstein homomorphism H2(X,R/Z) → H3(X,Z),

such a 2-form exists.) Let F∇ be the curvature of a connection ∇ on a bundle E on L.

If B = 0, the condition on ∇ is

F∇ = 0. (35)

On the other hand, it is a general principle of string theory that the equations of motion

must be invariant with respect to a substitution

B → B + dλ, ∇ → ∇ + 2πi idE λ|L, (36)

where λ is any real 1-form on X. This must be true because the action of the σ -model on

R × I is invariant with respect to such transformations [29]. This requirement is sufficient

to fix the generalization of (35) to arbitrary B :

F∇ = 2πi idEB|L. (37)

We propose that an object of the Fukaya category for B 6= 0 is a quadruple (L, i,E,∇),

where L and i are the same as above, E is a complex vector bundle on L, and ∇ is

a connection on E satisfying (37).

We can make some checks of this proposal. First, our definition of an object depends

on how one lifts B ∈ H2(X,R/Z) to a 2-form B. However, given two different 2-forms

B1 and B2 representing B, there is a one-to-one map between the corresponding sets

of objects. Indeed, let f = B2 − B1. It is easy to see that f has integral periods, and

therefore there exists a line bundle N on X and a connection ∇0 on N such that the

curvature of ∇0 is equal to 2πif. The bijection between the set of objects corresponding

to B1 and the set of objects corresponding to B2 is given by

L 7→ L, i 7→ i, E 7→ E ⊗N|L, ∇1 7→ ∇1 ⊗ idN + idE ⊗∇0. (38)
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Second, from the equation (37) we see that c1(E) = rank(E)b|L, where b is the de Rham

cohomology class of B. Since c1(E) is integral, we infer that

rank(E)B|L = 0.

In particular, for rank(E) = 1, we get that the restriction of B to L must vanish. This is

consistent with the results of Hori et al. [18], who analyzed the A-type boundary conditions

in the rank-one case. Hori et al. find that the restriction of B to L must be zero if

one wants to make an A-type D-brane out of L. We found that it is sufficient to require

B|L = 0.

We need to address one more subtlety. The original HMSC required E to be a unitary

vector bundle and ∇ to be a unitary connection [23]. This requirement naturally arises in

the string theory context as well. Nevertheless, this condition is much too strong. Even in

the case of the elliptic curve one has to allow for non-unitary connections on the A-side if

one wants to account for all bundles on the B-side [31]. In that case, the right thing to do is

to require the holonomy representation of ∇ to have eigenvalues with unit modulus. It is

natural to conjecture that this is also the right requirement for dimCX > 1 or B 6= 0.

In the absence of the B-field, any pair (L, i) can be extended (in many different ways)

to an object of the Fukaya category. The situation is more complex for B 6= 0. Recall that

to any flat connection on a manifold L one can canonically associate a finite-dimensional

representation of π1(L) (or, equivalently, a finite-dimensional representation of the group

algebra of π1(L) ), and vice versa. In fact, this map is a one-to-one correspondence. Simi-

larly, given a bundle E on L and a connection ∇ on E such that F∇ satisfies (37),

one can construct a finite-dimensional representation of a twisted group algebra of π1(L)

in the following way. To (E,∇) we can associate a projective representation R of π1(L).

To any such R one can attach an element ψR of H2(π1(L), U(1)). Acting on it with the

natural embedding

H2(π1(L), U(1))
j→ H2(L,U(1)) (39)

we obtain an element j(ψR) ∈ H2(L,U(1)). One can show that j(ψR) = B|L (we identify

R/Z with U(1) ).

To any 2-cocycle ψ one can associate a twisted group algebra Cψ[π1(L)], which is a

vector space generated by the elements of π1(L) with the following multiplication law:

g · h = ψ(g, h)gh, g, h ∈ π1(L).

The correspondence between pairs (E,∇) satisfying (37) and finite-dimensional repre-

sentations of the twisted group algebra Cψ[π1(L)] is one-to-one. A proof of this fact is given
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in Appendix C. The eigenvalues of the holonomy representation of ∇ have unit modulus

if an only if the eigenvalues of g ∈ π1(L) have unit modulus. In particular this means that

a Lagrangian submanifold L can be extended to an object of the Fukaya category only if

B|L is in the image of the homomorphism (39).

As a by-product, we obtained an equivalent definition of an object of the Fukaya category:

it is a triple (L, i,R), where L, i are the same as above, and R is a finite-dimensional

representation of the twisted group algebra Cψ[π1(L)] such that j(ψR) = B|L and all the

eigenvalues of R(g) have unit modulus for all g ∈ π1(L).

Morphisms in the modified Fukaya category F(X,B) are defined in analogy with [12, 23].

Let U1 = (L1, i1, E1,∇1) and U2 = (L2, i2, E2,∇2) be two objects such that L1 and L2

intersect transversally. Morphisms from U1 to U2 in F(X) form a complex of vector

spaces defined by the rule

Hom·(U1,U2) =
⊕

x∈L1∩L2

Homi(E1|x, E2|x) (40)

It is graded in the following way. For any point x ∈ L1 ∩ L2 we have two points

i1(x) and i2(x) on the universal cover of the Lagrangian Grassmannian of TxX. To these

two points we can associate an integer µ(i1(x), i2(x)) which is called the Maslov index of

i1(x), i2(x) (see for example [3]). By definition, the space Hom(E1|x, E2|x) has a grading

µ(i1(x), i2(x)).

The differential on Hom(U1,U2) is defined by the rule

d(u) =
∑

z∈L1∩L2

m1(u; z),

where u ∈ Hom(E1|x, E2|x), and m1(u; z) ∈ Hom(E1|z, E2|z) is given by

m1(u; z) =
∑

φ:D→X

± exp(2πi

∫

D
φ∗(−B + iω)) · P exp(

∮

∂D
φ∗∇).

Here φ is an (anti)-holomorphic map from the disk D = {|w| ≤ 1, w ∈ C} to X such that

φ(−1) = x, φ(1) = z and φ([x, z]) ⊂ L2 and φ([z, x]) ⊂ L1. The path-ordered integral is

defined by the following rule

P exp(

∮

∂D
φ∗∇) := P exp(

∫ z

x
φ∗∇2) · u · P exp(

∫ x

z
φ∗∇1)

This homomorphism from E1|z to E2|z can be described as follows. We take a vector

e ∈ E1|z, use the connection ∇1 transport it to E1|x, apply the map u, and obtain an

element of E2|x. Then we transport this element to E2|z using the connection ∇2.

The ± sign indicates the natural orientation on the space of (anti)-holomorphic maps.

One expects that there are finitely many such maps if µz − µx = 1.
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To define the composition of morphisms, let us take u ∈ Hom(E1|x, E2|x) and v ∈
Hom(E2|y, E3|y), where x ∈ L1 ∩ L2 and y ∈ L2 ∩ L3. Then the composition of u and

v is defined as

v ◦ u =
∑

z∈L1∩L3

m2(v, u; z),

where m2(v, u; z) ∈ Hom(E1|z, E3|z) is given by

m2(v, u; z) =
∑

φ:D→X

± exp(2πi

∫

D
φ∗(−B + iω)) · P exp(

∮

∂D
φ∗∇)

Here we sum over (anti)-holomorphic maps φ from a two-dimensional disk D to X,

such that three fixed points p1, p2, p3 ∈ ∂D are mapped to x, y, z respectively, and

φ([pi, pi+1]) ∈ Li+1. The path-ordered integral here is calculated by the rule

P exp(

∮

∂D
φ∗∇) := P exp(

∫ p3

p2

φ∗∇3) · v · P exp(

∫ p2

p1

φ∗∇2) · u · P exp(

∫ p1

p3

φ∗∇1)

In the same manner we can define higher order compositions using zero-dimensional

components of spaces of maps φ from the disk D to X with φ(∂D) sitting in the union

of Lagrangian submanifolds.

It is easy to check that the above definition of morphisms and their compositions does

not change if we replace B with another 2-form with the same image in H2(X,R/Z). The

check makes use of (37) and (38). This confirms our claim that the Fukaya category depends

only on B.
The rules for computing morphisms and their compositions can be explained heuristically

using the path integral for the σ -model on a worldsheet with boundaries [33].

