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Abstract There is a great variety of colouring concepts and results in the
literature. Here our focus is to survey results on vertex colourings of graphs
de�ned in terms of forbidden induced subgraph conditions.

Thus, one who wishes to obtain useful results from a graph coloring
formulation of his problem must do more than just show that the
problem is equivalent to the general problem of coloring a graph.
If there is to be any hope, one must also obtain information about
the structure of the graphs that need to be colored (D. S. Johnson
[65]).
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1 Introduction

We consider �nite, undirected, and simple graphs G with vertex set V (G)
and edge set E(G). For A � V (G) let G[A] be the subgraph induced by A.
Moreover, a graph H is an induced subgraph of a graph G, briey denoted
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by H � G, if there exists a set A � V (G) such that G[A] is isomorphic to
H . A cycle is odd or even according to the parity of the order of the cycle.
An induced subgraph of a graph, which is a cycle of order at least four, is
called a hole. An induced subgraph of a graph, which is the complement of
a cycle of order at least �ve, is called an antihole. Here, the complement �G
of a graph G is the graph with V ( �G) = V (G) and E( �G) = fuvju is not ad-
jacent to v in Gg. For convenience a graph G without an induced subgraph
H is called H-free. N(x) = NG(x) denotes the set of vertices adjacent to the
vertex x and N [x] = NG[x] = N(x) [ fxg. For terminology and notation
not de�ned here we refer to [127].

A k-colouring of a graph G is an assignment of k di�erent colours to the
vertices of G such that adjacent vertices receive di�erent colours. The min-
imum k for which G has a k-colouring is called the chromatic number of
G and is denoted by �(G). The maximum value k for which a graph G
has a complete subgraph of order k is called the clique number of G and is
denoted by !(G). Obviously, !(G) � �(G) holds for every graph G. How-
ever, the computation of both graph parameters !(G) and �(G) is NP-hard.

It is not diÆcult to colour the vertices of a graph in polynomial time using
at most �(G)+1 colours, where �(G) denotes the maximum vertex degree
of a given graph G. Moreover, the classical theorem of Brooks [15] states
that �(G) � �(G) unless G is a complete graph or an odd cycle. Reed [104]
conjectured that the chromatic number is bounded by the average of the
trivial upper and lower bound, i. e. for any graph G of maximum degree �
and clique number !, �(G) is at most d�+1+!

2 e.

By a classical result of Erd�os [40] we know that the di�erence �(G)�!(G)
can be arbitrarily large. A graph G is called perfect if �(H) = !(H) for each
induced subgraph H � G. Berge [6] conjectured that a graph G is perfect if
and only if neither G nor its complement �G contains an induced odd cycle of
order at least �ve. This famous conjecture known as Strong Perfect Graph
Conjecture has recently been solved by Chudnovsky, Robertson, Seymour
and Thomas [20].

Gy�arf�as [54] has introduced the concept of �-bound functions thereby ex-
tending the notion of perfectness. Here, a family G of graphs is called �-
bound with �-binding function f, if �(G0) � f(!(G0)) holds whenever G0 is
an induced subgraph of G 2 G.

Various suÆcient conditions for graphs G satisfying �(G) � !(G) + 1 and
characterizations in terms of forbidden induced subgraphs have been ob-
tained recently by the �rst author [97]. Only a few results are known so far
about graphs G satisfying �(G) � !(G) + k for �xed k � 2.

Bollob�as and Erd�os [41] conjectured �(G) � 2r + 2 for every graph G
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which contains at most r di�erent odd cycle lengths. This was proved by
Gy�arf�as [55]. Mih�ok and the second author [91] showed the surprising ana-
logue bound �(G) � 2s + 3 for every graph G which contains at most s
di�erent even cycle lengths. The related question for given induced cycle
lengths was considered in [99].

The k-colourability problem is a well-known NP-complete problem. It re-
mains NP-complete even for special graph classes, e. g. triangle-free graphs.
While it can be decided in polynomial time for other special graph classes.
Edwards [38] has introduced the following approach: If a graph G = (V;E)
contains a dominating set D � V of small size, say of logarithmic size with
respect to jV j, then 3-colourability can be decided in polynomial time for
the considered graph by usage of a 2-SAT reformulation of the problem.
Based on this approach 3-colourability can be decided in polynomial time
for the class of P5-free graphs [103].

2 Perfect graphs

In this section we will describe the class of perfect graphs containing �ve
basic graph classes as ingredients and additionally four structural faults
in order to decompose perfect graphs. This characterization has recently
been found by Chudnovsky, Robertson, Seymour and Thomas [20] thereby
solving a longstanding famous conjecture of Claude Berge on perfect graphs.

More than four decades ago Berge [5] introduced the concept of perfect
graphs motivated by Shannon's notion of the zero-error capacity of a graph
which has been applied in Shannon's work on communication theory. Berge
de�ned two kinds of perfectness: A graph G is called �-perfect if the stabil-
ity number �(H) equals the clique covering number �(H) for every induced
subgraph H of G. Moreover, a graph G is called �-perfect if the chromatic
number �(H) equals the clique number !(H) for every induced subgraph
H of G. He also mentioned a natural superclass of the families of �- and �-
perfect graphs, namely the class of (in honour to Berge [25]) Berge graphs.
A graph G is Berge if G contains neither an odd cycle of length greater than
3 nor its complement as an induced subgraph.

In 1963 in a booklet on a lecture at the Research and Training School
of the Indian Statistical Institute of Calcutta [6], Berge published his fa-
mous two conjectures. The Weak Perfect Graph Conjecture states that the
family of �-perfect graphs and of �-perfect graphs are identical. The second
one is the Strong Perfect Graph Conjecture (SPGC) asserting that every
Berge graph is likewise �-perfect. The Weak Perfect Graph Conjecture was
�rst settled by Lov�asz [82] in 1972. An important role in this proof plays
the Lov�asz Replication Lemma, stating that the addition of a new vertex v0

joined to all vertices of the closed neighbourhood of a vertex v of a perfect
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graph G preserves perfectness. A good candidate for a 'book' proof of the
Perfect Graph Theorem is due to Gasparyan [48]. The solution of the �rst
conjecture made it superuous to distinguish between the notions of �- and
�-perfect and these graphs are just referred to as perfect graphs. Moreover,
the Perfect Graph Theorem states that if a graph G is perfect, then also its
complement �G is perfect.

Similar to the class of planar graphs the family of perfect graphs has become
one of the famous special graph classes. Not only the two intriguing con-
jectures of Berge led to its popularity but also its impact to the modelling
of real world applications. E. g. certain perfect graphs like interval graphs
occur in the investigation of the �ne structure of a gene due to Benzer or
in archaeology in the sequence-dating problem due to Petrie or threshold
graphs occur in the synchronization of parallel processes. More examples
can be found in the excellent book of Golumbic [49] on algorithmic graph
theory and perfect graphs.

E�orts to solve Berge's conjectures revealed importance of perfect graphs
for communication theory, polyhedral combinatorics, relation to integrality
of polyhedra, geometric algorithms, semi-de�nite programming, radio chan-
nel assignment problem and sorting. More examples can be found in the
recent book of Ramirez-Alfonsin and Reed [96] on perfect graphs.

2.1 The Strong Perfect Graph Conjecture

For a long time the SPGC seemed to be intractable and initiated a variety of
research - a search in e. g. AMS-MathSciNet leads to more than 120 papers
about the SPGC. Many researchers contributed important steps on the way
to prove the SPGC. Especially, in the recent years Conforti, Cornu�ejols,
Vu�skovi�c, Zambelli, Chudnovsky, Robertson, Seymour and Thomas have
worked on a decomposition theorem for perfect graphs (�nd all basic perfect
graph classes & �nd all possible structural faults leading to a decomposition
of 'larger' perfect graphs in question) which implies a solution of the SPGC.
That a structural property of Berge graphs implies the SPGC was conjec-
tured in 2001 by Conforti, Cornu�ejols and Vu�skovi�c (see [34]).

In the following we will briey motivate this 'paradigm of primitive objects
and structural faults' (Chv�atal) by the example of triangulated graphs. A
graph G is triangulated, if G contains no induced cycle of length larger
than 3. The perfectness of triangulated graphs can easily be proved by the
following decomposition result of Dirac [37].

Theorem 1 [37] Every connected triangulated graph G is either a clique or
contains a clique cutset.



Vertex colouring and forbidden subgraphs 5

Hence, for the class of triangulated graphs complete graphs are the primitive
objects and every triangulated graph, which is not a primitive object has a
structural fault, e. g. a clique cutset.

2.1.1 Basic perfect graphs

One class of basic perfect graphs are the bipartite graphs. A graph G =
(V;E) is bipartite, if V can be partitioned into at most two independent
vertex sets, i. e. �(G) = !(G) � 2. All graph classes mentioned in this
subsection are hereditary, i. e. every induced subgraph of the graph in con-
sideration is likewise a member of the same graph family. Thus, bipartite
graphs are perfect. Unaware of the SPGC the �rst contribution to this con-
jecture has been made 1916 and is due to K�onig [76]: A graph G is bipartite
if and only if G contains no (induced) cycle of odd length.

The least number of colours needed to colour the edges of a graph G is
called the chromatic index �0(G). The problem of colouring the edges of
a graph G is equivalent to the colouring of the vertices of its line graph
L(G). For a graph G, the line graph L(G) has the edges of G as its vertices
and distinct edges of G are adjacent in L(G) if they are adjacent in G. In
1916, K�onig [76] proved that a bipartite graph G satis�es �(G) = �0(G).
Observe, that a graph G being the line graph of a bipartite graph satis�es
!(G) = �(G). Hence, these graphs are also perfect.

Due to the Perfect Graph Theorem the complements of bipartite graphs and
line graphs of bipartite graphs are also perfect. This could also be proved di-
rectly by usage of other results of K�onig [77]. In summary, for Berge graphs
we already mentioned four basic graph classes: bipartite graphs, comple-
ments of bipartite graphs, line graphs of bipartite graphs and complements
of line graphs of bipartite graphs.

A �fth basic perfect graph class, the double split graphs, was de�ned by
Chudnovsky, Robertson, Seymour and Thomas [20]. A graph G = (Q[S;E)
is called a split graph, if V can be decomposed into an independent vertex
set S and a vertex set Q inducing a clique. It is an easy exercise to show
that split graphs are perfect.

De�nition 2 [20] A graph G� is a double split graph, if it can be con-
structed in the following way. Take a split graph G = (Q [ S;E); replace a
vertex q in the clique Q by two non-adjacent vertices q0 and q00; replace a
vertex s in the stable set S by two adjacent vertices s0 and s00; add for every
such quadruple (s0; s00; q0; q00) additional edges s. t. the vertices induce a P4.
The resulting graph is G�

A slight extension of the proof of perfectness of split graphs yields that
every double split graph is likewise perfect.
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2.1.2 Structural faults

In this subsection we deal with structural faults of perfect graphs. We
already met one example, the clique cutset. A graph is minimal imperfect if
it is not perfect but all its proper induced subgraphs are perfect. Hence, the
SPGC claims that odd holes and odd antiholes are the only minimal imper-
fect graphs. Equivalently, there exist no minimal imperfect Berge graphs.
An interesting example is due to Chv�atal: A star-cutset of a graph G denotes
a non-empty set C of vertices s. t. G�C is disconnected and there exists at
least one vertex in C which is adjacent to all the remaining vertices of C.

