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Abstract: In this paper first, we give a brief introduction about integer
distance graphs. An integer distance graph is a graph G(Z,D) with the set of
integers as vertex set and an edge joining two vertices u and v if and only if
|u − v| ∈ D where D is a subset of the positive integers. If D is a subset of
P then we call G(Z,D) a prime distance graph. Second, we obtain a partial
solution to a general open problem of characterizing a class of prime distance
graphs. Third, we compute the vertex arboricity of certain prime distance
graphs. Fourth, we give a brief review regarding circulant graphs and highlight
its importance in the computation of chromatic number of distance graphs
with appropriate references. Fifth, we introduce the notion of pseudochromatic
coloring and obtain certain results concerning circulant graphs and distance
graphs.
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1. Introduction

Let G be a graph. A vertex coloring of G is an assignment of colors to its
vertices so that no two adjacent vertices receive the same color. The chromatic
number χ(G) is the minimum number of colors needed to color G. An equivalent
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definition of the chromatic number is the minimum integer k such that there is
a partition of the vertex set of a given graph into k sets so that the subgraph
induced by each set is an independent set.

The distance graph, first introduced by Eggleton, Erdos and Skilton [25],
is motivated by the well-known Hadwiger-Nelson problem which asks for the
minimum number of colors needed to color all points of the plane such that
points at unit distances receive different colors. Motivated by the plane col-
oring problem, one can consider the analogue to the one-dimensional case by
investigating the chromatic numbers of distance graphs on the real line R and
the integer set Z.

If D is a subset of the set of positive integers, then the integer distance
graph G(Z,D) is defined to be the graph with vertex set Z, where two vertices
u and v are adjacent if and only if |u − v| ∈ D. A particularly interesting
problem is determining the chromatic number of G(Z,D) for a given set D.
The chromatic number of integer distance graphs, denoted χ(G(Z,D)) has been
studied extensively in [7], [49], [50], [51], [63] for different families of distance
sets D. Thus, D is the set of forbidden distances with respect to coloring the
integers on the real line.

In fact much work has been done on this problem in [6], [8], [9], [25], [26],
[34], [35], [37], [38], [39], [40], [41], [42], [46], [49], [50] , [51].

2. Prime Distance Graphs

Let P denote the set of all primes, and let D ⊆ P be a prime set. As D
does not contain any multiples of 4, the modular 4 function on integers gives a
proper coloring for G(Z,D). Eggleton et al. in [22], [23], [24], [25], [26] proved
1) χ(G(Z,P )) = 4. 2) For 3-element prime sets D, χ(G(Z,D)) = 4 if and
only if D = {2, 3, 5}. 3) If 2 6∈ D, then χ(G(Z,D)) =2. 4) If 3 6∈ D, then
χ(G(Z,D)) ≤ 3, and equality holds if and only if 2 ∈ D and |D| ≥ 2. Hence,
to study the chromatic number of a distance graph generated by a prime set
it bounds to finding the chromatic number of D with {2, 3} ∈ D, for which
χ(G(Z,D)) is either 3 or 4. In the case of former it is usually called a class 3
set and in the latter, it is called a class 4 set. Eggleton et al. also proved in [22],
[23], [24], [25], [26] that 5) if D ⊆ P and D = {2, 3, p, p + 2} with p and p + 2
as twin primes, then D is a class 4 set. Eggleton et al. [24] gave the following
conjecture:

Conjecture 2.1. Let D be a subset of the set P ({2, 3}) ⊆ D) of primes.
Then χ(D) = 4 if and only if D contains a twin of primes.
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It is easy to see that χ(G(Z,D)) = 4 if D contains a twin of primes. The
second part of this conjecture is disproved in [23] and in [52] by counterexamples.
M. Voigt and H. Walther proved the Theorem 2.1 in [50]. For more on the
computation of chromatic number of prime distance graphs refer [54], [55], [56],
[57], [58], [59], [60], and [61]. Moreover, Voigt and Walther [50], [51] completely
characterized all 4-element class 4 prime sets as follows.

Theorem 2.1. Let D = {2, 3, p1, p2} be a set of primes with p1 ≥ 7
and p2 > p1 + 2. Then χ(G(Z,D)) = 4 holds if and only if (p1, p2) ∈
{(11, 19), (11, 23), (11, 37), (11, 41), (17, 29), (23, 31), (23, 41), (29, 37)}.

For a set D of positive integers, a sequence S of non-negative integers is
called aD-sequence if |x−y| 6∈ D for any x, y ∈ S. Let S(n) = |S∩{0, 1, 2, ..., n−

1}|. The density of S, denoted δ(S), is defined by δ(S) = lim
n→∞

s(n)
n .

The parameter of interest is the density of D, µ(D), defined by

µ(D) = sup{δ(S) : S is a D-sequence}.

In 1975, Cantor and Gordon [5] proved the existence of µ(D) for any D. The
exact values of µ(D) for several families of sets D were studied by Haralambis
[30]. The parameter µ(D) is also closely related to the channel assignment
problem (or T -coloring). Griggs and Liu [29] indicated that µ(D) is equivalent
to the asymptotic ratio of T -colorings for cliques and gave a different proof for
the existence of µ(D), using directed graphs.

For a real number x, let ‖x‖ denote the distance from x to the nearest
integer, i.e.,

‖x‖ = min{x− ⌊x⌋, ⌈x⌉ − x}.

For a set D ⊂ R and t ∈ R, let ‖tD‖ = inf{‖tx‖ : x ∈ D}, and define
κ(D) = sup{‖tD‖ : t ∈ R}. The parameter κ(D) is studied in the Diophantine
approximations by Wills [53], Y.G. Chen [10], [11], [12], the View Obstruction
Problems by the authors in [17], [18], [19] and Cusick and Pomerance [20], and
problems concerning flows and colorings of graphs by Bienia et al. [4].

Now we consider the problem of characterizing distance sets with cardinality
5. That is, if D = {2, 3, p1, p2, p3} ⊆ P then what is χ(G(Z,D))?

Theorem 2.2. Let D = {2, 3, p1, p2, p3} ⊆ P with p1 ≡ 1 or 2(mod 3),
p2 = p1 + 10 and p3 > p2. Then χ(G(Z,D)) = 3.

