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Abstract

A vertex algebra is an algebraic counterpart of a two-dimensional conformal field
theory. We give a new definition of a vertex algebra which includes chiral algebras as a
special case, but allows for fields which are neither meromorphic nor anti-meromorphic.
To any complex torus equipped with a flat Kéhler metric and a closed 2-form we associate
an N =2 superconformal vertex algebra ( N =2 SCVA) in the sense of our definition.
We find a criterion for two different tori to produce isomorphic N =2 SCVA’s. We show
that for algebraic tori isomorphism of N = 2 SCVA’s implies the equivalence of the
derived categories of coherent sheaves corresponding to the tori or their noncommutative
generalizations (Azumaya algebras over tori). We also find a criterion for two different tori
to produce N =2 SCVA’s related by a mirror morphism. If the 2-form is of type (1,1),
this condition is identical to the one proposed by Golyshev, Lunts, and Orlov, who used an
entirely different approach inspired by the Homological Mirror Symmetry Conjecture of
Kontsevich. Our results suggest that Kontsevich’s conjecture must be modified: coherent
sheaves must be replaced with modules over Azumaya algebras, and the Fukaya category
must be “twisted” by a closed 2-form. We also describe the implications of our results
for BPS D-branes on Calabi-Yau manifolds.
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1 Introduction

1.1 Physicist’s mirror symmetry

A physicist’s Calabi Yau is a triple (X,G,B), where X is a compact complex manifold
with a trivial canonical bundle, G is a Ricci-flat Kahler metric on X, and B is a class
in H?(X,R/Z) which is in the kernel of the Bockstein homomorphism H?(X,R/Z) —
H3(X,Z). The class B can be lifted to a class b € H?(X,R), and a closed 2-form B
representing it is known as the B -field.

Physicists believe that there is a procedure which associates to any such triple an N =2
superconformal vertex algebra ( N =2 SCVA). The precise definition of an N =2 SCVA
is rather complicated and will be given in Section ] Roughly speaking, it is a Euclidean
quantum field theory on a two-dimensional manifold R x S! whose Hilbert space is acted
upon by a unitary representation of the infinite-dimensional Lie super-algebra with even
generators Ly, Ly, Jn, Ju,n € Z, odd generators QF,QFf,r € Z + %, and the following

nonvanishing Lie brackets:

(L, L] =(m —n)Lpyyn + gll(m?’ — M), —n,
Emain = m_nim+n+_m3_m5m—ny
4 ’
(L, Jn] = —nJpim, [Ema jn] = —nJdpim
[Jma Jn] = dmém,—n: [ _ma jn] = dmém -n
[Lma ;t] = (% - 7") 7:~t+m7 [Emv 7?] = (% - 7") 77:“t+m (1)
[J7m Q;t] = iQ;t—l—m? [j7m Q;t] = iQ;t—l—m?
1 1 d 1
+ - I A _ . 2 _ =
{Qr 7Qs } - 4L7”+8 + S(T S)Jr-i-s + ] (T 4> 67“,—57
- 1- 1 = d 1
+ - I A _ . 2 _ =
{Qr 7Qs } - 4L7’+s + S(T S)Jr-i-s + ) <T 4> 67“,—5'

Here d=dimc X, and {-,-} denotes the anti-commutator. This algebra is a direct sum of
two copies of the celebrated N = 2 super-Virasoro algebra with central charge ¢ = 3d. If
one omits J,,.J, and all the odd generators from the definition of the N =2 SCVA, one
gets a structure which we call a conformal vertex algebra (CVA), and which is also known
as a conformal field theory on R x S! =2 C*. Thus an N = 2 SCVA is a conformal field
theory on C* with some additional structure.

Heuristically, the construction of an N =2 SCVA from a triplet (X,G,B) proceeds as
follows. To any Kéhler manifold (X,G) equipped with a closed 2-form B one can associate
a two-dimensional classical field theory on RxS! | the so-called N =2 supersymmetric o -
model. For reader’s convenience, the definition of the ¢ -model is given in Appendix [A. The

space of solutions of the corresponding classical equations of motion is an infinite-dimensional



symplectic supermanifold with a symplectic action of two copies of the N = 2 super-
Virasoro algebra with zero central charge (see P9, §l, and Appendix [A]). It can be argued
that consistent quantization of this classical field theory is possible only for ¢1(Tx) > 0,
e.g. when X is a Fano manifold or a Calabi-Yau manifold. In the Fano case ( ¢1(Tx) >0 )
the quantized o -model is an N = 2 field theory, but not a superconformal one, because
only a finite-dimensional subalgebra of the classical N = 2 super-Virasoro algebra survives
quantization. The same happens if ¢;(Tx) = 0 but G is not Ricci-flat. If ¢ (Tx) =0
and G is Ricci flat, both N = 2 super-Virasoro algebras survive quantization (though
the central charges become nonzero), and therefore the quantized o -model is an N = 2
superconformal field theory, i.e. an N = 2 SCVA. One can also argue that this N = 2
SCVA in fact depends only on the image of B in H?(X,R/Z), i.e. on B.

The actual quantization of the o -model is feasible only for very special (X,G,B). In
particular, if X is a complex torus, the corresponding N = 2 SCVA can be constructed
for any flat G and any B € H?(X,R/Z). The quantization of the o -model for a flat
complex torus is sketched in Appendix [A].

Two physicist’s Calabi-Yaus are said to be mirror if there exists an isomorphism of the
corresponding conformal vertex algebras which acts on the algebra ([[]) as the so-called mirror

volution:

Ly — Ly, Qyj«: - Q;Fa JIn = —Jn, (2)
L, — L, Qf - Q% J,— J
Such a morphism of N =2 SCVA’s will be called a mirror morphism.

Mirror symmetry defined in this way acts pointwise on the moduli space of physicist’s
Calabi-Yaus. If one drops G and B from the definition of a physicist’s Calabi-Yau,
then mirror symmetry becomes a correspondence between two families of Kéhler manifolds
with a trivial canonical bundle whose Hodge numbers are related by hP? = R/ d=P4_ The
latter notion of mirror symmetry is much weaker than the physicist’s mirror symmetry.
Nevertheless, much of the mathematical work on mirror symmetry up to now has focused on
this weaker notion, since it proved hard to make sense of the ¢ -model.

As mentioned above, the quantum o -model is manageable when X is a complex torus,
so one could hope to understand mirror symmetry in detail in this particular case. This is
what this paper aims to do. Although from the physical point of view mirror symmetry for
complex tori appears to be rather trivial, we will see that its study sheds considerable light

on the Homological Mirror Symmetry Conjecture (HMSC), a subject to which we now turn.



1.2 Homological mirror symmetry

String theory makes highly nontrivial predictions about the enumerative geometry of a
Calabi-Yau X in terms of its mirror X’. The success of these predictions seems quite
mysterious from a purely mathematical standpoint. In an insightful paper [23], M. Kontse-
vich formulated a conjecture which relates the properties of a Calabi-Yau with those of its
mirror and suggested that it captures the essence of mirror symmetry. Subsequently this
conjecture was reinterpreted in physical terms [B]]. In this subsection we remind the main
features of Kontsevich’s conjecture.

Let X be a complex algebraic variety (or a complex manifold). Denote by Ox the
sheaf of regular functions (or the sheaf of holomorphic functions). Recall that a coherent
sheaf is a sheaf of Ox —modules that locally can be represented as a cokernel of a morphism
of holomorphic vector bundles. Coherent sheaves form an abelian category which will be de-
noted by Coh(X). To any abelian category we can associate a certain triangulated category
called the bounded derived category. We denote by D?(X) the bounded derived category of
coherent sheaves on X. Roughly speaking, the category DP?(X) is a factor-category of the
category of bounded complexes of coherent sheaves by the subcategory of acyclic complexes

(i.e. complexes with trivial cohomology sheaves).

On the other hand, it has been proposed [1J, B3] that to any compact symplectic manifold
Y one can associate a certain category whose objects are (roughly speaking) vector bundles
on Lagrangian submanifolds equipped with unitary flat connections. The morphisms in
this category have been defined when Lagrangian submanifolds intersect transversally. This
conjectural category is called the Fukaya category and denoted F(Y'). The category F(Y)
is not an abelian category; rather, it is supposed to be an A, -category equipped with a
shift functor. For an introduction to A, -categories see [R1]. An A, —category is not a
category in the usual sense, because the composition of morphisms is not associative. The set
of morphisms between two objects in an A, —category is a differential graded vector space.
To any A, —category one can associate a true category which has the same objects but the
space of morphisms between two objects is the 0-th cohomology group of the morphisms
in A, —category. Applying this construction to F(Y), we obtain a true category Fo(Y')
which is also called the Fukaya category. Kontsevich [ also constructs a certain triangulated
category DFy(Y) out of F(Y). We will call it the derived Fukaya category. Conjecturally,
the category Fo(Y) is a full subcategory of DFy(Y).

A physicist’s Calabi-Yau (X, G, B) is both a complex manifold and a symplectic manifold
(the symplectic form being the Kéhler form w = GI ). Thus we can associate to it a
pair of triangulated categories D’(X) and DJFy(X). The Homological Mirror Symmetry
Conjecture (HMSC) asserts that if two algebraic Calabi-Yaus (X,G,B) and (X',G',B’)



are mirror to each other, then DP’(X) is equivalent to DFy(X’), and vice versa.

The Homological Mirror Symmetry Conjecture can be reinterpreted in physical terms.
To every N =2 superconformal field theory one can associate the set of BPS D-branes, or
more precisely two sets: the set of A-type D-branes and the set of B-type D-branes. This is
reviewed in more detail in Section fj. These sets are equipped with a rather intricate algebraic
structure: that of an A, —category. This structure encodes the properties of correlators in a
topological open string theory (see [[L6] and references therein). A mirror morphism between
two N = 2 superconformal field theories identifies the A-type D-branes of the first theory
with the B-type D-branes of the second theory, and vice versa. Now suppose that an N = 2
superconformal field theory originates from a physicist’s Calabi-Yau (X,G,B). In this case
there is evidence that A-type D-branes are closely related to objects of the Fukaya category,
while B-type D-branes are related to coherent sheaves on X. To prove the Homological
Mirror Symmetry Conjecture it would be sufficient to show that the derived Fukaya category
of (X,G,B) (resp. the derived category of X ) can be recovered from the A -category
of A-type D-branes (resp. B-type D-branes). Conversely, proving the HMSC would likely
result in an improved understanding of BPS D-branes.

So far the Homological Mirror Symmetry Conjecture (with some important modifications,
see Section f] for details) has been proved only for dim¢ X = dim X¢ =1, ie. for the elliptic
curve [B]]. Two features make this case particularly manageable. First, the N =2 SCVA
for the elliptic curve is known, so one knows the precise conditions under which (X, G, B)
is mirror to (X', G’,B’). Second, all objects and morphisms in the Fukaya category can be
explicitly described.

In this paper we perform a check of the HMSC for the case when both X and X' are
algebraic tori of arbitrary dimension. We will see that for algebraic tori of dimension higher
than one the HMSC as formulated by Kontsevich can not be true in general. The main
reason is that both the derived category of coherent sheaves and the derived Fukaya category
do not depend on the B-field, while in the physical mirror symmetry it plays an essential role.
However, a certain modification of the HMSC which takes into account the B-field passes
our check and has a good chance to be correct. This modification is suggested both by our
results on the N =2 SCVA for complex tori, and by consideration of BPS D-branes. The
modified HMSC conjecture is formulated in Section f}. It reduces to the original HMSC when
the B-field vanishes for both manifolds related by the mirror morphism.

The implications of our results for BPS D-branes on Calabi-Yau manifolds are briefly

described in Section J and in more detail in Section f.



1.3 Vertex algebras and chiral algebras

Vertex algebras play a key role in physicist’s mirror symmetry. A vertex algebra is an alge-
braic counterpart of a two-dimensional conformal field theory. In the mathematical literature
the terms vertex algebra and chiral algebra are used interchangeably. Roughly speaking, a
chiral algebra is a vector superspace V together with a map Y : V — EndV[[z,27!]] sat-
isfying a number of properties [I]. One says that Y maps states to quantum fields. The
definition of a chiral algebra first appeared in the work of Borcherds [f], but its origins go
back to the classic paper of Belavin, Polyakov, and Zamolodchikov [[§] where an algebraic
approach to two-dimensional conformal field theory was proposed.

From a physical viewpoint, chiral algebras are conformal field theories such that all fields
are meromorphic (do not depend on z ). Only very special conformal field theories have this
property. Moreover, a generic conformal field theory does not factorize as a tensor product
of two chiral algebras, one depending on z and another on Zz, despite some claims to the
contrary in the physics literature. For example, the quantization of the ¢ -model associated
to a flat torus yields a conformal field theory which factorizes in this manner only for very
special values of G and B.

Thus in order to give a precise meaning to physicist’s mirror symmetry, we need to find
a sufficiently general definition of a vertex algebra allowing for fields which depend both on
z and Zz. To avoid confusion, we will refer to these more general objects as vertex algebras,
while vertex algebras in the sense of [[J] will be called chiral algebras.

Once both z and Z are allowed, they need not enter only in integer powers, so Y will
take values in a space of “fractional power series in z and Z with coefficients in End(V') ”,
rather than in End(V)[[z, z,27!,27!]]. The necessity of fractional powers can be seen by
inspecting the conformal field theories associated to flat tori. Because of this, the definition
of a vertex algebra is not a trivial extension of the definition of a chiral algebra.

We hope that our definition of a vertex algebra will be of some interest to physicists as well
as mathematicians. Its advantage over the more standard definitions of conformal field theory
is that it is purely algebraic and based on the notion of Operator Product Expansion (OPE).
In contrast, other rigorous definitions take Wightman axioms as a starting point. These
axioms have an analytic flavor and do not make reference to OPE. In fact, the existence of
OPE does not follow from Wightman axioms (except in some very special cases), and has to
be postulated separately. Another advantage of our definition is that it does not require an
inner product on the state space. Thus it is capable of describing ”"non-unitary” conformal

field theories which find applications in statistical mechanics.



2  Summary of results

2.1 Physicist’s mirror symmetry for complex tori

Let T be a 2d -dimensional real torus U/T, where U 2 R?? is a real vector space, and
I' = 7% is a lattice in U. Let I be a (constant) complex structure on 7, G be a
flat Kdhler metric on T, and b € H?(T,R). We will represent b by a constant 2-form
B which is uniquely determined by b. In this simple case there is a well-known explicit
construction of the corresponding N = 2 SCVA which we denote Vert(I',I,G,B). We
review this construction in Section | The relation of this construction to the quantized
o -model is explained in Appendix [A].

Our first result describes when two different quadruples (I',I,G,B) and (I",I',G', B’)
yield isomorphic N =2 SCVA’s. To state it, we first introduce some notation. Let I'™* =
Hom(I',Z) be the dual lattice in U*, and T* be the dual torus U*/I'*. There is natural
pairing [ : '@ ' — Z. There is also a natural Z -valued symmetric bilinear form ¢ on
'@ I'* defined by

q((wi,m1), (w2, ma)) = l(wy, ma) + l(wz, m1), wip €, myg eI,

Given G,I,B, we can define two complex structures on 7T x T™ :

I 0
LB = <B1+ I'B —It) ’ ®)

4
GI - BIG™'B BIG™! @

j(GJ7B):< —IG™'B IG 1).
The notation here is as follows. We regard 7 and J as endomorphisms of U & U*,
and write the corresponding matrices in the basis in which the first 2d vector span U,
while the remaining vectors span U*. In addition, G and B are regarded as elements of
Hom(U,U*), and I' denotes the endomorphism of U* conjugate to I.

It is easy to see that J depends on G,I only in the combination w = GI, ie. it
depends only on the symplectic structure on 7' and the B-field. There is also a third natural
complex structure Z on T x T*, which is simply the complex structure that T xT™ gets

because it is a Cartesian product of two complex manifolds:

. (1 0
7= .

This complex structure will play only a minor role in what follows. Note that Z coincides
with Z if and only if B2 = .



Theorem 2.1 Vert(T',I,G, B) is isomorphic to Vert(I',I',G', B’) if and only if there
exists an isomorphism of lattices I' T and ' ®T™* which takes g to ¢, I to T,
and J to J'.

Our second result describes when (7', 1,G, B) is mirror to (77, I',G', B').

Theorem 2.2 Vert(I',I,G,B) is mirror to Vert(I',I',G', B') if and only if there is an
isomorphism of lattices T ®T* and I ®T'* which takes q to ¢, I to J', and J
to T'.

2.2 Applications to homological mirror symmetry

Let us now explain the implications of these results for the HMSC. First, note that if both
B and B’ are of type (1,1), the criterion for mirror symmetry is identical to the one
proposed in [[[4]. In that work, this criterion was taken as a definition of mirror symmetry
for algebraic tori. We now see that this definition agrees with the physical notion of mirror
symmetry and can be generalized to non-algebraic tori and arbitrary B -fields.

Second, Theorem P.J] allows us to make a check of the HMSC. Suppose the
tori (Ty,11,G1,B1) and (T, I,Ga,Bs) are both mirror to (77,1',G’',B’). Then
Vert(l'y,I1,G1, By) is isomorphic to Vert(l'y,1,G1,B1), and by Theorem P.] there is
an isomorphism of lattices I't @ I'] and I'p; @ I'5 which intertwines ¢; and g2, Z; and
Zs, and J1 and Jo.

