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Abstract

It is shown that every disconnected vertex-colored plane straight line graph with no
isolated vertices can be augmented (by adding edges) into a connected plane straight line
graph such that the new edges respect the coloring and the degree of every vertex increases
by at most two. The upper bound for the increase of vertex degrees is best possible: there
are input graphs that require the addition of two new edges incident to a vertex. The
exclusion of isolated vertices is necessary: there are input graphs with isolated vertices that
cannot be augmented to a connected vertex-colored plane straight line graph.

1 Introduction

Spanning trees defined on disjoint objects in the plane are fundamental structures in computa-
tional geometry. Complex planar objects are often modeled by their boundary polygons which,
in turn, can be represented as a plane straight line graph (Pslg). Consider a (possibly dis-
connected) Pslg G = (V, E). If we add edges to G, such that we obtain a connected Pslg
G′ = (V, E∪E′), then G′ is an encompassing graph for G. Every Pslg admits an encompassing
graph, the constrained Delaunay triangulation [15] is one of the well-known examples. In this
paper, we address the problem of constructing an encompassing graph for a given Pslg such
that each vertex is incident to a bounded number of new edges. For an empty graph, with n
isolated vertices, an encompassing graph with the smallest maximum degree is a Hamiltonian
path, in which the degrees of n − 2 vertices each increase from 0 to 2. The sparsest Pslg
without isolated vertices is a perfect matching, which can be regarded as a set of disjoint line
segments in the plane. A simple construction (Figure 1a) shows that some sets of disjoint line
segments in the plane do not admit any encompassing path, and so every encompassing graph
has a vertex of degree at least three. Bose et al. [4, 5] showed that every set of disjoint segments
admits an encompassing tree of maximum degree three. Souvaine and Tóth [17] proved that
every Pslg admits an encompassing graph such that the degree of every vertex increases by at
most two.

In this paper, we impose further constraints on the encompassing graph to be constructed.
Recall that a graph is called (properly) vertex-colored if every vertex has a color and adjacent
vertices have different colors. For a vertex-colored graph, all edges of an encompassing graph
must respect the coloring. Some vertex-colored graphs do not admit an encompassing graph:
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(a) (b) (c) (d)

Figure 1: (a) Six segments that do not admit an encompassing path: in every encompassing tree,
at least one segment endpoint is incident to at least two new edges. (b) A connected
Pslg with 4 faces, including the outer face. (c) A vertex-colored Pslg with one
isolated vertex and no encompassing graph. (d) If three vertices are collinear, then
the degree of some vertices may have to increase by more than two.

For instance, no edge can be added to an empty graph with n ≥ 2 isolated vertices of the same
color. We will show that isolated vertices are essentially the only obstruction.

Theorem 1. Every vertex-colored plane straight line graph with no isolated vertices and no three
collinear vertices admits an encompassing graph such that the degree of each vertex increases by
at most two.

The assumptions about isolated vertices and collinear vertices cannot be dropped: Figure 1c-
d depict vertex-colored Pslgs that do not admit encompassing graphs; the Pslg in Figure 1c
has an isolated vertex, and the Pslg in Figure 1d has three collinear vertices. (In fact, our
algorithm works correctly under a weaker non-collinearity condition: It is enough to assume
that for every vertex v of degree one, the ray emitted by v along the supporting line of the
incident edge does not hit any vertex of G.) Our proof for Theorem 1 is constructive, and we
present a polynomial time algorithm to construct an encompassing graph. We also extend the
results of Bose et al. [4, 5] to a vertex-weighted setting for disjoint line segments.

Corollary 2. Let S be a finite set of disjoint line segments in the plane, where the two endpoints
of every segment are labeled ¬ and , respectively. Then S admits an encompassing tree such
that the degree of every vertex labeled ¬ increases by at most one, and the degree of every vertex
labeled  increases by at most two.

The bound of at most three new edges per segment is best possible. Figure 1a depicts a
set of disjoint line segments such that in every encompassing tree, there is an input segment
incident to at least three new edges.

Related previous work. One of the simplest disconnected Pslgs is a finite set of disjoint
line segments in the plane. A simple construction (Figure 1a) shows that not every finite set of
disjoint segments in the plane admits an encompassing path. But there is always a path that
encompasses Θ(log n) segments and does not intersect any other input segment [8]. Also, there
is always an encompassing graph that is Hamiltonian [9].