Lemma 3 (Star-Cutset Lemma, [24])
No minimal imperfect graph contains a star-cutset.

Sketch of the proof: Let G be minimal imperfect. Then

(1) every proper induced subgraph of G is !(G)-colourable and
(2) for every stable set S in G we have !(G� S) = !(G).

Now suppose G contains a star-cutset C. Then G�C splits into non-empty
parts V1 and V2 s. t.

(3) no vertex of V1 is adjacent to a vertex of V2.

Let Gi = G[Vi [ C] for i = 1; 2, then by (1) there exists a colouring fi of
Gi using !(G) colours. Since C is a star-cutset, there exists w 2 C adjacent
to all remaining vertices of C; write v 2 Si if v 2 Gi and fi(v) = fi(w).
Obviously, each Si is a stable set and Si \ C = fwg. Now (3) implies that
S = S1 [ S2 is also a stable set. Finally, let Q be a clique in G � S. Again
by (3) Q is fully contained in G1�S1 or in G2�S2. Since each of these two
graphs is coloured by !(G)�1 colours, we have jQj � !(G)�1 contradicting
(2).

A common generalization of a star-cutset and a star-cutset in the com-
plement is a skew-partition. A graph G = (V;E) has a skew-partition if V
can be partitioned into four non-empty sets A;B;C;D s. t. every vertex
in A and every vertex of B are adjacent and no vertex in C is adjacent to
a vertex of D. Chv�atal [24] conjectured that no minimal imperfect graph
has a skew-partition. A skew-partition is even, if every induced path with
both ends in A [ B and its interior in C [ D contains an even number of
edges and every induced path in the complement of the graph with both
ends in C [D and its interior in A[B likewise contains an even number of
edges. Chudnovsky, Robertson, Seymour, Thomas [20] proved for minimal
imperfect Berge graphs of minimum order the next result.

Theorem 4 [20] No minimal imperfect Berge graph of minimum order ad-
mits an even skew-partition.

Now we present further examples of structural faults. A graph G = (V;E)
has a 2-join if V can be partitioned into V1 and V2 each of cardinality at
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least three with non-empty disjoint subsets A1; B1 � V1 and A2; B2 � V2 s.
t. all vertices of A1 are adjacent to all vertices of A2 and all vertices of B1

are adjacent to all vertices of B2 and these are the only edges between V1
and V2. Cornu�ejols and Cunningham [35] proved that

Theorem 5 [35] No minimal imperfect Berge graph has a 2-join.

A slight variation of homogeneous sets areM -joins. A graph G = (V;E) has
an M-join if V can be partitioned into six non-empty sets A;B;C;D;E; F
s. t. every vertex in A has a neighbour and a non-neighbour in B, and
vice versa; for all pairs (C;A); (A;F ); (F;B); (B;D) every vertex of
the �rst set is adjacent to any vertex of the second set, and for all pairs
(D;A); (A;E); (E;B); (B;C) there are no edges joining a vertex of the
�rst set with one of the second set. Chudnovsky, Robertson, Seymour and
Thomas [20] used a result of Chv�atal and Shibi [25] on homogeneous sets
in order to prove that

Theorem 6 [20], [25] No minimal imperfect Berge graph has an M-join.

In 2002 Chudnovsky, Robertson, Seymour and Thomas [20] proved the fol-
lowing powerful decomposition theorem for Berge graphs.

Theorem 7 [20] For every Berge graph G, either G or its complement

(1) is bipartite, or
(2) is the line graph of a bipartite graph, or
(3) is a double split graph, or
(4) has an even skew partition, or
(5) has a 2-join, or
(6) has an M-join.

In the long remarkable proof of this result the authors make use of an
interesting tool of Roussel and Rubio [105]. In [20] the authors called it
The Wonderful Lemma. Together with the already mentioned properties of
minimal imperfect Berge graphs this decomposition theorem implies an af-
�rmative answer to the SPGC.

Strong Perfect Graph Theorem [20]
Every Berge graph is perfect.

Polynomial time recognition algorithms for Berge graphs have recently be
announced by Chudnovsky and Seymour and Cornu�ejols, Liu and Vu�skovi�c
(see [21], [22], [36]).

2.2 Miscellaneous

A related concept to perfectness is the �-perfectness. Here, for a graph G
the colouring number � satis�es �(G) = maxH�GfÆ(H)+1g, where Æ(H) is
the minimum degree of a subgraph H of G. If we recursively remove vertices
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of minimum degree in the current graph, then we can colour greedily along
the reverse order the vertices of the graph G using at most �(G) colours.
Thus we have �(G) � �(G) for every graph G. Now a graph is called
�-perfect if the chromatic number equals the colouring number for all of
its induced subgraphs. The concept of �-perfectness was introduced 1996
by Markossyan, Gasparyan and Reed [88]. There they reveal the parallels
of properties of these graphs to the ones of perfect graphs, e. g. they are
even-hole-free and they proved an interesting analogue of the Strong Perfect
Graph Theorem.

Theorem 8 [88] The graphs G and �G are �(G)-perfect if and only if G and
�G are even-hole-free.

Moreover, they demonstrate that the greedy colouring algorithm provides a
performance guarantee for the related graph class of even hole-free graphs
G, more precisely �(G) � �(G)=2 + 1. Furthermore, in [88] a structural
characterization of all triangle-free and even-hole-free graphs is given. De
Figueiredo and Vu�skovi�c [44] extended the proof idea for the structural
result on triangle-free and even hole-free graphs in order to prove that even-
hole-free, diamond-free and short-chorded6-cycle-free graphs are �-perfect.
Here, a diamond is a complete graph on four vertices with one missing edge,
a short-chorded cycle is a cycle containing a chord forming a triangle with
two edges of the cycle. Moreover, they stated the following conjecture.

Conjecture 9 [44] Every even-hole- and diamond-free graph is �-perfect.

An extension of the result of de Figueiredo and Vu�skovi�c [44] by replacing
the diamond by four di�erent supergraphs of the diamond and the short-
chorded6-cycle by two di�erent supergraphs of this graph was recently been
obtained by Keijsper and Tewes [67]. Moreover they showed that a �-perfect
graph does not contain any induced regular graph, except perhaps odd holes
and cliques.
The class of even-hole-free graphs is very interesting since it also follows
the paradigm of primitive objects and structural faults, i. e. there also ex-
ists a decomposition theorem. This theorem is due to Conforti, Cornu�ejols,
Kapoor and Vu�skovi�c [27]. Moreover, the same authors [28] use this de-
composition theorem to develop a recognition algorithm for even-hole-free
graphs. More details on even-hole-free graphs can be found in the survey
on Forbidding Holes and Antiholes by Hayward and Reed [58]. For instance
there they state the challenging conjecture that

Conjecture 10 [58] Every even-hole-free graph contains a vertex whose
neighbourhood can be partitioned into two cliques.

A further special graph class with interesting structural properties is the
family of P4-free graphs, i. e. graphs without an induced path on four ver-
tices. While we will take a closer look on this special graph class in Section
5, we only study its perfectness here. Observe that the family of P4-free
graphs is the only subclass of perfect graphs de�ned in terms of one for-
bidden induced subgraph. For further information on special graph classes
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de�ned in terms of forbidden induced subgraphs we refer to [49] and [11].
The following result was �rst obtained by Seinsche [112].

Theorem 11 [112] Every P4-free graph is perfect.

Sketch of the proof: The result is obviously true for P4-free graphs of small
order and for cliques. W. l. o. g. let G = (V;E) be connected. Then G can
be represented as the sum of two graphs G1 = (V1; E1) and G2 = (V2; E2),
i. e. every vertex of G1 is adjacent to any vertex of G2. If G contains a
cutvertex x, then the P4-freeness forces that x is adjacent to all vertices of
G�fxg. Thus, we have G1 = G[fxg] and G2 = G�fxg. If G is 2-connected,
then let X be a minimal cutset of G. Now, since every vertex x 2 X is a
cutvertex of G� (X � fxg), we know that x is adjacent to every vertex of
G � X . Therefore, G1 = G[X ] and G2 = G � X . With this property we
obtain inductively

�(G) = �(G1) + �(G2) = !(G1) + !(G2) = !(G):

Since the family of P4-free graphs is hereditary, the last equality implies the
result.

We close this section with a surprising observation due to Corneil [33].
Here, a graph G is self-complementary, if G = �G.

Observation 12 [33] If the SPGC is true for self-complementary graphs,
then the SPGC is true in general.

Otherwise, suppose there exists a minimal imperfect Berge graph G. Then
take two copies G1 and G4 of G and two copies G2 and G3 of �G. Fur-
thermore, add edges such that G1 and G2, G2 and G3 and also G3 and
G4 are sums of the corresponding two graphs. This new graph G� is self-
complementary and not perfect.

3 �-bound graphs

In the previous section we have considered perfect graphs. A natural ex-
tension of the family of perfect graphs are �-bound classes of graphs. This
concept was introduced by Gy�arf�as [54]. Here, a family G of graphs is called
�-bound with �-binding function f, if �(G0) � f(!(G0)) holds whenever G0 is
an induced subgraph of G 2 G. Thus, the class of perfect graphs is precisely
the �-bound family of graphs admitting the identity f(x) = x as �-binding
function.

The concept of �-boundness is well de�ned: On the one hand for any graph
the chromatic number � is at least as large as the clique number !. On
the other hand a classical result of Erd�os [40] (asserting that for any two
integers g � 3 and k � 3, there exists a graph with girth g and chromatic
number k,) illustrates that the di�erence � � ! of the chromatic number
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Fig. 1 Mycielski/Gr�otzsch graph G4

and the clique number of a graph can be arbitrarily large. He proved this
result by means of his non-constructive probabilistic method. An elegant
construction of a triangle-free graph Gk with chromatic number k (for any
k) is due to Mycielski [94]. In fact, let G1 be theK1, G2 be theK2, G3 be the
C5 and suppose that Gk with k � 3 has the vertex set fv1; v2; : : : ; vng. Form
Gk+1 by adjoining for each i = 1; 2; : : : ; n a new vertex wi with wi being
adjacent to every vertex of NG(vi) and attaching a new vertex u adjacent to
each vertex wi. Note that every graph of the resulting sequence (Gk)k2IN of
graphs is triangle-free. Moreover, Gk is k-chromatic. The graph G4 is quite
often referred to as Gr�otzsch graph or Mycielski graph (see Figure 1).

In [54] Gy�arf�as posed four meta problems:

{ Does there exist a �-binding function f for a given family G of graphs?
{ What is the smallest �-binding function f� for G?
{ Does there exist a linear �-binding function f for G?
{ Does there exist a polynomial �-binding function f for G?

For perfect graphs there are classes which can be characterized by forbid-
den induced subgraphs, e. g. P4-free graphs, chordal graphs, split graphs,
threshold graphs. What choices of forbidden induced subgraphs guarantee
that a family of graphs is �-bound? Since there are graphs with arbitrarily
large chromatic number and girth, at least one forbidden subgraph has to
be acyclic. Gy�arf�as [53] and independently Sumner [116] conjectured that
this necessary condition is also a suÆcient condition for a �-bound family of
graphs de�ned in terms of forbidden induced subgraphs. Partial solutions
to this conjecture have been made by Gy�arf�as, Szemer�edi and Tuza [56],
Kierstead and Penrice [70], and Scott [110].