The category F0(X) has the same objects as F(X), but the morphisms are the degree

zero cohomology groups of the complexes defined above. Note that different objects of

F(X) often become isomorphic in F0(X) . For example, in the case when X is a real

symplectic 2-torus, any one-dimensional submanifold is Lagrangian. Many of them admit

a lift of the Gauss map. Thus the category F(X) contains many more objects than the

derived category of the elliptic curve (an elliptic curve with a flat metric is self-mirror). But

in F0(X) any object becomes isomorphic to some other object associated with a special

Lagrangian submanifold (see [31]). More generally, it appears likely that working in the

category F0(X) one may restrict the set of objects of the Fukaya category and consider

only special Lagrangian submanifolds with respect to a holomorphic calibration. For different

L the calibrations may differ by a multiplicative constant. This restriction is also natural

from the string theory point of view, since, as explained above, non-anomalous A-type D-

branes are associated with special Lagrangian submanifolds in a Calabi-Yau [26].
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A Supersymmetric σ -model of a flat torus

In this section we define the classical field theory known in the physics literature as the

N = 1 supersymmetric σ -model. The data needed to specify a σ -model consist of a

C∞ manifold M (“the target space”), a Riemannian metric G on M, and a 2-form

B on M. We then discuss the problem of the quantization of the σ -model in the case

when the target space is a flat torus. The superconformal vertex algebra constructed in

Section 4 can be regarded as a solution of the quantization problem. A detailed discussion

of supersymmetric σ -models can be found in [8].

Let W be a two-dimensional C∞ manifold R×S1 (“the worldsheet”). We parametrize

W by (τ, σ) ∈ R × R/(2πZ). The coordinate τ is regarded as “time.” We endow W
with a Minkowskian metric ds2 = dτ2 − dσ2 and orientation dτ ∧ dσ. Thus ∗dσ =

dτ, ∗dτ = dσ. The symmetric tensor corresponding to the metric will be denoted g. General

coordinates on W will be denoted (y0, y1). The invariant volume element dτ ∧ dσ =

d2y
√− det g will be denoted dΣ. We denote by S+ and S− = S+∗ the complexified semi-

spinor representations of SO(1, 1) and by V its complexified fundamental representation.

Complexified semi-spinor representations are one-dimensional complex vector spaces endowed

with SO(1, 1) -invariant nondegenerate morphisms

γ : S− → V ⊗ S+, γ̄ : S+ → V ⊗ S−. (41)

These morphisms are determined up to a scalar factor, and we assume that they satisfy the

Clifford algebra relation

γγ̄ + γ̄γ = 2g−1 · idS+⊕S−.

Here g−1 is regarded as map C → V ∗ ⊗ V ∗. In a suitable basis, one has

γ =

(
1

−1

)
, γ̄ =

(
1

1

)
.

Since H1(W,Z2) = Z2, there are two inequivalent spinor structures on W. The trivial

one is called the periodic, or Ramond, spin structure in the physics literature. The nontrivial

one is known as the anti-periodic, or Neveu-Schwarz, spin structure. Both spin structures

play a role in string theory, but for our purposes it will be sufficient to consider the Neveu-

Schwarz spin structure. The corresponding semi-spinor bundles on W will be denoted by

the same letters S+, S−. The parity-reversed (i.e. odd) semi-spinor bundles will be denoted

by ΠS+,ΠS−. More generally, Π will denote the parity-reversal functor. The vector

space morphisms γ and γ̄ give rise to a pair of bundle morphisms S− → TW ⊗ S+ and

S+ → TW ⊗ S− which we denote by the same letters.
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Let M be a C∞ manifold endowed with a Riemannian metric G and a real 2-form

B. At this stage we do not require B to be closed. The indices of the tangent bundle TM

will be denoted by j, k, l, . . . in the upper position. The indices of the cotangent bundle

T ∗M will be denoted by the same letters in the lower position. Summation over repeating

indices is always implied.

Let X be a C∞ map from W to M. Let ψ and ψ̄ be C∞ sections of X∗TM⊕
ΠS+ and X∗TM⊕ΠS−, respectively. N = 1 supersymmetric σ -model with worldsheet

W and target (X,G,B) is a classical field theory on W defined by the action

1

4π

∫

W
Gjk(X)

(
dXj ∧ ∗dXk

)
+

1

4π

∫

W
Bjk(X)

(
dXj ∧ dXk

)
+

1

4π

∫

W

(
Gjk(X)ψj iγ̄ · ∇ψk +Gjk(X)ψ̄j iγ · ∇ψ̄k +

1

2
Rjklm(X)ψjψkψ̄lψ̄m

)
dΣ. (42)

Here the covariant derivatives ∇ψ and ∇ψ̄ are sections of X∗TM⊗ΠS±⊗T ∗W defined

as follows:

∇ψj = Dψj +

({
j

kl

}
+

3

2

(
G−1

)jm
(dB)klm

)
dXkψl,

∇ψ̄j = Dψ̄j +

({
j

kl

}
− 3

2

(
G−1

)jm
(dB)klm

)
dXkψ̄l,

where {j, kl} are the Christoffel symbols constructed from G, and D : S± → S± ⊗ T ∗W
is the Levi-Civita covariant derivative constructed from g. Rjklm(X) is the curvature

corresponding to the following connection 1-form on M
({

j

kl

}
+

3

2

(
G−1

)jm
(dB)klm

)
dxl.

In the last term in the action we used twice the natural SO(1, 1) -invariant pairing S+ ⊗
S− → C.

This complicated-looking action has an elegant reformulation in terms of superfields, i.e.

maps from a super-Riemann surface to M [8].

The extrema of the action (42) are given by the solutions of the Euler-Lagrange equations.

In the case when all the fields are even, it is well known that the space of solutions of the

Euler-Lagrange equations is a manifold with a natural symplectic structure. This statement

remains true in the supersymmetric context (see e.g. [15]). In the present case the symplectic

structure is given by

1

2π

∫

τ=τ0

(
δXj ∧ δ

(
Gjk(X)

∂Xk

∂τ
+Bjk(X)

∂Xk

∂σ

)

+iGjk(X)δψj ∧ δψk + iGjk(X)δψ̄j ∧ δψ̄k
)
dσ. (43)
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Here we used the fact the Euler-Lagrange equations are second-order in time derivatives

of X and first-order in time derivatives of ψ, ψ̄, and therefore a solution is completely

determined by the values of X, ∂X/∂τ, ψ, and ψ̄ on any circle τ = τ0. One can check

that the symplectic structure thus defined does not depend on τ0. The space of solutions

endowed with this symplectic structure is called the phase space of the σ -model.

We are interested in the case when M is a torus T 2d = R2d/Γ, Γ ∼= Z2d, with a

constant metric G and a constant 2-form B. We will fix an isomorphism between Γ and

Z2d. Without loss of generality we may assume that the action of Γ on R2d is

xj 7→ xj + 2πnj, nj ∈ Z, j = 1, 2, . . . , 2d.

In this special case the σ -model action becomes

1

4π

∫

W

(
Gjk

(
∂Xj

∂τ

∂Xk

∂τ
− ∂Xj

∂σ

∂Xk

∂σ

)
+ 2Bjk

∂Xj

∂τ

∂Xk

∂σ

+iGjkψ
j

(
∂

∂τ
+

∂

∂σ

)
ψk + iGjkψ̄

j

(
∂

∂τ
− ∂

∂σ

)
ψ̄k
)
dτdσ. (44)

The Euler-Lagrange equations have a simple form:

(
∂2

∂σ2
− ∂2

∂τ2

)
Xj = 0,

(
∂

∂σ
+

∂

∂τ

)
ψj = 0,

(
∂

∂σ
− ∂

∂τ

)
ψ̄j = 0. (45)

In what follows we will use the notation

∂− =
1

2

(
∂

∂σ
− ∂

∂τ

)
, ∂+ =

1

2

(
∂

∂σ
+

∂

∂τ

)
.

The Poisson brackets of the fields evaluated at equal times follow from (43):

{
Xj(τ, σ),Xk(τ, σ′)

}
P.B.

= 0, (46)
{
Xj(τ, σ),

∂Xk

∂τ
(τ, σ′)

}

P.B.

= 2π
(
G−1

)jk
δ
(
σ − σ′

)
,

{
ψ(τ, σ), ψ̄(τ, σ′)

}
P.B.

= 0,
{
ψ(τ, σ), ψ(τ, σ′)

}
P.B.

= −2πi
(
G−1

)jk
δ
(
σ − σ′

)
,

{
ψ̄(τ, σ), ψ̄(τ, σ′)

}
P.B.

= −2πi
(
G−1

)jk
δ
(
σ − σ′

)
.

The Poisson brackets between even and odd fields vanish.

Note that the neither the Euler-Lagrange equations (45) nor the symplectic structure

corresponding to (46) depend on B. This happens whenever B is closed, because in this

case the B -dependent terms in the action are locally total derivatives. We will see below

that quantization of the σ -model introduces arbitrariness which is parametrized by a class
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in H2(M,R/Z). The usual interpretation is that while the classical σ -model does not

detect a closed B-field, the quantized σ -model detects the image of B in H2(M,R/Z).

