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Abstract—Given a set of mixed spectral (multispectral or hy-
perspectral) vectors, linear spectral mixture analysis, or linear
unmixing, aims at estimating the number of reference substances,
also called endmembers, their spectral signatures, and their
abundance fractions. This paper presents a new method for
unsupervised endmember extraction from hyperspectral data,
termed vertex component analysis (VCA). The algorithm exploits
two facts: 1) the endmembers are the vertices of a simplex and 2)
the affine transformation of a simplex is also a simplex. In a series
of experiments using simulated and real data, the VCA algorithm
competes with state-of-the-art methods, with a computational
complexity between one and two orders of magnitude lower than
the best available method.

Index Terms—Linear unmixing, simplex, spectral mixture
model, unmixing hypespectral data, unsupervised endmember
extraction, vertex component analysis (VCA).

I. INTRODUCTION

HYPERSPECTRAL remote sensing exploits the electro-

magnetic (EM) scattering patterns of different materials at

specific wavelengths [1], [2]. Hyperspectral sensors have been

developed to sample the scattered portion of the EM spectrum

extending from the visible region through the near-infrared and

midinfrared, in hundreds of narrow contiguous bands [3], [4].

The number and variety of potential civilian and military appli-

cations of hyperspectral remote sensing is enormous [5], [6].

Very often, the resolution cell corresponding to a single pixel

in an image contains several substances (endmembers) [3]. In

this situation, the scattered energy is a mixing of the endmember

spectra. A challenging task underlying many hyperspectral im-

agery applications is then decomposing a mixed pixel into a col-

lection of reflectance spectra, called endmember signatures, and

the corresponding abundance fractions [7]–[9].

Depending on the mixing scales at each pixel, the observed

mixture is either linear or nonlinear [10], [11]. A linear mixing

model holds approximately when the mixing scale is macro-

scopic [12] and there is negligible interaction among distinct

endmembers [2], [13]. If, however, the mixing scale is micro-

scopic (or intimate mixtures) [14], [15] and the incident solar
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radiation is scattered by the scene through multiple bounces in-

volving several endmembers [16], the linear model is no longer

accurate.

Linear spectral unmixing has been intensively researched

in the last years [8], [9], [11], [17]–[20]. It considers that a

mixed pixel is a linear combination of endmember signatures

weighted by the correspondent abundance fractions. Under

this model, and assuming that the number of substances and

their reflectance spectra are known, hyperspectral unmixing is

a linear problem for which many solutions have been proposed

(e.g., maximum-likelihood estimation [7], spectral signature

matching [21], spectral angle mapper [22], subspace projection

methods [23], [24], and constrained least squares [25]).

In most cases, the number of substances and their reflectances

are not known and, then, hyperspectral unmixing falls into the

class of blind source separation problems [26]. independent

component analysis (ICA) has recently been proposed as a tool

to blindly unmix hyperspectral data [27]–[30]. ICA is based on

the assumption of mutually independent sources (abundance

fractions), which is not the case of hyperspectral data, since

the sum of abundance fractions is constant, implying statistical

dependence among them. This dependence compromises ICA

applicability to hyperspectral images as shown in [20] and

[31]. In fact, ICA finds the endmember signatures by mul-

tiplying the spectral vectors with an unmixing matrix which

minimizes the mutual information among channels. If sources

are independent, ICA provides the correct unmixing, since the

minimum of the mutual information corresponds to and only

to independent sources. This is no longer true for dependent

fractional abundances. Nevertheless, some endmembers may be

approximately unmixed. These aspects are addressed in [31].

Under the linear mixing model, the observations from a scene

are in a simplex whose vertices correspond to the endmembers.

Several approaches [32]–[34] have exploited this geometric fea-

ture of hyperspectral mixtures [33].

The minimum volume transform (MVT) algorithm [34] deter-

mines the simplex of minimum volume containing the data.

The method presented in [35] is also of MVT type, but by in-

troducing the notion of bundles, it takes into account the end-

member variability usually present in hyperspectral mixtures.