3.1 �-bound graphs with one forbidden induced subgraph

If we consider �-bound families of graphs de�ned in terms of only one forbid-
den induced subgraph T , then we already know that T is acyclic. Moreover,
the following sequence of graphs (Hi) implies a nice observation. Starting
with H1 = �C7, the complement of the 7-cycle, we de�ne Hi+1 = �C7[Hi], the
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lexicographic product of the graphs �C7 and Hi. Here, the lexicographic prod-
uct of two graphs G and H is the graph G[H ] with vertex set V (G)�V (H)
and with edges joining (u; v) and (u0; v0) if and only if uu0 is an edge of G
or u = u0 and vv0 is an edge of H . Note that !(Hi+1) = 3!(Hi). Further-
more, in any colouring of Hi+1 we need for each copy of Hi at least �(Hi)
di�erent colours. With �( �C7) = 2 we then observe that every colour of a
colouring of Hi+1 appears in at most two di�erent copies of Hi. Hence, Hi

has the order n(Hi) = 7i, independence number �(Hi) = 2i and clique
number !(Hi) = 3i. Therefore, its chromatic number �(Hi) is at least
(7=2)i = (7=6)i!(Hi). Furthermore, if a member of the sequence (Hi) con-
tains an acyclic induced subgraph T , then T has to be a subgraph of the
path P4. Hence, we observe the following surprising result:

Observation 13 Let G be a �-bound family of graphs de�ned in terms of
only one forbidden induced subgraph T . Then T is acyclic. Furthermore, if
T � P4 then G has the (smallest) �-binding function f�(x) = x, or otherwise
there exists no linear �-binding function f for G.

Let K1;n denote the star with n branches. The special case K1;3 is called a
claw. Let r(p; q) be the Ramsey number, that is the smallest integer n such
that every graph G of order at least n contains an independent set with p
vertices or a clique with q vertices. In 1981, Sumner [116] observed that the
class of claw-free graphs is �-bound with �-binding function f(x) = r(3; x).
Since the ratio of the order and the independence number of a graph provides
a well-known lower bound for its chromatic number and every graph with
an independence number of at most two is obviously also a claw-free graph,
it is not diÆcult to observe that for every �-binding function f of the class

of claw-free graphs we have f(x) � r(3;x+1)
2 (cf. [55]). Consequently, by

the dependency on the Ramsey number and Kim's famous result [74], that
the Ramsey number r(3; x) has order of magnitude x2= logx, the smallest
�-binding function f� has also this magnitude. Combining these results
implies the following observation.

Observation 14 [116], [55] & [74] There exists no linear �-binding function
f for the class of claw-free graphs. More precisely, for the family of claw-free

graphs the smallest �-binding function f� satis�es f�(x) = O( x2

log x ).

More general, the next result of Gy�arf�as [54] shows that the magnitude of
the smallest �-binding function for the class of K1;n-free graphs is strongly
related to Ramsey numbers.

Theorem 15 [54] The family of K1;n-free graphs is �-bound and its small-

est �-binding function f� satis�es
r(n;x+1)�1

n�1 � f�(x) � r(n; x).

Also for the family of Pn-free graphs, where Pn is a path on n vertices, a
�-binding function is known.

Theorem 16 [54] The family of Pn-free graphs is �-bound and its smallest

�-binding function f�n satis�es r(dn=2e;x+1)�1
dn=2e�1 � f�n(x) � (n� 1)x�1.
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It is noteworthy that even f�5 (x) � 2x as shown in [71]. The idea of the proof
of Theorem 16 in order to establish the upper bound will be illustrated for
the special case of triangle-free graphs. Thereby, we slightly improve the
upper bound.

Corollary 17 Let G be a triangle-free and Pn-free graph. Then �(G) �
n� 2, i. e. f�n(2) � n� 2.

Proof: Assume to the contrary that there exists a triangle-free and Pn-free
graph G1 with �(G1) � n � 1. Say, G1 is connected. Let v1 be a vertex of
G1. Since all neighbours of v1 form an independent set of G1, we deduce
that the induced subgraph G1 � NG1

[v1] contains a component G2 with
�(G2) � n� 2. Since G1 is connected there exists a neighbour v2 of v1 such
that v2 is also adjacent to at least one vertex of G2. Now proceed iteratively
until we receive a sequence of nested graphs (Gi)i2f1;:::;n�3g. Observe that
the vertex set fv1; v2; :::; vn�3g induces a path Pn�3 and �(Gn�3) � 3. Be-
cause Gn�3 is triangle-free and not bipartite there exists an induced odd
cycle C containing at least �ve vertices. Now it is not very diÆcult to ex-
tend the path Pn�3 along C in order to produce an induced path of G1

containing at least n vertices, a contradiction.

For the class of mK2-free graphs, Wagon [125] provides an O(x2(m�1))
�-binding function. In particular, for m = 2 he obtained the �-binding
function f(x) =

�
x+1
2

�
. In [54] the lower bound r(C4;Kx+1) for the smallest

�-binding function f� for the family of 2K2-free graphs is mentioned. Here,
r(C4;Kx+1) denotes the smallest integer n such that every graph G of order
at least n contains the complement of C4, a cycle with four vertices, or a
clique with x+1 vertices. This lower bound is non-linear, since this special
Ramsey number has magnitude O(x1+�) for some � > 0 as shown in [23].
Whereas f�(2) = 3 is trivial, the problem to determine f�(3) is far from be-
ing trivial. Erd}os o�ered 20$ to decide whether f�(3) = 4. In [54] the (so far
unpublished) solution f�(3) = 4 is contributed to Nagy and Szentmikl�ossy.

In Gy�arf�as' study of the smallest �-binding function f�T for the class of
T -free graphs, where T is a forest with four vertices, there are three sub-

cases left over. As shown in [54] f�P3[K1
behaves asymptotically like r(3;x+1)

2 .
Thus, analogously to the case of claw-free graphs, the magnitude of f�P3[K1

is O( x2

log x ). The graph P = P3 [K1 is also known as paw. Note that by a

result of Olariu [95] on the class of paw-free graphs, asserting that every
paw-free graph is either triangle-free or a complete multipartite graph, it is
not diÆcult to obtain that f�P3[K1

(x) = f�3K1
(x). Here, f�3K1

is the smallest
�-binding function for the class of 3K1-free graphs. Also in [54] the asymp-

totic behaviour r(4;x+1)
3 of f�4K1

is mentioned. Finally, Gy�arf�as established
r(3;x+1)�1

2 � f�K2[2K1
(x) �

�
x+1
2

�
+ x� 1. With a slight modi�cation (e. g.

see the sketch of proof of Theorem 18) it is not very diÆcult to establish
the upper bound

�
x+1
2

�
for f�K2[2K1

.
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Now we turn our attention to the smallest �-binding function f�T of the
family of T -free graphs, where T is a forest of order 5. By Observation 13
we know that there exists no linear function f�T . If T = P5, then easily
we obtain f�P5(2) = 3 and the example GP5 of Figure 3 shows f�P5(3) � 5.
Improving the already mentioned upper bound 2x for f�P5 seems to be a
challenging task. If T is a chair (for a de�nition see Figure 3), then again
we have f�chair(2) = 3 and in [97] the �rst author proved f�chair(3) = 4.
Moreover, we expect f�chair(x) �

�
x+1
2

�
. The next theorem can be easily

proved by induction on ! and the observation that for every vertex v of a
P4 [K1-free graph G, the induced subgraph G�NG[v] is P4-free, therefore
perfect and NG(v) induces a subgraph G

0 such that !(G0) � !(G)�1. Since
the family of P4 [K1-free graphs contain all P3 [K1-free graphs we easily
deduce the lower bound of Theorem 18.

Theorem 18 The family of P4[K1-free graphs is �-bound and its smallest

�-binding function f�P4[K1
satis�es r(3;x+1)

2 � f�P4[K1
(x) �

�
x+1
2

�
.

Analogously we obtain the following results:

(i) r(5;x+1)�1
4 � f�5K1

(x) � r(5; x);

(ii) r(3;x+1)
2 � f�K2[3K1

(x) �
�
x+2
3

�
;

(iii) O(x1+�) � r(4; x+ 1) � f�2K2[K1
(x) �

�
x+2
3

�
for some � > 0;

(iv) O( x2

log x) =
r(3;x+1)

2 � f�K1[K1;3
(x) �

�
x+2
3

�
.

The remaining open case for an acyclic graph of order 5, the P3+K2, seems
to be tractable.

3.2 Miscellaneous

There are also interesting �-bound families of graphs with more than one
forbidden induced subgraph. For instance Fouquet, Giakoumakis, Maire and
Thuillier [45] achieved the upper bound

�
x+1
2

�
for the smallest �-binding

function of the family of P5-free and �P5-free graphs. Moreover, they proved
the upper bound b 3!2 c for the smallest �-binding function of the family of
2K2-free and �P5-free graphs. The same bound is valid for the smallest �-
binding function of the family of P3 [K1-free and C5-free graphs as proven
by Ho�ang and McDiarmid [59].

A nice byproduct of Observation 14 is an aÆrmative answer to a question
due to Kierstead. In 1989, Kierstead [69] examined a subclass of claw-free
graphs and proved that every claw-free graph G, which does not contain
a complete graph K2s+3 minus an edge as an induced subgraph, satis�es
�(G) � maxf!(G) + s; r(3; 4s � 1)g. Kierstead [69] asked, whether it is
possible to drop the dependency on the Ramsey number r(3; 4s� 1) in this
upper bound. He also noted that a positive answer would imply that for

every claw-free graph G we have �(G) � 3!(G)
2 : But there exists no linear

�-binding function and Kierstead's question has a negative answer.
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We close this section with several conjectures posed by Gy�arf�as [54], which
are related to the Strong Perfect Graph Conjecture.

Conjecture 19 [54] There exists a �-binding function for the class of odd-
hole-free graphs.

Conjecture 20 [54] For all integers l � 2 there exists a �-binding function
for the class of graphs without induced cycles of length r 2 f2l+1; 2l+3; :::g.

Conjecture 21 [54] For all integers l � 2 there exists a �-binding function
for the class of graphs without induced cycles of length r 2 fl; l+1; l+2; :::g.

Partial solutions to these conjectures are due to Scott [111]. The class of
graphs without induced cycles of length l 2 f5; 6; :::g will be de�ned in
Subsection 6.2 as GI(3; 4). Obviously, the graph sequence (Hi) constructed
at the beginning of the latter subsection is contained in GI (3; 4).

Observation 22 [99],[59] No linear �-binding function for GI (3; 4) exists.

4 The theorems of Brooks and Vizing

In this section we consider two classical colouring results due to Brooks and
Vizing. First we reformulate these results on graphs de�ned in terms of for-
bidden induced subgraphs and then we discuss whether these reformulated
results can be extended.

4.1 On Brooks' Theorem

An important result in graph colouring theory is the Theorem of Brooks [15],
asserting that every graph G is �(G)-colourable unless G is isomorphic to
an odd cycle or a complete graph. A very nice algorithmic proof of Brooks'
Theorem is due to Lovasz [83]. Bryant [16] simpli�ed this proof with the fol-
lowing characterization of cycles and complete graphs. Thereby he highlights
the exceptional role of the cycles and complete graphs in Brooks' Theorem.
An elementary proof of this characterization was obtained in [102].