Bose, Houle, and Toussaint [4, 5] showed that every set of n disjoint line segments in the
plane admits an encompassing tree of maximum degree three. The upper bound on the degree is
best possible. This was generalized to arbitrary Pslgs by Souvaine and Tóth [17], they proved
that every Pslg admits an encompassing graph such that the degree of every vertex increases
by at most two, and it can be constructed in O(n log n) time.
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Hoffmann, Speckmann, and Tóth [7] showed that every set of n disjoint segments in the
plane admits a pointed binary encompassing tree, and it can be constructed in O(n log n) time.
A vertex v of a Pslg is pointed if all incident edges lie in a halfplane whose boundary contains
v; a Pslg is pointed if all its vertices are pointed.

Vertex-colored Pslgs and geometric graphs have also received considerable attention. In
these problems, the input often consists of a set R of red points and a set B of blue points in the
plane. A typical question asks whether the vertex set R∪B admits a vertex-colored Pslg with
some special properties. Every vertex-colored graph is a subgraph of the complete bipartite
geometric graph K(R, B). A pioneer result in this area says that any n red and n blue points in
the plane admit a vertex-colored plane straight line matching (for example, a minimum length
bipartite matching is a plane graph).

Akiyama and Urrutia [1] constructed a configuration of n red and n blue points in the plane
that does not admit any vertex-colored plane straight line Hamiltonian tour. Kaneko, Kano,
and Yoshimoto [14] have found a colored point configuration for which every vertex-colored
straight line Hamiltonian tour has at least n− 1 crossings. Kaneko and Kano [13] showed that
if |R| = Θ(|B|2) then all blue points can be covered by a vertex-colored plane straight line path.

Kaneko [11] proved that any set of n red and n blue points in the plane, no three of which
are collinear, admits a vertex-colored plane straight line spanning tree with maximum degree
three. Our Theorem 1 extends this result and shows that such a tree can encompass any given
vertex-colored plane matching of the 2n input points. Hurtado et al. [10] proved that every
vertex-colored plane straight line matching admits an encompassing tree. Theorem 1 extends
their result and shows that such a tree exists with maximum degree three. For other results on
geometric red-blue graphs, we refer the reader to the excellent survey by Kaneko and Kano [12].

Researchers have also studied the minimum encompassing tree (where the sum of edge
lengths is minimal) for a set of n disjoint line segments in the plane. A minimum encompassing
tree has maximum degree at most seven, which is the best possible bound, and it can be
constructed greedily [5]. A vertex-colored minimum encompassing tree for a set of n bicolored
disjoint line segments, however, may require a vertex of degree Ω(n) [3]. Moreover, if no two
edges are allowed to cross, then it is NP-hard to find the minimum bicolored encompassing
tree [2].

2 Preliminaries

Definitions. A plane straight line graph (for short, Pslg) G is a graph where the vertices are
distinct points in the Euclidean plane, and the edges are straight line segments such that any
two edges are disjoint with the possible exception of common endpoints. We denote by V (G)
and E(G), respectively, the set of vertices and edges of G. In a slight abuse of notation, we
also sometimes denote by G the planar point set covered by the vertices and edges of a Pslg
G. The connected components of its complement R2 \G are called the faces of G. Denote the
set of faces by F (G). Note that faces are open sets and, therefore, the interior int(f) of a face
f is the same as f . Nevertheless we will occasionally write int(f) to emphasize this fact.

A corner of a Pslg G is an ordered triple c = (u, v, w) of three vertices of G such that uv
and vw are edges in G, and they are consecutive in the counter-clockwise order of all edges
incident to v. The apex of a corner c = (u, v, w) is the vertex v, which we sometimes denote
by a(c) = v. We say that a corner (u, v, w) is incident to its apex v. We also say that corner
(u, v, w) is incident to a face f ∈ F (G) if the vertex v is incident to f , and f lies to the left
of both uv and vw. Hence every corner of G is incident to a unique face. We represent the
boundary ∂f of a face f as a circular list (p1, p2, . . . , pk) of vertices in the order in which the
face lies to the left of each edge pipi+1. In this representation, every triple (pi−1, pi, pi+1) is a
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corner of G incident to f . We say that a corner (u, v, w) is convex (reflex) if the angle that
rotates vu to vw clockwise about v is less than (more than) 180◦.