Proof. For suitable primes p1, p2, and p3 we proceed as follows: For a set
D, let α, r ≤ 2maxD be positive integers, with gcd(α, r) = 1. Let |αD|r =
min{|αd|r : d ∈ D}, where |x|r ≡ x(mod r) and η1(D) = max{|αD|r|r : 1 ≤
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r, α ≤ 2maxD, gcd(α, r) = 1}. If p1 ≡ 1 (mod 3), then let m = 2p1 + 10.
Clearly m ≡ 12 (mod 6). So m/3 ≡ 4(mod 2). Hence it is sufficient to find
α such that for all d ∈ D, k1 ≤ |αd|m ≤ 2k1 where k1 ≡ 4(mod 2)....(1) Let
B ≡ [k1/2, k1/2 + ⌊k1/6⌋]. Then |2x1|m and |3x1|m satisfy (1), for any x1 ∈ B.
It is easy to note that k1/2, (k1/2) + 1 ∈ B. Now let α = (k1/2) + 1 or k1/2.
Then it follows that |αp1|m satisfies (1). Next if p1 ≡ 2 (mod 3), then let
m = 2p1 + 10. Clearly m = 14 (mod 6). So ⌈m/3⌉ ≡ 5 (mod 2). Hence it is
sufficient to find α such that k1 ≤ |αd|m ≤ 2k1−1, where k1 ≡ 5 (mod 2). ...(2).
Let B = [⌈k1/2⌉, ⌈k1/2⌉+ ⌊k2/3⌋], where k1 = 2k2+5. Then |2x1|m and |3x1|m
satisfy (2), for any x ∈ B. Now let α = ⌈k1/2⌉ or ⌈k1/2⌉ + 1. Then it follows
that |αp1|m satisfies (2). It is easy to see that η1(D) ≥ 1/3. Chang et al. in [7]
and Zhu in [64] have shown that 1

µ(D) ≤ χ(G(Z,D)) ≤ ⌈ 1
κ(D)⌉. When D is a

finite set then it follows immediately that κ(D) = η1(D). So χ(G(Z,D)) ≤ 3.
It is a simple exercise to exhibit a chromatic 3-coloring for G(Z,D).

As a generalization of Theorem 2.2 one can have the following result.

Theorem 2.3. Let D = {2, 3} ∪ {pi : pi ∈ P , with p1 ≡ 1 or 2(mod 3),
p2 = p1 + 10 and pi > p2 for i = 3, 4, ...}. Then χ(G(Z,D)) = 3.

Proof. On similar lines as in Theorem 2.2, as D = {2, 3, p1, p2, p3} of The-
orem 2.2 is a subset of D = {2, 3} ∪ {pi : pi ∈ P , with p1 ≡ 1 or 2(mod 3),
p2 = p1 + 10 and pi > p2 for i = 3, 4, ...} and χ is a monotonically increasing
function.

Open Problem 2.1. Characterize completely the class 3 and Class 4 sets
D of any cardinality.

It is a well known conjecture that there are arbitrarily long arithmetic pro-
gressions of prime numbers. The conjecture is best described as ”classical”. In
Diekson’s History it is stated that around 1770 Lagrange and Waring investi-
gated how large the common difference of an arithmetic progression of L primes
must be and it is hard to imagine that they did not at least wonder whether
their results were sharp for all L.

It is not surprising that the conjecture should have been made, since a simple
heuristic based on the prime number theorem would suggest that there are
≫ N2

logkN
k-tuples of primes p1, p2, ..., pk in arithmetic progression, each pi being

at mostN . Hardy and Littlewood [31] in their famous paper of 1923, advanced a
very general conjecture which, as a special case, contains the hypothesis that the

number of such k-term progressions is symtotically CkN
2

logkN
for a certain explicit

numerical factor Ck > 0. Green and Tao in [2] do not come close to establishing

this conjecture but instead gave a lower bound (γ(k)+o(1)) N2

logkN
for some very
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small γ(k) > 0.

The first theoretical progress on these conjectures was made by Van der
corput [48] who in 1939, used Vinogradov’s method of prime number sums to
establish the case k = 3. That is, there are infinitely many triplets of primes in
arithmetic progression. However, the question of longer arithmetic progression
seems to have remained completely open even for k = 4. On the other hand, it
has been known for some time that better results can be obtained if one replaces
the primes with a slightly larger set of at most primes. The most impressive such
result is due to Heath-Brown [32]. He showed that there are infinitely many 4-
term progressions consisting of three primes and a member which is either prime
or a product of two primes.The problem of finding long arithmetic progressions
in the primes has also attracted the interest of computational mathematicians.
According to Green-Tao [2] the longest known arithmetic progressions of primes
is of length 23, and was found in 2004 by Markus Fruid, Paul underwood and
Paul Jobling. Finally Green and Tao [2] settled the conjecture concluding:
”The prime numbers contain infinitely many arithmetic progressions of length
k for all k.”

In view of the above discussion on the arithmetic progression of primes it is
easy to deduce that there are infinitely many finite (or infinite) prime distance
sets with chromatic number 3 or 4.

3. Vertex Arboricity of Prime Distance Graphs

A k-coloring of a graph G is a mapping f from V (G) to {1, 2, ..., k}. With
respect to a given k-coloring, let Vi denote the set of all vertices ofG colored with
i, and 〈Vi〉 denotes the subgraph induced by 〈Vi〉 in G. If 〈Vi〉 is an independent
set for every 1 ≤ i ≤ k, then f is called a proper k-coloring. The chromatic
number of a graph G is the minimum number of k-color for which G has a proper
k-coloring. If 〈Vi〉 induces a subgraph whose connected components are paths,
then f is called a path k-coloring. The vertex arboricity of a graph G, denoted
by a(G) is the minimum number of k for which G has a path k-coloring.For
any D ⊆ P where the set P is the set of all prime numbers, we call G(Z,D) a
prime distance graph. If |D| ≤ 1 then a(G(Z,D)) = 1 since the graph consists
of paths only. Suppose that |D| = 2 and let D = {p, q} ⊂ P with p < q. Now
set g(0) = g(1) = ... = g(q − 1) = 1, g(q) = g(q + 1) = ... = g(2q − 1) = 2, and
g(x + 2q) = g(x) for all x ∈ Z. Then g is a path coloring and a(G(Z,D)) ≤ 2.
As we find a cycle 0, p, 2p, ..., qp, (p − 1)q, ..., 2q, q, 0 in this graph, we deduce
that a(G(Z,D)) = 2. If D is a finite set, then G(Z,D) is 2|D|-regular graph
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and a(G(Z,D)) ≤ |D|.