On the other hand, if we assume that both (77,1;) and (73,1I3) are algebraic, then
HMSC implies that DY((T%,11)) is equivalent to D°((T3, I3)). The criterion for this equiv-
alence is known [B0, P§: it requires the existence of an isomorphism of Ty ®I'f and Ty @ T3
which intertwines ¢ and ¢o, and Z; and Zo. Clearly, since Z # 7 in general, this
condition is in conflict with the one stated in the end of the previous paragraph. Instead, we

only have the following result:

Corollary 2.3 If Vert(I'1,I1,G1,By) isisomorphic to Vert(I's, Is,Go, Ba), both (T4,17)
and (Ty, 1)) are algebraic, and both By and By are of type (1,1), then DY((T1,1;)) is
equivalent to D°((Ty, Iy)).

In Section ] we also prove the following result.

Theorem 2.4 Let (11,11,G1,B1) be a complex torus equipped with a flat Kdhler metric
and a B-field of type (1,1). Let (Ty,I5) be another complex torus. Let I, and Ty be the
product complex structures on Th x T} and Ty x T3 . Suppose there exists an isomorphism

of lattices g:T'1 ®I'7 =Ty @15 mapping q1 to g2 and I, to Zy. Then on Ty there



exists a Kdhler metric Ga and a B-field Bo of type (1,1) such that Vert(I'y,I1,G1, B1)
is isomorphic to Vert(Ty, Is,Go,Bs) as an N =2 SCVA.

Combining this with Theorem P.1 and the criterion for the equivalence of D’((Ty,I;)) and
DY((Ty, 1)), we obtain a result converse to Corollary B.3.

Corollary 2.5 Let (11,11,G1,B1) be an algebraic torus equipped with a flat Kdhler metric
and a B-field of type (1,1). Let (T, I3) be another algebraic torus. Suppose DP((T1,11))
is equivalent to D°((Ty, I3)). Then on Ty there exists a Kdihler metric Go and a B-field
By of type (1,1) such that Vert(T'y,I1,G1,B1) is isomorphic to Vert(T'a, I3, Ga, By) as
an N =2 SCVA.

If dimc7 =1, then the B-field is automatically of type (1,1). Therefore the HMSC
passes the check in this special case. Of course, this is what we expect, since the HMSC is
known to be true for the elliptic curve [B]]. On the other hand, for dim¢7 > 1 we seem to
have a problem.

Not all is lost however, and a simple modification of the HMSC passes our check. The
modification involves replacing (7,I) with a noncommutative algebraic variety, or more
precisely, replacing the structure sheaf of (7,1) with an Azumaya algebra over (T1).

Let us remind the definition and basic facts about Azumaya algebras. Let A be an
Ox —algebra which is coherent as a sheaf Ox —modules. Denote by Coh(A) the abelian
category of sheaves of (right) A-modules which are coherent as sheaves of Ox —modules,
and by DP(A) the bounded derived category of Coh(A).

We will be interested in a simple case of this situation when A is an Azumaya algebra.
Recall that A is called an Azumaya algebra if it is locally free as a sheaf of Ox —modules,
and for any point z € X the restriction A(z) := A®p, C(z) is isomorphic to a matrix
algebra M, (C).

A trivial Azumaya algebra is an algebra of the form End(E) where FE is a vector
bundle. Two Azumaya algebras A and A’ are called similar (or Morita equivalent) if

there exist vector bundles E and E’ such that
A®oy End(B) = A €0, End(E')

It is easy to see that in this case the categories Coh(A) and Coh(A’) are equivalent, and
therefore the derived categories D°(A) and DY(A’) are equivalent as well.
Azumaya algebras modulo Morita equivalence generate a group with respect to tensor
product. This group is called the Brauer group of the variety and is denoted by Br(X).
There is a natural map
Br(X) — H*(X,0%).



This map is an embedding and its image is contained in the torsion subgroup of H?(X, 0%).
The latter group is denoted by Br/(X) and called the cohomological Brauer group of X.
The well-known Grothendieck conjecture asserts that the natural map Br(X) — Br/(X)
is an isomorphism for smooth varieties. This conjecture was proved for abelian varieties [[[7];
we will assume that it is true in general.

Let X be an algebraic variety over C, andlet B € H?(X,R/Z). Let : H*(R/Z) —
H%*(X,0%) be the homomorphism induced by the canonical map R/Z — O%. We have

the following commutative diagram of sheaves:

0O —%Z — R —— R/Z — 0

| l 15

0—>Z—>(9X6M>) oy — 0

Suppose ((B) is a torsion element of H?(X,0%), and consider an Azumaya algebra
Ap which corresponds to this element. The derived category Db(X ,Ap) does not depend
on the choice of Ap because all these algebras are Morita equivalent. Thus we can denote
it simply DY(X, B).

Remark 2.6 It appears that a similar triangulated category can be defined even when [(B)
is not torsion. Any element a € H?*(X, O%) giwes us an O% gerbe X, over X. Consider
the derived category Dgcoh(XB(B)) of quasicoherent sheaves on this gerbe. Now our trian-
gulated category can be defined as a full subcategory of D%wh(Xg(B)) consisting of weight-1

objects with some condition of finiteness, which replaces coherence.

A sufficient condition for the equivalence of D’(X;,B;) and D(X3,B;) for the case
of algebraic tori is provided by the following theorem [BQ].

Theorem 2.7 Let (T1,1;) and (Ty,13) be two algebraic tori. Let By € H*(Ty,R/Z) and
By € H*(T»,R/Z), and suppose (3 maps both By and By to torsion elements. If there
exists an isomorphism of lattices T'y @ I'7 and T'9 ®T'5 which maps ¢ to q2, and Iy
to Iy, then DP((Ty,I,),Bi) is equivalent to D°((Ty, 1), Bs).

Remark 2.8 It appears plausible that this is also a necessary condition for D°((Ty, 1), B;)
to be equivalent to DY((Ty, 1), Bs).

Remark 2.9 [t appears plausible that the theorem remains true even when [((B1) and
B(Ba) have infinite order, see Remark [2.4.

Combining Theorem P.7 with our Theorem P.1], we obtain the following result.
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Corollary 2.10 Suppose Vert(I'1,I1,Gy,B1) is isomorphic to Vert(T's, I3, Ga, By), both
(Th, 1) and (Tv,I) are algebraic, and both By and By are mapped by [ to torsion
elements. Then DY((Ty,11),B1) is equivalent to D'((Ty, 1), Bs).

This corollary suggests that we modify the HMSC by replacing D®(X) with D°(X,B).
Once we decided to include the B-field, it seems unnatural to assume that the Fukaya cat-
egory is independent of it. D-brane considerations suggest a particular way to “twist” the
Fukaya category with a B-field (see Section [§). Let us denote this “twisted” category by
F(Y,B). Here Y is a compact symplectic manifold, and B € H?(Y,R/Z) is in the ker-
nel of the Bockstein homomorphism H?(Y,R/Z) — H?(Y,Z). The modified HMSC asserts
that if (X,G,B) is mirror to (X’,G’,B'), then D’(X,B) is equivalent to DFy(X',B).
Corollary shows that this conjecture passes the check which the original HMSC fails.

If both B and B’ vanish, the modified HMSC reduces to the original HMSC. Thus one
could ask if it is possible to set the B-field to zero once and for all and work with the original
HMSC. This is highly unnatural for the following reason. Suppose we have a mirror pair of
physicist’s Calabi Yaus which both happen to have zero B-fields. Now let us start varying the
complex structure of the first Calabi-Yau. It can be seen in the case of complex tori and can
be argued in general that the corresponding deformation of the second Calabi-Yau generally
involves both the Kéahler form and the B-field. Thus if we have a family of Calabi-Yaus
with zero B-field and varying complex structure, the mirror family of Calabi-Yaus will have
nonzero B-field for almost all values of the parameter.

For example, in the case of the elliptic curve, the usual Teichmiiller parameter 7 takes
values in the upper half-plane. The mirror elliptic curve has vanishing B if and only if 7
can be made purely imaginary by a modular transformation.

In the case of the elliptic curve, the effect of the B-field on the HMSC is relatively minor.
It has no effect on the derived category of coherent sheaves because h%? = 0. The objects
of the Fukaya category are also unmodified in this case (see Section []), and the only change
in the definition of morphisms is to complexify the symplectic form. For higher-dimensional

varieties, the modification of the Fukaya category is more serious.

2.3 Physical applications

Transformations of the target space metric and the B -field which leave the conformal field
theory unchanged are known as T-duality transformations. For a real torus 7" = R"/T,
I =2 7", such transformations form a group isomorphic to O(n,n,Z) [R9, B4. The main
novelty of this work is that we consider complex tori, and study transformations of G, B,
and the complex structure which leave the N = 2 superconformal field theory unchanged

or induce a mirror morphism.
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Our results have implications for the study of BPS D-branes on Calabi-Yau manifolds, a
subject which received much attention recently (see [[(] and references therein). They suggest
that BPS D-branes of type B are best thought of as objects of the derived category of coherent
sheaves when the B-field is zero. When the B-field is nonzero but the corresponding class in
H?(X, O%) is a torsion class, the derived category of coherent sheaves should be replaced
with the derived category of a certain noncommutative algebraic variety (an Azumaya algebra
over X ). When the class of the B-field in H?(X,0%) has infinite order, it appears that
B-type D-branes should be regarded as objects of the derived category of ”coherent” sheaves
on a gerbe over X.

Note a similarity with the results of [R0, f]] where it was shown that in the presence of a B-
field D-brane charges on a smooth manifold X are classified by the K-theory of an Azumaya
algebra over X, or more generally by the K-theory of a Dixmier-Douady algebra over X.
The main differences are that Refs. [0, f]] work in a C°° -category, the D-branes are not
required to be BPS, and the focus is on D-brane charges rather on D-branes themselves.

In Section [ we describe the effect of a closed B-field on BPS D-branes of type A (the
ones associated to flat unitary bundles on special Lagrangian submanifolds in a Calabi-Yau).
This subject was previously studied by Hori et al. [I§] for the case of a single D-brane, i.e.
when the rank of the bundle is one. Hori et al. find that the restriction of the B-field to
the Lagrangian submanifold must vanish. We find that this restriction is too strong: it is
sufficient to require the restriction of the B-field to have integer periods. For the higher rank
case we argue that in general the unitary bundle on the Lagrangian submanfold is projectively

flat rather than flat. Correspondingly, the restrictions on the B-field are even weaker.

3 Superconformal vertex algebras

3.1 Quantum fields

Let V be a vector superspace over C. The parity of an element a € V' is denoted p(a)

and takes values in integers modulo 2.

Definition 3.1 The space of quantum fields in one formal variable with values in End(V)

s a vector superspace whose elements have the form

Y > Cosnnmz "z

heJ n,neZ

where J is some subset of [0,1) (different for different elements), Cjin ntny € End(V),

and the following conditions are satisfied:

a) the set J is countable;
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b) for any element v € V' there is a finite subset J, C J such that
C(h-i—n,h—i—ﬁ) (v)=0
forall he J\J, and all n,n € Z ;

c) for any element v € V  there is an integer N such that Chip ptn(v) =0 for all
hed if n>N or n>N.

The space of quantum fields in one formal variable with values in End(V) is denoted
QI (V).
Given an element A(z,2) of QFy(V), we will denote the coefficient of z~"="z=h=" in

A(2,2) by A(hyn hn)-
The intersection of QF; (V) with End(V)[[z,27!]] (resp. End(V)[[z,z71]] ) will be
called the space of meromorphic (resp. anti-meromorphic) fields. We will denote by A(z)

(resp. A(Z) ) meromorphic (resp. anti-meromorphic) fields. The coefficient of 27" in A(z)

(resp. the coefficient of 27" in A(Z) ) will be denoted Ay).

Definition 3.2 The space of quantum fields in two formal variables with values in End (V)

is a vector superspace whose elements have the form

—h—nz—h—n,, —g—m,——g—m
E E C(h—i—n,h—l—ﬁ,g—l—m,g—l—r‘n)z z w™ I T

(h,g)€J n,n,m,MEL
where J € [0,1)2, Clhgn,htng+mg+m) € End(V), and the following conditions are satis-

fied:
a') the set J is countable;
b')  for any element v €V there is a finite subset J, C J such that
C(h+n,h+ﬁ,g+m,g+r‘n) (v) =0
for all (h,g) € J\J, and all n,n,m,m €Z ;

c) for any element v eV and any (h,g) € J, there is an integer N such that

C(h—l—n,h-{-ﬁ,g-{—m,g—l—m) (U) =0,
C(h—}—m,h—}—m,g—i—n,g—l—ﬁ) (v) =0,
for n> N and any n,m,m € 7Z, and
C(h+n,h+ﬁ,g+m,g+r‘n) (v) =0,
C(h—l—m,h—l—r‘n,g—l—n,g—l—ﬁ) (U) =0,

for n> N and any n,m,m € 7.
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The space of quantum fields in two formal variables with values in End(V) is denoted

QF>(V).

Item (c’) in the definition of QF»(V) ensures that given an element C(z,Zz,w,w) of
QF>(V), one can substitute z = w,zZ = w and get a well-defined element of QF; (V).
This element will be denoted C(w,w,w,w). Note that in general a product of two fields
A(z,2) € QF1(V) and B(w,w) € QF1(V) does not belong to QF»(V), precisely because
(¢/) is not satisfied. In this situation one says that the product of A(z,z) and B(w,w)
has a singularity for z = w,z = w.

If an element A(z,z,w,w) € QF>(V) does not contain nonzero powers of z (resp. z )
we will say that this field is meromorphic (resp. anti-meromorphic) in the first variable, and
write it as A(z,w,w) (resp. A(z,w,w) ). Fields in two variables (anti-)meromorphic in

the second variable are defined in a similar way.

3.2 The definition of a vertex algebra

We set

‘ 1 . /—h S ‘ 1 = /—h o
=0 \ 7 =0 \ 7

' 1 Ny A e 1 > <—h> inh i __i—h

e 77— = e (1) A0 T, g s ——— = e (=1 w0,

Ty Z;(j) - oo =y )y

where

(F)- ChEhoy ooy
J 7!
These are formal power series expansions of the functions (z —w)™" and (Z—w)™" in the

regions |z| > |wl,|z| < |w| and |z| > |w|, |z] < |w|.

Definition 3.3 A wvertex algebra structure on a vector superspace V  consists of the follow-

ing data:

(i) an even vector |vac) € V.

(ii) a pair T,T of commuting even endomorphisms of V annihilating |vac).
(iii) a parity-preserving linear map

Y:V->QF(V), Y:a—Y(a)=a(z2).

These data must satisfy the following requirements.
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1. Y(|vac)) = id € End(V).
2. [T,a(z,2)] = 0a(z,2), [T,a(z,2)] = da(z, ).

3. a(z,2)|vac) = T g,

W

. For any a,b € V there are integers N, M, real numbers h; € [0,1),j =1,..., M,
and quantum fields Cj(z,zZ,w,w) € QFy(V),j=1,... ,M, such that

The map Y is called the state-operator correspondence. The coefficient of z=“z= P in

Y (a) is called the (a,B) component of Y(a) and denoted by a(s g)-

The last requirement in the definition of a vertex algebra is called the Operator Product
Expansion (OPE) axiom. It contains two important ideas. The equality (f]) says that the
product of two fields in the image of Y has only power-like singularities for z = w,z = w.
The difference of () and () means, roughly speaking, that the fields in the image of Y are
mutually local, in the sense that their supercommutator vanishes when z # w and Z # .
This is particularly clear when all h; are equal to zero. Then the supercommutator of
a(z,z) and b(w,w) is proportional to

m(S(N—I)(Z_w)5(N—1)(Z_w)_’_ﬁ&(N—l)(z_w) i %

1
+———— WV Dz —w) i,

=1 o D

where 6)(z —w) is the k™ derivative of the formal delta-function defined as a formal

§(z —w) =271 Z (%)n
neZ

Given any two elements of QFi(V), we will say that they are mutually local if for their
products the OPE formulas (fJf) hold for some N,M € Z, h; € [0,1), j=1,...,M,
and C; € QF»(V), j=1,...,M.

Vertex algebras as defined above are a generalization of chiral algebras as defined in [[[9]

power series

in the following sense. First, any chiral algebra is automatically a vertex algebra, with
T =0 and the image of Y consisting of meromorphic fields only. Second, if we consider the

subspace in V' consisting of vectors which are mapped to meromorphic fields, the restriction
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of T and Y to this subspace specifies on it the structure of a chiral algebra. Similarly,
the restriction of T and Y to the anti-meromorphic sector yields another chiral algebra.
Moreover, all meromorphic fields supercommute with all anti-meromorphic fields. Thus any
vertex algebra contains a pair of commuting chiral subalgebras. All these facts are proved in
Appendix B

The OPE formulas simplify when one of the fields is meromorphic or anti-meromorphic.
For example, the OPE of a meromorphic field a(z),a € V, with a general field b(w,w),b €
V, has the following form (see Appendix [B| for proof):

Here N is some integer, Dj;(w,w) € QF1(V), and : a(z)b(w,w) : is an element of
QF>(V) defined as follows:

where we set

a(z)y = Z amyz " a(z)- = Z amyz " (9)
n<0 n>0

The field : a(z)b(w,w) : is called the normal ordered product of a(z) and b(w,w). Since
it belongs to QF»(V), one can set z = w and get a well-defined field in one variable
: a(w)b(w,w) : . The difference between the right-hand side of (§) and : a(z)b(w,w) : is
called the singular part of the OPE.