Proposition 23 [16] Let G be a 2-connected graph. Then G is a cycle or
a complete graph if and only if G � fu; vg is not connected for every pair
(u; v) of vertices of distance two.

Brooks' Theorem 24 [15] If G is neither complete nor an odd cycle, then
G is �(G)-colourable.

Brooks' Theorem states that �(G) � �(G) for a graph G whenever 3 �
!(G) � �(G). Borodin and Kostochka [10] conjectured that !(G) < �(G)
implies �(G) < �(G) if �(G) � 9. Reed [104] proved that this is true when
�(G) � 1014.
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A nice generalization of Brooks' Theorem within the scope of this survey was
achieved by Gallai [46]. A graph is colour-critical, if we have �(G) > �(H)
for every proper subgraph H of G. If �(G) > �(H) holds for every proper
induced subgraph H of G, then G is vertex-critical. Moreover, if a vertex-
critical or colour-critical graph G has chromatic number k, then G is k-
colour-critical or k-vertex-critical, respectively. A generalization of Brooks'
Theorem and a very useful tool in the study of vertex-critical graphs is a
reformulation of a deep structural result on colour-critical graphs which is
due to Gallai [46]. For a short proof of this result see for example [107].
Note that most of the di�erent proofs of this result only require proper-
ties of k-colour-critical graphs, for instance Æ � k � 1, which also hold for
k-vertex-critical graphs.

Theorem 25 [46] Let G be a k-vertex-critical graph and Low(G) denotes
the low-vertex graph of G induced by the vertices of degree k� 1 of G. Then
every 2-connected induced subgraph of Low(G) is either an odd hole (odd
cycle of length greater than 3) or complete.

In the book of Toft and Jensen [63] (Problem 4.6, p.83) the problem of
improving Brooks' Theorem for the class of triangle-free graphs is stated
or, more generally provided that the graph contains no Kr+1. The problem
has its origin in a paper of Vizing [124]. The best known improvement of
Brooks' Theorem in terms of the maximal degree for the class of triangle-
free or, more generally Kr+1-free graphs is due to Borodin, Kostochka [10],
Catlin [17], Kostochka [78]. They proved that if 3 � r � �(G) and G
contains no Kr+1, then �(G) � r

r+1(�(G) + 2). Kostochka [78] proved
�(G) � 2=3(�(G) + 3) for every triangle-free graph G. The remaining au-
thors independently proved that �(G) � 3=4(�(G) + 2) for every triangle-
free graph G. For the class of triangle-free graphs Brooks' Theorem can be
restated in terms of forbidden induced subgraphs, since triangle-free graphs
G satisfy G[NG[x]] �= K1;dG(x) for every vertex x of G.

Theorem 26 [15] (Triangle-free version of Brooks' Theorem)
Let G be a triangle-free and K1;r+1-free graph. Then G is r-colourable unless
G is isomorphic to an odd cycle or a complete graph with at most two
vertices.

The following theorem will extend this triangle-free version of Brooks' The-
orem. An r-sunshade (with r � 3) is a starK1;r with one branch subdivided
once. The 3-sunshade is sometimes called chair and the 4-sunshade cross.

Observation 27 Let G be a triangle- and chair-free graph, then �(G) � 3.
Moreover if G is connected, then equality holds i� G is an odd hole.

Theorem 28 [97] If G is a triangle- and cross-free graph, then �(G) � 3.

In [102], the last theorem is extended.

Theorem 29 [102] Let G be a connected, triangle-free and r-sunshade-free
graph with r � 3, which is not an odd cycle. Then
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(a) G is r-colourable;
(b) G is bipartite, if �(G) � 2r � 3;
(c) G is (r-1)-colourable, if r = 3; 4 or if �(G) � r � 1.

Problem 30 Let G be the class of all connected, triangle-free and r-sunshade-
free graphs with 5 � r � �(G) � 2r � 4. Does there exist an r-chromatic
member G� 2 G?

Using Kostochka's result that �(G) � 2=3(�(G)+ 3) for every triangle-free
graph G, it is not very diÆcult for r � 9 to reduce Problem 30 to the range
3=2(r � 3) � �(G) � 2r � 4.
An intriguing improvement of Brooks' Theorem by bounding the chromatic
number of a graph by a convex combination of its clique number ! and its
maximum degree � plus 1 is suggested by Reed [104].

Conjecture 31 [104] For any graph G of maximum degree � and clique
number !, �(G) is at most d�+1+!

2 e.

Even in the special case of triangle-free graphs no aÆrmative answer is
known so far.

Conjecture 32 [104] Any triangle-free graph G satis�es �(G) � �(G)
2 +2.

Asymptotically even the smaller upper bound �(G)=log(�(G)) is valid as
shown by Johannson [66] and independently by Kim [73]. If the last con-
jecture is true then it is not very diÆcult to reduce Problem 30 to the
range 2r � 5 � �(G) � 2r � 4, which seems to be tractable. Moreover,
an aÆrmative answer to this special case of Reeds conjecture on triangle-
free graphs, would imply that there exists no 5-regular, 5-chromatic or6-
regular,6-chromatic triangle-free graph. These negative results would settle
the remaining cases of Gr�unbaum's girth problem ([52], see also [63]).

We close this part with a result of Stacho [115] related to Brooks' The-
orem. In [115] the invariant �2(G) = maxu2V (G)maxv2N(u);d(v)�d(u)d(v)
of a given graph G was introduced and the following result was presented.

Theorem 33 [115] Let G be a graph. Then �(G) � �2(G) + 1. Moreover,
if �(G) � 3, then to determine whether �(G) � �2(G) is an NP -complete
problem.

Observe that �(G) � �2(G) + 1 � �(G) + 1 and �2(G) = �(G), if G
contains two adjacent vertices u; v 2 V (G) with d(u) = d(v) = �(G).

4.2 On Vizing's Theorem

In this section let us briey consider the problem of colouring the edges of
a graph, instead of the vertices, in such a way that no two adjacent edges
receive the same colour. The chromatic index �0(G) is the least number of
colours required to colour the edges of a graph G in this sense. Obviously
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every edge colouring of a simple graph G uses at least �(G) colours. In 1916
K�onig [76] proved that for bipartite graphs the chromatic index equals the
maximum degree. Almost �fty years later in 1964 Vizing proved with the
help of a sophisticated recolouring technique a fundamental and nowadays
classical result in graph theory.

Vizing's Theorem 34 [122] Let G be a graph, then �(G) � �0(G) �
�(G) + �(G). Here �(G) denotes the maximum number of edges joining
two vertices in G. In particular, �(G) � �0(G) � �(G) + 1 for simple
graphs G.

It is noteworthy that Vizing's proof of this theorem provides an algorithm
with a polynomial worst case running time to colour the edges of a given
graph G using �(G) + �(G) di�erent colours.

The problem of colouring the edges of a graph G is equivalent to the colour-
ing of the vertices of its line graph L(G) having the edges of G as its vertices,
and two distinct edges of G are adjacent in L(G) if they are adjacent in G.
Clearly, every edge colouring of a graph G is a vertex colouring of L(G) and
vice versa. Moreover, the maximum degree�(G) of a graphG, which is non-
isomorphic to a triangle, is equal to the clique number !((L(G)). Therefore,
Vizing's Theorem can be reformulated in the language of line graphs assert-
ing that for simple graphs G the bound �(L(G)) � !(L(G))+1 is satis�ed.
Because of Vizing's result, line graphs satisfy this bound !+1 for the chro-
matic number in a quite natural way. Therefore we call this special upper
bound for the chromatic number the Vizing bound. Thus, in the following
we are interested in graph classes de�ned in terms of forbidden induced sub-
graphs admitting the special �-binding function f(x) = x + 1. Finally, an
elegant characterization of line graphs in terms of nine forbidden induced
subgraphs (see Figure 2 the so-called Beineke graphs) proven by Beineke [4]
in 1968 transfers Vizing's Theorem into a result in the scope of this survey.
In fact, the reformulated Vizing Theorem asserts that if a graph G does not
admit one of the Beineke graphs (see Figure 2) as induced subgraph then
we have �(G) � !(G) + 1.
In 1977, Choudom [19] was the �rst to examine an intriguing question:
Does the Vizing bound for the chromatic number also hold for superclasses
of line graphs? In particular, these superclasses should be de�ned by for-
bidding only a selection of Beineke's nine graphs as induced subgraphs.
Choudom determined two superclasses of line graphs for which the Vizing
bound for the chromatic number is also true. Both superclasses are de�ned
by only four forbidden induced subgraphs of Beineke's nine graphs. Both
sets of forbidden induced subgraphs contain the K1;3 and the K5 � e.
Thus, Choudom's results extend Vizing's classical result concerning edge
colourings. In 1980, Javdekar [61] conjectured that the Vizing bound for
the chromatic number holds even for the class of graphs not containing
K1;3 and K5 � e as an induced subgraph. This superclass of line graphs
contains both of Choudom's enlarged graph classes. Kierstead and Schmerl
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K K1,3 5
−e

Fig. 2 Beineke graphs

[72] showed 1983 that this conjecture can be reformulated in terms of edge
colourings of special multigraphs. Finally, Kierstead [68] proved this conjec-
ture in 1984. This result forms a partial solution to the problem of �nding
all pairs of connected forbidden induced subgraphs which imply the Vizing
bound for the chromatic number. A pair (A;B) of connected forbidden in-
duced subgraphs, which imply the Vizing bound for the chromatic number,
such that neither forbidding A nor forbidding B is superuous, is briey
called a good Vizing-pair. Moreover, a good Vizing-pair is saturated, if for
every good Vizing-pair (A0; B0) with A � A0 and B � B0 we have A �= A0

and B �= B0. Based on Erd}os' already cited result and a number of certain
graphs G with chromatic number !(G) + 2 it is not diÆcult to obtain the
following result.

Theorem 35 [97] If (A;B) is a good Vizing-pair, then A has to be a tree
with A 6� P4 and B 2 fK5 � e;HV N;K4;K3; P;Dg: (see Figure 3)

Observation 36 [97] The graph GP5 (see Figure 3) is 5-chromatic, K4-free
and P5-free.

Theorem 37 [97] Let A be a connected graph such that every A-free graph
G with !(G) � 3 satis�es �(G) � !(G) + 1 � 4. Then A is an induced
subgraph of the chair.

The next result extends Kierstead's generalization of Vizing's Theorem. The
proof is very tedious and was carried out in [97].

Theorem 38 [97] Let B be an induced subgraph of the HV N or the K5�e
and G be a B-free and chair-free graph, then �(G) � !(G) + 1.