A plane straight line circuit is a simple polygon. Note that the boundary of a face of a
Pslg G does not necessarily form a simple polygon, see for example the large bounded face in
Figure 1b. However, the edges adjacent to a simply connected face of G form a weakly simple
polygon, that is, a closed polygonal chain such that for every ε > 0, there is an ε-perturbation
of the vertices that results in a simple polygon.

Overview of our algorithm. We compute an encompassing graph based on a recursive
scheme developed by Hurtado et al. [10] (Algorithm 1 below). This scheme constructs an
encompassing graph for a given vertex-colored Pslg, but it does not provide a bound on the
number of new edges per vertex.

The input is a Pslg G = G0 with no isolated vertex. At each step, the current graph Gi

is augmented with a new edge that connects two components. Specifically, Hurtado et al. [10]
define visibility such that the edges and vertices of Gi are opaque. An edge uv is fully visible
from a corner c if the triangle 4 = a(c)uv lies in the angular domain of c, and the interior of
4 is disjoint from Gi. They show that at each step, an edge in some component of Gi is fully
visible from a corner ci in another component. As Gi is vertex-colored, the two endpoints of
the edge have different colors, and so one of them can be connected to a(ci) such that the new
edge respects the coloring.

Algorithm 1 (Hurtado et al. [10]).

Input: a vertex-colored Pslg G.

• Let i = 0, let G0 = G, and let A0 be a component of G incident to the outer face of G.

• Repeat until Gi is connected;

1. Find a pair (ci, uivi) such that ci is a corner of Ai, uivi is an edge in G − Ai, and
uivi is fully visible from ci.

2. If a(ci) and ui have different colors then let Gi+1 = Gi + a(ci)ui, otherwise let
Gi+1 = Gi+a(ci)vi. Let Ai+1 be the component of Gi+1 containing A0. Put i := i+1.

Output Gi.

The above algorithm produces an encompassing graph, but the degree of a vertex may
increase arbitrarily. In order to establish a bound on the maximum increase of vertex degrees,
we cannot content ourselves with just any corner from which an edge in another component
is fully visible. Instead, this corner-edge pair has to be chosen very carefully. We employ a
charging scheme based on the following reformulation1 of a result by Souvaine and Tóth [17].

Theorem 3 ([17]). For every Pslg G and a designated root vertex v0 ∈ V (G), there is a set
S of corners of G, called stem corners, that satisfies the conditions listed below. Let the stem
count of a vertex v (for short, stc(v)) be the number of stem corners incident to v plus the
number of reflex corners incident to v.

(i) every face of G is incident to a unique stem corner;

(ii) for every vertex v, we have stc(v) ≤ 2;

(iii) stc(v0) ≤ 1.
1Souvaine and Tóth use the term reduced ?-assignment.
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Figure 2: Left: a set S of stem corners for a Pslg. Right: the corners in S and all reflex corners
(double arcs mark corners that are both).

Furthermore, a set of stem corners with these properties can be computed in O(n log n) time,
where n = |V (G)|.

Note that if a stem corner is reflex, it is counted twice in stc(v). Hence, if a (non-root) vertex
is incident to a reflex corner, then it is incident to at most one stem corner; if a (non-root) vertex
is incident to convex corners only, then it is incident to at most two stem corners.

We say that a corner is charged, whenever a new edge is attached to its apex. In our charging
scheme, each stem corner and each reflex corner corresponds to a possible new edge that may be
attached to the apex of the corner. This will guarantee that the degree of a vertex v increases
by at most stc(v) ≤ 2.

Whenever a new edge is attached to a vertex v of Ai, we charge this increase in the degree
of v to one of the corners incident to v. Our goal is to ensure that each corner is charged at
most once for being reflex and at most once for being stem. This will guarantee that the degree
of every vertex increases by at most two. The details of the charging scheme are discussed in
Section 4. Note that a new edge attached to a vertex v splits a corner incident to v into two
corners. If this corner is reflex, then at most one of the two new corners is reflex. If this corner
is a stem corner, then one of the two new corners will “inherit” the stem role as explained in
Section 3.