The Euler-Lagrange equations (45) can be rewritten in the Hamiltonian form:

∂Xj

∂τ
(τ, σ) =

{
Xj(τ, σ),H(τ)

}
P.B.

,

∂

∂τ

(
∂Xj

∂τ

)
(τ, σ) =

{(
∂Xj

∂τ

)
(τ, σ),H(τ)

}

P.B.

,

∂ψj

∂τ
(τ, σ) =

{
ψj(τ, σ),H(τ)

}
P.B.

,

∂ψ̄j

∂τ
(τ, σ) =

{
ψ̄j(τ, σ),H(τ)

}
P.B.

.

The Hamiltonian H is a function on the phase space given by

H(τ0) =
1

4π

∫

τ=τ0

Gjk

(
∂Xj

∂τ

∂Xk

∂τ
+
∂Xj

∂σ

∂Xk

∂σ
− iψj

∂ψk

∂σ
+ iψ̄j

∂ψ̄k

∂σ

)
dσ.

As a consequence of the equations of motion, we have dH(τ0)
dτ0

= 0.

Hamiltonian vector fields on the phase space are those vector fields which preserve the

symplectic form. They obviously form a Lie (super-)algebra with respect to the Lie bracket.

We will now exhibit a subalgebra in this super-algebra which is isomorphic to the direct sum

of two copies of the N = 1 super-Virasoro algebra.

Recall that given a function W on the phase space, we can define a Hamiltonian vector

field vW as follows:

vW (·) = { · ,W}P.B.
One has an identity

[vW , vU ]Lie = v{W,U}P.B.
.

We will define a set of functions on the phase space which forms a super-Virasoro algebra

with respect to the Poisson bracket; then the corresponding set of Hamiltonian vector fields

forms a super-Virasoro algebra with respect to the Lie bracket.

The set of functions we want to define is a vector space generated over C by the following

elements:

Ln =
1

2π

∫

τ=τ0

e−inσGjk

(
∂−X

j∂−X
k − i

2
ψ∂−ψ

)
dσ, n ∈ Z,

L̄n =
1

2π

∫

τ=τ0

einσGjk

(
∂+X

j∂+X
k +

i

2
ψ̄∂+ψ̄

)
dσ, n ∈ Z, (47)

Qr =
−i
4π

∫

τ=τ0

e−irσGjkψ
j∂−X

k dσ, r ∈ Z +
1

2
,

Q̄r =
i

4π

∫

τ=τ0

eirσGjkψ̄
j∂−X

k dσ, r ∈ Z +
1

2
.
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Two remarks are in order concerning these expressions. First, all these functions on the phase

space implicitly depend on τ0 as a parameter. Second, since we picked the anti-periodic

spin structure on W, the lift of ψ to the universal cover of W is an anti-periodic function

of σ. This is the reason the index r runs over half-integers.

The Poisson brackets of the generators can be easily computed using (46), and the non-

vanishing ones turn out to be

{Lm, Ln}P.B. = −i(m− n)Lm+n,
{
L̄m, L̄n

}
P.B.

= −i(m− n)L̄m+n,

{Lm, Qr}P.B. = −i
(m

2
− r
)
Qm+r,

{
L̄m, Q̄r

}
P.B.

= −i
(m

2
− r
)
Q̄m+r, (48)

{Qr, Qs}P.B. = − i

2
Lr+s,

{
Q̄r, Q̄s

}
P.B.

= − i

2
L̄r+s,

Thus the space spanned by the generators is a Lie super-algebra isomorphic to the direct

sum of two copies of the N = 1 super-Virasoro algebra (with zero central charge).

Note that L0 + L̄0 = H. Recalling that the τ -dependence of any function F on the

phase space is determined by
dF

dτ
= {F,H}P.B.,

and using (48), one can show that all the generators have a very simple dependence on τ0 :

Ln(τ0) = e−inτ0Ln(0), L̄n(τ0) = e−inτ0L̄n(0),

Qr(τ0) = e−irτ0Qr(0), Q̄r(τ0) = e−irτ0Q̄r(0).

Thus the space spanned by the generators does not depend on τ0.

The presence of two copies of the N = 1 super-Virasoro algebra acting on the phase

space is a feature of the supersymmetric σ -model with an arbitrary target (M,G,B). This

fact is crucial for string theory applications of the σ -model, see [29] for details.

Now let us choose a constant complex structure I on M such that G is a Hermitian

metric. This makes M a Kähler manifold. Let ω = GI be the corresponding Kähler form.

It turns out that we can embed each of the two N = 1 super-Virasoro algebras in a bigger

N = 2 super-Virasoro algebra. The additional generators are given by

Q±
r =

−i
8π

∫

τ=τ0

e−i(r+1/2)σ (Gjk ∓ iωjk)ψ
j∂−X

k dσ, r ∈ Z +
1

2
,

Q̄±
r =

i

8π

∫

τ=τ0

ei(r+1/2)σ (Gjk ∓ iωjk) ψ̄
j∂+X

k dσ, r ∈ Z +
1

2
, (49)

Jn =
−i
4π

∫

τ=τ0

e−inσωjkψ
jψk dσ, n ∈ Z,

J̄n =
−i
4π

∫

τ=τ0

einσωjkψ̄
jψ̄k dσ, n ∈ Z.
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Note that Qr = Q+
r +Q−

r and Q̄r = Q̄+
r + Q̄−

r for all r. The Poisson brackets between

Ln, Q
±
r , and Jn are given by

{
Lm, Q

±
r

}
P.B.

= − i
(m

2
− r
)
Q±
r+m,

{Lm, Jn}P.B. = inJn+m,
{
Q+
r , Q

+
s

}
P.B.

=
{
Q−
r , Q

−
r

}
P.B.

= 0,

{
Q+
r , Q

−
s

}
P.B.

= − i

4
Lr+s −

i

8
(r − s)Jr+s,

{
Jm, Q

±
r

}
P.B.

= ∓ iQ±
r+m.

The Poisson brackets between the barred generators have the same form. The Poisson brack-

ets between barred and unbarred generators are trivial, as usual.

Again, the emergence of the N = 2 super-Virasoro is not limited to the particular

situation we are considering: one can prove that the phase space of the supersymmetric

σ -model is acted upon by the N = 2 super-Virasoro if (M,G) is an arbitrary Kähler

manifold, and B is closed [1]. The statement can be further generalized to B-fields which

are not closed [13].

Let us now look more closely at the space of solutions of the Euler-Lagrange equa-

tions. Note that any map X : W → M induces a homomorphism of the homology groups

H1(W) → H1(M). The group H1(W) ∼= π1(W) ∼= Z has a preferred generator, namely the

loop winding the S1 in the direction of increasing σ. Since H1(T
2d) = Γ, we see that to

any map X : W →M we can assign an element w(X) of Γ. The components of w are

the so-called winding numbers of the map X. Thus the phase space of the σ -model is a

disconnected sum

M =
⊔

w∈Γ

Mw.

We will see in a moment that Mw is connected for all w.

The Euler-Lagrange equations (45) are linear and can be solved by Fourier transform.

The general solution in Mw is given by

Xj = xj + σwj + τ
(
G−1

)jk
pk +

i√
2

∞∑′

s=−∞

1

s

(
αjse

is(σ−τ) + ᾱjse
−is(σ+τ)

)
, (50)

ψj =
∑

r∈Z+1/2

ψjre
ir(σ−τ), (51)

ψ̄j =
∑

r∈Z+1/2

ψ̄jre
−ir(σ+τ). (52)

Here αjs, ᾱ
j
s are complex numbers satisfying (αjs)∗ = αj−s, (ᾱ

j
s)∗ = ᾱj−s ; ψjr , ψ̄

j
r are

elements of ΠC ; xj , j = 1, . . . , 2d, take values in R/(2πZ) ; and pj , i = 1, . . . , 2d,
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take values in R. The variables αjs, ᾱ
j
s, ψ

j
r , ψ̄

j
r will be referred to as “the oscillators.” The

variables (xj , pj), j = 1, . . . , 2d, together parametrize a copy of T ∗M ∼= T 2d × R2d.

Thus for any w ∈ Γ the supermanifold Mw is a product of the vector superspace

spanned by αn, ᾱn, n ∈ Z, ψr, ψ̄r, r ∈ Z + 1/2, and the cotangent bundle of M.

The Poisson brackets of the coordinates on Mw can be computed from (46) and (50-52).