A subproblem is to determine all pairs (A;B) of connected graphs such that
a graph G is 3-colourable, if G does not admit either A or B as an induced
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Fig. 3 Extremal graphs

subgraph. Obviously, a necessary condition for a graph to be 3-colourable is
the absence of the K4. Therefore, w. l. o. g. A must be an induced subgraph
of the K4 and we have two non-trivial cases A �= K4 and A �= K3.
Due to Theorem 35 the A accompanying graph B, in order to force (A;B)
to be a good pair, has to be a tree. Applying Seinsche's result [112] that
every P4-free graph is perfect, we easily deduce that (K4; P4) is a good
pair, i. e. if a graph G does not admit K4 and P4 as an induced subgraph,
then G is 3-colourable. The well-known 5-wheel W5 := K1 _ C5, the join
of a 5-cycle and an isolated vertex, is an example for a 4-chromatic and
K4-free graph. Here, the join of graphs G and H , written G _ H , is the
graph obtained from the disjoint union of G and H by adding the edges
fuvju 2 V (G); v 2 V (H)g. Recall that the companion graph B to K4 has
to be a tree. Now obviously every acyclic induced subgraph of W5 is also
an induced subgraph of the P4. Therefore, (K4; P4) is a saturated pair and
the case A �= K4 is also settled.

Thus, it remains to study triangle-free graphs which are 3-colourable. More
precisely, we want to determine all trees T such that every triangle-free and
T -free graph is 3-colourable. The starting point is again the reduction of
possible trees T .

Proposition 39 [97] The 4-chromatic Mycielski graph G4 is (3K2)-free
and (K2 [ P3)-free.

In 1955, Gleason and Greenwood [51] determined the Ramsey number r(5; 3) =
14. Hence, there exists a graph G� of order 13 with �(G�) � 4 and !(G�) �
2. Thus, obviously we have �(G�) � n(G�)=�(G�) � 13=4 and G� is not
3-colourable.
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Proposition 40 [51] There exists a triangle-free graph G� with �(G�) � 4,
which is not 3-colourable.

H-graph

r

r

r

r

r

r

fork C2;2;1;1

r r r

r r

r r

For the next theorem we need to de�ne two special trees. The H-graph is
a tree with six vertices which can be drawn like the capital letter H . The
fork is the tree C2;2;1;1, i. e. a star with four branches with exactly two
branches subdivided once. Every tree T , such that every triangle-free and
T -free graph is 3-colourable, ful�lls the inequality �(T ) � 4, because of the
Proposition 40 of this section. With the Proposition 39 of this section we
deduce that T is (3K2)-free and (K2 [ P3)-free. An easy analysis yields the
following theorem.

Theorem 41 [97] Let T be a tree, such that every triangle-free and T -free
graph G satis�es �(G) � !(G) + 1 � 3. Then T �= H or T is an induced
subgraph of the fork.

Now we are able to present the next results:

Theorem 42 [97] Let (A;B) be a saturated pair of connected forbidden
induced subgraphs implying 3-colourability. Then A 2 fK3;K4g and B �
B0 2 fP4; H; forkg. Moreover, if A �= K4, then B �= P4. In case that
A �= K3, then B �= H or B is an induced subgraph of the fork.

Together with the following theorem, which will be discussed in this sub-
section, we almost achieve a complete characterization of all saturated pairs
(A;B) implying 3-colourability.

Theorem 43 [97] In the following we list up some good pairs (A;B) of
connected forbidden induced subgraphs implying 3-colourability:

1. (K4; P4), i. e. with no K4 and no induced path of order four;
2. (K3; H), where H is a six-vertex graph drawn like the capital letter H; ;
3. (K3; E), where E is a six-vertex graph drawn like the capital letter E;
4. (K3; cross), where the cross is a K1;4 with exactly one edge subdivided

once.

For all above mentioned pairs (A;B) we also can determine an algorithm
that 3-colours every A-free and B-free graph.
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In order to complete the characterization, we have to settle the case (K3; fork).
For a triangle- and fork-free graph G, it is an open question, whether G can
be 3-coloured.

Conjecture 44 [97] Let G be a triangle-free and fork-free graph. Then
�(G) � !(G) + 1 � 3.

In the study of the class of triangle-free and H-free graphs two well-known
3-regular graphs [7], the odd prism and the even M�obius ladder, will play
a key role. The prism Prn with n � 3 consists of two disjoint cycles C1 =
v1v2 : : : vnv1 and C2 = w1w2 : : : wnw1 and the remaining edges are of the
form viwi for every i 2 f1; 2; : : : ; ng. A prism Prn is odd, if n is odd.
The M�obius ladder Mln with n � 2 is constructed from the cycle C =
u1u2 : : : u2nu1 by adding the edges uiui+n for every i 2 f1; 2; : : : ; ng joining
each pair of opposite vertices of C. The M�obius ladder Mln is even, if n
is even. Prisms Prn and M�obius ladders Mln with n � 4 are triangle-free.
Moreover, prisms Prn and M�obius ladders Mln are H-free. We give two
results that settle the question of 3-colourability for triangle- and H-free
graphs. If G is a triangle-free and H-free graph, then our next theorem - a
structural result - will enable us to determine a �(G)-colouring of G with
�(G) � !(G) + 1 � 3.

Theorem 45 [97] Let G be a connected triangle-free and H-free graph,
which is not an even M�obius ladder Ml2l or an odd prism Pr2l+1 with
l � 2. Then one of the following properties holds:

(i) G is bipartite;
(ii) Æ � 2.

The next theorem will reveal that the odd prism Pr2l+1 and the even M�obius
ladderMl2l with l � 2 are saturated graphs in the class of triangle-free and
H-free graphs.

Theorem 46 [97] If a connected, triangle-free and H-free graph G contains
a subgraph T , which is isomorphic to an odd prism Pr2l+1 or an even M�obius
ladder Ml2l for some l � 2, then G �= T .

Let G be a connected, triangle-free and H-free graph of order n. If G is
isomorphic to an odd prism Pr2l+1 or an even M�obius ladderMl2l for some
l � 2, then obviously we have �(G) = 3. Furthermore, it is not very diÆcult
to present a 3-colouring for an odd prism Pr2l+1 or an even M�obius ladder
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Ml2l for every l � 2. Suppose that G is not isomorphic to an odd prism
Pr2l+1 or an even M�obius ladder for some l � 2. If Æ(G) � 3, then with
Theorem 45 we obtain that G is bipartite. Now assume that Æ(G) � 2.
Then again our structural theorem implies the existence of some integer
r 2 f1; : : : ng and vertices v1; : : : ; vr, such that dG1

(v1) � 2 with G1 := G,
dG2

(v2) � 2 with G2 := G1 � v1, . . . , dGr
(vr) � 2 with Gr := Gr�1 � vr�1

and G� := Gr � vr is the empty graph, if n = r and otherwise G� is
(because of the last theorems) a bipartite graph with Æ(G�) � 3. In the
case r = n, this property is called 2-degenerate. Hence, we can colour the
bipartite induced subgraphG� with two colours � and � and furthermore we
can colour the remaining vertices of G with at most three colours �; � and 
along the inverse ordering vrvr�1 : : : v2v1. Thus, we have easily constructed
a 3-colouring of G.

Corollary 47 [97] Let G be a triangle-free and H-free graph, then �(G) �
!(G) + 1 � 3.

Before we study the whole class of triangle-free and fork-free graphs, we will
examine two of its subclasses. The �rst subclass contains the triangle-free
and E-free graphs. A well known class of graphs is the family of nearly
bipartite graphs. Here, a graph G is nearly bipartite, if for every vertex w
of G the graph Gw := G�NG[w] is bipartite.

Theorem 48 [97] Every triangle-free and E-free graph is nearly bipartite.

Note that for every vertex w of a triangle-free and E-free graph G it is
very easy to construct a 3-colouring � of G such that all vertices of NG(w)
receive the same colour of �.

Corollary 49 [97] Let G be a triangle-free and E-free graph. Then �(G) �
!(G) + 1 � 3.

Recall Theorem 28 that a triangle-free and cross-free graph G satis�es
�(G) � !(G) + 1 � 3.

Remark 50 The proof of Theorem 28 has algorithmic impact likewise to
the proof of Brooks' Theorem. Therefore, if G is a triangle-free and cross-
free graph, it is not very diÆcult to construct a 3-colouring of G.

The results on triangle-free and E-free or cross-free graphs give some evi-
dence that Conjecture 44 is true, i. e. every triangle-free and fork-free graph
is 3-colourable. Thus, applying Theorem 41, Corollary 47, Corollary 49 and
Theorem 28, we obtain that the following set (K3; B)3 contains the satu-
rated graphs B, such that a triangle-free and B-free graph G is 3-colourable.
If Conjecture 44 is true, we have:

(K3; B)3 = fH ; forkg;

and otherwise, if Conjecture 44 is not true, we have:

(K3; B)3 = fH ;E; crossg:
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Olariu [95] discovered that the connected, paw-free and non-triangle-free
graphs are exactly the complete multipartite graphs. Hence, we can trans-
form the results concerning triangle-free graphs to those concerning paw-
free graphs. Recall that it is proved in [97] that the pairs (K5 � e; chair),
(HV N; chair) and (P;H) are saturated. Finally, motivated by the result
that (K4�e)-free and P5-free graphs also satisfy the Vizing bound, we con-
jectured in [97] that the following set (A;B)!+1 contains all saturated pairs
(A;B) implying the Vizing bound:

(A;B)!+1 = f(K5 � e; chair); (HV N; chair); (P;H);
(P; fork); (K4 � e;H); (K4 � e; fork)g:

5 Pl-free graphs

This section is devoted to Pl-free graphs. In the latter sections we already
mentioned this class partially. E. g. the family of Pl-free graphs admits the
�-binding function f(!(G)) = (l � 1)!(G)�1. Furthermore, with a slight
modi�cation of Gy�arf�as' proof of the latter result we obtained in Sec-
tion 3 the �-binding function f(2) = l � 2 for the family of Pl-free and
triangle-free graphs. This guarantees that every triangle-free and P6-free
graph is 4-colourable. However, not every triangle-free and P6-free graph
is 3-colourable: two exceptions are the well-known 4-chromatic Mycielski-
Gr�otzsch graph G4 and the Clebsch graph PMG (cf. the �gure below).

Clebsch-graph PMG

C2

C1
r r r r r

r r r r r

r r r r r

r

In [103] we extended the theorem of Gy�arf�as in this special case and also
extended a result due to Sumner asserting that every P5-free and triangle-
free graphs is 3-colourable. Two vertices u and v of a graph G are called
similar, if NG(u) � NG(v) or NG(v) � NG(u) holds.

Theorem 51 [103] Let G be a connected triangle-free and P6-free graph
which is not 3-colourable and contains no similar vertices. Then G contains
the Mycielski-Gr�otzsch graph G4 as induced subgraph and is an induced
subgraph of the 16-vertex Clebsch-graph PMG.

Thus, we can easily decide whether a given triangle-free and P6-free graph
can be 3-coloured. This motivates the question whether k-colourability can
be decided in polynomial time for the family of Pl-free graphs. Moreover,
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Fig. 4 Example of a cograph and its cotree representation

in case of an aÆrmative answer, it is also of interest, whether a k-colouring
can also be determined in polynomial time. For small values l 2 f1; 2; 3g
chromatic aspects of Pl-free graphs are trivial, since the only P1-free graph
is the empty graph, P2-free graphs are edgeless and P3-free graphs only
contain disjoint cliques. Thus, every P3-free graph G can be easily coloured
with !(G) colours.