3 Maintenance of stem corners

Throughout the algorithm, we maintain a component Ai of Gi along with a set Si of stem corners
for Ai. Intuitively, we “grow” the connected component Ai by attaching other components of
Gi to it until Ai = Gi.

Preprocessing and initialization. For the sake of simplicity let us suppose that every
component of G− A0 lies in a bounded face of A0. A Pslg does not have this property if the
outer face is incident to several components. Therefore, we preprocess an input Pslg G0 as
follows.

Augment G0 with a bounding box B, that is, four vertices and four edges forming a 4-cycle
(Figure 3), with an arbitrary (proper) vertex coloring. Run the algorithm on the resulting graph
G. The component A0 of G adjacent to the outer face is B. We can choose an arbitrary convex
corner of B to be the stem corner of its interior. Note that our algorithm inserts exactly one
new edge between A0 and G0. Hence, we can remove B and this edge from the output and
obtain an encompassing graph for G0.
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B = A0

G0

Figure 3: A Pslg G0 with several components adjacent to the outer face, a bounding box B,
and a set of stem corners for B.

Maintenance of faces and stem corners. After preprocessing, every component of Gi−Ai

lies in the interior of a bounded face of Ai. At Step i of the algorithm, suppose we are given
the corner ci and the edge uivi that are to be connected. How exactly ci and uivi are chosen
does not matter at this point and will be discussed later in Section 4. In any case, an edge uivi

of Gi −Ai is fully visible from a stem corner or a reflex corner ci of Ai.
Let fi denote the face of Ai incident to ci. Let Gi∩fi denote the subgraph of Gi lying in the

interior of fi. Let Di be the component of Gi ∩ fi that contains edge uivi. The new edge, say
a(ci)ui, connects components Ai and Di of Gi. By attaching edge a(ci)ui and Di to Ai, the face
fi is possibly decomposed into several faces: the bounded faces of Di are carved out of fi (see
Figure 4). The remainder of fi (lying in the outer face of Di) is called the successor succ(fi)
of fi. The area of the successors of a face is monotonically decreasing, and their boundary is
(strictly) monotonically increasing, since a(ci)ui is a bridge of Gi+1.

ui

vi

Ai+1

vi

ci

Di

Ai

fi succ(fi)

a(ci) a(ci)

Figure 4: Left: The stem corners in Si and in S(Di), with the face fi shown gray.
Right: The stem corners in Si+1, with the face succ(fi) shown gray.

We maintain a set Si of stem corners for Ai as follows. Initially, start with an arbitrary
set S0 of stem corners for A0 = B. Then construct the set Si+1 of stem corners for Ai+1 =
Ai + a(ci)ui + Di, essentially by combining Si with an arbitrary set S(Di) of stem corners for
Di with ui as a root.

Observe that the only face of Gi+1 incident to some vertices of both Ai and Di is succ(fi).
Any other face of Gi+1 is incident to vertices of either Ai or Di only. Let all these faces keep
their stem corner. It remains to choose a stem corner for face succ(fi).
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If the stem corner of fi in Si is not ci, then let it also be the stem corner of succ(fi) in Si+1.
Otherwise, ci is the stem corner of fi in Si. The new edge a(ci)ui splits ci into two new corners,
one on each side of a(ci)ui. Let the one to the right of this edge be the stem corner of succ(fi)
in Si+1. It is easy to verify that the set of stem corners for Ai+1 obtained in this way satisfies
the conditions listed in Theorem 3.

By choosing ui to be the root for the set of stem corners for Di, we account for incrementing
the degree of ui by one. Accounting for the increase of degree at a(ci) turns out to be more
involved and is the topic of the next section. The following properties of the set of stem corners
should be kept in mind.

Proposition 4.

• If the stem corner of fi is not ci, then succ(fi) has the same stem corner as fi.

• If ci is the stem corner of fi, then the new edge a(ci)ui splits ci into two corners, and the
one to the right of a(ci)ui is the stem corner of succ(fi). 2

4 Charging edges to corners

In this section, we show how to choose a suitable corner-edge pair (ci, uivi) in Step i of Algorith 1.
In particular, ci should be a stem or reflex corner of Ai from which edge uivi is fully visible.
Furthermore, as the new edge—either a(ci)ui or a(ci)vi—has to be charged to ci, we must
guarantee that every stem corner plays the role of ci at most once, and similarly every reflex
corner plays the role of ci at most once. (Recall that the increase in degree at ui or vi is
accounted for by making this vertex the root in the set of stem corners for the newly connected
component.)