The MVT type approaches are complex from the compu-

tational point of view. Usually, these algorithms first find the

convex hull defined by the observed data and then fit a minimum

volume simplex to it. For example, the gift wrapping algorithm

[36] computes the convex hull of data points in a -dimen-

sional space with a computational complexity of ,

where is the highest integer lower or equal than , and is

the number of samples. The complexity of the method presented
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in [35] is even higher, since the temperature of the simulated an-

nealing algorithm therein used shall follow a law [37] to

assure convergence (in probability) to the desired solution.

Aiming at a lower computational complexity, some al-

gorithms such as the pixel purity index (PPI) [33] and the

N-FINDR [38] still find the minimum volume simplex con-

taining the data cloud, but they assume the presence in the data

of at least one pure pixel of each endmember. This is a strong

requisite that may not hold in some datasets. In any case, these

algorithms find the set of most pure pixels in the data.

The PPI algorithm uses the minimum-noise fraction (MNF)

[39] as a preprocessing step to reduce dimensionality and to

improve the signal-to-noise ratio (SNR). The algorithm then

projects every spectral vector onto skewers (large number of

random vectors) [33], [40], [41]. The points corresponding to

extremes, for each skewer direction, are stored. A cumulative

account records the number of times each pixel (i.e., a given

spectral vector) is found to be an extreme. The pixels with the

highest scores are the purest ones.

The N-FINDR algorithm [38] is based on the fact that in

spectral dimensions, the -volume defined by a simplex formed

by the purest pixels is larger than any other volume defined by

any other combination of pixels. This algorithm finds the set of

pixels defining the largest volume by inflating a simplex inside

the data.

ORASIS [42], [43] is a hyperspectral framework developed

by the Naval Research Laboratory consisting of several algo-

rithms organized in six modules: exemplar selector, adaptative

learner, demixer, knowledge base/spectral library, and spatial

postprocessor. The first step consists in flat fielding the spectra.

Next, the exemplar selection module is used to select spectral

vectors that best represent the smaller convex cone containing

the data. The other pixels are rejected when the spectral angle

distance is less than a given threshold. The procedure finds the

basis for a subspace of a lower dimension using a modified

Gram-Schmidt orthogonalization. The selected vectors are then

projected onto this subspace, and a simplex is found by an MVT

process. ORASIS is oriented to real-time target detection from

uncrewed air vehicles using hyperspectral data [44].

In this paper we introduce the vertex component analysis

(VCA) algorithm to unmix linear mixtures of endmember

spectra. The algorithm is unsupervised and exploits two facts:

1) the endmembers are the vertices of a simplex and 2) the

affine transformation of a simplex is also a simplex. It works

with unprojected and with projected data. As PPI and N-FINDR

algorithms, VCA also assumes the presence of pure pixels in

the data. The algorithm iteratively projects data onto a direction

orthogonal to the subspace spanned by the endmembers already

determined. The new endmember signature corresponds to

the extreme of the projection. The algorithm iterates until all

endmembers are exhausted. VCA performs much better than

PPI and better than or comparable to N-FINDR; yet it has

a computational complexity between one and two orders of

magnitude lower than N-FINDR.

The paper is structured as follows. Section II describes the

geometric fundamentals of the proposed method. Sections III

and IV evaluate the proposed algorithm using simulated and real

data, respectively. Section V ends the paper by presenting some

concluding remarks.

II. VERTEX COMPONENT ANALYSIS ALGORITHM

Assuming the linear mixing scenario, each observed spectral

vector is given by

(1)

where is an -vector ( is the number of bands),

is the mixing matrix ( denotes the

th endmember signature and is the number of endmembers

present in the covered area), ( is a scale factor

modeling illumination variability due to surface topography),

is the abundance vector containing

the fractions of each endmember (the notation stands for

vector transposed) and models system additive noise.