The non-vanishing ones are given by

{
αjn, α

k
m

}
P.B.

= −in
(
G−1

)jk
δm+n,

{
ᾱjn, ᾱ

k
m

}
P.B.

= −in
(
G−1

)jk
δm+n,

{
ψjr , ψ

k
s

}
P.B.

= −i
(
G−1

)jk
δr+s,

{
ψ̄jr , ψ̄

k
s

}
P.B.

= −i
(
G−1

)jk
δr+s.

{
xj , pk

}
P.B.

= δjk,

Thus the symplectic supermanifold Mw decomposes into a product of a symplectic vector

superspace spanned by the oscillators and T ∗M with the standard symplectic structure.

It is customary to continue analytically the time variable τ to the imaginary axis. If

we set τ = it, then the combination v = σ + τ = σ + it becomes a complex variable.

Since we identify σ ∼ σ + 2π, it is convenient to set v = i log z where z ∈ C∗. After

analytic continuation ∂− and ∂+ become ∂v = −iz∂z and ∂̄v = iz̄∂̄z, respectively. The

functions Xj(v(z)) are multi-valued functions of z if w 6= 0. But their derivatives with

respect to z and z̄ are single-valued, and moreover are holomorphic and anti-holomorphic,

respectively:

∂Xj

∂z
= − i

2z

((
G−1

)jk
pk −wj

)
− i√

2

∞∑′

s=−∞

αjs
zs+1

,

∂Xj

∂z̄
= − i

2z̄

((
G−1

)jk
pk +wj

)
− i√

2

∞∑′

s=−∞

ᾱjs
z̄s+1

.

Note that after rescaling Xj → (i
√

2)Xj these expressions become formally the same

as (13,14), except that in (13,14) the coordinates on the phase space wk, pk, α
k
s , ᾱ

k
s are

replaced with the operators W k,Mk −BklW
l, αks , ᾱ

k
s , respectively. This replacement is the

quantization map discussed in more detail below.

Similarly, after analytic continuation to imaginary τ, the sections ψj and ψ̄j become

holomorphic and anti-holomorphic, respectively. One additional subtlety arises due to the

fact that ψ and ψ̄ are sections of semi-spinor bundles. Thus the coordinate change v 7→
z = e−iv must be accompanied by ψj 7→ z−1/2ψj , and ψ̄j 7→ z̄−1/2ψ̄j . This accounts for

the shift r 7→ r + 1
2 between (51,52) and (15,16).

Let us now turn to the quantization of the σ -model. This discussion provides a moti-

vation for the constructions of Section 4.
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Since the classical phase space is a disconnected sum of identical pieces labeled by w ∈ Γ,

the quantum-mechanical Hilbert space will be a tensor sum of identical Hilbert spaces labeled

by w ∈ Γ. Thus we only need to understand how to quantize the supermanifold Mw. In

turn, Mw decomposes as a product of T ∗M with the standard symplectic structure, and

a vector superspace spanned by the oscillators.

The vector superspace spanned by the oscillators can be quantized using the well-known

Fock-Bargmann prescription. The resulting Hilbert superspace is the so-called Fock space,

i.e. the completion with respect to a suitable norm of the space of polynomials of even

variables ai−s, ā
i
−s, s = 1, 2, . . . , and odd variables θ−r, θ̄−r, r = 1/2, 3/2, . . . . We will

denote this space of polynomials HFock.

The quantization of T ∗M is also standard and yields the Hilbert space which is the

completion of the space C∞(M) of smooth functions on M = R2d/Γ with respect to an

L2 norm. Using Fourier transform, this Hilbert space can be identified with the completion

of the group algebra of Γ∗ with respect to an ℓ2 norm.

Thus the quantization procedure sketched above leads to the Hilbert space which is a

suitable completion of an infinite-dimensional superspace

⊕w∈ΓC[Γ∗] ⊗HFock

This can be written in a more symmetric form:

C[Γ ⊕ Γ∗] ⊗HFock.

For our purposes, only the superspace structure, and not the Hilbert space structure, is

important. Thus we need not perform the completion procedure, and can take the above

superspace as the state space of the N = 2 superconformal vertex algebra corresponding

to the supersymmetric σ -model. We will call this vector superspace the state space of the

quantized σ -model.

Finding a suitable state space is but a part of the quantization problem. Quantizing

a classical field theory usually requires finding a sufficiently large subset of functions on

the phase space closed under the Poisson brackets, and a map from this subset to the set

of linear operators on the state space, such that the Poisson brackets are mapped to −i
times the graded commutator. The choice of the subset of functions on the phase space

is dictated by physical considerations. For example, for string theory applications it is im-

perative to have an N = 1 super-Virasoro algebra acting on the state space. Thus the

distinguished subset must include the generators of the N = 1 super-Virasoro algebra (47)

and their linear combinations. We will also require that the subset include the generators

of the N = 2 super-Virasoro (49). Usually one also requires that the distinguished subset
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include the fields in terms of which the classical action is written. In our case these are

Xj(σ, τ), ψj(σ, τ), ψ̄j(σ, τ). One also wants the operator corresponding to the Hamiltonian

H = L0 + L̄0 to have nonnegative spectrum.

To quantize the fields Xj , ψj , and ψ̄j it is sufficient to quantize the oscillators and

(xj , pj) (the coordinates on T ∗M ). The Fock-Bargmann quantization map sends oscillators

with negative subscripts to multiplication operators on the space of polynomials:

αjs 7→ ajs, ᾱjs 7→ ājs, s = −1,−2, . . . ,

ψjr 7→ θjr, ψ̄jr 7→ θ̄jr, r = −1

2
,−3

2
, . . . .

The oscillators with positive subscripts are mapped to differentiation operators on the space

of polynomials:

αjs 7→ s
(
G−1

)jk ∂

∂ak−s
, ᾱjs 7→ s

(
G−1

)jk ∂

∂āk−s
, s = 1, 2, . . . ,

ψjr 7→
(
G−1

)jk ∂

∂θk−r
, ψ̄jr 7→

(
G−1

)jk ∂

∂θ̄k−r
, r =

1

2
,
3

2
, . . . .

It is easy to see that the (graded) commutators between these operators are equal to i times

the Poisson brackets of their classical counterparts, as required.

The quantization of (xj , pj) proceeds as follows. The function xj is a multi-valued func-

tion on the phase space and cannot be quantized. But any smooth function f(x1, . . . , x2d)

which is periodic, i.e. invariant with respect to shifts xj → xj+2πnj , nj ∈ Z, is a univalued

function on the phase space. The standard quantization of T ∗M maps such a function to

a multiplication operator on C∞(M) :

f(x1, . . . , x2d) 7→ f(x1, . . . , x2d).

Actually, the vector space we are dealing with is not just C∞(M), but a Γ -graded

vector space

F = ⊕w∈ΓC
∞(M),

and therefore we should quantize a pair (f,w) rather than f. This leads to an important

subtlety. If w = 0, we can assign to (f,w) a multiplication operator which acts on each

of the Γ -homogeneous components of F in an identical manner. On the other hand, if

w 6= 0, it does not seem right to assign to it multiplication by f, since such a quantization

procedure would map different classical functions to the same quantum-mechanical operator.

A natural guess for the operator corresponding to (f,w) is multiplication by f followed

by an operator Tw, where Tw shifts the Γ -grading by w. This guess will be justified

below.
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Under the standard quantization of T ∗M, the function pj is mapped to a differentiation

operator on F :

pj 7→ p̂j = −i ∂

∂xj
. (53)

If f̂w is the quantum operator corresponding to the function (f,w) ∈ F, we have the

commutation relation

[f̂w, p̂j ] = i
̂
(
∂f

∂xj

)

w

.

This should be compared with the classical relation

{f(x), pj}P.B. =
∂f(x)

∂xj
.

The Fourier transform which identifies the completion of F with the completion of C[Γ⊕Γ∗]

sends p̂j to the following operator Mj on C[Γ ⊕ Γ∗] :

Mj : (w,m) 7→ mj(w,m), ∀(w,m) ∈ Γ ⊕ Γ∗. (54)

Putting all this together, we obtain the quantization map for ∂Xj , ∂̄Xj , ψj , and

ψ̄j . It is easy to check that this yields the expressions (13-16) of Section 4 with B = 0

(after we rescale Xj by a factor i
√

2 ).