The new edge splits corner ci into two new corners, so formally the corner ci is destroyed.
However, for a stem corner ci exactly one of these new corners becomes a stem corner and for
a reflex corner ci at most one of the new corners is a reflex corner. In terms of the charging
scheme, it is natural to identify the new stem and/or reflex corner with the stem and/or reflex
corner ci. Using this identification, we refrain from introducing a successor notation for corners.

Shortest paths in a face. Our approach builds on shortest paths in a simply connected
face of a Pslg, described below. Shortest paths within a simple polygon are well-understood,
cf. [6, 16]. In particular, any interior vertex of a shortest path is an apex of a reflex corner of
the polygon. Also, two shortest paths starting from the same point do not cross, although their
initial portions may overlap.

The faces in our graph Gi are weakly simple polygons that are not simple in general. How-
ever, if we specify not only a vertex of the face as a starting point for a shortest path but specify
a corner of the face instead, then these shortest paths behave exactly the same as in the case
of a simple polygon.

In Step i of the algorithm, we have a Pslg Gi and a component Ai incident to the outer
face of Gi. If Gi is not connected, then every component of Gi − Ai lies in some bounded face
of Ai. Let f be a face of Ai, denote by s the stem corner of f in Si, and denote by Gi ∩ f
the subgraph of Gi lying in the interior of f . For a point q ∈ int(f), we denote by pi(s, q) the
shortest path between s and q that does not cross ∂f .

Accessible edges. Several edges of Gi −Ai may be fully visible from a corner ci of Ai. The
choice of this corner is not arbitrary, since we want to ensure that if a new edge is charged to
ci, then ci will not be charged again later. In our algorithm, we always choose the corner ci
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and the edge uivi such that a(ci)ui or a(ci)vi lies on the shortest path from the stem corner to
ui or vi, respectively. Furthermore, we will always choose ci such that the shortest path from
the stem corner to ci does not intersect Gi ∩ f . Intuitively, this means that we give priority to
corners that are closer to the stem (measured by the shortest distance within the face).

Let e be an edge of Gi−Ai. Let f denote the face of Ai containing e, and let s be the stem
corner of f in Si. Edge e is accessible from a corner c of f , if

(i) the edge e is fully visible from c,

(ii) the shortest path pi(s, c) is disjoint from Gi −Ai,

(iii) for an endpoint q of e, the shortest path pi(s, q) is incident to c.

The following observation is immediate.

Proposition 5. Consider an edge e of Gi−Ai, and let s denote the stem corner of the face of
Ai that contains e. Then e is accessible from s if and only if e is fully visible from s. 2

We show next that some edge of Gi −Ai is always accessible unless Gi is connected.

Lemma 6. Unless Gi = Ai, some edge e of Gi −Ai is accessible from some corner of the face
of Ai that contains e.

Proof. Since Gi 6= Ai, there is some bounded face f of Ai that contains some component of Gi,
that is, Gi ∩ int(f) 6= ∅.

From the apex of every reflex corner of Gi ∩ f shoot a ray collinear to one of the incident
edges of Gi ∩ f . In this way the reflex angle is decomposed into two convex angles. Draw a
directed line segment (called extension) along each ray successively from the apex until it hits
∂f , an edge of Gi ∩ f , or a previous extension (Figure 5). The graph Gi ∩ f and the extensions
jointly decompose f into regions. Since no three vertices are collinear, the stem corner s of f is
incident to a unique region, which we denote by R.

s

f

s

f

R

u

v

T (uv)

γ

c

Figure 5: Left: a face f ∈ F (Gi) and the components Gi ∩ Fi lying in fi. Right: the decom-
position of a face f , the region R incident to the stem corner s of f , a curve γ along
∂R (slightly offset to increase readability), a complete edge uv along γ ⊂ ∂R, and the
corresponding pseudo-triangle T (uv).