Theorem 3.1. For any prime p and k > 1, let D∗ = {p+1, p+2, ..., p+ k}
be a set of integers. Then a(G(Z,D∗)) ≤ ⌈(p+ k)/(p + 3)⌉ + 1.

Proof. Let s = ⌈(p + k)/(p + 3)⌉, with g(y(p + 3) + j) = y for 0 ≤ y ≤ s
and 0 ≤ j ≤ p+ 2, and g((s + 1)(p + 3) + x) = g(x) for all n ∈ Z. Then g is a
path coloring. Hence a(G(Z,D∗)) ≤ s+ 1 = ⌈(p + k)/(p + 3)⌉+ 1.

Theorem 3.2. If D = {p, 2p, ..., np, q} where p, q are primes then

a(G(Z,D)) = ⌈(n+ 1)/2⌉ = ⌈|D|/2⌉.

Proof. Since D1 = {p, 2p, ..., np} ⊂ D and a(G(Z,D1)) = ⌈(n + 1)/2⌉,
a(G(Z,D))≥ ⌈(n + 1)/2⌉ =⌈|D|/2⌉. To prove the converse, suppose that n
is odd. A coloring g of G(Z,D) is called s-admissible if g(v) 6= g(v + s) for
all v ∈ Z, and S-admissible if it is s-admissible for all s ∈ S. A coloring
g is called y-periodic if g(v) = g(v + y) for all v ∈ Z. We establish that
a(G(Z,D)) ≤ ⌈|D|/2⌉ by building a (n + 1)p-periodic path coloring. As q 6= 0
(mod (n+1)p) we can presume without loss of generality that 0 < q < (n+1)p.
The periodic coloring defined by unlimited repetition of the below mentioned
coloring section of length (n+1)p is z-admissible for z with 2p ≤ z ≤ np, since
vertices of same color are of distance less than 2p or greater than np.

T(n+1)p = (0)2p(1)2p...(
n − 3

2
)2p(

n− 1

2
)2p (1)

= (0, ...0)(1, ..., 1), ...(
n − 1

2
, ...,

n− 1

2
) (2)

Hence this coloring is {2p, ..., np}-admissible as well as q-admissible if 2p ≤
q ≤ np. Now we have to consider the cases that 0 < q < 2p and np < q <
(n + 1)p. Since any (n + 1)p-periodic q-admissible coloring with 0 < q < 2p is
also admissible for q

′

= (n + 1)p − q with np < q′ < (n + 1)p, it only remains
to consider the case that 0 < q < 2p. Let 2p = wq + w1, w ∈ N,w1 ∈ Z with
0 ≤ w1 < q. Defining coloring sections of length 2p by

T
(g,g+2)
2p (q) =

{

(g)q(g + 2)q...(g)q(g + 2)q(g)w1 , if w is even;
(g)q(g + 2)q...(g)q(g + 2)q(g + 2)w1 , if w is odd.

Now build a periodic coloring of G(Z,D) by fixing together (n + 1)/2 of
such sections as given below.
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T(n+1)p

= T
(0,2)
2p (q)...T

(f,f+2)
2p (q)...T

((n−3)/2,0)
2p (q)T

((n−1)/2,1)
2p (q). (3)

This coloring is {2p, 3p, , .., np}-admissible as the vertices v, v+2p, ..., v+np
are colored differently for all v ∈ Z. The periodic coloring is also q-admissible

as the vertices of same color in a section T
(f,f+2)
2p (q) are of distance unequal to

q and vertices of same color in different sections are of distance greater than
y as n ≥ 2. So in this coloring of G(Z,D) if v1, v2 are assigned same color,
then v1 and v2 are not adjacent or |v1 − v2| = p. So the adjacent vertices of v1
are not at most two vertices v1 − p, v1 + p with the same color of v1. However
v1 − p, v1 + p cannot have the same color with v1 at the same time. So this
coloring is a path coloring of G(Z,D) and a(G(Z,D)) ≤ ⌈|D|/2⌉.

4. Circulant Graphs

The analysis and design of interconnection networks is motivated by recent
developments in technologies such as optical fibre and by progress in parallel
and distributed computing. Engineers and scientists often use graphs to model
the topological structure of an interconnection network. Switches, processing
elements or memory modules correspond to the vertices of the graph while
communication links corresponds to the edges. Graph theory is an efficient
tool for solutions to problems often encountered in networks. Circulant graphs
are used to model interconnection networks.

The design of an interconnection network should conform to the basic fea-
tures such as small and fixed degree of each node in the network, small transmis-
sion cost, maximum fault tolerance, easy routing algorithms, embeddability of
other topologies,symmetry, extendability, and efficient layout of VLSI circuits.
Due to the cost and engineering limitations, the maximum node degree is a
primary constraint in network design. Most of the popular network topologies
have the drawback that the size of the network cannot be increased incremen-
tally. Instead, the size is limited to a multiple of some factor and the num-
ber of connections to each node is proportional to the growth of the network.
However the circulant graphs, a family of cayley graphs, allow for incremental
extendability, with the number of connections to each node and the diameter
remaining constant in the networks they model. Cayley graphs are often sug-
gested as models for interconnection networks because of their high symmetry.
Since these graphs are vertex transitive they allow for the development of ef-
ficient routing algorithms. in the case of prime number of vertices, circulants
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are the only vertex transitive graphs. For these reasons, circulant graphs have
received a lot of attention.In recent years research regarding circulant graphs
has expanded to areas such as recognition, hardness, spectral properties, iso-
morphism, enumeration, hamiltonicity and so on. It has been conjectured that
every connected cayley graph on an abelian group admits hamiltonian decom-
position. The circulant graphs with two chord lengths and recursive circulant
graphs have been proven to be decomposable into hamiltonian cycles.