Now we can also motivate the state-operator correspondence postulated in Section 4. The

main idea that the quantization map should send local classical observables to local quantum

fields belonging to the image of Y. For example, ∂Xj , ∂̄Xj , ψj , ψ̄j and their derivatives

are local classical observables, so the corresponding quantum fields must lie in the image of

Y. These considerations explain the mapping of the states αj−s|vac〉, ᾱj−s|vac〉, ψj−r|vac〉,
and ψ̄j−r|vac〉. Together with the axioms of vertex algebra, this uniquely fixes the mapping

of other states in the subspace w = m = 0. Other natural local classical observables are

suitable exponentials of Xj(z, z̄). (The classical field Xj(z, z̄) itself is multi-valued and

therefore should not be quantized.) Requiring that they map to local quantum fields fixes

the form of Y for all (w,m) ∈ Γ ⊕ Γ∗. An interested reader is referred to [29] for details.

Another important ingredient is the quantization of the N = 2 super-Virasoro algebra.

Naively, one would like to define the quantum generators by the same formulas (47,49), but

with the classical fields replaced by the quantum fields. This idea runs into an immediate

problem since the products of quantum fields at the same point are not well-defined. The

normal ordering prescription resolves this problem and leads to well-defined operators. One

can easily check that this definition of the generators of the N = 2 super-Virasoro is equiv-

alent to the one given in Section 4. The operators thus defined form an infinite-dimensional

Lie super-algebra which is a central extension of the classical N = 2 super-Virasoro (47,49).

One can also check that the spectrum of H = L0 + L̄0 is nonnegative.
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It remains to explain how to include the effect of the B-field. As remarked above, a closed

B-field does not affect the classical σ -model. However, the above quantization procedure

admits a modification which depends on a class in H2(M,R/Z). We wish to interpret this

class as the cohomology class of the B-field.

The modification affects the quantization of T ∗M and consists in replacing the space

of smooth functions on R2d/Γ with the space of smooth functions on R2d satisfying the

following quasi-periodicity condition:

f(x1 + 2πn1, . . . , x2d + 2πn2d) = e−2πiBjkn
jwk

f(x1, . . . , x2d),

where Bjk is a real skew-symmetric matrix which we can interpret as an element of

H2(M,R) in a natural manner. We will denote the space of such functions C∞
w (M,B).

It is clear that C∞
w (M,B) depends only on the image of B in H2(M,R/Z). Thus the

modification consists of replacing F with the space

F(B) = ⊕w∈ΓC
∞
w (M,B).

Fourier transform identifies a completion of C∞
w (M,B) with a completion of C[Γ∗], as

before, so the Hilbert space of the quantum theory is unaffected by B. But the map of the

classical functions on the phase space to operators is affected.

First, the product of two quasi-periodic functions f ∈ C∞
w (M,B) and f ′ ∈ C∞

w′(M,B)

belongs to the space C∞
w+w′(M,B). Hence the multiplication operators do not preserve the

Γ -grading on F(B). Rather, multiplication by f ∈ C∞
w (M,B) shifts the grading by w.

If we want the limit B → 0 to be smooth, we have to postulate that even for B = 0

multiplication by f ∈ C∞
w (M,B) shifts the grading by w. This provides a justification for

the guess made above. Second, while the function pj is still mapped according to (53), the

Fourier transform of p̂j is different from (54). Namely, it is easy to see that the Fourier

transform of the differentiation operator on C∞
w (M,B) is given by Mj −Bjkw

k. Putting

these facts together, one obtains the quantization map for all classical fields in agreement

with (13-16).

B The relation between vertex algebras and chiral algebras

In this appendix we describe some properties of vertex algebras in the sense of Definition 3.3.

Let (V, |vac〉, T, T̄ , Y ) be a vertex algebra. We prove that the subspace of V spanned by

vectors which are mapped by Y to meromorphic fields has a natural structure of a chiral

algebra. Furthermore, anti-meromorphic fields form another chiral algebra, and these two

chiral algebras supercommute with each other. We also describe an analogue of the Borcherds
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(or associativity) formula for vertex algebras. Finally, we show that any chiral algebra is a

vertex algebra.

We start with the following useful lemma.

Lemma B.1 Let N,M be integers and let hj, j = 1, . . . ,K be distinct real numbers

belonging to [0, 1). Suppose the following relation holds

K∑

j=1

iz,w
1

(z − w)N+hj
iz̄,w̄

1

(z̄ − w̄)M+hj
Cj(z, z̄, w, w̄) = 0, (55)

where Cj(z, z̄, w, w̄) ∈ QF2(V ). Then Cj(z, z̄, w, w̄) ≡ 0 for all j.

It is sufficient to prove the statement for M = N = 0. Let v ∈ V be an arbitrary vector.

We are going to prove that the value of Cj on v vanishes for all j. To this end let us

evaluate both sides of (55) on v and set w = zx and w̄ = z̄x̄. Since Cj ∈ QF2(V ), the

expression Cj(z, z̄, zx, z̄x̄)(v) can be written as

∑

α,β

fαβ(x, x̄)z−αz̄−β, (56)

where each fαβ is a finite sum of fractional powers of x, x̄ with coefficients in V. Hence

the value of the left-hand side of Eq. (55) on v is a sum

∑

α,β

z−αz̄−β
∑

(γ,δ)∈Jαβ

x−γx̄−δTαβγδ,

where Jαβ ⊂ R2 is a finite set for each (α, β). Each Tαβγδ has the form

K∑

j=1

ix
1

(1 − x)hj
ix̄

1

(1 − x̄)hj
fj(x, x̄), (57)

where all fj are polynomials in x, x̄ with coefficients in V, and hj ∈ [0, 1) are distinct

real numbers. The symbol ix (resp. ix̄ ) means “expand in a Taylor series around x = 0 ”

(resp. x̄ = 0 ). To prove the lemma it sufficient to show that if the expression Eq. (57) is

zero, then fj ≡ 0 for all j. To prove this, we rewrite fj as a polynomial in 1 − x and

1 − x̄. Then Eq. (57) takes the form

L∑

l=1

ix
1

(1 − x)tl
ix̄

1

(1 − x̄)sl
al,

where (tl, sl) are distinct pairs of real numbers, and each al ∈ V is a coefficient of some

fj . Let us denote this expression by T. We will show by induction in L that if T is

equal to 0 then al = 0 for all l. This will imply that fj ≡ 0 for all j. The base of
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induction is evident. Suppose a1 6= 0. Multiply T by ix(1− x)t1ix(1− x̄)s1 and apply to

the resulting expression an operator

A(1 − x)∂x +B(1 − x̄)∂x̄,

where A,B are arbitrary real numbers. We obtain a sum with L− 1 terms:

L∑

l=2

ix
1

(1 − x)tl
ix̄

1

(1 − x̄)sl
(A(tl − t1) +B(sl − s1))al

which is equal to 0 whenever T = 0. Since A and B are arbitrary, by the induction

hypotesis we get al = 0 for l = 2, . . . , L. Consequently, a1 is equal to 0 as well. This

proves the lemma.

Theorem B.2 (Uniqueness theorem) Let V be a subspace in QF1(V ) which satisfies the

following conditions:

1. any field A(z, z̄) ∈ V is mutually local with all fields Y (a), a ∈ V ;

2. all fields are creative, i.e. A(z, z̄)|0〉 ∈ V [[z, z̄]] .

Then the map

s : V → V [[z, z̄]],

A(z, z̄) 7→ A(z, z̄)|0〉
is injective.

Suppose A(z, z̄)|0〉 = 0 . Take a vector a ∈ V and consider Y (a) . From locality we know

that

Y (a)(z, z̄)A(w, w̄) =

M∑

j=1

iz,w
1

(z − w)hj+N
iz̄,w̄

1

(z̄ − w̄)hj+N
Cj(z, z̄, w, w̄).

Hence we have

M∑

j=1

iz,w
1

(z − w)hj+N
iz̄,w̄

1

(z̄ − w̄)hj+N
Cj(z, z̄, w, w̄)|0〉 = 0.

Using the arguments of Lemma B.1, we get Cj(z, z̄, w, w̄)|0〉 = 0 for all j . Now from

locality we obtain

A(w, w̄)Y (a)(z, z̄)|0〉 = 0.

This implies that A(w, w̄)a = 0 for any a ∈ V . Hence A(w, w̄) = 0, and the theorem is

proved.
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Corollary B.3 For any a ∈ V the following identities hold:

Y (Ta) = ∂Y (a), Y (T̄ a) = ∂̄Y (a).

Both fields Y (Ta) and ∂Y (a) are mutually local with all fields Y (b) . Moreover we have

Y (Ta)|0〉 = ∂Y (a)|0〉 = TeTz+T̄ z̄a.

Hence by the uniqueness theorem

Y (Ta) = ∂Y (a).

The other identity is proved similarly.