We show that ∂R contains an entire edge of Gi∩f . The boundary ∂R is composed of parts of
∂f , parts of Gi∩f , and parts of some extensions. Consider a connected component γ of ∂R−∂f :
γ is a polygonal path whose endpoints lie on ∂f . If we traverse γ in counterclockwise orientation
with respect to R, the first and the last edge of γ are extensions directed towards the endpoints

8



of γ. Let u ∈ γ be the first point along γ incident to an edge directed counterclockwise. Point u
is a vertex of Gi which emits an extension in counterclockwise direction. It is incident to some
edge e = uv of Gi ∩ f that lies on the boundary of R.

By construction, all reflex corners of R are located at reflex corners of f . It follows that a
shortest path between any two points in R with respect to R is also a shortest path with respect
to f . In particular, the shortest path (with respect to f) between s and any point along γ lies
in R.

Let T (uv) denote the simple2 polygon enclosed by uv and the two shortest paths from s to
u and v, respectively (Figure 5). It is known [16] that T (uv) is a pseudo-triangle, that is, a
simple polygon with exactly three convex corners. Two convex corners of T (uv) are at u and
v, a third convex corner is at a stem or reflex corner of f , and all other corners of T (uv) are at
reflex corners of f .

Consider an arbitrary triangulation of T (uv). Let c be the corner of f where the third vertex
of the triangle incident to e (other than u and v) is located. Then c is a stem or reflex corner
of f , the edge e is fully visible from c, and c is on the shortest path from s to at least one of
u or v. Since both u and v lie in R, the path pi(s, c) is disjoint from Gi − Ai. Altogether, it
follows that the edge uv is accessible from c. 2

Extensible and safe corners. The following definitions provide some kind of depth order
for the corners of f with respect to the stem corner. A corner c of f is extensible if and only
if there exists some edge e of Gi −Ai that is accessible from c. If a corner is not extensible we
refer to it as non-extensible. A corner c of f is safe if and only if all corners other than c on
the shortest path pi(s, c) from the stem corner s of f to c are non-extensible. A corner that is
both safe and (non-)extensible is referred to as safely (non-)extensible.

Choosing corner and edge. In Step i of the algorithm, we pick an (arbitrary) corner ci of
some face fi that is safely extensible. By Lemma 6 there is an extensible corner and, therefore,
there is also a safely extensible corner in Gi. For instance, if the stem corner s of fi is extensible,
then ci = s. It remains to pick an edge uivi accessible from ci. We distinguish two cases.

Case 1: ci = s = (a0, a1, a2) is the stem corner of fi. Let uivi be the edge accessible from
s for which the angle 6 (a2, a1, ui) is minimal.

Case 2: ci 6= s is a reflex corner of fi. Consider the set U of all endpoints q of edges acces-
sible from ci for which the shortest path pi(s, q) passes through ci. Let ui denote a point
from U for which pi(s, ui) makes an angle closest to 180◦ at ci. Choose vi correspondingly
such that uivi is an edge that is accessible from ci.

This finishes the description of our algorithm. The following proposition justifies the term
“safe” by establishing some kind of life cycle of a corner that will turn out to be essential for
our charging scheme.

Proposition 7. Suppose that at begin of Step i of the algorithm, s is the stem corner of a face
f of Ai, a corner c of f is safely non-extensible, and pi(s, c) is disjoint from Gi − Ai. Then c
remains safely non-extensible in the remainder of the algorithm.

Proof. Consider a corner c that is safely non-extensible at begin of Step i of the algorithm, and
pi(s, c) is disjoint from Gi − Ai. We prove by induction on |pi(s, c)|, the number of vertices of
path pi(s, c), that c remains safely non-extensible and pi(s, c) = pj(s, c), for all j ≥ i.

2Strictly speaking, the shortest paths pi(s, u) and pi(s, v) may share an initial portion (Figure 5). We do not
consider such a common prefix to be part of T (uv) in order to obtain a simple polygon.
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The base case is |pi(s, c)| = 1, that is, s = c. By Proposition 5, s is non-extensible if and
only if no edge of Gi \ Ai is fully visible from s. If no edge is fully visible from a corner, this
property continues to hold throughout the algorithm, since A` increases with ` and visibility
only decreases when the graph is augmented with new edges. Therefore s remains safely non-
extensible, as claimed, and obviously the trivial path pi(s, s) cannot change.