The �rst non-trivial case are P4-free graphs, a subclass of perfect graphs.
Therefore, we have �(G) = !(G) for every P4-free graph ( and every P4-free
graph G is !(G)-colourable). In the following we want to sketch an eÆcient
algorithm to !(G)-colour a given P4-free graph. The key to obtain this algo-
rithm is the possibility to represent a given P4-free graph by a data structure
called a cotree. A graph is called a cograph, if for every induced subgraph
H of G with at least two vertices either H or �H is disconnected. Seinsche
[112] proved that a graph G is P4-free if and only if G is a cograph. With
this result it is not very diÆcult to deduce perfectness of P4-free graphs.
In [30] Corneil, Lerchs and Burlingham discovered a recursive de�nition of
cographs:

{ An isolated vertex is a cograph.
{ If G1; :::; Gr are cographs, then the disjoint union G1 [ G2 [ ::: [ Gr is
likewise a cograph.

{ If G is a cograph, then likewise �G is a cograph.

This recursive characterization provides a canonical decomposition scheme
for cographs: a disconnected cograph is decomposed into its components
and a connected cograph into the components of its complement. This can
be iterated until only isolated vertices are left. Such a decomposition can be
represented by a tree - the cotree. Each of these operations corresponds to
an inner vertex of the tree and the obtained isolated vertices, the vertices
of the cograph, are now the leaves of the cotree. The next �gure gives an
example. Building up a cotree for a given cograph can be done in linear time
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Fig. 5 Example of an !-colouring of a cograph

[31]. Very recently Corneil [32] announced a simple linear time procedure
to build up a cotree for a given cograph based on lexicographic breath �rst
search.

Using the cotree representation of a P4-free graph G it is not very diÆcult
to determine !(G) and an !(G) colouring. Here we just give a 3-colouring
for our example in the above �gure. For small values l 2 f1; 2g the question,
whether an arbitrarily graph is l-colourable, is trivial. For l = 1 it remains
to check whether the input graph is edgeless; for l = 2 it has to be clari�ed
whether the graph in consideration is bipartite. Thus 3-colourability is the
�rst non-trivial case. A necessary condition for a graph G to be 3-colourable
is that for every vertex of G its neighbourhood induces a bipartite graph.
The question whether a given graph G = (V;E) is 3-colourable can be re-
formulated as an instance of the special satis�ability problem 3-SAT, which
was proved to be NP-complete by Cook [29].

3-SAT. Let C be a collection of m clauses over the set V of n Boolean
variables such that every clause has exactly three literals. Is there a truth
assignment for C that satis�es all clauses?

Let V = f1; :::; ng be the vertex set of G and E = feij ji adjacent to jg

be the edge set of G. Now we introduce 3n Boolean variables: x
(l)
i for ev-

ery i 2 f1; ::; ng and l 2 f1; 2; 3g with x
(l)
i = true corresponding to the

statement that the vertex i receives the colour l. Now each edge eij of G is

represented by three clauses, namely (�x
(l)
i _ �x

(l)
j ) for l 2 f1; 2; 3g and each

vertex xi of G is represented by �ve clauses, namely (x
(1)
i _x

(2)
i _x

(3)
i ); (�x

(1)
i _

�x
(2)
i _ �x

(3)
i ); (x

(1)
i _ �x

(2)
i _ �x

(3)
i ); (�x

(1)
i _x

(2)
i _ �x

(3)
i ); (�x

(1)
i _ �x

(2)
i _x

(3)
i ). Now it is

not very diÆcult to check that a satisfying truth assignment of this 3-SAT
instance corresponds to a 3-colouring of G.
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Our interest on this reformulation is justi�ed by its 2-SAT impact, if we con-
sider a 3-precoloured dominating set of the graph. Here, a subset D � V (G)
of a graph G is called a dominating set, if every vertex x 2 V (G)�D is adja-
cent to at least one vertex in D. The following approach for 3-colourability
was used in [103] (see also [38]). The basic idea of the approach states the
following: Let D be a dominating set in a graph G = (V;E). Then we can
test whether a 3-colouring of D can be extended to a 3-colouring of G by
constructing a corresponding 2-satis�ability formula with at most 3jV j vari-
ables and 3jEj+5jV j clauses. Since 2-satis�ability is solvable in linear time
O(3jEj+ 5jV j), we deduce the next result.

Corollary 52 [103] For a graph G = (V;E) with a dominating set D,
we can decide 3-colourability and determine a proper 3-colouring in time
O(3jDj � jEj).

A complete subgraph of G is called a dominating clique if the vertices com-
prise a dominating set. In [1], Bacs�o and Tuza showed that every P5-free,
connected graph contains a dominating clique or a dominating set inducing
a P3. Having tested, whether a P5-free, connected graph G is K4-free, the
result of Bacs�o and Tuza guarantees the existence of a dominating set of
G of size at most three. Together with Corollary 52 we then obtain the
following result.

Proposition 53 [103] 3-colourability can be decided and, if so, a proper
3-colouring can be determined in polynomial time for P5-free graphs.

An accompanying algorithm (see [89]) has a running time O(jV j�) for
G = (V;E). Here, 2 < � < 2; 36 is the exponent given by the fast ma-
trix multiplication.

Theorem 54 [100] Let G be a P6-free graph. Then the 3-colourability of G
can be decided and, if so, a proper 3-colouring can be determined in time
O(jEj � jV j�).

Sketch of the proof: Since G is P6-free there exists no hole of length � 7
in G. Thus, if G contains an odd hole C, then C is a 5-hole. Checking
whether a given graph G = (V;E) contains a 5-hole can be performed in
time O(jEj � jV j�); this is the most expensive part of the algorithm. In case
that there exists a 5-hole C, we analyze the structure of G. We will extend
the approach based on Corollary 52 and consider a �xed precolouring of
C with three colours, say v1 and v3 with colour 1, v2 and v4 with colour
2, and v0 with colour 3. Furthermore, we extend this precolouring of C
until no uncoloured vertex of G is adjacent to two di�erently precoloured
vertices and until there exists no diamond twin such that one of its ver-
tices is a precoloured vertex and the other vertex is uncoloured. Here, a
diamond twin is the pair of non-adjacent vertices of a diamond K4 � e.
Observe that in any feasible 3-colouring of a graph, diamond twins have
to receive the same colour. If there occurs a colour conict, then G is not
3-colourable. Otherwise, let PC denote the set of precoloured vertices of
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G. If PC is a dominating set, then we can apply Corollary 52 in order to
test in running time O(jEj), whether the remaining graph is 3-colourable.
Therefore, assume that PC is not a dominating set of G. Hence, there exist
vertices of G not being dominated by vertices of PC. Thus, the encoding
of the question whether our given graph G = (V;E) is 3-colourable as an
instance of the special satis�ability problem 3-SAT does not reduce to a
special satis�ability problem 2-SAT by the precolouring of PC. Especially,
the vertices not dominated by PC correspond to the remaining 3-clauses.
Observe that V (G) = fv 2 V (G)j9�v 2 V (C) : dist(v; �v) � 3g: Let Q be the
set V �NG[PC] of vertices not dominated by a precoloured vertex. Obvi-
ously, Q � N2 [N3. A tedious analysis of vertices of Q yields on one hand
the remaining 2-clauses and on the other hand a degenerated search tree in
order to settle this subcase within the above running time bound.
Since G is 5-hole-free in the remaining subcase we easily deduce that G is
perfect and due to its K4-freeness hence 3-colourable. A 3-colouring can be
obtained within the time bound by an algorithm of Tucker [118],[119].

Very recently Sgall and Woeginger [113] also studied chromatic aspects of
graphs without long induced paths. They were able to proof that the 4-
colourability decision problem is NP-complete for P12-free graphs and the
5-colourability decision problem is NP-complete for P8-free graphs. Finally,
we summarize the results and open cases for the k-colourability problem
in the following table with n = jV j; m = jEj for a given Pl-free graph
G = (V;E).

l n k 3 4 5 6 7 8 ... 12 ...

3 O(m) O(m) O(n�) O(mn�) ? ? ? ? ...
4 O(m) O(m) ? ? ? ? ? NPc ...
5 O(m) O(m) ? ? ? NPc NPc NPc ...
6 O(m) O(m) ? ? ? NPc NPc NPc ...
7 O(m) O(m) ? ? ? NPc NPc NPc ...
... ... ... ... ... ... ... ... ... ...

Table 1: Computational complexity of k-COL for Pl-free graphs.

At the end of this section we want to highlight a few of these open problems.
The �rst one seems to be a tractable one, whereas the second and third
problem will probably require a new approach.

Problem 55 Is 4� COL(P5) solvable in polynomial time?

Recall Observation 13 that there exists no linear �-binding function for the
class of P5-free graphs.

Problem 56 Is 3� COL(P7) solvable in polynomial time?

An intriguing problem is to establish for a non-trivial k (maybe a function
of the order of the graphs in consideration, e. g. a sublinear bound log(n))
that 3� col(Pk) remains NP-complete.
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Problem 57 Find (the smallest) an integer k � 7 such that 3� COL(Pk)
remains NP-complete!

6 Graphs with prescribed cycle lengths

The most famous result relating induced (cycle) subgraphs to vertex colour-
ing is the Strong Perfect Graph Theorem as already mentioned in Section
2. In this context related conjectures and results by Gy�arf�as were presented
in Sections 2 and 3. Also the excellent survey of Hayward and Reed [58]
on graph classes de�ned in terms of forbidden holes and antiholes condi-
tions is a valuable source. In this section we focus on chromatic aspects
of graphs with prescribed cycle lengths rather then considering forbidden
subgraph conditions. Starting with prescribed (non-induced!) cycle lengths
constraints we proceed with prescribed induced cycle lengths constraints.

6.1 Cycle lengths

In [41], Bollob�as and Erd}os asked the following: Let us denote by Co(G)
the set of odd cycle lengths in a graph G, i. e. Co(G) = f2m+1: G contains
a cycle of length 2m+1, for m � 1g. If jCo(G)j = k, is it true that �(G) �
2k + 2, with equality if and only if G contains a complete graph K2k+2?
An aÆrmative answer to this problem was given by Gy�arf�as. Since every
k-degenerate graph is (k + 1)-colourable, he even proved a stronger result:

Theorem 58 [55] Every graph G with jCo(G)j = k is (2k + 1)-degenerate.
If G is a 2-connected graph with minimum degree at least 2k + 1; then
jCo(G)j = k � 1 implies G = K2k+2.

Also, we will give an aÆrmative answer to the analogous problem for even
cycle lengths: Let us denote by Ce(G) the set of even cycle lengths in a
graph G, i. e. Ce(G) = f2m: G contains a cycle of length 2m, for m � 2g.
If jCe(G)j = k, is it true that �(G) � 2k + 3, with equality if and only if
G contains a complete graph K2k+3? In [91] a polynomial vertex-colouring
algorithm called MAXBIP was presented. Based on MAXBIP the following
results can be obtained:

Theorem 59 [91] Let G be a 2-connected graph with jCo(G)j = r and
jCe(G)j = s. Then the algorithm MAXBIP �nds a proper vertex k-colouring
of G with k � minf2r + 2; 2s+ 3g colours.