Similarly, one can define the normal ordered product of an anti-meromorphic field with
a general field. The normal ordered product of two general fields is not defined.

Let us consider now the OPE of two meromorphic fields a(z) and b(z). We already
mentioned that meromorphic fields form a chiral algebra, thus the OPE (f) simplifies even
further:

al 1
a(z)b(w) = Zzzw( —u) Dj(w)+ : a(2)b(w) :,
j=1
al 1
( 1)p(a)p(b)b(’u))a(2) = le’zm D](W)+ . a(Z)b('LU) L.
j=1
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Here Dj(w),j =1,...,N, are meromorphic elements of QF;(V). Exchanging a(z) and
b(w) we get

N
bw)a(z) = 3 sy Cle)+ £ bw)a(2)
j=1

N
(=1)P@P®) g (2)b(w) = Zzzwﬁ Cj(2)+ : b(w)a(z) :,
j=1

where Cj(z),j =1,...,N, are meromorphic elements of QF;(V).

In general, the normal ordered product is not supercommutative, i.e.
ca(2)b(w) : £ (—1)POPO) : b(w)a(z) : .

Neither is it associative, in the sense that in general

We will define the normal ordered product of more than two (anti-)meromorphic fields in-

ductively from right to left:

car(z)az(z) .. an(2) = a1(2) s az(2) ... an(2) = .

An important special case where the normal ordered product of meromorphic fields is super-
commutative is when the fields D;(w) do not depend on w, i.e. are constant endomor-
phisms of V. This follows directly from the above OPE formulas. One can also show that
if pairwise OPE’s of meromorphic fields a(z),b(z), and ¢(z) have this property, then their
normal ordered product is associative [[J]. For example, the normal ordered product of free
fermion and free boson fields is supercommutative and associative [[[9, [.

Another important special case is the OPE of a meromorphic field and an anti-
meromorphic field. In this case one can also define two normal ordered products, : a(z)b(w) :
and : b(w)a(z) : . But it follows easily from the equations (§) and analogous equations for
the OPE of an anti-meromorphic field and a general field, that in this case the singular part of
the OPE vanishes, the normal ordered product coincides with the ordinary product, and that

consequently all meromorphic fields supercommute with all anti-meromorphic fields. Thus
ca(2)b(w) = (—1)PPO) : p(w)a(z) : .

This is discussed in more detail in Appendix B.
The singular part of the OPE of two meromorphic fields a(z) and b(z) completely

determines and is determined by the supercommutators of a(,) and b, forall n,m € Z.
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Explicit formulas which enable one to pass from the OPE to the supercommutators and back
can found in [[[9].

When writing the OPE of two meromorphic fields we will use a shortened notation in
which only the singular part of the OPE is shown. To indicate this, the equality sign is
replaced by ~ . In addition, we will only write the first of the OPE’s in (§), and cor-
respondingly will omit the symbol i,,, as is common in the physics literature. Similar

notation is used for the OPE of two anti-meromorphic fields. Thus instead of

al 1
a(z)b(w) = Ziz,wm Dj(w)+ : a(z)b(w) :
j=1

we will write
a(2b(w) ~ 3 2

st (z —w)i’

We conclude this subsection by defining morphisms of vertex algebras. A morphism from
a vertex algebra (V, |vac), T,T,Y) to a vertex algebra (V') |vac)’,T',T",Y") is a morphism
of superspaces f:V — V' such that

f(vac)) = vac)',  fr=T1Ff  fT=TF

and

Y/(f(a))f(b) = f(Y(a))  Va,be V.

3.3 Conformal vertex algebras

Definition 3.4 Let V = (V,|vac),T,T,Y) be a vertex algebra. Conformal structure on V
is a pair of even vectors L,L €V such that
(i) L(z,2)=L(z) = > Lz "2, L(z,2)=L(z) =Y Lz "2

nez ne”L
(i) Ly=T,L1=T.

c/2 2L(w OL(w
(111) L(Z)L(w) ~ (Z /w)4 (Z __(w))g Z_—( w)v (10)
L@Lw) ~ (:—/30)4 (,SL—(I:;;? * i_(“;)

(iv) foranya €V
[Lo,a(z,2)] = z0a(z, 2) + (Loa)(2,2), [Lo,a(z,2)] = 20a(z,z) + (Loa)(z, 2).

Here c,c € C. A wvertex algebra with a conformal structure is called a conformal vertex
algebra (CVA).
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The numbers ¢ and ¢ are called the holomorphic and anti-holomorphic central charges
of the CVA. The reason for this name is the following. The OPE’s ([[Q) are equivalent to the

following commutation relations for all n,m € Z [[L9):

m3—m

[Lm7 Ln] = (m — ’I’L)Lm+n -+ CT5m7_n’
3 _
[Ema Z/n] = (m - n)-im—i-n + é%ém,—ny

[Lyn, L) = 0.

Hence the components of L(z) and L(z) form two commuting Virasoro algebras. The
Virasoro algebra is the unique central extension of the Witt algebra (the algebra of the
infinitesimal diffeomorphisms of a circle). In the present case the central charges of the two
Virasoro algebras are ¢ and ¢c.

Note that axiom 3 in the definition of a vertex algebra implies that both L, and L,
annihilate |vac) for all n > —1.

A morphism f from a CVA (V,|vac),Y,L,L) to a CVA (V' |vac),Y',L',L') is a

morphism of the underlying vertex algebras which satisfies

A conformal vertex algebra is almost the same as a conformal field theory. Namely, a
physically acceptable conformal field theory is a conformal vertex algebra whose state space
V' is equipped with a positive-definite Hermitian inner product, and the following additional

constraints are satisfied:
(v) The space V splits as a direct sum of the form
PjesW; @ W,

where J is a countable set, and W; and Wj are unitary highest-weight modules

over the meromorphic and anti-meromorphic Virasoro algebras, respectively.
(vi) The vacuum vector is the only vector in V annihilated by both Ly and Ly.

The conformal vertex algebras we will be working with satisfy these constraints and
therefore are honest conformal field theories. However, we prefer not to stress the “real”
aspects of conformal field theories in this paper.

Furthermore, in order for a conformal field theory to admit a string-theoretic interpre-
tation, it must be defined on a Riemann surface of arbitrary genus. (The above axioms
define a conformal field theory in genus zero.) This does not require new data, but imposes
additional, so-called sewing, constraints. We will work in genus zero only, and therefore will

neglect the sewing constraints.
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3.4 N=1 superconformal vertex algebras

Definition 3.5 Let V = (V,|vac),Y,L,L) be a conformal vertex algebra with central
charges c,¢. N =1 superconformal structure on V is a pair of odd vectors Q,Q € V

such that

(i) Qz2) = > Z,+3/2, Q=2 =Q() = Y ZT+3/2

rEZ-i—z TEZ+2
(ii)  The following OPE’s hold true:
3 w 0Q(w

2(z—w)?  (z—w)’
N c/6 1 L(w)
A)w) ~ g+ g

and similar OPE’s for the anti-meromorphic fields with z,w, c,d replaced with

@, E, 0.

\.NI

The fields Q(z) and Q(Z) are called left-moving and right-moving supercurrents, respec-
tively. A CVA with an N =1 superconformal structure is called an N =1 superconformal
vertex algebra ( N =1 SCVA).

N =1 superconformal structure is also known as (1,1) superconformal structure.
Omitting @, one obtains the definition of (1,0) superconformal structure. Morphisms of
N =1 SCVA’s are defined in an obvious way.

The OPE’sof Q(z),Q(z) with themselves and L(z),L(2) areequivalent to the following

commutation relations:

m

[erQr] = <E - T) Qr—i—rm [Z/maQr] = (% - T) Qr-ﬁ-ma
1 1 C 1
{Qra Qs} - 7’+s + 1_02 <T2 - Z) 67“,—57 {QT’7 Qs} - r—i—s 1_02 <T2 - _> 57”,—8'

As usual, the barred generators supercommute with the unbarred ones. Thus L, L, Q,, @,

form an infinite-dimensional Lie super-algebra which is a direct sum of two copies of the

N =1 super-Virasoro algebra with central charges ¢ and c.

3.5 N=2 superconformal vertex algebras

Definition 3.6 Let V = (V,|vac),Y,L,L) be a conformal vertex algebra with central
charges c,¢. N = 2 superconformal structure on V is a pair of even vectors J,J € V
and four odd vectors QT,Q~,Q%,Q~ €V such that
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. _ In T T Jn
(i) J(z,z):J(z):Zn—H, J(Z,Z):J(Z):ZW,
ne”L neL ~ 1
+ (o 5 — OF(3) — r
Q" (z,2) = Z ZT+3/2, Q7 (2,2) =Q7(2) = Z Zr+3/2°
reZ+3 r€Z+3
Q (2,2) = = > zr+3/2’ Q (=2 =Q ()= ,zr+—g/2;
reZ+i r€Z+3i

(ii)  the following OPE’s hold true:
3 Q% (w) | 9Q*(w)

L(Z)Qi(w) ~ 5(2—'(0)2 + (Z_w)y
L(z)J(w) ~ (ZJ_(u;j)z + (2!]_(1;}0)),
I~
+ Qi( )
QW) ~ 2
c/12 J(w) 10J(w) + 2L(w)

)

_ 1
QTAQ(w) ~ (z —w)3 + 4(z—w)? " 8
Q*(2)Q*(w) ~

and similar OPE’s for the anti-meromorphic fields with z,w,c,0 replaced with

(z —w)

(e}

)

Z,w,c 6
The fields J(z) and J(2) are called left-moving and right-moving R-currents, the fields
Q*(2) and QF(Z) are called left-moving and right-moving supercurrents, respectively. A
CVA with N = 2 superconformal structure is called an N = 2 superconformal vertex

algebra ( N =2 SCVA).

The above OPE’s together with the OPE’s for L(z), L(z) are equivalent to the commutation
relations ([]) if we set ¢ =¢= 3d.

N = 2 superconformal structure is also known as a (2,2) superconformal structure.
If one omits the anti-meromorphic currents J(Z), Q*(Z), one gets the definition of a (2,0)
superconformal structure.

Given an N = 2 SCVA, one can obtain an N =1 SCVA by setting Q = Q" +Q~,
Q=QT+Q . Thusan N =2 SCVA can be regarded asan N =1 SCVA with additional
structure.

Morphisms of N = 2 SCVA’s are defined in an obvious way. A mirror morphism
between two N = 2 SCVA’s is an isomorphism between the underlying N =1 SCVA’s
which induces the following map on Q*,Q*,J, J :

@Y =Q7 f@) =", f())=-J"

— !

F@QNH=Q", f(@)=Q7, f(J)=1T.
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This map acts as an outer automorphism on the algebra ([]). A composition of two mirror

morphisms is an isomorphism of N =2 SCVA’s.

4 N=2 SCVA of a flat complex torus

The purpose of this section is to describe an N = 2 SCVA canonically associated to a
complex torus endowed with a flat Kdhler metric and a constant 2-form. None of this
material is new, and everything can be found, in one form or another, in standard string
theory textbooks [R4, J]. We simply translate these standard constructions into the language

of vertex algebras.

4.1 Vertex algebra structure

Let U be a real vector space of dimension 2d. Let I' = Z2? be a lattice in U. Let
I'* C U* be the dual lattice Hom(I',Z). Let T'=U/T", T* =U*/I'*. Let G be a metric
on U, i.e. a positive symmetric bilinear form on U. Let B be a real skew-symmetric
bilinear form on U. Let [ be the natural pairing I' x I'" — Z. The natural pairing
UxU* — R will be also denoted [. Let Z* be the set of nonzero integers. Let the vectors
€1,...,eaq € U be the generators of I". The components of an element w € I' in this basis
will be denoted by w® i =1,...,2d. The components of an element m € I'* in the dual
basis will be denoted by m;,i = 1,...,2d. We also denote by G;;, B;; the components
of G, B in this basis. It will be apparent that the superconformal vertex algebra which
we construct does not depend on the choice of basis in I'. In the physics literature I' is
sometimes referred to as the winding lattice, while I'* is called the momentum lattice.

Consider a triple (T,G,B). To any such triple we will associate a superconformal ver-
tex algebra V which may be regarded as a quantization of the supersymmetric ¢ -model
described in Appendix [A.

The state space of the vertex algebra V is
V=Hy,®cH;®cC T

Here Hp and Hy are bosonic and fermionic Fock spaces defined below, while C [I' @ I'*]
is the group algebra of I' & I'* over C.

To define Hp, consider an algebra over C with generators o, a’, i =1,...,2d,s € Z*
and relations

lal,ad] = (G176, [ak,al] = s(G) 5,y [al,al] = 0. (11)
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If s is a positive integer, o', and &', are called left and right bosonic creators, re-
spectively, otherwise they are called left and right bosonic annihilators. Either creators or
annihilators are referred to as oscillators.

i =

The space H, is defined as the space of polynomials of even variables a’ ,a’ ,

1,...,2d,s =1,2,..., The bosonic oscillator algebra ([I]) acts on the space H; via
ai—s = ai—s'7 di—s = di—s'v
; _1nig O ; _1n\ig O
of = s(GT — al o~ s(G7 —
da’_, oa’

for all positive s. This is the Fock-Bargmann representation of the bosonic oscillator algebra.
The vector 1 € H; is annihilated by all bosonic annihilators and will be denoted |vacy).
The space H; will be regarded as a Zs -graded vector space with a trivial (purely even)
grading. It is clear that H, can be decomposed as $;, ® ), where $) (resp. 9 ) is the
bosonic Fock space defined using only the left (right) bosonic oscillators.
To define Hy, consider an algebra over C with generators YLl i =1,...,2d,s €

7 + % subject to relations
wlvd} = (G 6 (UL 05 = (G700 {wl i} =0. (12)

If s is positive, ©*, and ¢°, are called left and right fermionic creators respectively,
otherwise they are called left and right fermionic annihilators. Collectively they are referred
to as fermionic oscillators.

The space H; is defined as the space of skew-polynomials of odd variables 0l 0, i=

1,....,2d,s =1/2,3/2,..., The fermionic oscillator algebra ([J) acts on H; via
v 0 G p

, _1vij O
Y v (677

o0’

)

for all positive s € Z + % This is the Fock-Bargmann representation of the fermionic
oscillator algebra. The vector 1 € H; is annihilated by all fermionic annihilators and will
be denoted |vacy). The fermionic Fock space has a natural Z, grading such that |vacy)
is even. It can be decomposed as $H; ® 9 f, Where 9y (resp. ) ! ) is constructed using
only the left (right) fermionic oscillators.

For weT, meTI™ we will denote the vector w@m € C [['®I'*] by (w,m). We will

also use a shorthand |vac,w,m), for
lvacy) ® |vacy) @ (w,m).

To define V, we have to specify the vacuum vector, T,7T, and the state-operator cor-

respondence Y. But first we need to define some auxiliary objects. We define the operators
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W:V-VI and M:V -V I'* as follows:
W be fe(wm)—w'(befe@wm), M:b®fwm)—mbe fowm)).

We also set

| <,
Y](Z) = Z gu

Yj(g) = /%7

OXI () = %(G_l)jkPk—ﬁYj(z), (13)

oxI(z) = %(G‘l)jkﬁk—éfﬂ'(z), (14)

V() = Z Zr+1/2’ (15)
TEZ+2

V(z) = Z Zr+1/2’ (16)
T‘EZ+2

where a prime on a sum over s means that the term with s =0 is omitted, and P, and
P, are defined by

1 . _ 1 .
E(Mk—i-(—Bkj—ij) W]), P, = E(Mk‘i‘(_Bkj"‘ij)W])-

Note that we did not define X7(z,%) themselves, but only their derivatives. The reason

P, =

is that the would-be field X7(z,Z) contains terms proportional to logz and logZz, and
therefore does not belong to QFi (V).

The vacuum vector of V is defined by
lvac) = |vac, 0,0).