Assume that pi(s, c) = (s = d1, . . . , dk = c), for some k > 1, and consider some corner d`,
1 ≤ ` < k. Since c is safe, d` is safely non-extensible at begin of Step i and, thus, by the
inductive hypothesis d` remains safely non-extensible and pj(s, d`) = pi(s, d`), for all j ≥ i.

According to the definition of accessibility, there are three possible reasons why c is non-
extensible at begin of Step i:

(1) either no edge of Gi −Ai is fully visible from c;

(2) or pi(s, c) crosses some edge of Gi −Ai;

(3) or pi(s, c) is disjoint from Gi − Ai but for every edge uv of Gi − Ai fully visible from c,
neither pi(s, u) nor pi(s, v) passes through c.

As argued for the base case, once (1) holds, it continues to hold throughout the algorithm.
Otherwise—as (2) does not hold at begin of Step i by assumption—it is enough to show that
(3) continues to hold throughout the algorithm.

Let j > i be the smallest index such that at begin of Step j of the algorithm either (3) does
not hold or pj(s, c) 6= pi(s, c). Clearly, c is non-extensible between Step i and Step (j − 1). In
particular, corner c still exists at begin of Step j.

Suppose that pj(s, c) 6= pj−1(s, c). Since pj(s, d`) = pi(s, d`), for all 1 ≤ ` < k, the only way
to change pj−1(s, c) is to insert an edge that crosses a(dk−1)a(c). In Step j of the algorithm,
ujvj is accessible from cj , and so pj(s, uj) or pj(s, vj) passes through cj . Suppose w.l.o.g. that
pj(s, uj) passes through cj . Note that a(cj)uj is the last edge of the path pj(s, uj). If edge
a(cj)uj is inserted in Step j, then it cannot cross a(dk−1)a(c) as two shortest paths from the
same source do not cross each other. Now suppose that edge a(cj)vj is inserted in Step j. Since
ujvj is accessible from cj , it is fully visible from cj . In particular, the interior of the triangle
a(cj)ujvj is disjoint from Gj . Therefore, any path that crosses a(cj)vj must also cross ujvj or
a(cj)uj . We already observed that pj(s, c) does not cross a(cj)uj , so pj(s, c) crosses ujvj . We
have assumed that pj−1(s, c) = pi(s, c). Since Gi −Ai is monotonically decreasing, this implies
that pi(s, c) intersects an edge of Gi − Ai at Step i already, contrary to our assumption that
pi(s, c) is disjoint from Gi −Ai. Therefore pj(s, c) = pj−1(s, c) = pi(s, c).

It remains to consider the case that (3) does not hold at begin of Step j, that is, there is
an edge uv of Gj − Aj that is fully visible from c and, say, c lies on the path pj(s, u). By the
uniqueness of shortest paths it follows pj(s, u) = (s = d1, . . . , dk = c, u). As pj(s, c) = pi(s, c)
and visibility is monotonically decreasing during the algorithm, edge uv is fully visible from c
in Step i already. Furthermore, we claim that c also appears along pi(s, u) at begin of Step i
already. Indeed, given that c appears as a reflex corner along (s = d1, . . . , dk = c, u) at Step j
and that the prefix (s = d1, . . . , dk = c) of this path forms pi(s, c) at both Step i and Step j,
we conclude that the pseudo-triangle T (c, u) (at both steps) degenerates into the line segment
a(c)u. Therefore our claim holds and so c is extensible at begin of Step i, contrary to our
assumption. We may thus conclude that (3) continues to hold throughout the algorithm. 2

Note that it is in general not true that every non-extensible corner remains non-extensible,
because any change along the shortest path to the stem corner may affect extensibility.
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Charging scheme. We will now argue that throughout the algorithm every corner is charged
at most once for being reflex and at most once for being a stem corner of some face. As far as
being a stem corner is concerned, this is not hard to see.

Proposition 8. Every stem corner is charged at most once for being stem.