A graph is called a circulant graph (or simply a circulant) if it possesses
all automorphism which cyclically permutes all the vertices. Circulants are
vertex-transitive graphs with interesting and attractive properties.

From the earliest days of the study of circulants it became clear that their
properties depend heavily on the multiplicative nature of its order (a graph is
said to be of order n if n is the number of its vertices). The structural theory
is simple for prime orders n = p (though the divisors of p − 1 should also be
taken into account). Accordingly, it is a simple matter to count non-isomorphic
p-circulants and this has been done by several researchers for various types of
directed and undirected graphs. But every wider class of orders required a
great amount of efforts. A considerable progress has been achieved in studying
circulants for prime-power and (more recently) square-free orders. Here we
are concerned with both these cases.If some combinatorial objects are natural
and interesting for study, their enumeration (in various senses: constructive,
analytical and asymptotic) is also a natural and interesting task. This is the
case for circulants. As typical for enumerative combinatorics in general, only a
certain small but highly rigorous part of structural and algebraic properties of
objects is significant for counting. In principle, the isomorphism theorems that
have been previously obtained for the above-mentioned orders n are sufficient
to count circulants analytically. However the real picture is somewhat more
vague.First of all, by their nature, circulants are not only combinatorial but
algebraic and number-theoretic objects as well. Therefore they are described in
terms slightly inconvenient for enumerative combinatorics. On the other hand,
the base group ”up to which” circulants are counted looks very simple: it is a
cyclic group or a direct product of cyclic groups. This facilitates the counting
indeed and provides a systematic way for enumerating circulants of square-free
orders. However, for the case of prime-power orders, another difficult problem
arises instead (as we shall see later): a subtle and awkwardly structured set on
which this group acts. Thus, there is a gap between the effective main algebraic
isomorphism theorem for circulants of order pk and enumerative consequences
from it.

A circular graph of order n has the vertex set V (G) = Zn and edge set
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Figure 1: Circulant Graph C10,{2,3,5}

E(G) = {uv : u − v ∈ D} for some generating set D ⊆ V (G). This set D
must not contain the identity element 0, and must be closed under additive
inverses. We say that Cn,D is the circulant graph of order n with generating set
D. Note that Cn,D is an undirected Cayley graph for the graph G = (Zn,+)
[28]. Thus, they are a special case of the more general family of Cayley graphs.
An equivalent definitions of Cn,D is: Given a set D ⊆ {1, 2, 3, ..., ⌊n2 ⌋}, the
circulant graph Cn,D is the graph with vertex set V (G) = Zn and edge set
E(G) = {uv : |u − v|n ∈ D}, where |x|n = min{|x|, n − |x|} is the circular
distance modulo n. For example, C10,{2,3,5} is shown in Figure 1.

Note that the circulant Cn,{1,2,3,...,⌊n

2
⌋} is the complete graphKn. Also Cn,{1}

is the cycle Cn. Further Cn,{d} is the graph Cn for any d with gcd(d, n) = 1. For
geometers, circulant graphs are known as star polygons [8]. Circulant graphs
have been used to solve problems in graph theory [1] as well as number theory
and analysis [21]. They are well studied in network theory as they model
practical data connection networks [3], [33]. They have important applications
to the theory of designs and error correcting codes [47].

5. Circulant Graphs in the Study of Distance Graphs

Distance graphs generalize the very well-studied class of circulant graphs. In
fact, circulant graphs coincide exactly with the regular distance graphs [43]. In
[14], [15], [43], [44], [45], some fundamental results concerning circulant graphs
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are extended to the more general class of distance graphs.

In a way, we can regard the integer distance graph G(Z,D) as the infinite
analogue of the circulant Cn,D.

Besides the chromatic number, other coloring parameters of distance graphs
such as the fractional chromatic number and the circular chromatic number
provide more information on the structure of distance graphs and are useful to
determine the chromatic number of distance graphs. Further these coloring pa-
rameters of distance graphs are found closely related to some problems studied
in number theory and geometry.

Let r, x, y be reals with 0 ≤ x, y < r. The circular difference modular r for
x and y, denoted as |x−y|r, is defined as |x−y|r = min{|x−y|, r−|x−y|}. Let
k, d be positive integers with k ≥ 2d. A (k, d)-coloring of graph G is a mapping
c : V (G) → {0, 1, ..., k − 1}, such that |c(x) − c(y)|k ≥ d for any xy ∈ E(G).
The circular chromatic number χc(G) is the minimum ratio (k/d) among all
(k, d)-colorings of G.

A graph homomorphism from a graph G to a graph H is an edge preserving
function from V (G) to V (H). If such a function exists, we say Gis homomorphic
to H and denote this by G→ H. The chromatic number of G is the minimum
n such that G→ Kn. For positive integers p, q with p ≥ 2q, the circular clique
Kp/q has as the vertex set Zp = {0, 1, ..., p − 1} where two vertices u and v are
adjacent if |u − v|p ≥ q. The circular chromatic number of G is the minimum
ratio p/q such that G → Kp/q. From this point of view, Kp/q plays essentially
the same role as the one that Kn does in vertex-coloring.

For a positive integer n, and a subset D of [n] = {1, 2, ..., n}, the n-vertex
circulant graph generated by D, denoted by G(Zn,D), has as the vertex set
Zn = {0, 1, ..., n − 1} and vertices a and b are adjacent if |a − b|n ∈ D. The
circular clique Kp/q is a circulant graph, Kp/q = G(Zp, [q − 1]).

For any D, G(Z,D) → G(Zn,D) holds for all n ≥ 2 max D. Hence a
coloring parameter of the circulant graph G(Zn,D) provides an upper bound
for G(Z,D). For a lower bound, one may consider the subgraph of G(Z,D)
induced by the vertex set {0, 1, 2, ..., n − 1}.(Note, this subgraph may not be
isomorphic to G(Zn,D)). The coloring parameters of this subgraph provides a
lower bound for G(Z,D).