The operators T,T € End(V) are defined by

1 .
T =Pl 4 Gl ok + )9 ( ) ¥avk

s=1 r=123

2727
— 1\ _. -
— Pl +zajka D> < 3) ik
2’2’
The state-operator correspondence is defined as follows. The state space V is spanned

by vectors of the form

ol o & J i Bl
ally _”sna_lgl...a_"gnwl ) wqrq¢21r1 2 Jvae, w,m), (17)
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where n,n,q,q are nonnegative integers, si,...,Sn,51,...,55 are positive integers, and
T1,...,T¢,71,... ,7g are positive half-integers. This vector is mapped by Y to the following

quantum field:

Z €w,m T (w,m) pr(w’,m’)z_2G71(k7k/) 2T RE) eXp (]{;ij(z)+ + Eij(5)+)
(w’,m")er'eI*

Here k,k,k' k' are elements of U* defined by
1
kj = ﬁ(mj + (=Bjr — Gy w"),  kj = —=(my + (=Bji, + Gji) w"),

K = 1 / B G 'k E = 1 / B G "k
j_ﬁ(mj_‘_(_ ik — Gjk)w™), j_ﬁ(mj"i'(_ ik + Gip)w ™),

the operator 7 (w,m) is a translation on the lattice I' @I :
T(w,m) : (a,b) = (a+ w,b+m),

and the operators pr ) :V — V are projections onto the subspace H, ® Hy® (w',m’).
Finally, €, isasignequal to exp(iml(w,m’)). We also remind that for any meromorphic
quantum field a(z) the fields a(z); and a(z)_ are defined by (f), and there is a similar
definition for the anti-meromorphic fields. Thus Y7(z): and Y7(2)s are given by

« - o
Vi) =30 % i), =Y
sz sz
s>0 s<0
o &l B al
P =3 P =Y
s>0 s<0

One can easily check that (|L§) is indeed a well-defined quantum field. Furthermore, the
vector ([[7) is unchanged when the bosonic oscillators are permuted, and is multiplied by the
parity of the permutation when the fermionic oscillators are permuted. For the map Y to
be well-defined, ([L§) must have the same property. To see that this is indeed the case, note
that the OPE of the fields 97 and 0X7 is given by



and similarly for the anti-meromorphic fields. It follows that the singular part of the OPE for
407, 0X7,0X7 and their derivatives is proportional to the identity operator, and therefore
their normal ordered product is supercommutative.

To facilitate the understanding of ([I§), we list a few special cases of the state-operator
correspondence.

The state o’ |vac,0,0) is mapped by Y to

1 o ri
RS

The state &{slvac, 0,0) is mapped to

1

= 1)!35Xj(2).

The state wis\vac, 0,0) is mapped to
1
P

The state 1/_)];5|vac,0, 0) is mapped to

0PI (z).

1 oo ipi
ma 1/21/};(2)_
5)!
The state |vac,w,m) is mapped to
Z €wm T (w,m) 27207 (K 526G (RK) oy (k;Y7(2)+ + kY7 (2)4)
(w’,m’)erer*

exp (k;ij(z)_ + I;Ij}_/j(,?)_) DT (w!,m/)-
Checking that (V,|vac),T,T,Y) satisfies the vertex algebra axioms is a tedious but
straightforward exercise which we leave to the reader. Implicitly, the axioms are verified in
most textbooks on string theory, for example in [R9, P4].

4.2 N =2 superconformal structure

We first define an N =1 superconformal structure on V by setting

L() = 5 - G (OX(2),0X(2))  —3 : G ($(:),00(2)) :
L) = 3 : € (9X(2),0X(2) : — : G (5(2),90(2)
Q) = 355+ G 0(:).0X(2) -

Q) = -1 G (3(2).0X())



It can be easily checked that all these fields are in the image of Y, that L_; =T,L_; =T,
and that they satisfy the OPE’s specified in the Definition B.5. The central charges turn out
to be ¢c=c¢=3d.

To define an N = 2 superconformal structure, we need to choose a complex structure
I on U with respect to which G is a Kéhler metric. Let w = GI be the corresponding
Kéhler form. Then the left-moving supercurrents and the U(1) current are defined as

follows:

The right-moving currents Q*(z) and J(2) are defined by the same expressions with 09X
replaced by 90X and v replaced by . We omit the check that the OPE’s of these currents
are as specified in the Definition B.6. In checking the OPE’s the relations ([l9) are useful.

5 Morphisms of toroidal superconformal vertex algebras

5.1 Isomorphisms of N =1 SCVA’s

Let (T,G,B) and (T',G',B’) be a pair of 2d -dimensional real tori equipped with flat
metrics and constant B-fields. Given G and B, we define a flat metric on T x T™* by the

formula

o -1 -1
Q(G,B):2<G BG~'B BG )

-G7'B Gt
The meaning of this formula is that the value of G on a pair of vectors =1 ®y; and x2Pyo,

v, €Uy, €eU*i=1,2, is

5 ( > G- BG'B BG! To
T .
P et et ) g
G(G, B) is obviously a symmetric form on U @ U*, and its positive-definiteness follows

from the positive-definiteness of G and the identity
G 0

where

-1-G7'B G
R(C, B) = ( el G)
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We will use a shorthand G(G,B) = G and G(G',B’) = G’. Recall also that we have
canonical Z -valued symmetric bilinear forms on I'@T* and I'V@T'* denoted by ¢ and
q', respectively (see Section P).

In this subsection we prove

Theorem 5.1 N =1 SCVA’s corresponding to (T,G,B) and (T',G',B') are isomor-
phic if and only if there exists an isomorphism of lattices T ®&T* and TV @ T'" which takes
q to ¢, and G to G'.

The “if” part of this theorem is proved in many string theory papers, see for example [@,
B4]. Below we outline a construction of the isomorphism of N = 1 SCVA’s given an
isomorphism of lattices and then prove the “only if” part of the theorem.

Let ¢ be an isomorphism of I'@®T* with IV @ I"*. We will write it as follows:

a b
g = )
c d
where a € Hom([',I'), b € Hom(I'*,T"), ¢ € Hom(I,I"*), d € Hom(I'*,I"*). The
“realified” maps from U,U* to U’,U’" will be denoted by the same letters. Let us also set
H =G+ B. Both V and V' are tensor products of the group algebra of the respective

lattice and bosonic and fermionic Fock spaces. The vertex algebra isomorphism f:V — V’

respects this tensor product structure. C[I' @ I'*] is mapped to C[I” & "] in an obvious

)= ()6

The mapping of Fock spaces is defined by the substitutions

way:

where

a— bH? 0
M) =" o m)

In particular, f preserves the bosonic and fermionic vacuum vectors.
Let us now indicate why this mapping is an isomorphism of N = 1 SCVA’s. The

statement that ¢ takes ¢ to ¢ is equivalent to

de+cda=bd+db=0, a'd+cb=idp-, (21)
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where a' denotes the conjugate of a, etc.

The statement that ¢ takes G to G’ is equivalent to
H' = (c+dH)(a+bH)™", (22)

where H' = G'+ B’ H = G + B. To show this, let us denote the right-hand side of the
above equation by H”, let G” and B” be the symmetric an anti-symmetric parts of H”,
and let G” = G(G”,B"). In view of (R() we have

G" 0

g// — R(G//,B//)t ( 0 GH) R(G//,B//).

Let us multiply this equation by ¢' from the left and by ¢ from the right and use the
identity

R(Gﬂv B”)g = M(ga H)R(Gv B)7 (23)
which can be easily proved using (P1). We get

G" 0

9'G"g = R(G,B)'M(g, H)' < -

) M(g, H)R(G, B).

We now use another easily checked identity:

1 1

G" = [(a+bH)'"]" Gla+bH)™' = [(a—bH")']" G(a—bH")!, (24)

and obtain

gtg//g — g
On the other hand, we know that ¢’G’¢ = G. Thus G” = G’, and hence G’ = G',B" =
B',H" = H'. This proves (23). As a consequence of G” = G’ and (24), we obtain a useful

formula relating G’ and G :
G' = [(a+bH)" " Gla+bH) ™ = [(a —bH")'] "' G(a — bH') ™. (25)

Using these relations, one can easily check that the map f intertwines Y and Y’, i.e.

Y'(f(a),2,2) = fY(a,z,2)f"!, VaeV. (26)
In particular, we have
L (oxX") L i (0X7(2)
/ (aX,Z-(Z)>f—M(g,H)J (an(Z)>, (27)
S (YN ¢ - e (wz))
! (W(z))f SRS



These relations and the definition of L(z), L(2),Q(2),Q(z) imply that the N =1 super-

conformal structure is also preserved:

L'(z) = fL(z)f 7", Q'(2) = fQ() (28)
L'(z) = fL(z)f 7, Q'(z) = fQ()f .

Hence f is an isomorphism of N =1 superconformal vertex algebras.

In the remainder of this subsection we prove the “only if” part of the theorem. Let
(T,G,B) and (T',G',B’) be two real tori equipped with a flat metric and a constant
B-field. Thus 7 = U/T' and T’ = U’/T', where U and U’ are real vector spaces
and I' and I' are lattices of maximal rank in the respective spaces. Clearly, for the
N =1 SCVA’s to be isomorphic, the central charges of the corresponding super-Virasoro
algebras must agree, hence dimU = dimU’. We pick an isomorphism of U and U’ and a
basisin U. Let V= (V,Y,|vac),L,L,Q,Q) and V' = (V' Y’ |vac),L’,L',Q’,Q’) be the
corresponding N =1 SCVA’s. Let f:V — V' be an isomorphism of N =1 SCVA’s.
This means that the equations (R6) and () hold true. In particular, f preserves the form
of the OPE.

Consider the “Hamiltonians” Lo, Ly € End(V). A short computation yields:

1
~ 8

Here Z = (W, M) is regarded as an element of End(H) ®g (U & U*), and we defined

1 1 - 1 _ _
LO:gg(Z,Z)—Zq(Z,Z)—i-Nb—i-Nf, Lo Q(Z,Z)—kzq(Z,Z)—i—Nb—ka.

Ny =Y Gla_s,as), Ny= > Gy,
s=1 r=1/2,3/2,...

Ny =Y G(a_sas), Ne= > 1GWr¥y).
s=1 r=1/2,3/2,...

The operators Ny, Ny, Ny, N ¢ commute with each other. For what follows it is important
to know their spectrum in Fock space. Omne can show that the Fock space decomposes
into a tensor sum of the joint eigenspaces of Ny, N f,Nb,N ¢, and that all the eigenvalues
are nonnegative. Furthermore, the spectrum of Np, N, is integer, and the spectrum of
Ny, N ¢ is half-integer. Finally, the only vector in $);, ® ¢ annihilated by all four operators
is |vacy) @ |vacy). (All of these facts are standard and can be easily proved using the
commutation relations for the oscillators.)

Note also that the spectrum of the operator G(Z,Z) is nonnegative because G is a
positive-definite form. The only vector in C[I' ¢ I'*] annihilated by G(Z,Z) is (0,0).

Now let us find all the eigenvectors of Lo, Ly with eigenvalues (1/2,0). Suppose a € V

is such an eigenvector. Since Lg, Ly commute with Z = (W, M), we may assume that a
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is an eigenvector of Z with an eigenvalue z = (w,m), where w € I'ym € T*. In view of

the above we have three possibilities:

Case 1. Nba:Nba:Nfa:Nfa:O,
%g(z, z) —q(z,2) =2, %g(z, 2) +q(z,2)=0.
Case 2. Nba:Nba:Nfazo, <J\7f—%>a20,
G(z,2) =q(z,2) = 0.
Case 3. Nya=Nya= Nya=0, <Nf—%>a20, (29)
G(z,2) =q(z,2) = 0.
The first case is ruled out, because we must have ¢(z,z) = —1, in contradiction with

the fact that ¢ is an even form.

In the second case, we must have z = 0. Then from the formulas for Lg, Ly we see that
such a vector has eigenvalues (0,1/2) rather than (1/2,0). Hence this case is also ruled
out.

In the third case, we must have z = 0. Furthermore, it is easy to see that all vectors

satisfying (B9) must also satisfy

ala=ala=0, i=1,...,2d, s=1,2,...,
Yla =0, i=1,...,2d, r=1/2,3/2,...,
Yla =0, i=1,...,2d, r=3/2,5/2,....

It follows that @ must have the form

2d
a = <Z (& 1[)11/2) |’UCLC, 070>7
=1

where ¢;, i =1,...,2d, are arbitrary complex numbers. A similar argument shows that all

eigenvectors of Lo, Ly with eigenvalues (0,1/2) have the form

2d '
<Z Gi ¢Z—1/2) lvac, 0, 0),

i=1
where ¢;, i =1,...,2d, are arbitrary complex numbers.
Now recall that Ljf = fLo and Ljf = fLo. This implies that f identifies the
(1/2,0) eigenspace of (Lo, Lo) with the (1/2,0) eigenspace of (L{,L{), and (0,1/2)
eigenspace of (Lo, Ly) with the (0,1/2) eigenspace of (L, L{). Thus there exist two
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invertible complex matrices F]’ and FJZ such that

¢El/2|vac,0,0> =f <Fj¢{l/2|vac,0,0>> ,

ﬁfl/z\vac,O,m =f <F;1/;{1/2\Uac,0,0>> )

Applying Y’ to both sides of this equation and using (Rf), we obtain:
Vi) = fEW() f ) = R
An immediate consequence of this is the transformation law for fermionic oscillators:
Gi=FERIFT, G fRES, rezts

Compeatibility with the commutation relations of the fermionic oscillators then requires:
FTG'F =G, FTG'F =G.

(Alternatively, one may derive this by comparing the OPE of (z),¢(Z) with themselves
and the OPE of 1/(2),v/(2) with themselves.)

Now let us turn to bosonic oscillators. Consider the OPE of Q(z) with (z) :
i 0X'(w)

Q(Z)W(w) ~ ﬁ (Z _ w) :

Since f preserves the OPE and takes Q(z) to @'(z), and ¢(w) to F~1¢/(w), we infer
that

OX''(z) = fFlOX7(2) f.
Similarly, the OPE of Q(z) with ¢(w) implies that

0X''(z) = fFIOX7(z) f .
These formulas imply the following transformation laws for bosonic oscillators:

ai=fFaol 7', ai=fFalf', nelk
Another consequence is the transformation law of Z :
Z'=fgZ ™,

where g € Homg(U @ U*, U’ @ U") is defined by

g=R(G',B)™! (g 2) R(G, B),
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and Z and Z' areregarded as elements of End(C[I'&T™*])®g (U®U*) and End(C[I"&
")) @r (U' ®U'™). Now note that Z and Z’ are in fact “realifications” of some elements
in End(Cl&I*])®z (T@T*) and End(C[IV®TI"]) @z (I'®I’'™). This means that ¢ is
a “realification” of an element of Homgz(I' @ I'*, TV & I'"™), which we also denote g.
It remains to show that g takes ¢ to ¢ and G to G’. To this end notice that the
transformation laws for the oscillators imply
Ny=fNof', Np=fNgf™', Ny=fNof™', Njp=fNpf"
Then it follows from Lj= fLof™' and L= fLof™ ' that forall z € T ®@T* we have
q' (g2, gz) = q(z, ),
G'(gz, gr) = G(z, ).

This concludes the proof of the theorem.

5.2 Isomorphisms of N =2 SCVA’s

The goal of this subsection is to prove Theorem P.1] which we restate below. Given a metric
G on U, a compatible complex structure I on U, and B € A?U*, we define a pair of

commuting complex structures on U @ U* as follows:

I(I.B) = d 0
(L. B) = BI+I'B —It)’

_IG'B IG! )

J(G,I,B) =
GI — BIG™'B BIG™!

The complex structure 7 can be expressed in terms of the Kahler form w=GI and B :

w 1B —w!
J(w,B) = .
w+ Bw !B —Buw!

We will use a simplified notation Z(I,B)=Z, Z(I',B’) =1, etc. The complex structures
Z,J and the symmetric forms §G,q are related by an identity

where G and ¢ are understood as elements of Homg (U, U¥).

Theorem 5.2 Vert(T',I,G, B) isisomorphic to Vert(I',I',G',B") asan N =2 SCVA
if and only if there is an isomorphism of lattices T @ T* and T' @& T* which takes q to
q, T to I, and J to J'.
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To prove this theorem, note that f : V — V' is an isomorphism of N = 2 SCVA’s
if and only if it is an isomorphism of the underlying N = 1 SCVA’s, and maps J(z)
to J'(z) and J(z) to J'(z). Now suppose f is an isomorphism of N = 1 SCVA’s
underlying Vert(I',I,G,B) and Vert(I',I',G’, B'). By Theorem p.] we know that there
exists ¢ € Hom(I' @ T*,TV @ I'"") which takes ¢ to ¢, and G to G'. To prove the
theorem, it is sufficient to show that f maps J(z),J(Z) correctly if and only if g maps
Z to I’ and J to J'. Infact, since G = —2¢ZJ and G = —2¢'Z'7J’, it is sufficient
to show that f maps J(z),J(2) correctly if and only if g maps Z to Z'.

Using the transformation law (R7) for the fields and the formula (P§) relating G and

G', one can easily see that f maps J(z) to J'(z) if and only if

I' = (a—bH"I(a — bH) ™" (30)
Similarly, f maps J(z) to J'(2z) if and only if

I'=(a+bH)I(a+bH)™" (31)

On the other hand, Z(I,B) can be written as
(1 0
I(I,B)=R(G,B) 0 7 R(G, B). (32)

This and the identity (BJ) imply that Z’' = gZg~! if and only if

r oo\ I 0 .

This matrix identity is equivalent to (BQ,BI]), which proves the theorem.

Let us also note the following simple corollary of this theorem.

Corollary 5.3 Let (T,1,G,B) be a complex torus equipped with a flat Kdhler metric and a
B-field of type (1,1). Let T' =U'/T" be another torus of the same dimension and I' be a
complex structure on T’ . Let T and I’ be the product complex structures on T xT* and
T x T™ . Suppose there exists an isomorphism of lattices g : T & T* — T" & T™* mapping
q to ¢ and I to I'. Then on T' there exists a Kihler metric G' and a B-field of
type (1,1) such that Vert(T',1,G, B) is isomorphic to Vert(I',I' G',B') as an N =2
SCVA.