This leads to the following unexpected and surprising corollary:

Corollary 60 [91] Let G be a graph with jCo(G)j = r and jCe(G)j = s,
then �(G) � minf2r + 2; 2s+ 3g � r + s+ 2:

This result is best possible in the following sense.
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Theorem 61 [91] Let G be a graph with jCe(G)j = s, then �(G) � 2s+ 3.
Furthermore, if �(G) = 2s+3, then G contains a K2s+3. Let G be a graph
with jCo(G)j = r, then �(G) � 2r+2. Furthermore, if �(G) = 2r+2, then
G contains a K2r+2.

We now describe the vertex-colouring algorithm MAXBIP. Let us assume
in the sequel that G is 2-connected. The following algorithm will con-
struct a sequence of vertex disjoint MAXimal (induced) BIPartite subgraphs
B1; B2; : : : ; Bm;m � 1, of G such that V (G) =

Sm
i=1 V (Bi).

Algorithm MAXBIP
INPUT: a 2-connected graph G

STEP 1 Choose an arbitrarily vertex x1 2 V (G) and add successively vertices x2; x3; : : :
to obtain a connected maximal bipartite subgraph G[V (B1)]. Let S := V (B1)
and T := N(B1)nS.

STEP 2 Successively place every vertex of T in the smallest Bi such that G[V (Bi)] is
bipartite. Let S := V (B1) [N(B1) and R := V (G)nS.

STEP 3 If R = ;, then STOP. If R 6= ;, then let j be the smallest integer such
that N(V (Bj))nS 6= ;: Extend the components of G[V (Bj)] by successively
adding vertices to obtain a maximal bipartite subgraph B�

j in G[V (Bj) [
(N(V (Bj))nS)]. Set Bj := B�

j . Let Bj play the role of B1 in STEP 1. Let
S := S [ V (Bj) and T := N(Bj)nS. As in STEP 2 now successively place
every vertex of T in the smallest Bi; i � j, such that G[V (Bi)] is bipartite.
Let S := S [N(Bj) and R := V (G)nS and repeat STEP 3.

OUTPUT B1; B2; : : : ; Bm;m � 1

Let us colour the vertices of Bi; 1 � i � m, so that the �rst vertex which is
placed in some Bi; 1 � i � m, will be coloured with the smallest available
colour 2q � 1 according to FIRST-FIT. Then all vertices of this subgraph
Bi will be coloured properly with colours 2q � 1 and 2q.
For given sets Co(G) and Ce(G) it may be possible to improve the upper
bounds for the chromatic number �(G). If jCo(G)j = 1; then Theorem 61 is
leading to the following corollary.

Corollary 62 [91] Let G be a 2-connected graph with jCo(G)j = 1: Then

(i) �(G) = 4 if G contains K4 and
(ii) �(G) = 3 if G contains no K4:

In [126], the chromatic number of graphs with Co(G) = f3; 5g were charac-
terized. Recall the wheel W5 of order 6 (one center vertex which is adjacent
to all vertices of a cycle of order 5).

Theorem 63 [126] Let G be a 2-connected graph with Co(G) = f3; 5g: Then

(i) �(G) = 6 if G contains a K6,
(ii) �(G) = 5 if G contains a K5 but no K6,
(iii) �(G) = 4 if G contains a K4 but no K5,
(iv) �(G) = 4 if G contains a W5 but no K4 and
(v) �(G) = 3 if G contains no W5 and no K4.
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6.2 Induced cycle lengths

For a given simple graph we can also consider its set of induced cycle lengths.
In [99], colouring algorithms and upper bounds for the chromatic number
of some classes were obtained in terms of given induced cycle lengths.
Sumner [116] showed that triangle-free and P5-free or triangle-free, P6-free
and C6-free graphs are 3-colourable.

For t � 5 de�ne Gt as the class of all triangle-free graphs which are Pt-
free and Ci-free for 6 � i � t: For k � 1 and 3 � n1 < n2 < � � � < nk let
GI(n1; n2; : : : ; nk) be the class of all graphs whose induced cycle lengths are
equal to one of n1; n2; : : : ; nk: Thus

G5 � G6 � G7 � � � � � GI(4; 5)

and all graphs G of G5 and G6 are 3-colourable by Sumner's result. Note
that all graphs of Gt have diameter at most t� 2 whereas graphs of GI(4; 5)
can have arbitrary diameter. Does 3-colourability still hold for these su-
perclasses of G5 and G6? The next theorem obtained in [99] states that all
graphs of GI (4; 5) are 3-colourable. Moreover, we can guarantee a certain
3-colouring with some additional properties.
For a �xed integer p � 2 we call a graph G 2 GI(4; 2p + 1) 3�-colourable
with root v, if there is a 3-colouring of G such that G[Np

G(v)] is coloured
with two colours, where Np

G(v) is the set of vertices having distance p from
v. Observe that this de�nition implies the following useful property: If G is
3�-colourable with root v, then we can choose a 3-colouring s. t. G[N i

G(v)]
is coloured monochromatic for every 1 � i < p and G[Np

G(v)] is coloured
with two colours. Furthermore, if this property holds for every vertex of
G 2 GI(4; 2p+1), then we call G 3�-colourable. This de�nition is motivated
by the following observation.

If G1; G2 2 GI(4; 2p + 1) and vi 2 Gi for i = 1; 2, then the new graph
G� with vertex set V (G�) = V (G1�v1)[V (G2�v2) and edge set E(G�) =
E(G1�v1)[E(G2�v2)[fu1u2jui 2 NGi

(vi) for i = 1; 2g is likewise a mem-
ber of GI (4; 2p+ 1). The invariance of GI (4; 2p+ 1) concerning this graph
operation is the reason for the equivalence of 3�� and 3�colourability for
the class GI(4; 2p+ 1).

Theorem 64 [99] Every graph of GI (4; 2p+1) with p � 2 is 3�-colourable.

The proof of this theorem is based on decomposition and provides a polyno-
mial time algorithm to 3�-colour a given graph G 2 GI (4; 2p+1). The class
GI(4; 5) is a canonical extension of GI(4), which are the well-known chordal
bipartite graphs (e. g. see [11]). Very recently Brandt [12] examined the
maximal (with respect to edge addition) triangle-free members of the class
GI(4; 5) with emphasis on graph homomorphisms. Moreover, he introduced
for members of GI(4; 5) the terminology of chordal triangle-free graphs.
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Theorem 64 and Theorem 17 form partial solutions for the following con-
jecture of Ho�ang and McDiarmid [59].

Conjecture 65 [59] If G is a triangle-free graph with at least one hole and
h is the length of its longest hole then �(G) � h� 2.

Motivated by Theorem 64 we also considered in [99] the classes GI (2q; 2p+1)
and GI (2p0 + 1; 2q0) for q; q0 � 3 and p; p0 � 2, which are contained in
the larger class GI (n1; n2; : : : : : : ; nk) with n1 � 5. Recall that a graph
G is r-degenerate, if there exists an ordering (v1; : : : ; vn) of V (G) s. t.
dG[fvi;:::;vng](vi) � r for all 1 � i � n.

Theorem 66 [99] Every graph of GI(n1; n2; : : : ; nk) with k � 1 and n1 � 5
is (k + 1)-degenerate. Especially, every vertex v of G being an endvertex of
a longest induced path of G satis�es dG(v) � k + 1.

Corollary 67 [99] Every graph of GI(n1; n2; : : : ; nk) with k � 1 and n1 � 5
is (k + 2)-colourable.

Obviously, Corollary 67 is best possible for k = 1. But for k = 2 we are
able to improve Corollary 67. For the next theorem we need to recall the
de�nition of the famous Petersen graph P �. This 3-regular, non-bipartite
graph P � of order 10 is a member of the class GI(5; 6). The Petersen
graph P � consists of two disjoint induced 5-cycles C1 = a0a1a2a3a4a0 and
C2 = b0b1b2b3b4b0 and the additional edges a0b0; a1b3; a2b1; a3b4 and a4b2.
Obviously P � is 3-colourable.

Theorem 68 [99] Every graph G of GI(2q; 2p+ 1) or GI (2p0 + 1; 2q0) with
q; q0 � 3 and p; p0 � 2 ful�lls at least one of the following properties:

1. G is bipartite;
2. G satis�es Æ(G) � 2;
3. G 2 GI (5; 6) and one of the following properties holds:
(a) G �= P �;
(b) G contains a clique cutset, i. e. a K1 or a K2 clique cutset.

Testing whether G is bipartite, has minimal degree two or contains a com-
plete cutset of size at most two can be done very eÆciently. Moreover, if G 2
GI(5; 6) is non-bipartite, Æ(G) � 3 and contains no complete cutset, then
G �= P �, which obviously is 3-colourable. Hence, the last theorem provides
a polynomial time algorithm to 3-colour a given graph G 2 GI (2q; 2p+ 1)
or G 2 GI (2p0 + 1; 2q0) with q; q0 � 3 and p; p0 � 2. This algorithm (re-
cursively) applies the fact that the graph (in question) is bipartite, has a
vertex of degree at most two, is isomorphic to the Petersen graph or can be
decomposed into two smaller graphs according to a complete cutset of size
at most two.

Corollary 69 [99] Every graph G of GI(2q; 2p+1) or GI(2p0+1; 2q0) with
q; q0 � 3 and p; p0 � 2 is 3-colourable.

Now we consider the related problem of �nding a smallest �-binding function
f� for GI (n1; n2) and for completeness also for its subclasses GI (ni) with
i = 1; 2.
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!
n1; n2 3 4 odd � 5 even � 6
#

6 9 linear f�

3 f�(!) = ! Theorem 22 f�(!) � (n2+1
n2�1

)! f�(!) = !

chordal Conj.[54] : 9f� Conj.: 00 = 00 Rusu [106]

f�(!) = ! � 2
4 chordal f�(!) = ! + 1 � 3 f�(!) = ! � 2

bipartite Theorem 64 � bipartite

odd f�(!) = ! + 1 � 3 f�(!) = ! + 1 � 3
� 5 Markossyan,... [88] Corollary 69

even f�(!) = ! � 2
� 6 � bipartite

Table 2: �-binding function f� for GI(n1; n2).

For convenience we drop the condition that n1 is always smaller than n2 in
the de�nition of GI(n1; n2).

(I) n1; n2 even :

For even n1 and n2 all graphs of GI(ni) with i = 1; 2 and GI(n1; n2) are
bipartite and thus perfect with f�(!) = ! � 2.

(II) n1 even; n2 odd : (A) n2 � 5 :

By our previous results every graph of GI (n2) and GI(n1; n2) is 3-colourable,
i. e. with ! � 2 we have f�(!) = ! + 1 � 3.

(II) n1 even; n2 odd : (B1) n2 = 3 and n1 � 6 :

Due to Rusu [106] all members of a superclass of GI (3; 2q) are perfect for
any q � 3. Hence, we also have f(!) = !: A well-known subclass of GI(3; 2q)
is GI (3) containing the chordal graphs.

(II) n1 even; n2 odd : (B2) n2 = 3 and n1 = 4 :

In Observation 22 we already considered the class GI (3; 4) and we demon-
strated that there exists no linear �-binding function for GI (3; 4). It is note-
worthy that GI (3; 4) contains all weakly triangulated graphs.

(III) n1; n2 odd : (C1) n1; n2 � 5 :
Markossyan, Gasparyan and Reed [88] showed that all triangle-free and
even-hole-free graphs are 2-degenerate and thus are 3-colourable. Hence,
f�(!) = ! + 1 � 3 is a �-binding function for GI(n1) and GI(n1; n2).