The circular chromatic number of distance graphs is closely related to the
parameter involved in the Wills conjecture [53]. The parameter κ(D) is studied
in the Diophantine approximations by Wills [53]. A long-standing open question
concerning κ(D) is the conjecture of Wills [53]: ’For any finite set D of positive
integers, κ(D) ≥ 1/(|D|+1).’ This conjecture has been given the name ’lonely
runner conjecture’ by Goddyn. Suppose m runners run laps on a circular track
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of unit length. Each runner maintains a constant speed, and the speeds of
all the runners are distinct. A runner is called lonely if the distance on the
circular track between him or her and every other runner is at least 1/m.
Equivalently, the conjecture asserts that for each runner, there is a time when
he or she is lonely. It is known that [62] for any set D, χc(Z,D) ≤ 1/κ(D) and

max{ω(G), |V (G)|
α(G) } ≤ χc(G) ≤ χ(G), ⌈χc(G)⌉ = χ(G), where ω(G) is the clique

size of G and α(G) is the independence number of G. So ω(Z,D) ≤ χc(Z,D) ≤
1/κ(D).

A discrete version of κ(D) for finite sets D is given as follows. For a
set D, let λ, p ≤ 2maxD be positive integers, with gcd(λ, p) = 1. Denote
(λD)p = min{|λd|p : d ∈ D}. The relation between χc(Z,D) and k(D) can be
established by the following method which also provides an upper bound for
χc(Zn,D). Suppose κ(D) = q/p. Then, there exists p, λ ≤ 2maxD,gcd(λ, p) =
1 such that (λD)p = q. The permutation Π on Zp defined by Π(x) = λx is
indeed a homomorphism from G(Zp,D) to the circular clique Kp/q. There-
fore χc(Z,D) ≤ χc(Zp,D) ≤ p/q = 1/κ(D). The permutation Π is called the
multiplier method which has been used in several research articles on color-
ing parameters for circulant graphs. The multiplier method provides an upper
bound for the circular chromatic number of distance graph and often the bound
is sharp enough to determine the chromatic number. On the other hand, the
multiplier method does not always provide the exact value for χc(Z,D), a par-
ticular case is when χc(Z,D) < κ(D).

The following result gives a useful upper bound for the chromatic number
of a distance graph in terms of the chromatic number of a circulant graph [35],
[46].

Theorem 5.1. Let Cn,D be a circulant, where D ⊆ {1, 2, ..., ⌊n2 ⌋}. Then,
χ(Z,D) ≤ χ(Cn,D).

Proof. Define D′ = D∪{n−x : x ∈ D}. Since D ⊆ D′ and χ is a monotone
it follows that χ(Z,D) ≤ χ(Z,D′), as |u− v| 6∈ D′ implies that |u− v| 6∈ D. In
other words, any k-coloring of G(Z,D′) must also be a k-coloring of G(Z,D).We
now claim that χ(Z,D′) = χ(Cn,D). Then this Combined with the inequality
χ(Z,D) ≤ χ(Z,D′) will complete the proof. By definition, any proper coloring
of G(Z,D′) must satisfy u− v 6∈ D′ whenever u > v.

By the definition of D′, any proper coloring of Cn,D must satisfy u− v 6∈ D′

whenever u > v. The condition for a proper coloring is identical for both
graphs: the only difference is that G(Z,D′) is an infinite graph, while Cn,D is
not. We now justify that χ(Z,D′) = χ(Cn,D). First note that any k-coloring of
G(Z,D′) can be made into a k-coloring of Cn,D by taking its restriction to just
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the n vertices of the circulant. Now to establish the converse: start with any
k-coloring of Cn,D. This generates a k-coloring of G(Z,D′). For a particular
k-coloring of Cn,D, let {V1, V2, ..., Vk} be the set of color classes produced. We
define the following tiling of the k color classes:Ti = Vi + nZ = {x + ny :
x ∈ Vi, y ∈ Z.}. We now justify that each Ti is independent in G(Z,D′), thus
proving that the set {T1, T2, ..., Tk} represents the color classes corresponding to
a proper k-coloring of G(Z,D′). Suppose on the contrary that a and b are not
independent in some Ti, where a > b. Then |a− b| = a− b = pn+ v1− v2 ∈ D′,
where v1, v2 ∈ Vi and p is some non-negative integer. Since 0 ≤ v1, v2 ≤ n − 1
and 1 ≤ pn + v1 − v2 ≤ n − 1, it follows that p = 0 or p = 1.If p = 0,
then v1 − v2 ∈ D′, from above. So v1 > v2. By definition of D′, this implies
that v1 − v2 ∈ D or n − (v1 − v2) ∈ D. In other words, v1 and v2 are not
independent in Cn,D, and thus cannot belong to the same color class Vi. We have
a contradiction. If p = 1, then n+v1−v2 ∈ D′. So v2 > v1. By definition of D′,
this implies that n+v1−v2 = n−(v2−v1) ∈ D or n−(n+v1−v2) = v2−v1 ∈ D.
In other words, v1 and v2 are not independent in Cn,D, and thus cannot belong
to the same color class Vi. We have a contradiction. This establishes the
converse, that every k-coloring of Cn,D can be extended to a k-coloring of
G(Z,D′). Hence we conclude that χ(Z,D′) = χ(Cn,D). Since we have already
proven that χ(Z,D) ≤ χ(Z,D′), the proof is complete.

There are infinitely many sets D for which equality does not hold. As a
simple example, consider the case n = 4 and D = {1, 2}. Then χ(Z,D) = 3,
while χ(Cn,D) = χ(K4) = 4.

The existence of a minimum coloring of an integer distance graph G(Z,D)
with finite distance set D implies the existence of a periodic minimum coloring.
A coloring f : Z → {c1, ..., ck} is called periodic with period p if f(v) = f(v +
p); p ∈ N. To see this, partition the integer line into segments of length y +
1, y = max{x : x ∈ D} and assume that G(Z,D) is properly k-colored by some
function f . Since there are finitely many different ways to color a single element
(namely ky+1 different patterns) and the integer line has an infinite number of
segments, it follows that there exists two segments [v0, vy] and [w0, wy], w0 > 6=
v0 colored with the same coloring pattern by function f . Then G(Z,D) can be
properly re-colored with k colors with the pattern defined by segment [v0, w0−1]
and period p = w0 − v0.