To show this, we define H’ using (R9) and set G’ and B’ to be the symmetric and skew-
symmetric parts of H’, respectively. Then it follows from (P§) that G’ is positive-definite.
By Theorem F.1] the N = 1 SCVA corresponding to (7,G, B) is isomorphic to N = 1
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SCVA corresponding to (T”,G’, B') . Using that fact that ¢ intertwines Z to 77 it is
casy to show that H'I’ + I'"H' = 0, which means that G’ is a Kéhler metric and B’
has type (1,1) . In particular, Z’ = Z’. Then it follows from the identity G’ = —2¢'Z'J’
and the fact ¢ intertwines G,q,Z and G’,q',7’ that ¢ also intertwines J and J’.
Theorem .9 then implies that Vert(I',I,G, B) is isomorphic to Vert(I',I’,G', B') as an
N =2 SCVA.

5.3 Mirror morphisms of N =2 SCVA’s

In this subsection we establish a criterion for the existence of a mirror morphism between

two complex tori equipped with flat Kédhler metrics and B-fields.

Theorem 5.4 Vert(T',I,G, B) is mirror to Vert(I',I',G', B’) if and only if there is an
isomorphism of lattices T ®T* and " ®T'* which takes q to ¢, I to J', and J
to T'.

The proof is very similar to that of Theorem [.4. Again it is sufficient to show that if f
is an isomorphism of the underlying N =1 SCVA’s, and g the corresponding isomorphism

of lattices, then
FIRT ==T(2), fIEf=T(2)
is equivalent to
9Jg ' =T (33)
The first of these is equivalent to
I'=(a+bH)I(a+bH) ™ = —(a —bH")I(a — bH")™". (34)

On the other hand, J(G,I,B) can be written as

J(G,I,B)=R(G,B)™! < . 2) R(G,B),

which together with (PJ) and (B2) implies that (BJ) is equivalent to

M(g, H) <_OI 2) M(g, H)_l = <€ ;)/) )

This is obviously equivalent to (B4). This concludes the proof.
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6 Homological mirror symmetry with B-fields

6.1 Mirror symmetry and D-branes

As explained in Section B}, Kontsevich’s conjecture must be modified if the B-field does not
vanish. When the image of B in H?(X, O%) is torsion, our results on complex tori suggest
that the bounded derived category DY(X) should be replaced with D®(X,B), the bounded
derived category of coherent modules over an Azumaya algebra. The similarity class of the
Azumaya algebra is determined by the image of B in H?(X,0%). (Presumably, when B
does not map to a torsion class, the proper analogue of DY(X) is some “coherent” subcat-
egory of the derived category of quasicoherent sheaves on a gerbe over X, see Remark P.§.)
However, this does not provide any hint as to what the modification of the Fukaya category
might be. In this section we explain some string theory lore which suggests a particular
definition of the Fukaya category in the presence of the B-field. A similar proposal has been
made in [f].

The ordinary o -model whose quantization yields an N = 2 superconformal vertex
algebra is a classical field theory on a two-dimensional manifold ¥ = R x S' (“the world-
sheet”). Let us replace S! with an interval I = [0,1] and consider the same o -model on
a worldsheet with boundaries R x I. This procedure is referred to as passing from closed to
open strings. Now, in order to make the space of solutions of the Euler-Lagrange equations
a symplectic supermanifold, one has to supply boundary conditions for the fields of the o -
model on both ends of the interval. In addition one requires that these boundary conditions
preserve N = 2 superconformal symmetry. To be more precise, while the classical o -model
on R x S! has two copies of the N =2 super-Virasoro algebra (with zero central charge)
as its classical symmetry, the ¢ -model on R x I is required to be symmetric only with
respect to a single N = 2 super-Virasoro algebra. There are two essentially different classes
of such boundary conditions, called A and B boundary conditions. The B-type boundary

conditions preserve the “diagonal” super-Virasoro subalgebra whose generators are given by

- - ~ ~ 1

The A-type boundary conditions preserve a different subalgebra whose generators are
- - - - 1
Lot Lo, —Jotdu, Q@ +Q7, QN +Q;, nelrel+s.

Superconformally-invariant boundary conditions for a ¢ -model are called supersymmetric

(or BPS, for Bogomolny-Prasad-Sommerfeld) D-branes. Thus we have BPS D-branes of types

A and B. Note that the mirror involution () exchanges the two types of D-branes.
D-branes are understood best when the B-field is zero. In this case one can construct

examples of the B-type boundary conditions by starting from a holomorphic submanifold of
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the Calabi-Yau manifold X. More generally, one can start from a holomorphic submanifold
M C X and a holomorphic bundle on M equipped with a compatible connection. On
the other hand, examples of the A-type boundary conditions (with zero B-field) can be
constructed starting from a Lagrangian submanifold L C X (with respect to the Kéhler
form), a trivial unitary bundle E on L, and a unitary flat connection on F.

Note that one can choose different boundary conditions for the Euler-Lagrange equations
on the two ends of the interval I. The only constraint is that both boundary conditions
must be of the same type (A or B). If this condition is violated, then the symmetry of the
corresponding classical field theory is only some subalgebra of the N = 2 super-Virasoro
algebra, namely an N =1 super-Virasoro algebra.

After quantization, ¢ -model on Rx [ is supposed to yield a superconformally invariant
quantum field theory on the same manifold. The axioms of such quantum field theories have
not been formulated yet, and we will not attempt it here. Suffice it to say that physicists
expect that any B-type D-brane can be consistently quantized, while A-type boundary con-
ditions may lead to “anomalies,” i.e. inconsistencies in the quantization procedure. One can
argue that anomalies are absent if the A-type D-brane originates from a special Lagrangian
submanifold. We remind that a special Lagrangian submanifold in a Calabi-Yau manifold
with a K&hler metric is defined by two properties: it is Lagrangian, and the restriction of
a nonzero section of the canonical bundle to the submanifold is proportional to its volume
form.

Thus to any physicist’s Calabi-Yau with zero B-field one can associate two sets: the set
of B-type D-branes, and the set of (non-anomalous) A-type D-branes. The former set has
many elements in common with the set of coherent sheaves on X. The latter set resembles
the set of objects the Fukaya category of X. Moreover, there are heuristic arguments using
path integrals showing that either A or B-type D-branes form an A, —category (see [If] and
references therein). Thus, conjecturally, to every physicist’s Calabi-Yau with zero B-field one
can canonically associate a pair of A, —categories, the categories of A- and B-type D-branes.
Assuming there are shift functors on them, one can define the corresponding triangulated
categories as in [RJ].

It is natural to conjecture that for B = 0 the triangulated category associated with
A-type (resp. B-type) D-branes is equivalent to DF(X) (resp. D”(X) ) [B3, [[d]. There
are several pieces of evidence supporting this conjecture. First, as we have already remarked,
F(X) and Coh(X) have many objects in common with the categories of A and B-type
D-branes, respectively. Second, using path integrals one can argue [BJ] that the category of
B-type D-branes is independent of the Kéahler form, while the category of A-type D-branes

is independent of the complex structure on X if w is fixed. For further evidence see [[L0]
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and references therein.

If this conjecture is true, then Kontsevich’s conjecture has a natural explanation. Suppose
we have a mirror pair of physicist’s Calabi-Yaus X and X', both with zero B-field. The
corresponding N =2 SCVA’s are related by a mirror morphism. Since a mirror morphism
of N =2 SCVA’sacts onthe N =2 super-Virasoro by the mirror involution, it exchanges
the A and B-type boundary conditions. Hence it induces an equivalence of D?(X) with the
derived Fukaya category DFy(X'), and vice versa.

6.2 Fukaya category with a B-field

Now let us generalize this to nonzero B-fields. We already know the effect of a B-field
on DY(X) : the sheaf Ox is replaced with a certain sheaf of noncommutative algebras.
This agrees with the string theory lore that the B-field makes the D-brane worldvolume
noncommutative [, [L1]].

The effect of the B-field on the Fukaya category seems rather different. Let us start by
recalling the definition of the set of objects of the Fukaya category [PJ]. Let (X,w) be
a symplectic manifold of dimension 2d. We fix an almost complex structure I on X
compatible with w and thereby obtain a Hermitian metric on X. (If X is a physicist’s
Calabi-Yau, it automatically comes equipped with a compatible complex structure). More-
over, we assume that c;(7%°) = 0 . In this case the line bundle A?(Q%!) is trivial and has
a nowhere vanishing holomorphic section €2 which is called a calibration.

Naively, an object of the Fukaya category should be a triple (L,FE,V), where L is
a Lagrangian submanifold, F is a trivial unitary vector bundle on L, and V is a flat
connection on FE. From the physical point of view, such a triple allows one to define an
A-type boundary condition for the classical ¢ -model, and therefore it is an A-type D-
brane B3, Bq].

The naive definition of an object does not allow one to define a nontrivial shift functor
and As structure. This difficulty can be overcome as follows [2J]. For any point = € L
the tangent space T, L is a Lagrangian subspace of T, X. The Grassmannian of Lagrangian
subspaces has fundamental group equal to Z. Each Lagrangian submanifold comes with a
Gauss map from L to LG, where LG — X is a fibration whose fiber over z is the
Grassmannian of Lagrangian subspaces of T, X. Consider a fibration LG — X covering
LG — X such that its fiber is the universal cover of the fiber of LG — X. (As mentioned
in 2], there is a canonical choice of such a fibration if ¢;(7%) = 0. ) Instead of L, we will
consider pairs (L,i), where i is a lift of the Gauss map to LG. Not every Lagrangian L
admits such a lift, so not any Lagrangian submanifold can be extended to an object of the

Fukaya category. Note that any Lagrangian L comes equipped with two natural d -forms:
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the volume form and the restriction of the calibration €2 . The latter is defined up to a
multiplicative constant. Their quotient is a nowhere vanishing function f which maps L
to C* . One can show that the Gauss map admits a lift to LG ifand only if the image f(L)
is contractible. For example, any special Lagrangian L has a lift, because by definition of
speciality the function f is constant for any such L .

To summarize, we can define an object of the Fukaya category in the absence of the
B-field as a quadruple (L,i, E,V), where L and i are as above, and (E,V) is a trivial
complex vector bundle on L with a unitary flat connection. The natural fiberwise action of
Z on LG — X induces an action of Z on such quadruples. One hopes that this action
extends to a shift functor from the Fukaya category to itself.

Now let us try to guess how the definition of the Fukaya category should be modified
when B#0. Let B be a closed 2-form on X representing B € H?(X,R/Z). (Since we
assumed that B is in the kernel of the Bockstein homomorphism H?(X,R/Z) — H3(X,Z),
such a 2-form exists.) Let Fy be the curvature of a connection V on a bundle E on L.
If B=0, the condition on V is

Fy = 0. (35)

On the other hand, it is a general principle of string theory that the equations of motion

must be invariant with respect to a substitution
B—>B+d)\, V — V +27i idE)\’L, (36)

where A is any real 1-form on X. This must be true because the action of the ¢ -model on
R x I is invariant with respect to such transformations [29]. This requirement is sufficient

to fix the generalization of (BY) to arbitrary B :
Fy = 2ri idg Bl L. (37)

We propose that an object of the Fukaya category for B # 0 is a quadruple (L,i, E,V),
where L and ¢ are the same as above, F is a complex vector bundle on L, and V is
a connection on E satisfying (B7).

We can make some checks of this proposal. First, our definition of an object depends
on how one lifts B € H*(X,R/Z) to a 2-form B. However, given two different 2-forms
By and By representing B, there is a one-to-one map between the corresponding sets
of objects. Indeed, let f = By — Bj. It is easy to see that f has integral periods, and
therefore there exists a line bundle A/ on X and a connection Vg on AN such that the
curvature of Vj is equal to 2mif. The bijection between the set of objects corresponding

to B; and the set of objects corresponding to Bs is given by

L—L, i—i, E—E®N|, Vi~ V)®idy+ideg® V. (38)
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Second, from the equation (B7) we see that c¢1(E) = rank(E)b|y, where b is the de Rham

cohomology class of B. Since c¢;(F) is integral, we infer that
rank(E)B| = 0.

In particular, for rank(F) =1, we get that the restriction of B to L must vanish. This is
consistent with the results of Hori et al. [[[§], who analyzed the A-type boundary conditions
in the rank-one case. Hori et al. find that the restriction of B to L must be zero if
one wants to make an A-type D-brane out of L. We found that it is sufficient to require
Bl =0.

We need to address one more subtlety. The original HMSC required E to be a unitary
vector bundle and V to be a unitary connection [R3]. This requirement naturally arises in
the string theory context as well. Nevertheless, this condition is much too strong. Even in
the case of the elliptic curve one has to allow for non-unitary connections on the A-side if
one wants to account for all bundles on the B-side [BI]. In that case, the right thing to do is
to require the holonomy representation of V to have eigenvalues with unit modulus. It is
natural to conjecture that this is also the right requirement for dim¢ X >1 or B #0.

In the absence of the B-field, any pair (L,7) can be extended (in many different ways)
to an object of the Fukaya category. The situation is more complex for B # 0. Recall that
to any flat connection on a manifold L one can canonically associate a finite-dimensional
representation of (L) (or, equivalently, a finite-dimensional representation of the group
algebra of 71(L) ), and vice versa. In fact, this map is a one-to-one correspondence. Simi-
larly, given a bundle E on L and a connection V on E such that Fy satisfies (B7),
one can construct a finite-dimensional representation of a twisted group algebra of (L)
in the following way. To (E,V) we can associate a projective representation R of mq(L).
To any such R one can attach an element g of H?(mi(L),U(1)). Acting on it with the

natural embedding
H*(m(L),U(1)) & HA(L,U(1)) (39)

we obtain an element j(¢g) € H?(L,U(1)). One can show that j(vr) = B|r (we identify
R/Z with U(1) ).
To any 2-cocycle 1) one can associate a twisted group algebra Cy[mi(L)], which is a

vector space generated by the elements of (L) with the following multiplication law:

g-h=1(g,h)gh, g,h € m(L).

The correspondence between pairs (E,V) satisfying (B7) and finite-dimensional repre-

sentations of the twisted group algebra Cy[mi(L)] is one-to-one. A proof of this fact is given
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in Appendix [J. The eigenvalues of the holonomy representation of V have unit modulus
if an only if the eigenvalues of ¢ € m1(L) have unit modulus. In particular this means that
a Lagrangian submanifold L can be extended to an object of the Fukaya category only if
Bl is in the image of the homomorphism (B9).

As a by-product, we obtained an equivalent definition of an object of the Fukaya category:
it is a triple (L,7,R), where L,i are the same as above, and R is a finite-dimensional
representation of the twisted group algebra Cy[m(L)] such that j(ir) = Bl and all the
eigenvalues of R(g) have unit modulus for all g € m(L).

Morphisms in the modified Fukaya category F(X,B) are defined in analogy with [[[2, 3.
Let Uy = (L1,41,E1,V1) and Us = (La,i9, F2,V3) be two objects such that L; and Lo
intersect transversally. Morphisms from U; to Us in F(X) form a complex of vector

spaces defined by the rule

Hom' (Uy,Up) = @B Hom'(Ei., Eal.) (40)
zeL1NLa
It is graded in the following way. For any point = € L; N Ly we have two points
i1(x) and i2(x) on the universal cover of the Lagrangian Grassmannian of 7,X. To these
two points we can associate an integer (i1(x),i2(x)) which is called the Maslov index of
i1(x),ia(x) (see for example [J]). By definition, the space Hom(FE|;, E2|,) has a grading
plin(z), iz ().
The differential on Hom(U;,Us) is defined by the rule

d(u) = Z mi(u; z),

z€L1NLo

where u € Hom(FE |z, Ea|;), and mi(u;z) € Hom(E) |, E2|,) is given by

my(u;2) = Z j:exp(2m'/ ¢*(—B+iw))- Pexp(¢p ¢"V).

6 DX D oD
Here ¢ is an (anti)-holomorphic map from the disk D = {|w| < 1,w € C} to X such that
d(—1) =z,¢0(1) =z and ¢([x,z]) C Ly and ¢([z,2]) C L1. The path-ordered integral is
defined by the following rule

Pesp(f V)= Pexp( [ V) u-Pexp( [ ')

oD z z
This homomorphism from Fi|, to Fs|. can be described as follows. We take a vector
e € Fl|,, use the connection Vi transport it to Ei|,, apply the map wu, and obtain an
element of Fs|,. Then we transport this element to Fs|, using the connection Vas.

The + sign indicates the natural orientation on the space of (anti)-holomorphic maps.

One expects that there are finitely many such maps if p, — p, = 1.
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To define the composition of morphisms, let us take u € Hom(Ej|,, Fa2|,) and v €
Hom(E»|y, E3l,), where x € Ly N Ly and y € Ly N Ls. Then the composition of u and

v is defined as

vou= Z ma(v, u; 2),

z€L1NL3

where mg(v,u;z) € Hom(E) |, E3l,) is given by

ma(v,u;2) = Z :l:exp(Qm'/ ¢ (=B +iw)) - Pexp(¢p ¢*V)
¢p:D—X D oD
Here we sum over (anti)-holomorphic maps ¢ from a two-dimensional disk D to X,
such that three fixed points pi,p2,p3 € 0D are mapped to x,y,z respectively, and
&([pis pit+1]) € Liy1. The path-ordered integral here is calculated by the rule

p3 D2 P1
Pexp(¢ ¢"V):=Pexp([ ¢"V3)-v-Pexp([ ¢"Vz)-u-Pexp([ ¢"Vi)
oD P2 p1 p3

In the same manner we can define higher order compositions using zero-dimensional
components of spaces of maps ¢ from the disk D to X with ¢(9D) sitting in the union
of Lagrangian submanifolds.