(III) n1; n2 odd : (C2) n1 = 3 :
It is an open problem, whether there exists a linear �-binding function for
GI(3; n2). The graph-sequence Gr = Cn2 [Kr], the lexicographic product
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of the odd cycle Cn2 and the complete graph Kr, reveals that we have
f�(!) � ((n2 +1)=(n2 � 1))! for every �-binding function. We expect that
f�(!) = ((n2 + 1)=(n2 � 1))!:

Problem 70 Does there exist a linear �-binding function for GI (3; n2) with
n2 odd � 5?

7 Computational complexity

In this part of the survey we summarize related computational complexity
results. The basic problems can be de�ned as follows:

COLOURABILITY (for short COL)

Input: A graph G and a positive integer k.
Question: Is G k-colourable?

k-COLOURABILITY (for short k-COL)

Input: A graph G.
Question: Is G k-colourable?

The k-COL problem is solvable in polynomial time for k � 2, i. e. 1-
COL is the trivial decision problem, whether the input graph is edgeless
and 2-COL, whether the input graph is bipartite. But k-COL remains NP -
complete for k = 3 [47]. Observe that for each positive integer k the k-COL
problem reduces to the COL problem. In addition for every k the k-COL
problem reduces to the (k + 1)-COL problem. Conversely, a theorem of
Lov�asz [84] asserts that COL reduces to 3-COL. Thus, all problems 3-COL,
4-COL,...,COL are equivalent. Recently, Bodlaender [8] established a di-
rect proof of the NP-completeness of a variant of the COL-problem, i. e.
a generic proof similar to Cook's proof of the NP-completeness of SATIS-
FIABILITY. In Section 6 we already collected computational complexity
results on graphs without long induced paths. There is a variety of special
graph classes for which the 3-COL problem remains NP-complete:

{ planar graphs with maximum degree four [47];
{ triangle-free and K1;5-free graphs [87],
{ even for triangle-free, 4-regular graphs [87];
{ 4-regular, 2-connected, diamond- and claw-free graphs [60].

In [38] Edwards has shown that the k-COL problem can be solved in poly-
nomial time for dense graphs. For each �xed integer k and rational number
� with 0 � � < 1, we de�ne problem �(k; �) as follows:

�(k; �)
Input: A graph G = (V;E) with jV j = n and Æ(G) � �n.
Question: Is G k-colourable?
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Based on the domination approach already described in Section 6 Edwards
proved the following result.

Theorem 71 [38] Let k � 3 be an integer. Then,

{ if 0 � � � k�3
k�2 , �(k; �) is NP-complete;

{ if � > k�3
k�2 , �(k; �) 2 P .

In case that k = 3 the �rst part of Theorem 71 is just the statement that
3-COL is NP-complete. However, Edwards obtained the following strength-
ening.

Lemma 72 [38] Let c; � > 0 be �xed. Then the following problem is NP-
complete:

Input: A graph G = (V;E) with jV j = n and Æ(G) � cn1��.
Question: Is G 3-colourable?

In 1907 Mantel [86] has shown that every graph G with n vertices and
more than n2=4 edges has a triangle. Hence, every triangle-free graph G
with n vertices satis�es Æ(G) � n=2. We already demonstrated with the
Mycielski-construction in Section 3 that there exist triangle-free graphs of
arbitrarily large chromatic number. Hajnal used Kneser graphs of order n
to show that such graphs may have minimum degree close to n=3. Erd}os
and Simonovits [42] conjectured that this is best possible. For the history
of dense triangle-free graphs and open questions we refer to [14].

Problem 73 Do triangle-free graphs G with n vertices and Æ(G) > n=3
have bounded chromatic number c?

Erd}os and Simonovits [42] conjectured c = 3, but that was disproved by
H�aggkvist [57]; replacing a vertex of degree i by i�1 independent vertices in
the Gr�otzsch-Mycielski graph he constructed a 10-regular and 4-chromatic
graph of order 29. Jin [64] conjectured there is no upper bound for the
chromatic number, whereas Brandt [13] conjectured that c = 4. With the
additional property of regularity c = 4 is true, as proven in [13]. In fact a
more general statement is satis�ed.

Theorem 74 [13] Let G be a regular maximal triangle-free graph of order
n with degree exceeding n=3. Then G contains a dominating star K1;t with
t � 3

By usage of the domination approach described in Section 5, we easily derive
the next corollary.

Corollary 75 Let G be a regular maximal triangle-free graph of order n
with degree exceeding n=3. Then we can decide 3-COL and determine a
proper 3-colouring in linear time.

Recently, Thomassen [117] has proven the following:

Theorem 76 [117] For each natural number t, let ct be the smallest number
such that every triangle-free graph with n vertices and minimum degree >
ctn has chromatic number < t. Then ct ! 1=3 as t!1.
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By Brooks theorem [15] every connected graph with maximum degree at
most three has a 3-colouring or is isomorphic to a complete graph on four
vertices. On the other hand it is NP-complete to decide, whether a given
graph G with maximum degree four admits a 3-colouring, even if the graphs
in consideration are triangle-free. In other words, if all graphs induced by
the neighbourhood of a vertex are isomorphic to an edgeless graph, this
problem still remains NP-complete. Thus, it is natural to ask for the com-
putational complexity of deciding, whether there exists a 3-colouring in a
graph having maximal degree at most four and such that all neighbourhoods
of cardinality four are isomorphic to a given graph H . In [75] Kochol, Lozin
and the �rst author gave a complete answer to this question showing that
- with respect to a given graph H - the problem is either

(1) NP-complete, or
(2) it can be solved in linear time,

i. e. dichotomy holds. Subject to the assumption P 6= NP both cases ex-
clude each other. For the polynomial cases the designed algorithms not only
decide existence but actually �nd a 3-colouring in linear time, if there exists
a 3-colouring. It is noteworthy that a slightly stronger result is satis�ed. Let
H0 be a subset of the set H, where H contains all possible graphs induced
by four vertices. Then for the corresponding decision problem, where every
graph induced by the neighbourhood of a vertex of degree four has to be a
member of H0, likewise dichotomy holds.

Let H0 be a �xed subset of H.

H0-ISOM-3-COL

Input: A graph G having maximal degree at most four and such that
every neighbourhood of cardinality four of G induces a graph, which is
isomorphic to a member H 2 H0.
Question: Does there exist a 3-colouring of G?

Theorem 77 [75] The problem H0-ISOM-3-COL is NP-complete if H0 \
H1 6= ;; in all other cases the problem is solvable in polynomial time.

The following result contributes another example of a dichotomy result in
this area. In [109] this observation was used to enhance the exponential
time 3-colouring algorithm. Explicitly, this result was mentioned recently
by Zverovich [128]. Here, a graph G is locally connected if for every vertex
v the neighbourhood NG(v) induces a connected graph.

Observation 78 The decision problem, whether a locally connected graph
is k-colourable is NP-complete for k � 4 and can be decided in linear time
for k � 3. Moreover, to 3-colour the YES-instances of the decision problem
can be done in linear time as well.
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Fig. 6 Computational complexity of H0-ISOM-3-COL

Sketch of the proof: Since the 3-colourability decision problem is NP-complete,
even for connected, planar graphs, introducing a vertex adjacent to all re-
maining vertices, easily yields the result for k = 4 and locally connected
graphs, even for apex graphs. Here, an apex graph is the join of a planar
graph and an isolated vertex. On the other hand a necessary condition for
a graph to be 3-colourable is that for every vertex its neighbourhood has
to induce a bipartite graph. Furthermore if we have the additional prop-
erty that the instance graph is locally connected, then for every vertex v
its neighbourhood has to induce a connected bipartite graph with a unique
bipartion (A;B)v . Moreover, in any 3-colouring of the instance graph all
vertices of A and likewise all vertices of B have to receive the same colour.
Therefore we can contract (A;B)v to adjacent vertices a and b forming
the new neighbourhood of v. Observe that this contraction preserves the
property of being locally connected. In a further simpli�cation phase of a
3-colouring algorithm we reduce vertices of degree less or equal than 2. This
briey sketched algorithm terminates and decides 3-colourability for locally
connected graphs and with a bookkeeping of the contraction and reduction
operations we can 3-color the YES-instances. With an appropriate data
structure this algorithm can be implemented in linear time.

Another dichotomy result has been obtained by Kr�al, Kratochv�il, Tuza and
Woeginger [79]. Let H be a given graph.

H-free COLOURING
Input: A H-free graph G and a positive integer k.
Question: Does there exist a k-colouring of G?

Theorem 79 [79] The problem H-free COLOURING is solvable in polyno-
mial time if H is an induced subgraph of P4 or of K1[P3, and NP-complete
for any other H.
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Furthermore, in [79] the authors pose the following meta-problem: Given a
�nite set A, what is the computational complexity of deciding the chromatic
number of A-free graphs?

In the �nal part of this section we focus on exact algorithms for k-COL.
The �rst exact algorithm for k-COL was presented by Christo�des, which
is based on the following ideas: An independent set I of vertices of a graph
is called maximal if it is not a proper subset of any independent set I 0. It
is well-known that if a graph G is k-colourable then there is a partition of
its vertex set into k independent sets where at least one of these sets is
maximal. Now by computing all maximal independent sets of a given graph
G and repeating this computation recursively for the remaining graphs the
chromatic number of G can be determined. Lawler [80] has shown that the
Christo�des algorithm has a worst-case running time of O(mn(1 + 31=3)n),
where n is the order and m the size of the input graph. Thus k-COL can be
solved within O(mn�nk ), where � � 1+31=3 � 2; 4422 for all k � 3. Recently,
Eppstein [39] has improved this complexity to O(2; 415n). As suggested by
Lawler [80], to test a graph for 3-COL, one can generate all maximal in-
dependent sets in O(mn31=3n) and then check the induced subgraph on
each complementary set of vertices for bipartiteness. It follows that such a
test can be performed within O(mn31=3n) time, where 31=3 � 1; 4422. This
bound is sharp since graphs on n vertices may have up to 31=3 maximal in-
dependent sets as shown by Moon and Moser [93]. Signi�cant improvements
O(1; 3289n) and O(1; 398n) are due to Beigel and Eppstein [3] and the sec-
ond author [109]. Applying the famous planar separator theorem of Lipton
and Tarjan [81] it is not very diÆcult to design an algorithm verifying in
subexponential time 2O(

p
n) for a given planar graph on n vertices, whether

G is 3-colorable.

8 Concluding Remarks

The results presented in this survey indicate that there is a lot of ongoing
research in the �eld of vertex colouring and forbidden subgraphs. Further
publications, not only on perfect graphs, will appear in the next years.

We have already mentioned several references (both survey papers and
books) for further reading at speci�c places in the previous sections. Further-
more, there are overlaps of vertex colourings and forbidden subgraphs and
other topics of graph theory, which could not be addressed here in more de-
tails. We refer the interested reader to graph colorings with local constraints
- a survey by Tuza [121], graphs on surfaces by Mohar and Thomassen [90],
perfect graphs by Ramirez-Alfonsin and Reed [96], graph colourings and the
probabilistc method by Molloy and Reed [92] and graph colouring problems
by Jensen and Toft [63].

Acknowledgements: We thank Annegret Wagler and Meike Tewes for
their valuable comments on this text.
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