In order to show the relationship between integer distance graphs and cir-
culant graphs, consider a finite set D. Let n ∈ Z+ and let D = {d1, d2, ..., ds}
with D ⊆ {1, 2, ..., ⌊n/2⌋}. The circulant graph can be thought of as a graph
Gc(n,D) of order n with vertex set V = {0, 1, ..., n − 1} with an edge joining i
and j whenever i = (j+ds)(mod n), ds ∈ D. The existence of χ(G(Z,D)) with
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period p implies χ(Gc(yp,D)) =χ(G(Z,D)), y ∈ Z+. However, χ(Gc(n,D))
with yp + 1 ≤ n < (y + 1)p remains specific to circulant graphs. For example,
if D = {d1, d2, ..., ds} be a finite set of positive odd integers, then G(Z,D) is
a bipartite graph with vertex sets V1 and V2, containing odd and even integers
respectively. So χ(G(Z,D)) = 2 with period p = 2 implies χ(Gc(n,D)) = 2
for any even n. But it is easy to see that χ(Gc(n,D)) ≥ 3 for n odd. For, let
G(V,E) be a simple k-regular graph with 1 ≤ k ≤ |V | − 1. If the order of G is
odd, then χ(G) ≥ 3. Suppose not. Then G is 2-colorable and hence there exists
vertex partitions V1 and V2 where V1∩V2 = φ and |V1|+ |V2| = |V (G)| = 2l+1,
for some l ∈ Z+. Now there are k|Vi| edges leaving partition Vi, i = 1, 2. But
the number of edges entering and leaving each partition has to be equal and
this implies that k|V1| = k|V2|. This however is a contradiction to the odd order
of G. In view of this, we consider Gc(n,D), with D 6= φ and n = 2l+1, l ∈ Z+,
then as G is a regular graph of degree greater than or equal to one the result
follows. In general, for an arbitrary distance set D, the chromatic number of
G(Z,D) gives a lower bound for χ(Gc(n,D)). One can see [36] for more on
circulant graphs.

6. Pseudochromatic Coloring, Circulant Graphs

and Distance Graphs

A Pseudochromatic k-coloring of a graph G is an assignment of at most k-
colors to the vertices of G such that two vertices with a common neighbor
must receive different colors. The pseudochromatic number ψc(G) of a graph
G is the minimum k such that G has a pseudochromatic k-coloring. Note that
a peudochromatic coloring need not be a proper coloring. That is, here the
adjacent vertices can have the same color.

The distance 2 graph (also called square graph) denoted G2 of a graph
G(V,E) is the graph on the vertex set V in which two vertices are joined by an
edge if their edge distance in G is at most 2.

Theorem 6.1. For a graph G, we have χ(G2) ≤ 2ψc(G).

Proof. Let m = ψc(G). Then there exists a partition V1, V2, ..., Vm of the
vertex set V (G) of G such that no two vertices in Vi have a common neighbor
in G. Then the set of edges with both ends in Vi induces a matching. Therefore
we can partition Vi into two sets Ui and Wi both independent in G. Then
Ui and Wi are independent in G2 also, as no two vertices in Ui or Wi have a
common neighbor in G. This implies U1, ..., Um,W1, ...,Wm forms a partition
of G2 into independent sets in G2. Therefore χ(G2) ≤ 2m.
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Now consider a circulant graph Gc on a set V = {0, 1, ..., 3n − 1} such that
two vertices u and v are adjacent if and only if u− v ≡ ±1(mod 3n), where n
is even. Then it is easy to see that G2

c = K3n and hence χ(G2
c) = 3n. By the

above theorem, ψc(Gc) ≥ 3n/2. If u, v are the vertices with u − v ≡ ±1(mod
3n), then they will have no common neighbors. Therefore in a pseudochromatic
coloring, we can color pairs of consecutive integers with the same color and so
ψc(Gc) ≤ ⌈3n/2⌉. As n is even, we get that ψc(Gc) = 3n/2.

7. Conclusion

We have ascertained with a number of instances that the study of chromatic
number of circulant graphs have pertinent role in the study of chromatic number
of distance graphs. We conclude with a few open problems.

1. Find the minimum n0 such that for all n ≥ n0, the circulant graph of
order n and generating set D = {d1, d2} has minimum chromaticity.

2. Given a cardinality k, find sets D with |D| = k such that χ(Gc(n,D)) ≤ 3.

3. For an arbitrary set D, determine whether there exists a value x such
that for all n ≥ n0 χ(Gc(n,D)) ≤ x.

Acknowledgments

This research is carried out with the financial grant and support of National
Board for Higher Mathematics, Government of India under the grant sanction
No. 2/48(10)/2010/R&D-II/11192/dated 26, Nov, 2010.

References

[1] B. Alspach, T. Parsons, Isomorphism of circulant graphs and digraphs,
Disc. Maths., 25, No. 2 (1979), 97-108. doi: 10.1016/0012-365X(79)90011-
6.

[2] B. Green, T. Tao, The Primes contain arbitrarily long arithmetic pro-
gressions, Annals of Mathematics, 167, No. 2 (2008), 481-547. doi:
10.4007/annals.2008.167.481.



VERTEX COLORING OF CERTAIN DISTANCE GRAPHS 683

[3] J.C. Bermond, F. Comellos, D.F. Hsu, Distributed loop computer net-
works: a survey, Journal of Parallel and Distributed Computing, 24, No. 1
(1985), 2-10. doi: 10.1006/jpdc.1995.1002.

[4] W. Bienia, L. Goddyn, P. Gvozdjak, A. Sebo, M. Tarsi, Flows, view ob-
structions, and the lonely runner, J. Combin. Theory (B), 72, No. 1 (1998),
1-9. doi: 10.1006/jctb.1997.1770.

[5] D.G. Cantor, B. Gordon, Sequences of integers with missing differences,
J. Combin. Theory Ser. A, 14, No. 3 (1973) 281-287. doi: 10.1016/0097-
3165(73)90003-4.