It is easy to check that the above definition of morphisms and their compositions does
not change if we replace B with another 2-form with the same image in H?(X,R/Z). The
check makes use of (B7) and (B§). This confirms our claim that the Fukaya category depends
only on B.

The rules for computing morphisms and their compositions can be explained heuristically
using the path integral for the o -model on a worldsheet with boundaries [BJ.

The category Fo(X) has the same objects as F(X), but the morphisms are the degree
zero cohomology groups of the complexes defined above. Note that different objects of
F(X) often become isomorphic in Fy(X) . For example, in the case when X is a real
symplectic 2-torus, any one-dimensional submanifold is Lagrangian. Many of them admit
a lift of the Gauss map. Thus the category F(X) contains many more objects than the
derived category of the elliptic curve (an elliptic curve with a flat metric is self-mirror). But
in Fy(X) any object becomes isomorphic to some other object associated with a special
Lagrangian submanifold (see [BI]). More generally, it appears likely that working in the
category JFp(X) one may restrict the set of objects of the Fukaya category and consider
only special Lagrangian submanifolds with respect to a holomorphic calibration. For different
L the calibrations may differ by a multiplicative constant. This restriction is also natural
from the string theory point of view, since, as explained above, non-anomalous A-type D-

branes are associated with special Lagrangian submanifolds in a Calabi-Yau [24].
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A Supersymmetric o -model of a flat torus

In this section we define the classical field theory known in the physics literature as the
N =1 supersymmetric o -model. The data needed to specify a o -model consist of a
C*° manifold M (“the target space”), a Riemannian metric G on M, and a 2-form
B on M. We then discuss the problem of the quantization of the ¢ -model in the case
when the target space is a flat torus. The superconformal vertex algebra constructed in
Section fl can be regarded as a solution of the quantization problem. A detailed discussion
of supersymmetric ¢ -models can be found in [§].

Let W be a two-dimensional C*° manifold RxS! (“the worldsheet”). We parametrize
W by (1,0) € R x R/(2nZ). The coordinate 7 is regarded as “time.” We endow W
with a Minkowskian metric ds? = dr? — do? and orientation dr A do. Thus xdo =
dr, *dT = do. The symmetric tensor corresponding to the metric will be denoted ¢g. General
coordinates on W will be denoted (y°,y'). The invariant volume element dr A do =
d?>yy/—det g will be denoted d¥. We denote by ST and S~ = ST the complexified semi-
spinor representations of SO(1,1) and by V its complexified fundamental representation.
Complexified semi-spinor representations are one-dimensional complex vector spaces endowed

with SO(1,1) -invariant nondegenerate morphisms
v:8T -V ®ST, F:StT-V®Ss. (41)

These morphisms are determined up to a scalar factor, and we assume that they satisfy the
Clifford algebra relation
VI Y =297 idgrgs-

1" is regarded as map C — V* ® V*. In a suitable basis, one has

() -0)

Since H'(W,Zsy) = Z2, there are two inequivalent spinor structures on W. The trivial

Here g~

one is called the periodic, or Ramond, spin structure in the physics literature. The nontrivial
one is known as the anti-periodic, or Neveu-Schwarz, spin structure. Both spin structures
play a role in string theory, but for our purposes it will be sufficient to consider the Neveu-
Schwarz spin structure. The corresponding semi-spinor bundles on W will be denoted by
the same letters S*,S~. The parity-reversed (i.e. odd) semi-spinor bundles will be denoted
by IIST,IIS~. More generally, II will denote the parity-reversal functor. The vector
space morphisms v and 4 give rise to a pair of bundle morphisms S~ — TW ® ST and

St —TW ® S~ which we denote by the same letters.
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Let M bea (C° manifold endowed with a Riemannian metric G and a real 2-form
B. At this stage we do not require B to be closed. The indices of the tangent bundle T'M
will be denoted by j,k,[,... in the upper position. The indices of the cotangent bundle
T*M will be denoted by the same letters in the lower position. Summation over repeating
indices is always implied.

Let X bea C*® mapfrom W to M. Let ¢ and @ be C* sections of X*TM &
IIS*T and X*TM @ILS™, respectively. N =1 supersymmetric o -model with worldsheet
W and target (X,G,B) is a classical field theory on W defined by the action

| ' N1 —
E/Wij(X) <dX3 A #dX ) + E/Vijk(X) <dX3 A dX ) +
| <ij<x>wy.kuejk(X)u?jm.wk+1Rjklm<X>M%’zZm) as. (42)
™ Jw 2

Here the covariant derivatives Vi) and Vi are sections of X*TM @ILS* @ T*W defined

as follows:

Vil = Dyl + <{ i:z } + g (G (dB)klm) dX" !,

_ . j
Vi) = Dy -
v (L)

where {j,kl} are the Christoffel symbols constructed from G, and D :S* — ST @ T*W

is the Levi-Civita covariant derivative constructed from g. Rjklm(X ) is the curvature

N W

(G—H™ (dB)klm> dX*,

corresponding to the following connection 1-form on M

<{ iz } + g (G (dB)klm) da'.

In the last term in the action we used twice the natural SO(1,1) -invariant pairing ST ®
S —C.

This complicated-looking action has an elegant reformulation in terms of superfields, i.e.
maps from a super-Riemann surface to M [§].

The extrema of the action (i) are given by the solutions of the Euler-Lagrange equations.
In the case when all the fields are even, it is well known that the space of solutions of the
Euler-Lagrange equations is a manifold with a natural symplectic structure. This statement
remains true in the supersymmetric context (see e.g. [IE]) In the present case the symplectic

structure is given by

1

2m T=T0o

: ox* ox*
<5Xj NS <ij(X)W + Bj (X)¥>

G (X7 A SYE + G (X)) A &/Sk) do. (43)
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Here we used the fact the Euler-Lagrange equations are second-order in time derivatives
of X and first-order in time derivatives of 1,1, and therefore a solution is completely
determined by the values of X, 0X/07, ¥, and ¢ on any circle 7 = 75. One can check
that the symplectic structure thus defined does not depend on 73. The space of solutions
endowed with this symplectic structure is called the phase space of the ¢ -model.

We are interested in the case when M is a torus T72¢ = R?/T, T = 7% with a
constant metric G and a constant 2-form B. We will fix an isomorphism between I' and

721, Without loss of generality we may assume that the action of T' on R2?? is
a2t neZ, j=1,2,...,2d.

In this special case the ¢ -model action becomes

T or o

1 ~(0XToxF X oxF B, 0X7 X"
w *\"or or do Odo

47
(0 0 . (D o\ -
(Y. J | i k an j o k
+iG 1) <87’ + 80’) P +iG <_87' _80> P > drdo. (44)
The Euler-Lagrange equations have a simple form:

0? 0? ; 0 0 ; 0 0\ -
Y 9 \xi_ AT A Y 9=
<802 87’2> X' =0, <80 * 87’) =0 <80 87’) v =0 (45)

In what follows we will use the notation

L 1(0 0y . 1[0 0
- 2\90 O1)’ t72\os " or )

The Poisson brackets of the fields evaluated at equal times follow from ([):
J k ! —
{X¥(ro).xtra)} =0, (46)

) k )
(oo 2w} =@ a0 -o).

(1 0) = =21 (G 6 (0 — o),
(0}, = 2w (G716 (0 - o).

The Poisson brackets between even and odd fields vanish.

Note that the neither the Euler-Lagrange equations (E5) nor the symplectic structure
corresponding to (ft§) depend on B. This happens whenever B is closed, because in this
case the B -dependent terms in the action are locally total derivatives. We will see below

that quantization of the ¢ -model introduces arbitrariness which is parametrized by a class
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in H?(M,R/Z). The usual interpretation is that while the classical ¢ -model does not
detect a closed B-field, the quantized o -model detects the image of B in H?(M,R/Z).

The Euler-Lagrange equations () can be rewritten in the Hamiltonian form:

O (r0) = {XP(r,0), H()}

O (7.0) = (W (7,0), H()}

The Hamiltonian H 1is a function on the phase space given by

1 0X70Xk 9X7oxF ok ok
H = — ; — ) ! do.
(70) 4 /T:TO ik < or oOr * 0o 0o W 0o T 0o > ?
As a consequence of the equations of motion, we have dlégo) =0.

Hamiltonian vector fields on the phase space are those vector fields which preserve the
symplectic form. They obviously form a Lie (super-)algebra with respect to the Lie bracket.
We will now exhibit a subalgebra in this super-algebra which is isomorphic to the direct sum
of two copies of the N =1 super-Virasoro algebra.

Recall that given a function W on the phase space, we can define a Hamiltonian vector

field vy as follows:
ow()={- Wipp
One has an identity
[ow, v0]Lie = ViW.U} p.5.
We will define a set of functions on the phase space which forms a super-Virasoro algebra
with respect to the Poisson bracket; then the corresponding set of Hamiltonian vector fields

forms a super-Virasoro algebra with respect to the Lie bracket.

The set of functions we want to define is a vector space generated over C by the following

elements:
1 . . ;
L,=— e~ MGk <8_X98_Xk - 3¢3_¢> do, nez,
27 Jr=r, 2
_ 1 . . o
L, = % eszij <8+X]8+Xk + %¢8+1/1> do, n € 7, (47)
T=To
—1 —iro j k 1
Qr=— e Gy’ 0-X" do, re’Z+ -,
T S— 2
2 i iro Wi k 1
Qr = — "G’ 0 X" do, reZ+ —.
A ) r=r, 2
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Two remarks are in order concerning these expressions. First, all these functions on the phase
space implicitly depend on 79 as a parameter. Second, since we picked the anti-periodic
spin structure on W, the lift of 1 to the universal cover of W is an anti-periodic function
of o. This is the reason the index 7 runs over half-integers.

The Poisson brackets of the generators can be easily computed using (#f), and the non-

vanishing ones turn out to be

{Lim, Lo} pg = —i(m — n)Lyin, {Lim, Ly} p 5 = —i(m —n)Lpyin,
{Ln,Qrypp = _Z<% - 7‘) Qmtr {I:vaT}P.B. = _Z<% - 7‘) Qmtrs (48)
{QTWQS}P.B. = _%LT’-i-Su {QT?QS}P_B_ = _%ET’+87

Thus the space spanned by the generators is a Lie super-algebra isomorphic to the direct
sum of two copies of the N =1 super-Virasoro algebra (with zero central charge).

Note that Lg+ Lo = H. Recalling that the 7 -dependence of any function F on the
phase space is determined by

dF

—={F H
dr { ’ }P.B.7

and using (f§), one can show that all the generators have a very simple dependence on Ty :

L, (1) = e_mTOLn(O), .Z/n(TO) = e_mTOI_/n(O),
Qr(10) = e_iTTOQr(O)a QT‘(TO) = e_irTOQT(O)-

Thus the space spanned by the generators does not depend on 7.

The presence of two copies of the N = 1 super-Virasoro algebra acting on the phase
space is a feature of the supersymmetric o -model with an arbitrary target (M, G, B). This
fact is crucial for string theory applications of the o -model, see 29| for details.

Now let us choose a constant complex structure I on M such that G is a Hermitian
metric. This makes M a Kahler manifold. Let w = GI be the corresponding Kéahler form.
It turns out that we can embed each of the two N =1 super-Virasoro algebras in a bigger

N = 2 super-Virasoro algebra. The additional generators are given by

g ) . 1
Qf = — e i(r+1/2)a (Gjk Fiwji) PO_XF do, rez+ -,
8T Jr=r, 2
_ ; . _ 1
QF = 8% 0 (G w90, X* do, reZ+s,  (49)
T=T0
—1 —ino j
Jp = y /_ e~ MWy do, nez,
T=T0
7 —1 ino,  7i7k
e wp? Y do, n € 7.

n = 5 _
4 T=T0
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Note that Q, = QF + Q- and Q, = Q + Q. for all 7. The Poisson brackets between
L,,QF, and J, are given by

{Lm’Q;t}P.B.: —1 <_ - T) Qr+m7

{Limn, In}tpp =indnim,

{QF. Q7Y pp={0r. Q7 }pp =0,
1

{Qj?Qs_}p_B_: - ZLT’-‘:-S -

{Jm: Qv } p g = F1Qrym-

i
g(r — 8)Jrts,

The Poisson brackets between the barred generators have the same form. The Poisson brack-
ets between barred and unbarred generators are trivial, as usual.

Again, the emergence of the N = 2 super-Virasoro is not limited to the particular
situation we are considering: one can prove that the phase space of the supersymmetric
o -model is acted upon by the N = 2 super-Virasoro if (M,G) is an arbitrary Kéhler
manifold, and B is closed [f]]. The statement can be further generalized to B-fields which
are not closed [[[J.

Let us now look more closely at the space of solutions of the Euler-Lagrange equa-
tions. Note that any map X : W — M induces a homomorphism of the homology groups
H{(W) — Hy(M). The group Hi(W) = 71 (W) = Z has a preferred generator, namely the
loop winding the S! in the direction of increasing o. Since H{(T??) =T, we see that to
any map X : W — M we can assign an element w(X) of I'. The components of w are
the so-called winding numbers of the map X. Thus the phase space of the ¢ -model is a

disconnected sum

M= || M,.
wel’
We will see in a moment that M, is connected for all w.

The Euler-Lagrange equations (f) are linear and can be solved by Fourier transform.

The general solution in M, is given by

X =a9 +ow + (G pr+ —= Z <a3 isle=")  ale “("*T)), (50)
S_—OO
W= ) gl (51)
reZ+1/2
P Y e, 52
reZ+1/2
Here ol @ are complex numbers satisfying (od)* = of (@) = &', ; ¢!, @i are

elements of IIC; 2/, j = 1,...,2d, take values in R/(27Z) ; and p;, i = 1,...,2d,
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take values in R. The variables o, aé, ¢¥, 1[_# will be referred to as “the oscillators.” The
variables (z7,p;), 7 =1,...,2d, together parametrize a copy of T*M = T2d x R,

Thus for any w € I' the supermanifold M, is a product of the vector superspace
spanned by ay,, @n,n € Z,1,,,,r € Z+1/2, and the cotangent bundle of M.

The Poisson brackets of the coordinates on M,, can be computed from ({6) and (F0-53).

The non-vanishing ones are given by
ik . —1\Jk —i =k . —1\Jk
{af@, ozm}P'B' —in (G7')"" bmin, {oz%, ozm}P-B- =—in (G bpmin,
{ ZW?}PB =—1 (G_l)]k 67“-}—57 {”@ﬂﬁf} =—i (G_l)jk 67“-}—5'

{‘/Ej’pk}P.B. = ‘%’

Thus the symplectic supermanifold M,, decomposes into a product of a symplectic vector
superspace spanned by the oscillators and T*M with the standard symplectic structure.
It is customary to continue analytically the time variable 7 to the imaginary axis. If
we set 7 = it, then the combination v = ¢ +7 = ¢ + it becomes a complex variable.
Since we identify o ~ o 4 27, it is convenient to set v = ilogz where z € C*. After
analytic continuation 0_ and J, become 0, = —iz0, and 0, = iZ0,, respectively. The
functions X7(v(z)) are multi-valued functions of z if w # 0. But their derivatives with
respect to z and Zz are single-valued, and moreover are holomorphic and anti-holomorphic,

respectively:

OXI i (i N i~ ol
T =5 (E ) - 530 T

s=—00
j ; ; . e &
s=—00
Note that after rescaling X7 — (iv/2)X7 these expressions become formally the same
as ([J[[4), except that in ([[J[4) the coordinates on the phase space wF, py, ok a* are
replaced with the operators W*, M) — By, W', a'j , 6/;, respectively. This replacement is the
quantization map discussed in more detail below.

Similarly, after analytic continuation to imaginary 7, the sections 17/ and 1/ become
holomorphic and anti-holomorphic, respectively. One additional subtlety arises due to the
fact that 1) and 1) are sections of semi-spinor bundles. Thus the coordinate change v
z = e ™ must be accompanied by ¥/ — z71/2¢J and 7 — z71/2¢J. This accounts for
the shift 7+ r+ 1 between (F152) and (I5/I6).

Let us now turn to the quantization of the ¢ -model. This discussion provides a moti-

vation for the constructions of Section [i.
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Since the classical phase space is a disconnected sum of identical pieces labeled by w € T,
the quantum-mechanical Hilbert space will be a tensor sum of identical Hilbert spaces labeled
by w € I'. Thus we only need to understand how to quantize the supermanifold M,,. In
turn, M, decomposes as a product of T*M with the standard symplectic structure, and
a vector superspace spanned by the oscillators.

The vector superspace spanned by the oscillators can be quantized using the well-known
Fock-Bargmann prescription. The resulting Hilbert superspace is the so-called Fock space,
i.e. the completion with respect to a suitable norm of the space of polynomials of even
variables a’ ;,a' ., s = 1,2,..., and odd variables 0_,,0_,,r = 1/2,3/2,.... We will
denote this space of polynomials Hpock-

The quantization of T*M is also standard and yields the Hilbert space which is the
completion of the space C*°(M) of smooth functions on M = R??/T with respect to an
L? norm. Using Fourier transform, this Hilbert space can be identified with the completion
of the group algebra of T'* with respect to an ¢? norm.