We call a vector a ∈ V meromorphic (resp. anti-meromorphic) if Y (a) is meromorphic

(resp. anti-meromorphic). To show that meromorphic and anti-meromorphic vectors form

two supercommuting chiral algebras, it is sufficient to prove the following proposition.

Proposition B.4 Let V be a vertex algebra. Then

1. the subspace of meromorphic vectors is closed with respect to Y and T , i.e. T (a)

and a(n)b are meromorphic when a ∈ V and b ∈ V are meromorphic,

2. the OPE of two meromorphic fields a(z) and b(w) can be written in the form

a(z)b(w) = iz,w
1

(z − w)N
C(z,w),

(−1)p(a)p(b)b(w)a(z) = iw,z
1

(z − w)N
C(z,w), C(z,w) ∈ QF2(V ),

where N is an integer,

3. If a ∈ V is meromorphic and b ∈ V is anti-meromorphic, then their OPE has the

form

a(z)b(w̄) = C(z, w̄), (−1)p(a)p(b)b(w̄)a(z) = C(z, w̄), C(z, w̄) ∈ QF2(V ).

Let us prove statement (1) of the proposition. From Corollary B.3 we infer that a is

meromorphic if and only if T̄ a = 0 . Since T and T̄ commute, this immediately implies

that Ta is meromorphic when a is meromorphic. Further, consider Y (a)b , where both

a and b are meromorphic. We have

T̄ Y (a)b = Y (a)(T̄ b) = 0.

Hence T̄ (a(n)b) = 0, and all a(n)b are meromorphic as well.

Statements (2) and (3) of the proposition are special cases of a more general statement

which we are going to prove.
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Proposition B.5 Let a, b ∈ V. If a is meromorphic, then the OPE of a(z) and b(w, w̄)

can be written in the form

a(z)b(w, w̄) = iz,w
1

(z − w)N
D(z,w, w̄), (58)

(−1)p(a)p(b)b(w, w̄)a(z) = iw,z
1

(z − w)N
D(z,w, w̄),

where D(z,w, w̄) ∈ QF2(V ), and N is an integer.

This means that if a certain variable does not appear on the left-hand-side of the OPE, it

does not appear on the right-hand-side either.

The general form of the OPE of a(z) and b(w, w̄) is

a(z)b(w, w̄) =

M∑

i=1

iz,w
1

(z − w)N+hi
iz̄,w̄

1

(z̄ − w̄)N+hi
Ci(z, z̄, w, w̄),

where N ∈ Z, hi, i = 1, . . . ,M, are distinct real numbers which belong to [0, 1), and

Ci ∈ QF2(V ).

Let us act on both sides with an operator (z̄ − w̄) ∂∂z̄ . We get

0 =

M∑

i=1

iz,w
1

(z −w)N+hi
iz̄,w̄

1

(z̄ − w̄)N+hi

(
−(N + hi) + (z̄ − w̄)

∂

∂z̄

)
Ci.

By Lemma B.1 we may conclude that for all i we have

(
−(N + hi) + (z̄ − w̄)

∂

∂z̄

)
Ci = 0. (59)

Now let us show that Ci ≡ 0 if hi 6= 0. Assume the converse. Then there is a vector

v ∈ V such that

Ci(z, z̄, w, w̄)(v) =
∑

α,β,γ,δ

c(αβγδ)z
−αz̄−βw−γw̄−δ 6= 0.

Eq. (59) implies

(N + hi + β)c(αβγδ) = (β − 1)c(α,β−1,γ,δ+1) (60)

Since Ci ∈ QF2(V ), we can choose α, β, γ, δ so that c(α,β,γ,δ) 6= 0 and c(α,β−1,γ,δ+1) = 0.

From Eq. (60) we find that β = −(N + hi). Furthermore, (60) implies that

c(α,β+k,γ,δ−k) =

(
β + k − 1

k

)
c(α,β,γ,δ) =

(−(N + hi) + k − 1

k

)
c(α,β,γ,δ)

for all k ∈ N. If hi 6∈ Z then the vector c(α,β+k,γ,δ−k) ∈ V is nonzero for all k ∈ N. But

this contradicts the condition Ci ∈ QF2(V ).
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Since hi ∈ [0, 1) for all i, and hi 6= hj for i 6= j, we conclude that Ci = 0 for

all i except maybe one, and for the latter value of i we have hi = 0. In addition, for

c(α,β+k,γ,δ−k) to be zero for k >> 0, as required by the condition Ci ∈ QF2(V ), the

integer N must be nonnegative. Thus the OPE of a(z) and b(w, w̄) has the form

a(z)b(w, w̄) = iz,w
1

(z − w)N
iz̄,w̄

1

(z̄ − w̄)N
C(z, z̄, w, w̄),

where C(z, z̄, w, w̄) ∈ QF2(V ) and N ≥ 0.

Applying Eq. (59) to C(z, z̄, w, w̄) and differentiating it with respect to z̄, we infer

that

C(z, z̄, w, w̄) =
1

N !
(z̄ − w̄)N∂Nz̄ C(z, z̄, w, w̄) and ∂N+1

z̄ C(z, z̄, w, w̄) = 0.

For this reason the element 1
N !∂

N
z̄ C(z, z̄, w, w̄) ∈ QF2(V ) does not depend on z̄. Let us

denote it by D(z,w, w̄). Then the OPE of a(z) and b(w, w̄) takes the form

a(z)b(w, w̄) = iz,w
1

(z − w)N
D(z,w, w̄),

(−1)p(a)p(b)b(w, w̄)a(z) = iw,z
1

(z − w)N
D(z,w, w̄).

This completes the proof of Proposition B.4. As a corollary, we have:

Corollary B.6 Meromorphic and anti-meromorphic vectors form two supercommuting chi-

ral algebras.

In the theory of chiral algebras an important role is played by the so-called Borcherds

formula which expresses the OPE of any two fields a(z) and b(z) in the image of Y

through their normal ordered product and the Borcherds products a(n)b. We will prove an

analogue of the Borcherds formula for vertex algebras.

Note that any field D(z,w, w̄) ∈ QF2(V ) meromorphic in the first variable can be

expanded in a Taylor series in (z − w) to an arbitrarily high order. This means that for

any integer K > 0 there exists a field DK(z,w, w̄) ∈ QF2(V ) such that

D(z,w, w̄) =
K−1∑

j=0

(z − w)j

j!

∂jD(z,w, w̄)

∂zj

∣∣∣∣
z=w

+ (z − w)KDK(z,w, w̄).

To prove this, it is sufficient to show that for any D(z,w, w̄) ∈ QF2(V ) we have

D(z,w, w̄) −D(w,w, w̄) = (z − w)D1(z,w, w̄)

for some D1(z,w, w̄) ∈ QF2(V ). This fact is trivial. Note also that if D ∈ QF2(V ) contains

fractional powers of z (and therefore also depends on z̄ ), the Taylor formula need not hold.
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Using the Taylor formula, the OPE (58) can be rewritten in the following form

a(z)b(w, w̄) =
N∑

j=1

iz,w
1

(z − w)j
Cj(w, w̄) +DN (z,w, w̄),

where Cj(w, w̄) ∈ QF1(V ) for all j, DN (z,w, w̄) ∈ QF2(V ). It is easy to see that Cj

and DN are uniquely defined by this formula.

Moreover it can be easily checked that Cn(w, w̄) coincides with

a(w)(n)b(w, w̄) := Resz((z − w)n−1(a(z)b(w, w̄) − b(w, w̄)a(z)))

The analogue of the Borcherds formula provides explicit expressions for Cj and DN in

terms of a and b :

Cj(w, w̄) = Y
(
a(j)b

)
(w, w̄), j = 1, . . . , N, DN (z,w, w̄) =: a(z)b(w, w̄) : . (61)

Here the normal ordered product : a(z)b(w, w̄) :∈ QF2(V ) is defined as follows. Let

a(z)+ =
∑

n≤0

a(n)z
−n, a(z)− =

∑

n>0

a(n)z
−n.

Then the normal ordered product of a(z) and b(w, w̄) is defined by

: a(z)b(w, w̄) := a(z)+b(w, w̄) + (−1)p(a)p(b)b(w, w̄)a(z)−.