[6] G.J. Chang, L. Huang, X. Zhu, The circular chromatic number and frac-
tional chromatic number of distance graphs, European Journal of Combi-
natorics, 19, No. 4 (1998), 423-431. doi: 10.1006/eujc.1997.0199.

[7] G.J. Chang, D. Liu, X. Zhu, Distance graphs and T-coloring, J. of Comb.
Theory Ser B, 75 (1999), 159-169.

[8] G.J. Chang, L. Huang, Circular chromatic number of distance graphs with
distance sets missing multiples, European J. of Combinatorics, 21, No. 2
(2000), 241-248. doi: 10.1006/eujc.1999.0284.

[9] J.J. Chen, G.J. Chang, K.C. Huang, Integral distance graphs, J. of
Graph Theory, 25, No. 4 (1997), 287-294. doi: 10.1002/(SICI)1097-
0118(199708)25:4.

[10] Y.G. Chen, On a conjecture about Diophantine approximations, II, Num-
ber Theory, 37, No. 2 (1991), 181-198. doi: 10.1016/S0022-314X(05)80036-
8.

[11] Y.G. Chen, On a conjecture about Diophantine approximations, III, Num-
ber Theory, 39, No. 1 (1991), 91-103. doi: 10.1016/0022-314X(91)90036-B.

[12] Y.G. Chen, On a conjecture about Diophantine approximations, IV, Num-
ber Theory, 43, No. 2 (1993), 186-197. doi: 10.1006/jnth.1993.1016.

[13] K.B. Chilakamarri, The unit-distance graph problem: a brief survey and
some new results, Bulletin of the Institute of Combinatorics and its Appli-
cations, 8(1993), 39-60.

[14] M. Chin Lin, D. Rautenbach, F.J. Soulignac, J.L. Szwarcfiter, Powers of
cycles, powers of paths, and distance graphs, Discrete Appl. Maths., 159,
No. 7 (2011), 621-627. doi: 10.1016/j.dam.2010.03.012.



684 V. Yegnanarayanan, A. Parthiban

[15] C. Lowenstein, D. Rautenbach and F. Regen, On Hamiltonian paths in
distance graphs, Applied Mathematics Letters, 24, No. 7 (2011), 1075-1079.
doi: 10.1016/j.aml.2011.01.025.

[16] H.S.M. Coxeter, Twelve Geometric Essays, Southern Illinois University
Press, Carbondale/EdwardsVille, IL (1968).

[17] T.W. Cusick, View-obstruction problems, Aequationes Math., 9, No. 2-3
(1973), 165-170. doi: 10.1007/BF01832623.

[18] T.W. Cusick, View-obstruction problems II, Proc. Amer. Math. Society,
84 (1982), 25-28.

[19] T.W. Cusick, View-obstruction problems in n-dimensional geometry, J.
Combin. Theory (A), 16 (1974), 1-11.

[20] T.W. Cusick, C. Pomerance, View-obstruction problems, III, J. Number
Theory, 19 (1984), 131-139. doi: 10.1016/0022-314X(84)90097-0.

[21] P.J. Davis,Circulant Matrices, 2nd edition, Chelsea Publishing, NewYork
(1994).

[22] R.B. Eggleton, New results on 3-chromatic prime distance graphs, Ars
Combin., 26B (1988), 153-180.

[23] R.B. Eggleton, P. Erdos, D.K. Skilton, Update information on research
problem 77, Dis. Math., 69, No. 1 (1988), 105. doi: 10.1016/0012-
365X(88)90184-7.

[24] R.B. Eggleton, P. Erdos, D.K. Skilton, Research problem 77, Dis. Math.,
58, No. 3 (1986), 323. doi: 10.1016/0012-365X(86)90153-6.

[25] R.B. Eggleton, P. Erdos, D.K. Skilton, Coloring the real line, J. Combina-
torial Theory Ser B, 39 (1986), 86-100 to erratum 41, No. 1 (1986), 139.
doi: 10.1016/0095-8956(85)90039-5.

[26] R.B. Eggleton, P. Erdos, D.K. Skilton, Coloring prime distance graphs,
Graphs and Combinatorics, 6, No. 1 (1990), 17-32.

[27] R. Elliger, Uber ein problem der verkehrsoptimierung und eir.e von P.
Erdos et al. geauberte vermutung, Ph.D. Thesis, Institut fur Mathematics,
Technische Hochschule, Illmenav, Germany (1988).



VERTEX COLORING OF CERTAIN DISTANCE GRAPHS 685

[28] C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York
(1993).

[29] J. Griggs, D. Liu, Channel assignment problem for mutually adjacent
sites, J. Combinatorial Theory Series A, 68, No. 1 (1994), 169 -183. doi:
10.1016/0097-3165(94)90096-5.

[30] N.M. Haralambis, Sets of integers with missing differences, J. Combin.
Theory (A), 23, No. 1 (1977), 22-33. doi: 10.1016/0097-3165(77)90076-0.

[31] G.H. Hardy, J.E. Littlewood, Some problems of partitio numerorum: III:
on the expression of a number as a sum of primes, Acta Math., 44 (1923),
1-70.

[32] D.R. Heath-Brown, Three primes and an almost-prime in arithmetic
progression, J. London math. Soc., 23, No. 3 (1981), 396-414. doi:
10.1112/jlms/s2-23.3.396.

[33] F.K. Hwang, A survey on multi-Loop Networks, Theoretical Computer
Science, 219 (2003), 107-121. doi: 10.1016/S0304-3975(01)00341-3.

[34] L.L. Ivanov, On the chromatic numbers of R2 and R3 with intervals of
forbidden distances, Electronic Notes in Discrete Mathematics, 29 (2007),
159-162.

[35] J. Brown, R. Hoshino, Proof of a conjecture on fractional ramsey numbers,
Journal of Graph Theory (2009), 163-178 (www.interscience.wiley.com).
doi: 10.1002/jgt.20416.

[36] J. Barajas, O. Serra, On the chromatic number of circulant
graphs, Discrete Mathematics, 309, No. 18 (2009), 5687-5696. doi:
10.1016/j.disc.2008.04.041.