Thus the quantization procedure sketched above leads to the Hilbert space which is a

suitable completion of an infinite-dimensional superspace
DuwerCI™] @ Hrock
This can be written in a more symmetric form:
Cl' & I'] @ Hpock-

For our purposes, only the superspace structure, and not the Hilbert space structure, is
important. Thus we need not perform the completion procedure, and can take the above
superspace as the state space of the IN = 2 superconformal vertex algebra corresponding
to the supersymmetric ¢ -model. We will call this vector superspace the state space of the
quantized o -model.

Finding a suitable state space is but a part of the quantization problem. Quantizing
a classical field theory usually requires finding a sufficiently large subset of functions on
the phase space closed under the Poisson brackets, and a map from this subset to the set
of linear operators on the state space, such that the Poisson brackets are mapped to —i
times the graded commutator. The choice of the subset of functions on the phase space
is dictated by physical considerations. For example, for string theory applications it is im-
perative to have an N = 1 super-Virasoro algebra acting on the state space. Thus the
distinguished subset must include the generators of the N =1 super-Virasoro algebra (i7)
and their linear combinations. We will also require that the subset include the generators

of the N =2 super-Virasoro (). Usually one also requires that the distinguished subset
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include the fields in terms of which the classical action is written. In our case these are
XI(o,7),47 (0,7),17 (0,7). One also wants the operator corresponding to the Hamiltonian
H = Lo+ Lo to have nonnegative spectrum.

To quantize the fields X7,¢7, and 7 it is sufficient to quantize the oscillators and
(z7,p;) (the coordinates on T*M ). The Fock-Bargmann quantization map sends oscillators

with negative subscripts to multiplication operators on the space of polynomials:

al — al, al — al, s=-1,-2,...,
: . . 1 3
’l/}il—)gg., wg.HHg., T:—57—57

The oscillators with positive subscripts are mapped to differentiation operators on the space

of polynomials:

ozg — S (G_l)jk ai , o‘zg — S (G_l)jk 81 , s=1,2, ,
a” a”
- _1\jk O — ik O 13
WO G e O g Ty

It is easy to see that the (graded) commutators between these operators are equal to 4 times
the Poisson brackets of their classical counterparts, as required.

The quantization of (27, pj) proceeds as follows. The function 27 is a multi-valued func-
tion on the phase space and cannot be quantized. But any smooth function f(z!,... ,z%%)
which is periodic, i.e. invariant with respect to shifts =7 — 2/ 4+2wn?, n/ € Z, is a univalued
function on the phase space. The standard quantization of T*M maps such a function to

a multiplication operator on C*°(M) :
flt, o 2y fat . 2.

Actually, the vector space we are dealing with is not just C°°(M), but a T' -graded

vector space
§ = BuwerC™ (M),

and therefore we should quantize a pair (f,w) rather than f. This leads to an important
subtlety. If w = 0, we can assign to (f,w) a multiplication operator which acts on each
of the I' -homogeneous components of § in an identical manner. On the other hand, if
w # 0, it does not seem right to assign to it multiplication by f, since such a quantization
procedure would map different classical functions to the same quantum-mechanical operator.
A natural guess for the operator corresponding to (f,w) is multiplication by f followed
by an operator 7T,,, where T, shifts the I' -grading by w. This guess will be justified

below.
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Under the standard quantization of 7™M, the function p; is mapped to a differentiation

operator on § :

If fw is the quantum operator corresponding to the function (f,w) € F, we have the

commutation relation

—

A [ Of
e =1 (355,

This should be compared with the classical relation

of (z)
oxJ

The Fourier transform which identifies the completion of §F with the completion of C[['®T*]

{f(@),pjtrpB. =

sends p; to the following operator M; on C[I' @I :
M; : (w,m) — mj(w, m), V(w,m) e &I, (54)

Putting all this together, we obtain the quantization map for X7, 0X7, 7, and
Y7, Tt is easy to check that this yields the expressions ([3-[f) of Section f] with B = 0
(after we rescale X7 by a factor iv/2 ).

Now we can also motivate the state-operator correspondence postulated in Section [|. The
main idea that the quantization map should send local classical observables to local quantum
fields belonging to the image of Y. For example, 0X7,0X7 7 17 and their derivatives
are local classical observables, so the corresponding quantum fields must lie in the image of
Y. These considerations explain the mapping of the states o’ <|vac), ol <|vac), W +|lvacy,
and 1/_)]_ +|lvac). Together with the axioms of vertex algebra, this uniquely fixes the mapping
of other states in the subspace w = m = 0. Other natural local classical observables are
suitable exponentials of X7(z, ). (The classical field X7(z, ) itself is multi-valued and
therefore should not be quantized.) Requiring that they map to local quantum fields fixes
the form of Y for all (w,m) € T @ T'*. An interested reader is referred to 9] for details.

Another important ingredient is the quantization of the N =2 super-Virasoro algebra.
Naively, one would like to define the quantum generators by the same formulas ({7,49), but
with the classical fields replaced by the quantum fields. This idea runs into an immediate
problem since the products of quantum fields at the same point are not well-defined. The
normal ordering prescription resolves this problem and leads to well-defined operators. One
can easily check that this definition of the generators of the N = 2 super-Virasoro is equiv-
alent to the one given in Section |. The operators thus defined form an infinite-dimensional
Lie super-algebra which is a central extension of the classical N = 2 super-Virasoro ({749).

One can also check that the spectrum of H = Lo+ Ly is nonnegative.
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It remains to explain how to include the effect of the B-field. As remarked above, a closed
B-field does not affect the classical o -model. However, the above quantization procedure
admits a modification which depends on a class in H?(M,R/Z). We wish to interpret this
class as the cohomology class of the B-field.

The modification affects the quantization of T*M and consists in replacing the space
of smooth functions on R2??/T" with the space of smooth functions on R?? satisfying the

following quasi-periodicity condition:
f(f]fl 4 2,7_”117 . 7$2d 4 27‘rn2d) — e—QWiBjknjwkf(x17 L 7$2d),

where Bj, is a real skew-symmetric matrix which we can interpret as an element of
H?(M,R) in a natural manner. We will denote the space of such functions CS°(M, B).
It is clear that CS°(M,B) depends only on the image of B in H?(M,R/Z). Thus the

modification consists of replacing § with the space
$(B) = @uwerCy (M, B).

Fourier transform identifies a completion of C°(M,B) with a completion of C[I'*], as
before, so the Hilbert space of the quantum theory is unaffected by B. But the map of the
classical functions on the phase space to operators is affected.

First, the product of two quasi-periodic functions f € C5°(M,B) and f' € CX(M,B)
belongs to the space C’Sﬁrw,(M , B). Hence the multiplication operators do not preserve the
I’ -grading on §F(B). Rather, multiplication by f € C°(M, B) shifts the grading by w.
If we want the limit B — 0 to be smooth, we have to postulate that even for B = 0
multiplication by f € Co°(M, B) shifts the grading by w. This provides a justification for
the guess made above. Second, while the function p; is still mapped according to (B3), the
Fourier transform of p; is different from (54). Namely, it is easy to see that the Fourier

k

transform of the differentiation operator on Cg;°(M, B) is given by M; — Bjw”. Putting

these facts together, one obtains the quantization map for all classical fields in agreement

with (L3-[L6).

B The relation between vertex algebras and chiral algebras

In this appendix we describe some properties of vertex algebras in the sense of Definition B.3.
Let (V,|vac),T,T,Y) be a vertex algebra. We prove that the subspace of V spanned by
vectors which are mapped by Y to meromorphic fields has a natural structure of a chiral
algebra. Furthermore, anti-meromorphic fields form another chiral algebra, and these two

chiral algebras supercommute with each other. We also describe an analogue of the Borcherds
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(or associativity) formula for vertex algebras. Finally, we show that any chiral algebra is a
vertex algebra.

We start with the following useful lemma.

Lemma B.1 Let N,M be integers and let h;,j = 1,... ,K be distinct real numbers
belonging to [0,1). Suppose the following relation holds

& 1 1
Ziz,w (Z—u))N+h] Z’Z,lf} (Z—’[Z))M+hj Cj(Z7 Zaw)w) = 07 (55)
j=1

where Cj(z,z,w,w) € QF3(V). Then Cj(z,z,w,w)=0 for all j.

It is sufficient to prove the statement for M = N =0. Let v € V be an arbitrary vector.
We are going to prove that the value of C; on v vanishes for all j. To this end let us
evaluate both sides of (pJ) on v and set w=zzx and w = zz. Since C; € QF»(V), the

expression Cj(z,Z, zx,2Z)(v) can be written as
Zfag(a;,a’;)z_aé_ﬁ, (56)
a,B

where each f,3 is a finite sum of fractional powers of x,Z with coefficients in V. Hence

the value of the left-hand side of Eq. (5H) on v is a sum

Z Z_az_ﬁ Z JE_Wi‘_éTaﬁ'y(%
a,s

('Yv(s)eJaﬁ

where J,5 C R? is a finite set for each (a,3). Each Tapys has the form

t ) 1 . 1 L )
]z::llm(l_gj)hj Z:E(l_j)hj fi(x,z), (57)

where all f; are polynomials in z,Z with coefficients in V, and h; € [0,1) are distinct
real numbers. The symbol i, (resp. iz ) means “expand in a Taylor series around x =07
(resp. & =0). To prove the lemma it sufficient to show that if the expression Eq. (7) is
zero, then f; =0 for all j. To prove this, we rewrite f; as a polynomial in 1—2 and
1 —Z. Then Eq. (57) takes the form

EL:Z' ! iz ! a
= x(l—x)tl x(l—"i‘)sl s

where (t;,s;) are distinct pairs of real numbers, and each a; € V' is a coefficient of some
f;j - Let us denote this expression by 7. We will show by induction in L that if T is
equal to 0 then a; = 0 for all [. This will imply that f; = 0 for all j. The base of
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induction is evident. Suppose a1 # 0. Multiply T by i,(1 —x)%i,(1 —Z)%' and apply to

the resulting expression an operator
A(l —z)0, + B(1 — )0z

where A, B are arbitrary real numbers. We obtain a sum with L —1 terms:

L

1 1
iy — iz —~ (A(t; — t1) + B(s; — s1))a
;:2 A2 “T=7) 1—t 1= 51))a

which is equal to 0 whenever T = 0. Since A and B are arbitrary, by the induction
hypotesis we get a; =0 for [ =2,...,L. Consequently, a7 is equal to 0 as well. This

proves the lemma.

Theorem B.2 (Uniqueness theorem) Let V be a subspace in QF1 (V') which satisfies the

following conditions:
1. any field A(z,z) €V is mutually local with all fields Y (a),a €V ;
2. all fields are creative, i.e. A(z,2)|0) € V[[z,Z]] .

Then the map
s:V —V]zz]],
Az, 2) — Az, 2)[0)

18 1njective.

Suppose A(z,Z2)[0) =0 . Take a vector a € V' and consider Y (a) . From locality we know
that

~ B ) 1 1 _ _
Y(a)(z,2)A(w,w) = Z;ZZ’ = w)i N (Fx G )ty Cji(z, zZ,w,w)
j:
Hence we have
f:z ! iz ! Ci(z,z,w,w)|0) =
= z,w( _w)hJ+N z,w(z_w)h]_i_N J » &y H =

Using the arguments of Lemma B.1, we get Cj(z,Z,w,w)|0) = 0 for all j . Now from
locality we obtain
A(w,w)Y (a)(z, 2)|0) = 0.

This implies that A(w,w)a =0 for any a € V . Hence A(w,w) =0, and the theorem is

proved.
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Corollary B.3 For any a € V the following identities hold:

Y (Ta) = Y (a), Y(Ta) = 9Y (a).
Both fields Y (Ta) and 0Y (a) are mutually local with all fields Y'(b) . Moreover we have
Y (Ta)|0) = 0Y (a)|0) = Te"*tT2q.
Hence by the uniqueness theorem

Y (Ta) = 0Y (a).

The other identity is proved similarly.
We call a vector a € V' meromorphic (resp. anti-meromorphic) if Y'(a) is meromorphic
(resp. anti-meromorphic). To show that meromorphic and anti-meromorphic vectors form

two supercommuting chiral algebras, it is sufficient to prove the following proposition.
Proposition B.4 Let V be a vertex algebra. Then

1. the subspace of meromorphic vectors is closed with respect to Y and T , i.e. T(a)

and a)b are meromorphic when a €V and b€V are meromorphic,

2. the OPE of two meromorphic fields a(z) and b(w) can be written in the form

. 1
a(z)b(w) = ZZMm C(z,w),
(—1)POPO p(w)a(z) = iy, . —1w)N Clz,w),  Clzw) € QR (V),

where N s an integer,

3. If a €V is meromorphic and b €V is anti-meromorphic, then their OPE has the

form

a(z)b(w) = C(z,w), (=1)PPOp(p)a(z) = C(z,w), C(z,w) € QFy (V).

Let us prove statement (1) of the proposition. From Corollary B.J we infer that a is
meromorphic if and only if Ta =0 . Since T and T commute, this immediately implies
that Ta is meromorphic when a is meromorphic. Further, consider Y'(a)b , where both

a and b are meromorphic. We have

TY (a)b = Y (a)(Th) = 0.

Hence T(a(,b) =0, and all a(,b are meromorphic as well.
Statements (2) and (3) of the proposition are special cases of a more general statement

which we are going to prove.
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Proposition B.5 Let a,b € V. If a is meromorphic, then the OPE of a(z) and b(w,w)

can be written in the form

1

a(z)b(w,w) = iz,wm D(z,w,w), (58)
(—1P@PO) h(wy, B)a(z) = zwﬁ D(zw, ),

where D(z,w,w) € QF3(V), and N is an integer.

This means that if a certain variable does not appear on the left-hand-side of the OPE, it
does not appear on the right-hand-side either.
The general form of the OPE of a(z) and b(w,w) is

M
B , 1 ) 1 _ _
a(z)b(w,w) = E :Zz,w (z — w)N+h: 2w (z — w)N+hi Cilz, 7, w, ),
i=1

where N € Z, h;,i =1,...,M, are distinct real numbers which belong to [0,1), and
Ci € QF(V).
Let us act on both sides with an operator (zZ — w)%. We get

Oziizw ! iz ! —(N+hi)+(2—w)2 C;.
— ) (z_w)N-l-hi ) (5_@)N+hi 0z

By Lemma [B.] we may conclude that for all ¢ we have

(—(N+hi)+(2—w)%> C;=0. (59)

Now let us show that C; = 0 if h; # 0. Assume the converse. Then there is a vector

v € V such that

Ci(z,z,w,w)(v) = Z c(aﬁ,ﬂ;)z_aé_ﬁw_”u’)_é # 0.
,B,7,0

Eq. (F9) implies
(N + h‘Z + ﬁ)c(aﬁ’yé) = (ﬁ - 1)6(0575_17’}/?6"_1) (60)

Since C; € QF>(V'), we can choose «,3,7,6 sothat ¢ g+, 70 and c5-145+1) = 0.
From Eq. (B0) we find that 8= —(N + h;). Furthermore, (0) implies that

B+k—1 ~(N+h)+k—1
c(avﬁ“"ky’y’é_k) = k c(a7ﬁ7776) = k C(a,ﬁ,’y,a)

for all k€ N. If h; €7 then the vector c(q g1y,5—k) €V is nonzero for all k£ € N. But
this contradicts the condition C; € QF5(V).
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Since h; € [0,1) for all i, and h; # h; for i # j, we conclude that C; = 0 for
all i except maybe one, and for the latter value of ¢ we have h; = 0. In addition, for
Cla,B+kq,0—k) to be zero for k >> 0, as required by the condition C; € QFy(V), the
integer N must be nonnegative. Thus the OPE of a(z) and b(w,w) has the form

C(z,z,w,w),

where C(z,z,w,w) € QF3(V) and N > 0.
Applying Eq. (F9) to C(z,z,w,w) and differentiating it with respect to Zz, we infer
that

C(z,zZ,w,0) = %(Z —a)NoNC(z,z,w, @) and ONTLO(2, 2, w,w) = 0.

For this reason the element =dNC(z, 2, w,w) € QF5(V) does not depend on z. Let us
denote it by D(z,w,w). Then the OPE of a(z) and b(w,w) takes the form

v) =1 # Z, W, W
a(z)b(w,w) - ‘Zw (Z—’lU)N D( ) ) )7
(—1)P@PO) by, F)a(z) = zwﬁ D(z,w, ).

This completes the proof of Proposition B.4. As a corollary, we have:

Corollary B.6 Meromorphic and anti-meromorphic vectors form two supercommuting chi-

ral algebras.

In the theory of chiral algebras an important role is played by the so-called Borcherds
formula which expresses the OPE of any two fields a(z) and b(z) in the image of Y
through their normal ordered product and the Borcherds products a(,)b. We will prove an
analogue of the Borcherds formula for vertex algebras.