Thus the OPE of a meromorphic field and an arbitrary field takes the form

a(z)b(w, w̄) =
N∑

j=1

iz,w
1

(z − w)j
Y
(
a(j)b

)
(w, w̄)+ : a(z)b(w, w̄) : . (62)

Similarly, the OPE of an anti-meromorphic field and an arbitrary field is given by

a(z̄)b(w, w̄) =

N∑

j=1

iz̄,w̄
1

(z̄ − w̄)j
Y
(
a(j)b

)
(w, w̄)+ : a(z̄)b(w, w̄) : . (63)

To prove the analogue of the Borcherds formula it is sufficient to show that a(w)(n)b(w, w̄)

is mutually local with any Y (c) . Indeed, it can be easily checked that

a(w)(n)b(w, w̄)|0〉 = Y (a(n)b)(w, w̄)|0〉,

and hence by the uniqueness theorem we obtain

a(w)(n)b(w, w̄) = Y (a(n)b)(w, w̄).
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Lemma B.7 If a ∈ V is meromorphic, then a(z)(n)b(z, z̄), n ≥ 1 is mutually local with

any Y (c) .

We have to prove that

a(w)(n)b(w, w̄) = Resz((z − w)n−1(a(z)b(w, w̄) − b(w, w̄)a(z)))

is mutually local with any Y (c) = c(z, z̄) .

Let us consider

A = (z1 − z2)
n−1(a(z1)b(z2, z̄2)c(z3, z̄3) − b(z2, z̄2)a(z1)c(z3, z̄3))

and

B = (z1 − z2)
n−1(c(z3, z̄3)a(z1)b(z2, z̄2) − c(z3, z̄3)b(z2, z̄2)a(z1)).

We know that for some sufficiently large r ∈ N the following identities hold:

(z1 − z2)
ra(z1)b(z2, z̄2) = (z1 − z2)

rb(z2, z̄2)a(z1),

(z1 − z3)
ra(z1)c(z3, z̄3) = (z1 − z3)

rc(z3, z̄3)a(z1).

Now let us consider (z2 − z3)
M . We have

(z2 − z3)
M =

M∑

s=0

(
M

s

)
(z2 − z1)

M−r(z1 − z3)
s.

Let us multiply A with (z2 − z3)
M , where M ≥ 2r . We get

M∑

s=0

(
M

s

)
(z2 − z1)

M−r(z1 − z3)
sA.

For 0 ≤ s ≤ r the s-th summand in this expression is 0 , because (z1−z2)M−s(z1−z2)n−1 =

(z1 − z2)
r′ where r′ ≥ r . Hence the expression is equal to

M∑

s=r+1

(
M

s

)
(z2 − z1)

M−r(z1 − z3)
sA =

M∑

s=r+1

(
M

s

)
(z2−z1)M−r(z1−z3)s(z1−z2)n−1(a(z1)b(z2, z̄2)c(z3, z̄3)−b(z2, z̄2)a(z1)c(z3, z̄3)) =

M∑

s=r+1

(
M

s

)
(z2−z1)M−r(z1−z3)s(z1−z2)n−1(a(z1)b(z2, z̄2)c(z3, z̄3)−b(z2, z̄2)c(z3, z̄3)a(z1)) =

M∑

s=r+1

(
M

s

)
(z2 − z1)

M−r(z1 − z3)
s(z1 − z2)

n−1[a(z1), b(z2, z̄2)c(z3, z̄3)].
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In the same way we find that

(z2 − z3)
MB =

M∑

s=r+1

(
M

s

)
(z2 − z1)

M−r(z1 − z3)
s[a(z1), c(z3, z̄3)b(z2, z̄2)].

From our definition of a vertex algebra we know that

b(z2, z̄2)c(z3, z̄3) =
∑

j

iz2,z3
1

(z2 − z3)hj+N
iz̄2,z̄3

1

(z̄2 − z̄3)hj+N
Ej(z2, z̄2, z3, z̄3),

c(z3, z̄3)b(z2, z̄2) =
∑

j

iz3,z2
1

(z2 − z3)hj+N
iz̄3,z̄2

1

(z̄2 − z̄3)hj+N
Ej(z2, z̄2, z3, z̄3)

for some Ej from QF2(V ). Substituting these expressions into the formulas above we find

that

(z2−z3)M (a(z2)(n)b(z2, z̄2))c(z3, z̄3) = Resz1(
M∑

s=r+1

(
M

s

)
(z2−z1)M−r(z1−z3)s(z1−z2)n−1

∑

j

iz2,z3
1

(z2 − z3)hj+N
iz̄2,z̄3

1

(z̄2 − z̄3)hj+N
[a(z1), Ej(z2, z̄2, z3, z̄3)]),

and

(z2 − z3)
M c(z3, z̄3)a(z2)(n)b(z2, z̄2) = Resz1(

M∑

s=r+1

(
M

s

)
(z2 − z1)

M−r(z1 − z3)
s(z1 − z2)

n−1

∑

j

iz3,z2
1

(z2 − z3)hj+N
iz̄3,z̄2

1

(z̄2 − z̄3)hj+N
[a(z1), Ej(z2, z̄2, z3, z̄3)].

To prove mutual locality of a(z)(n)b(z, z̄) with any Y (c) one only needs to show that one

can divide both sides of the above equations by (z2 − z3)
M . In fact, it is sufficient to show

this for M = 1, and then use induction on M.

To show that one can divide both sides by z2 − z3, we note that the kernel of multipli-

cation by z − w consists of expressions of the form

∑

n∈Z

( z
w

)n
D(z, z̄, w, w̄),

where D(z, z̄, w, w̄) is a formal fractional power series with coefficients in End(V ) (but

not necessarily an element of QF2(V ) ). If D(z, z̄, w, w̄) is not identically zero, then there

exists v ∈ V such that when this expression is applied to v, one gets a fractional power

series with coefficients in V containing arbitrarily large negative powers of w and z. On

the other hand, applying any element of QF1(V ) or QF2(V ) to any v ∈ V one always

obtains a fractional power series with powers bounded from below. This implies that one can

divide both sides of the above equations by z2 − z3. The Borcherds formulas are proven.
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Three remarks are in order here. First, it seems that there is no analogous way to

rewrite the OPE of two fields when neither of them is meromorphic or anti-meromorphic.

Consequently, the normal ordered product of two general fields is not a very useful concept.

Second, given two meromorphic fields, one can define two normal ordered products:

: a(z)b(w) : = a(z)+b(w) + (−1)p(a)p(b)b(w)a(z)−,

: b(w)a(z) : = b(w)+a(z) + (−1)p(a)p(b)a(z)b(w)−.

Correspondingly, there are two different OPEs that one can write down. The first one is

a(z)b(w) =

N∑

j=1

iz,w
1

(z − w)j
Y
(
a(j)b

)
(w)+ : a(z)b(w) :,

(−1)p(a)p(b)b(w)a(z) =
N∑

j=1

iw,z
1

(z − w)j
Y
(
a(j)b

)
(w)+ : a(z)b(w) :,

and the second one is

b(w)a(z) =

N∑

j=1

iw,z
1

(w − z)j
Y
(
b(j)a

)
(z)+ : b(w)a(z) :,

(−1)p(a)p(b)a(z)b(w) =
N∑

j=1

iz,w
1

(w − z)j
Y
(
b(j)a

)
(z)+ : b(w)a(z) : .

In general, the two normal ordered products are not related in any simple way.

Third, given a meromorphic and an anti-meromorphic field, one can also define two normal

ordered products. However, in this case they always coincide up to a sign:

: a(z)b(w̄) := (−1)p(a)p(b) : b(w̄)a(z) : .

Indeed, the OPE formulas (62,63) read in this case

a(z)b(w̄) = (−1)p(a)p(b)b(w̄)a(z) =: a(z)b(w̄) :,

b(w̄)a(z) = (−1)p(a)p(b)a(z)b(w̄) =: b(w̄)a(z) : .

This fact also follows directly from the definition of the normal ordered product and the fact

that meromorphic and anti-meromorphic fields in the image of Y supercommute.

Finally, let us show that any chiral algebra is a special case of a vertex algebra with

T̄ = 0 and the image of Y consisting of meromorphic fields only. The only thing which

needs to be checked is the OPE axiom. For a chiral algebra, the OPE of any two fields in

the image of Y has the form

a(z)b(w) =
N∑

n=1

iz,w
1

(z − w)n
Y
(
a(n)b

)
(w)+ : a(z)b(w) :,

(−1)p(a)p(b)b(w)a(z) =

N∑

n=1

iw,z
1

(z − w)n
Y
(
a(n)b

)
(w)+ : a(z)b(w) :
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Obviously, a(n)b(w) belongs to QF2(V ). It is also easy to check that : a(z)b(w) : also

belongs to QF2(V ). Hence, the above OPE can be rewritten as

a(z)b(w) = iz,w
1

(z − w)N
C(z,w)

where C(z,w) ∈ QF2(V ). Therefore the OPE axiom is satisfied.