[37] A. Kemnitz, H. Kolberg, Coloring of integer distance graphs, Discrete
mathematics, 193 (1996), 13-123.

[38] A. Kemnitz, M. Marangio, Chromatic number of integer distance graphs,
Discrete mathematics, 233, No. 1-3 (2001), 239-246. doi: 10.1016/S0012-
365X(00)00243-0.

[39] A. Kemnitz, M. Marangio, Edge colorings and total colorings of integer
distance graphs, Discussiones mathematicae, 22, No. 1 (2002), 149-158.
doi: 10.7151/dmgt.1164.



686 V. Yegnanarayanan, A. Parthiban

[40] A. Kemnitz, M. Marangio, Colorings and list colorings of integer distance
graphs, Congressus Numerantium, 151 (2001), 75-84.

[41] W. Lin, Some star extremal circulant graphs, Discrete Mathematics, 271,
No.1-3 (2003), 169-177. doi: 10.1016/S0012-365X(02)00872-5.

[42] D.D-F. Liu, X. Zhu, Distance graphs with missing multiples in the
distance sets, J. of Graph Theory, 30, No. 4 (1999), 245-259. doi:
10.1002/(SICI)1097-0118(199904)30.

[43] L.D. Penso, D. Rautenbach, J.L. Szwarcfiter, Cycles, paths, connectiv-
ity and diameter in distance graphs, in: Graph-Theoretic Concepts in
Computer Science, 35th International Workshop, WG 2009, Montpellier
France, June 2009, LNCS, 5911 (2010), 320-328.

[44] L.D. Penso, D. Rautenbach, J.L. Szwarcfiter, Connectivity and diam-
eter in distance graphs, Networks, 57, No. 4 (2011), 310-315. doi:
10.1002/net.20397.

[45] L.D. Penso, D. Rautenbach, J.L. Szwarcfiter, Long cycles and paths in
distance graphs, Discrete math., 310, No. 23 (2010), 3417-3420. doi:
10.1016/j.disc.2010.07.020.

[46] Richard Hoshino, Independence polynomials of circulant graphs, Doctoral
Thesis, Dalhousie University, October 15 (2007).

[47] V. Sachkov, V.E. Tarakanov, Combinatorics of Nonnegative matrices,
Translations of Mathematical Monographs, 213 AMS, Providence (2002).

[48] J.G. Van Der Corput, Uber Summen von primzahlen und
primzahlquadraten, Math Ann., 116 (1939), 1-50.

[49] M. Voigt, Coloring distance graphs, Ars Combinatoria, 52 (1999), 3-12.

[50] M. Voigt, H. Walther, Chromatic number of prime distance graphs,
Discrete App. Math, 51, No. 1-2 (1994), 197-209. doi: 10.1016/0166-
218X(94)90109-0.

[51] M. Voigt, H. Walther, On the chromatic number of special distance
graphs, Discrete Math., 97, No. 1-3 (1991), 395-397. doi: 10.1016/0012-
365X(91)90454-A.

[52] H. Walther, Uber eine spezielle klasse unendlicher graphen in: graphen-
theorie II (Wissenschaftsverlag), Mannheim (1990), 268-295.



VERTEX COLORING OF CERTAIN DISTANCE GRAPHS 687

[53] J.M. Wills, ZweiSatze Uber inhomogene diophantische approximation von
irrationlzahlen, Monatsch. Math., 71 (1967), 263-269.

[54] V. Yegnanarayanan, Chromatic number of graphs with special distance
sets, I, Algebra and Discrete Mathematics, Accepted for publication (2013).

[55] V. Yegnanarayanan, On a question concerning prime distance graphs,
Discrete Math., 245, No. 1-3 (2002), 293-298. doi: 10.1016/S0012-
365X(01)00221-7.

[56] V. Yegnanarayanan, A. Parthiban, Chromatic number of certain graphs,
Proc. of International Conference on Mathematics in Engineering and
Business Management, Stella Maris College, Chennai, I, No. 1 (2012),
115-118 (ISBN 978-81-8286-015-5).

[57] V. Yegnanarayanan, A. Parthiban, Chromatic number of graphs with spe-
cial distance sets-II, Proc of International Conference on Mathematical
Modeling and Applied Soft Computing, CIT, Coimbatore, India, I, No. 1
(2012), 305-313 (ISBN 978-81-923752-1-2).

[58] V. Yegnanarayanan, A. Parthiban, Chromatic number of graphs with spe-
cial distance sets-III, Journal of Mathematical and Computational Sci-
ences, 2, No. 5 (2012), 1257-1268.

[59] V. Yegnanarayanan, The chromatic number of generalized Fibonacci prime
distance graph, Journal of Mathematical and Computational Sciences, 2,
No. 5 (2012), 1451-1463.

[60] V. Yegnanarayanan, A. Parthiban, Chromatic number of graphs with spe-
cial distance sets-IV, Proc of International Conference on Applied Math-
ematics and Theoretical Computer Science(ICAMTCS), 1, No. 1 (2013),
71-76 (ISBN 978-93-82338-30-7).

[61] V. Yegnanarayanan, A. Parthiban, Chromatic number of graphs with spe-
cial distance sets-V, Open Journal of Discrete Mathematics, 3, No. 1
(2013), 1-6. doi: 10.4236/ojdm.2013.31001.

[62] X. Zhu, Circular chromatic number: a survey, Dis. Maths., 229, No. 1-3
(2001), 371-410. doi: 10.1016/S0012-365X(00)00217-X.

[63] X. Zhu, Pattern periodic coloring of distance graphs, J. Comb Theory Ser
B, 73 (1997), 195-206.



688 V. Yegnanarayanan, A. Parthiban

[64] X. Zhu, The Circular chromatic number of distance graphs with distance
sets of cardinality 3, J. Graph Theory, 41, No. 3 (2002), 195-207. doi:
10.1002/jgt.10062.

[65] X. Zhu, The Circular chromatic number of a class of distance graphs,
Discrete Math., 265, No. 1-3 (2003), 337-350. doi: 10.1016/S0012-
365X(02)00631-3.