Note that any field D(z,w,w) € QF(V) meromorphic in the first variable can be
expanded in a Taylor series in (2 — w) to an arbitrarily high order. This means that for

any integer K > 0 there exists a field Dg(z,w,w) € QF»(V) such that

K-1 . _
L (z —w)? @ D(z,w,w) K ~
D(Z,’LU,ZU) - j§:0 ]' Y] e + (Z - ?,U) DK(Z,’LU,ZU)-

To prove this, it is sufficient to show that for any D(z,w,w) € QF»(V) we have

D(z,w,w) — D(w,w,w) = (z — w)D1(z,w, w)

for some Dj(z,w,w) € QF(V). This fact is trivial. Note also that if D € QF5(V) contains

fractional powers of z (and therefore also depends on Zz ), the Taylor formula need not hold.
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Using the Taylor formula, the OPE (B§) can be rewritten in the following form
al 1
a(z)b(w, u_)) = ]2221 Z.z,wm Cj(wv ’lZ)) + DN(Z7 w, ’LZ)),

where Cj(w,w) € QF1(V) for all j, Dpy(z,w,w) € QF>(V). It is easy to see that C;
and Dy are uniquely defined by this formula.

Moreover it can be easily checked that C,(w,w) coincides with
a(w)(n)b(w, w) := Res,((z — w)"_l(a(z)b(w, w) — b(w,w)a(z)))

The analogue of the Borcherds formula provides explicit expressions for C; and Dy in

terms of @ and b:
Cj(w,w) =Y (agb) (w,w), j=1,... N, Dy(z,w,w) =: a(z)b(w,w) : . (61)

Here the normal ordered product : a(z)b(w,w) :€ QF»(V) is defined as follows. Let

a(z)4 = Z amz " a(z)- = Za(n)z_".

n<0 n>0

Then the normal ordered product of a(z) and b(w,w) is defined by
s a(2)b(w, @) := a(z) L b(w, @) + (—1)POPOp(w, ©)a(z)_.

Thus the OPE of a meromorphic field and an arbitrary field takes the form

N

a(z)b(w,w) = Z Q2w

j=1

1

(z —w)i Y (agb) (w,w)+ : a(z)b(w, w) : . (62)

Similarly, the OPE of an anti-meromorphic field and an arbitrary field is given by

N
a(Z)b(w, B) = Ziz,wﬁ Y (agyb) (w, @)+ : a(z)b(w, @) : (63)
j=1

To prove the analogue of the Borcherds formula it is sufficient to show that a(w),)b(w, w)

is mutually local with any Y(c) . Indeed, it can be easily checked that
a(w) () b(w, w)|0) =Y (a(m)b)(w,w)|0),
and hence by the uniqueness theorem we obtain

a(w) ) b(w, w) =Y (agpm)b)(w,w).
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Lemma B.7 If a € V' is meromorphic, then a(2)nb(z,2),n > 1 is mutually local with
any Y(c) .

We have to prove that
a(w)(n)b(w, w) = Res,((z — w)"_l(a(z)b(w, w) — b(w,w)a(z)))

is mutually local with any Y (c) = ¢(z,2) .

Let us consider
A= (Z1 — ZQ)n_l(a(Zl)b(ZQ, 22)6(23, 23) — b(Zg, Zg)a(zl)C(Z& 53))
and
B = (21 — Zg)n_l(C(Z;),, 53)0,(2’1)1)(22, 52) — 6(23, 23)1)(22, 22)&(21)).

We know that for some sufficiently large r € N the following identities hold:

(21 — 2z2)"a(z1)b(z9, 22) = (21 — 22)"b(22, Z2)a(z1),

(21 — 2z3)"a(z1)c(z3, Z3) = (21 — 23)" (23, Z3)a(z1).

Now let us consider (zo — 23)™ . We have

Mo
_ M _ - M-—r _ s
(2’2 2’3) Z < s >(2’2 21) (21 2’3) .
s=0
Let us multiply A with (29 — 23)™ , where M > 2r . We get
M
M
S (V) ara— s
s=0
For 0 < s <r thes-thsummand in this expressionis 0 , because (z1—22)M~%(z1—2)" ! =

’ . .
(21 — 22)" where r’ > r . Hence the expression is equal to

M

Z (J\S/[> (20— 21)M 7" (21 — 23)°A =

s=r+1

<]\j> (22_21)M—r(21 —2’3)8(21 —22)"_1(a(21)b(22, 52)0(23, 53)—1)(22, 52)0,(2’1)6(23, 53)) =

<]\j> (22_21)M—r(21 —2’3)8(21 —22)"_1(a(21)b(22, 52)0(23, 53)—1)(22, 52)6(23, 23)0,(21)) =

M
>, <M> (z2 = 2)M 7" (21 = 23)°(21 — 22)" (1), b(22, Z2)e(23, Z3)].

S
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In the same way we find that

M
M _ _ _
Gom B = Y () a2 1 = 20 laten)clin,2blen, )
s=r+1 s

From our definition of a vertex algebra we know that

. = 1 , 1 B

(22, Z2)c(23, 23) = Zj:zzz,za (o= Zg)hj—l—N R PN (22, 22, 23, 23)
1
c(z3,23)b(22, 22) ZZZS,Z2 )h N im (2= z) N Ej(22, 22, 23, 23)

for some E; from QF»(V). Substituting these expressions into the formulas above we find
that

M

M
(20— Z3)M(Q(Z2)(n)b(22, Z2))c(zs, Z3) = Res., ( Z < 5 > (20— 20)M " (21 — 23)° (21 — 22)" !
s=r+1
> e e e [0, B (22, 3,2, %))
- 22,23 (22 o Zg)hj+N 22,23 (22 o 23)h].+N ) ) ) ’ ’
and
M ~ ~ J M M—r s n—
(22 — 23)" c(23, 23)a(22) (n)b(22, 22) = Res, ( Z . (20 — 21) (21 — 23)°(21 — 22)
s=r+1
> o [0, By (o2, 72,75, %)
Z23722 (22 — Zg)h N iz3,2 (%2 — Zg)h TN a\z1), Lj\22, 22, 23, 23 )|

To prove mutual locality of a(z)(,)b(z,2) with any Y'(c) one only needs to show that one
can divide both sides of the above equations by (22 — 23)™ . In fact, it is sufficient to show
this for M =1, and then use induction on M.
To show that one can divide both sides by 29 — z3, we note that the kernel of multipli-
cation by z —w consists of expressions of the form
2\7

Z <E) D(z,zZ,w,w),

nez
where D(z,z,w,w) is a formal fractional power series with coefficients in End(V) (but
not necessarily an element of QF»(V) ). If D(z,Z,w,w) is not identically zero, then there
exists v € V' such that when this expression is applied to v, one gets a fractional power
series with coefficients in V' containing arbitrarily large negative powers of w and z. On
the other hand, applying any element of QF;(V) or QF3(V) to any v € V one always
obtains a fractional power series with powers bounded from below. This implies that one can

divide both sides of the above equations by z9 — z3. The Borcherds formulas are proven.
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Three remarks are in order here. First, it seems that there is no analogous way to
rewrite the OPE of two fields when neither of them is meromorphic or anti-meromorphic.
Consequently, the normal ordered product of two general fields is not a very useful concept.

Second, given two meromorphic fields, one can define two normal ordered products:
: a(2)b(w) : = a(z)4b(w) + (1P Op(w)a(z)_,
cb(w)a(z) : = b(w)ra(z) + (—1)PDPO) g(2)b(w)_.

Correspondingly, there are two different OPEs that one can write down. The first one is

a(z)b(w) = Zzzw( ! =Y (ag)b) (w)+ : a(2)b(w) -,

z—w)

j=1
N 1
(—1)p(a)p(b)b(w)a(z) = Zzwzm Y (a(j)b) (w)+ : a(z)b(w) :,
j=1
and the second one is

N
b(w)a(z) = Ziw,zﬁ Y (b(j)a) (2)+ : b(w)a(z) :,
j=1

N
(—1)P@r®) g ()b(w) = Ziz,w% Y (bya) (2)+ : b(w)a(2) : .

—2)J
In general, the two normal ordered products are not related in any simple way.
Third, given a meromorphic and an anti-meromorphic field, one can also define two normal

ordered products. However, in this case they always coincide up to a sign:
ca(2)b(w) = (—1)PPO) . p(w)a(z) : .
Indeed, the OPE formulas (63,53) read in this case
a(z)b(w) = (=P POp(w)a(z) =: a(2)b(w) 1,
b(w)a(z) = (~1)P PO a(2)b(w) =: b(w)a(2) : .

This fact also follows directly from the definition of the normal ordered product and the fact
that meromorphic and anti-meromorphic fields in the image of Y supercommute.

Finally, let us show that any chiral algebra is a special case of a vertex algebra with
T =0 and the image of Y consisting of meromorphic fields only. The only thing which
needs to be checked is the OPE axiom. For a chiral algebra, the OPE of any two fields in

the image of Y has the form
N

a(z)b(w) = Ziz,w

n=1
N

(_1)p(a)p(b)b(w)a(2) — Z .z

n=1

e ¥ () 0 (o)

ﬁ Y (a(n)b) (w)+ : a(z)b(w) :
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Obviously, a,)b(w) belongs to QFy(V). It is also easy to check that : a(z)b(w) : also
belongs to QF»(V). Hence, the above OPE can be rewritten as

1
(z —w)™

where C(z,w) € QF»(V). Therefore the OPE axiom is satisfied.

a(z)b(w) =i, C(z,w)

C Projectively flat connections and the fundamental group

In this appendix we establish a relation between projectively flat connections on complex
vector bundles on a connected manifold and finite representations of a twisted group algebra of
the fundamental group. This relation is a generalization of the well-known statement that flat
connections on complex vector bundles are in one-to-one correspondence with representations
of the fundamental group.

Let M be a paracompact connected C° -manifold. Let us fix a closed real 2-form B
on M. Consider a complex vector bundle £ on M with a connection V such that its

curvature Fy € Q2 ® End(E) is equal to
Fy = 2miB ® idp (64)

Such a connection is called projectively flat, and it is flat if and only if B =0. When B is
non-zero, we can consider the condition (f4) as a ”twisted” variant of the flatness condition.
We will prove that the set of such connections is in one-to-one correspondence with finite
representations of a twisted group algebra of (M) defined below.
Let us fix a point « € M. Since (E,V) is projectively flat, for any contractible closed
path c¢ starting at x the holonomy operator H.:FE, — E, isequal to t.-id, where t,.
is a nonzero complex number. By the Reduction Theorem (see [24]) (F,V) can be reduced

locally to a C* —bundle, and therefore by Stockes’ theorem
te = exp(27rz'/ ¢*B),
D

where ¢ is a map from the two dimensional disk D to M satisfying ¢(0D) = c. Since
B is areal 2-form, (E,V) in fact locally reduces to a U(1)-bundle.
The above formula for ¢. is independent of the choice of ¢ only if
exp(2mi [ ¢*B) =1 (65)
S2
for any map ¢ from the 2-dimensional sphere S? to M. Thus a vector bundle (F,V)
with curvature Fy = 27miB ® idg can exist only if the de Rham cohomology class of B

belongs to the kernel of the composition homomorphism

H*(M,R) — H*(M,U(1)) — Hom(me(M),U(1)).
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Let us consider the Hopf sequence
mo(M) — Hy(M,Z) — H3(K(G,1),Z) — 0,
where G := m(M). This sequence induces an injective map
0 — H*(K(G,1),U(1)) — H*(M,U(1)). (66)

Denote by B the image of B in H?(M,U(1)). We showed that if B does not belong
to the image of the map (B6) then the set of vector bundles (E,V) with curvature Fy =
2miB ®tdp is empty.

Assume now that B is in the image of the map (p€]). Let us fix a point = € M and for
each element g € G choose a closed path ¢, beginning at x and representing g such

that the closed path ¢ coincides with the inverse of ¢, for any g. Let ¢, ) be a

g1
loop which is the union of the loops cp, ¢y, and c¢(gp)-1 This loop is contractible. Define a

function 9 : G x G — U(1) by the rule
vl ) = explmi [ D). (67)

where ¢ is a map from the two dimensional disc D to M satisfying ¢(0D) = c(gp) It
is easy to see that this function is a 2-cocycle on the group G. Moreover, if we choose the
representatives ¢, differently, we obtain a cocycle which is cohomologous to .

The holonomy operators along the loops ¢y, cp, and cg, satisfy the following relation
Hcg . Hch = ¢(g7 h)HCgh'

This identity has the following representation-theoretic meaning. With any 2-cocycle
one can associate a twisted group algebra Cy[G], which is a vector space generated by the

elements g € G with the following multiplication law:

g-h=1v(g,h)gh

(Note that if two 2-cocycles are cohomological to each other, then the corresponding twisted
group algebras are isomorphic.) The holonomy operators H., define a representation of the
twisted group algebra Cy[G] on the vector space FE,.

An equivalent definition of the algebra Cy[G] goes as follows. Let Lp, be the loop
space of M with the well-known composition of loops (which is associative only up to
a homotopy). Let us consider the corresponding non-associative “group” algebra C[Lp,].

Then the algebra Cy[G] is a factor-algebra of C[Lp,] modulo all relations of the form
c— exp(2m’/ $*B)-1=0
D
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where ¢ is a contractible loop, and ¢ is a map from the disc D to M such that
#(0D) = c. By (pY) this definition does not depend on the choice of ¢. For any loop
¢ € Lp, we denote by r(c) the element of the twisted group algebra which is the image of
¢ with respect to this factorization.

In this way to any vector bundle (E,V) satisfying the condition (f4) we can associate
a finite-dimensional representation of the twisted group algebra. We assert that this is a
one-to-one correspondence. To show this, we describe how to construct (F,V) starting
from a representation R of the twisted group algebra.

Let Cys be the sheaf of algebras of complex-valued C° —functions on M. Let A be
a sheaf of algebras on M defined as Cy[G]®@cCp. If R is a representation of the twisted
group algebra, then the sheaf R = R ®c Cjs has a natural left module structure over the
sheaf of algebras A. Below we construct a sheaf P of right A-modules with a connection
Vp and set F =P ®4 R. This sheaf is the sheaf of sections of a complex vector bundle
on M, and Vp induces a natural connection V on it.

Let M - M be a universal covering. Denote by B the pull-back of the form B to
M. Tt is easy to check that B belongs to the image of the map (pf]) if and only if B is
an exact form. Let us choose a 1-form 7 on M such that dn = B.

Consider a sheaf of algebras A = CylG]@cCy; on M. The tautological action of G on
M can be lifted to a left action on A as follows. Let cg bealoopin M based at a fixed
point z € M and representing the element g € G, and let 7(c;) be the corresponding
element of the twisted group algebra of G (see above). Let zp be a lift of z to M. Let
¢y be a path on M which covers cg, begins at g '(x0) and ends at zg. For any point
Yy € M let us choose some path d, from y to z¢. Let ¢;, be a path from g¢g~1(y) to
y which is a composition of g_l(dy), cg, and d L. The left action of the group G on
the sheaf A is defined by the rule:

(0 1)) = expl(-2mi | n)lrleg)a® flg™v))

Cg,y

where a € Cy[G] and f isa C° —function on M.

This definition does not depend on the choice of d,, because the form B is G-

/

invariant. Nor does it depend on the choice of c¢,, because for any other loop Cq

repre-

senting g we have

exp(—2mi /~ r(c,) = exp(—2mi / 0+ 2mi /D ¢*B)r(cy) = exp(—2mi /~ nr(cy),

9,y 9y 9,y

where ¢ is a map from D to M such that ¢(0D) is the composition of ¢ and the

inverse of ¢,.
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Furthermore, we can define a connection on A by the formula
V(e® f)=a® (df +2mifn).

This connection is G -invariant. Indeed, let us regard fzgy n as a function on M and

denote it by h(y). Then we have

gV (a® f)(y) = gla ® (df + 2mifn))(y)
= exp(—2mih(y))r(cg)a ® (df (9~ "y) + 2mif (g~ y)n(g ™" y)).

On the other hand, since dh(y) = n(y) — n(g~'y) we obtain

Vg(a® f)(y) = V(r(cg)a @ exp(—2mih(y)) f(g~"y))
= exp(—2mih(y))r(cg)a ® (df (gy) — 2mif (g y)dh(y) + 2mif (g~ y)n(y))
= exp(—2mih(y))r(cg)a ® (df (9~ "y) + 2mif (g~ y)n(g ™ y)).

The definitions of the connection V and the action of the group G on A depend on
the choice of 7. However, if we take another form 7/ =7+ df then the data (A, V) and
(.Z, \ ) are isomorphic under the multiplication by the function exp(—2mif). Moreover,
this isomorphism is compatible with the action of the group G.

We define a sheaf P on M as the sheaf of invariants T*(JZ)G with a connection Vp
induced by V.

The sheaf P has a right module structure over A. It is locally free of rank 1 as an
A -module. It follows from the preceding discussion that the datum (P, Vp) is unique and
depends only on the form B.

To any representation R of the twisted group algebra of G we attach a complex vector
bundle £ = P ® 4 R with the connection V induced by Vp. It is easy to see that
the representation of the twisted group algebra on the space FE, corresponding to V is
isomorphic to R. Thus pairs (E,V) satisfying (f4) are in one-to-one correspondence with

finite-dimensional representations of Cy[G], where the cocycle 1 is defined by (B7).
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