C Projectively flat connections and the fundamental group

In this appendix we establish a relation between projectively flat connections on complex

vector bundles on a connected manifold and finite representations of a twisted group algebra of

the fundamental group. This relation is a generalization of the well-known statement that flat

connections on complex vector bundles are in one-to-one correspondence with representations

of the fundamental group.

Let M be a paracompact connected C∞ -manifold. Let us fix a closed real 2-form B

on M. Consider a complex vector bundle E on M with a connection ∇ such that its

curvature F∇ ∈ Ω2 ⊗ End(E) is equal to

F∇ = 2πiB ⊗ idE (64)

Such a connection is called projectively flat, and it is flat if and only if B = 0. When B is

non-zero, we can consider the condition (64) as a ”twisted” variant of the flatness condition.

We will prove that the set of such connections is in one-to-one correspondence with finite

representations of a twisted group algebra of π1(M) defined below.

Let us fix a point x ∈M. Since (E,∇) is projectively flat, for any contractible closed

path c starting at x the holonomy operator Hc : Ex −→ Ex is equal to tc · id, where tc

is a nonzero complex number. By the Reduction Theorem (see [22]) (E,∇) can be reduced

locally to a C∗ –bundle, and therefore by Stockes’ theorem

tc = exp(2πi

∫

D
φ∗B),

where φ is a map from the two dimensional disk D to M satisfying φ(∂D) = c. Since

B is a real 2-form, (E,∇) in fact locally reduces to a U(1) -bundle.

The above formula for tc is independent of the choice of φ only if

exp(2πi

∫

S2

φ∗B) = 1 (65)

for any map φ from the 2-dimensional sphere S2 to M. Thus a vector bundle (E,∇)

with curvature F∇ = 2πiB ⊗ idE can exist only if the de Rham cohomology class of B

belongs to the kernel of the composition homomorphism

H2(M,R) → H2(M,U(1)) → Hom(π2(M), U(1)).
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Let us consider the Hopf sequence

π2(M) −→ H2(M,Z) −→ H2(K(G, 1),Z) −→ 0,

where G := π1(M). This sequence induces an injective map

0 −→ H2(K(G, 1), U(1)) −→ H2(M,U(1)). (66)

Denote by B the image of B in H2(M,U(1)). We showed that if B does not belong

to the image of the map (66) then the set of vector bundles (E,∇) with curvature F∇ =

2πiB ⊗ idE is empty.

Assume now that B is in the image of the map (66). Let us fix a point x ∈M and for

each element g ∈ G choose a closed path cg beginning at x and representing g such

that the closed path cg−1 coincides with the inverse of cg for any g. Let c(g,h) be a

loop which is the union of the loops ch, cg, and c(gh)−1 This loop is contractible. Define a

function ψ : G×G→ U(1) by the rule

ψ(g, h) = exp(2πi

∫

D
φ∗B), (67)

where φ is a map from the two dimensional disc D to M satisfying φ(∂D) = c(g,h). It

is easy to see that this function is a 2-cocycle on the group G. Moreover, if we choose the

representatives cg differently, we obtain a cocycle which is cohomologous to ψ.

The holonomy operators along the loops cg, ch, and cgh satisfy the following relation

Hcg ·Hch = ψ(g, h)Hcgh
.

This identity has the following representation-theoretic meaning. With any 2-cocycle ψ

one can associate a twisted group algebra Cψ[G], which is a vector space generated by the

elements g ∈ G with the following multiplication law:

g · h = ψ(g, h)gh

(Note that if two 2-cocycles are cohomological to each other, then the corresponding twisted

group algebras are isomorphic.) The holonomy operators Hcg define a representation of the

twisted group algebra Cψ[G] on the vector space Ex.

An equivalent definition of the algebra Cψ[G] goes as follows. Let Lpx be the loop

space of M with the well-known composition of loops (which is associative only up to

a homotopy). Let us consider the corresponding non-associative “group” algebra C[Lpx].

Then the algebra Cψ[G] is a factor-algebra of C[Lpx] modulo all relations of the form

c− exp(2πi

∫

D
φ∗B) · 1 = 0
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where c is a contractible loop, and φ is a map from the disc D to M such that

φ(∂D) = c. By (65) this definition does not depend on the choice of φ. For any loop

c ∈ Lpx we denote by r(c) the element of the twisted group algebra which is the image of

c with respect to this factorization.

In this way to any vector bundle (E,∇) satisfying the condition (64) we can associate

a finite-dimensional representation of the twisted group algebra. We assert that this is a

one-to-one correspondence. To show this, we describe how to construct (E,∇) starting

from a representation R of the twisted group algebra.

Let CM be the sheaf of algebras of complex-valued C∞ –functions on M. Let A be

a sheaf of algebras on M defined as Cψ[G]⊗CCM . If R is a representation of the twisted

group algebra, then the sheaf R = R ⊗C CM has a natural left module structure over the

sheaf of algebras A. Below we construct a sheaf P of right A –modules with a connection

∇P and set E = P ⊗A R. This sheaf is the sheaf of sections of a complex vector bundle

on M, and ∇P induces a natural connection ∇ on it.

Let M̃
τ−→M be a universal covering. Denote by B̃ the pull-back of the form B to

M̃. It is easy to check that B belongs to the image of the map (66) if and only if B̃ is

an exact form. Let us choose a 1-form η on M̃ such that dη = B̃.

Consider a sheaf of algebras Ã = Cψ[G]⊗CCM̃ on M̃. The tautological action of G on

M̃ can be lifted to a left action on Ã as follows. Let cg be a loop in M based at a fixed

point x ∈ M and representing the element g ∈ G, and let r(cg) be the corresponding

element of the twisted group algebra of G (see above). Let x0 be a lift of x to M̃. Let

c̃g be a path on M̃ which covers cg, begins at g−1(x0) and ends at x0. For any point

y ∈ M̃ let us choose some path dy from y to x0. Let c̃g,y be a path from g−1(y) to

y which is a composition of g−1(dy), c̃g, and d−1
y . The left action of the group G on

the sheaf Ã is defined by the rule:

g(a⊗ f)(y) = exp(−2πi

∫

c̃g,y

η)(r(cg)a⊗ f(g−1y)),

where a ∈ Cψ[G] and f is a C∞ –function on M̃ .

This definition does not depend on the choice of dy, because the form B̃ is G -

invariant. Nor does it depend on the choice of cg, because for any other loop c′g repre-

senting g we have

exp(−2πi

∫

c̃′g,y

η)r(c′g) = exp(−2πi

∫

c̃′g,y

η + 2πi

∫

D
φ∗B̃)r(cg) = exp(−2πi

∫

c̃g,y

η)r(cg),

where φ is a map from D to M̃ such that φ(∂D) is the composition of c̃′g and the

inverse of c̃g.
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Furthermore, we can define a connection on Ã by the formula

∇̃(a⊗ f) = a⊗ (df + 2πifη).

This connection is G -invariant. Indeed, let us regard
∫
c̃g,y

η as a function on M̃ and

denote it by h(y). Then we have

g∇̃(a⊗ f)(y) = g(a ⊗ (df + 2πifη))(y)

= exp(−2πih(y))r(cg)a⊗ (df(g−1y) + 2πif(g−1y)η(g−1y)).

On the other hand, since dh(y) = η(y) − η(g−1y) we obtain

∇̃g(a ⊗ f)(y) = ∇̃(r(cg)a⊗ exp(−2πih(y))f(g−1y))

= exp(−2πih(y))r(cg)a⊗ (df(g−1y) − 2πif(g−1y)dh(y) + 2πif(g−1y)η(y))

= exp(−2πih(y))r(cg)a⊗ (df(g−1y) + 2πif(g−1y)η(g−1y)).

The definitions of the connection ∇̃ and the action of the group G on Ã depend on

the choice of η. However, if we take another form η′ = η + df then the data (Ã, ∇̃) and

(Ã, ∇̃′) are isomorphic under the multiplication by the function exp(−2πif). Moreover,

this isomorphism is compatible with the action of the group G.

We define a sheaf P on M as the sheaf of invariants τ∗(Ã)G with a connection ∇P

induced by ∇̃.
The sheaf P has a right module structure over A. It is locally free of rank 1 as an

A -module. It follows from the preceding discussion that the datum (P,∇P ) is unique and

depends only on the form B.

To any representation R of the twisted group algebra of G we attach a complex vector

bundle E = P ⊗A R with the connection ∇ induced by ∇P . It is easy to see that

the representation of the twisted group algebra on the space Ex corresponding to ∇ is

isomorphic to R. Thus pairs (E,∇) satisfying (64) are in one-to-one correspondence with

finite-dimensional representations of Cψ[G], where the cocycle ψ is defined by (67).
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