Proof. Suppose that corner ci, which is charged in Step i of the algorithm, is a stem corner.
Denote by fi the face of Ai incident to ci. The insertion of a(ci)ui or a(ci)vi splits ci into two
corners. By Proposition 4, the corner c′i to the right of a(ci)ui or a(ci)vi, respectively, is the
stem corner of succ(fi). By choice of uivi (as the first edge accessible from c that is swept),
no edge inside succ(fi) is fully visible from c′i. Since visibility can only decrease under edge
insertions, no edge of another component becomes fully visible and, thus, accessible from c′i in
the successors of fi. In particular, c′i remains the stem corner of these faces in the remainder of
the algorithm. 2

It remains to consider the case that ci 6= s is a reflex corner of fi. The following proposition
asserts the correctness of our charging scheme and thereby completes the proof of Theorem 1.

Proposition 9. Every reflex corner is charged at most once for being reflex.

Proof. Suppose that corner ci, charged in Step i of the algorithm, is a reflex corner and not a
stem corner. Denote by fi the face of Ai incident to ci, and let s be the stem corner of fi. By
Proposition 8, s remains the stem corner of fi and all its successors in the remainder of the
algorithm.

If ci is split into two convex corners in Step i, then there is nothing to show. Hence suppose
that ci is split into two corners, one of which, denoted c̃i, is reflex. We distinguish two cases.

First suppose that pi(s, ci) = pi+1(s, c̃i), as shown in Figure 6b. Then by the choice of
uivi (as the “most straight” extension option for ci), all other edges in Gi possibly accessible
from ci lie outside the angular wedge spanned by c̃i. Therefore, c̃i is non-extensible in Gi+1. As
pi(s, ci) = pi+1(s, c̃i), the corner c̃i is safe and pi+1(s, c̃i) does not cross any edge of Gi+1−Ai+1.
Thus by Proposition 7 it follows that c̃i remains safely non-extensible for the remainder of the
algorithm, and so no further edge will be attached to it.

ci

s

ui

vi

(a) Before Step i.

c̃i

s

ui

vi

(b) pi(s, ci) = pi+1(s, c̃i).

c̃i

s

ui

vi

(c) pi(s, ci) 6= pi+1(s, c̃i).

Figure 6: Possible positions of c̃i.

Otherwise, pi(s, ci) 6= pi+1(s, c̃i), as shown in Figure 6c. In this case, the new edge must be
a(ci)vi and ci does not lie on pi(s, vi). Since uivi is accessible from ci at the begin of Step i, ci lies
on pi(s, ui) and the interior of the triangle a(ci)uivi is disjoint from Gi. Moreover, uivia(ci)—
the corner opposite to ci in this triangle—is convex and is not a stem corner by Proposition 4
(and, independently, Proposition 8). Thus c̃i—although being reflex—behaves essentially like a
convex corner of f . In particular, it will never appear on any shortest path from s to any corner
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of Gj −Aj , j > i. Therefore, no further edge will be attached to c̃i during the remainder of the
algorithm. 2

5 Weighted disjoint line segments

We prove Corollary 2 by slightly modifying our algorithm, as described below.
Corollary 2. Let M be a plane straight line matching, where the two endpoints of every edge
are labeled ¬ and , respectively. Then M admits an encompassing tree such that the degree
of every vertex labeled ¬ increases by at most one, and the degree of every vertex labeled 

increases by at most two.

Proof. Consider a plane straight line matching M , where the two endpoints of every edge are
labeled ¬ and , respectively. Recall that during initialization our algorithm adds a bounding
rectangle B, and sets G0 = M ∪B, and A0 = B. Every component of G0−A0 is a line segment
lying in the interior of B. In Step i, our algorithm finds a corner ci of Ai from which an edge
uivi in a component of Gi−Ai is fully visible. Note that uivi is a line segment with one endpoint
labeled ¬ and one endpoint labeled . Suppose without loss of generality that ui is labeled ¬

and vi is labeled . We modify the definition of Ai+1 such that we set Gi+1 = Gi + a(ci)vi.
Then Ai+1 has no new faces, and two new reflex corners at a(ui) and at a(vi), respectively. It
follows from the charging scheme that the degree of every vertex ¬ increases by at most one,
and the degree of every vertex  increases by at most two. 2
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[9] M. Hoffmann and Cs. D. Tóth, Segment endpoint visibility graphs are Hamiltonian, Com-
put. Geom. Theory Appl. 26 (2003), 47–68.

[10] F. Hurtado, M. Kano, D. Rappaport, and Cs. D. Tóth, Encompassing colored crossing-free
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