Owing to physical constraints [19], abundance fractions are

nonnegative and satisfy the so-called positivity con-

straint , where is a vector of ones. Each pixel

can be viewed as a vector in an -dimensional Euclidean space,

where each channel is assigned to one axis of space. Since the

set is a simplex, then the set

is also a simplex.

However, even assuming , the observed vector set be-

longs to

that is a convex cone, owing to scale factor . Fig. 1(a) illus-

trates a simplex and a cone, projected on a two-dimensional sub-

space, defined by a mixture of three endmembers. The simplex

boundary is a triangle whose vertices correspond to the end-

members shown in Fig. 2. Small and medium dots are simulated

mixed spectra belonging to the simplex and to the

cone , respectively.

The projective projection of the convex cone onto a prop-

erly chosen hyperplane is a simplex with vertices corresponding

to the vertices of the simplex . This is illustrated in Fig. 1(b).

The simplex is

the projective projection of the convex cone onto the plane

, where the choice of assures that there is no ob-

served vectors orthogonal to it.

After identifying , the VCA algorithm iteratively projects

data onto a direction orthogonal to the subspace spanned by the

endmembers already determined. The new endmember signa-

ture corresponds to the extreme of the projection. Fig. 1(b) il-

lustrates the two iterations of VCA algorithm applied to the sim-

plex defined by the mixture of two endmembers. In the first

iteration, data are projected onto the first direction . The ex-

treme of the projection corresponds to endmember . In the

next iteration, endmember is found by projecting data onto

direction , which is orthogonal to . The algorithm iterates

until the number of endmembers is exhausted.

A. Dimensionality Reduction

Under the linear observation model, spectral vectors are in a

subspace of dimension . If , it is worthy to project the

observed spectral vectors onto the subspace signal. This leads
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(a)

(b)

Fig. 1. (a) Two-dimensional scatterplot of mixtures of the three endmembers
shown in Fig. 2. Circles denote pure materials. (b) Illustration of the VCA
algorithm.

Fig. 2. Reflectances of carnallite, ammonioalunite, and biotite.

to significant savings in computational complexity and to SNR

improvements.

Principal component analysis (PCA) [45], maximum-noise

fraction (MNF) [46], and singular value decomposition (SVD)

[47] are three well-known projection techniques widely used in

remote sensing. PCA, also known as Karhunen–Loéve trans-

form, seeks the projection that best represents data in a least-

squares sense; MNF seeks the projection that optimizes SNR;

and SVD provides the projection that best represents data in the

maximum-power sense. PCA and MNF are equal in the case

Fig. 3. Scatterplot (bands � = 827 nm and � = 1780 nm) of the three
endmembers mixture. (a) Unprojected data. (b) Projected data using SVD. Solid
and dashed lines represent, respectively, simplexes computed from original and
estimated endmembers (using VCA).

of white noise. SVD and PCA are also equal in the case of

zero-mean data.

As discussed before, in the absence of noise, observed vec-

tors lie in a convex cone contained in a subspace of

dimension . The VCA algorithm starts by identifying by

SVD and then projects points in onto a simplex by com-

puting [see Fig. 1(b)]. This simplex is contained

in an affine set of dimension . We note that the rational un-

derlying the VCA algorithm is still valid if the observed dataset

is projected onto any subspace of dimension , for

, i.e., the projection of the cone onto followed

by a projective projection is also a simplex with the same ver-

tices. Of course, the SNR decreases as increases.

For illustration purposes, a simulated scene was gener-

ated according to (1). Three spectral signatures (A—bi-

otite, B—carnallite, and C—ammonioalunite) were selected

from the U.S. Geological Survey (USGS) digital spectral

library [48] (see Fig. 2); the abundance fractions follow a

Dirichlet distribution; parameter is set to 1; and the noise

is zero-mean white Gaussian with covariance matrix ,

where is the identity matrix and leading to

a SNR dB. Fig. 3(a)

presents a scatterplot of the simulated spectral mixtures without

projection (bands nm and nm). Two

triangles are also plotted whose vertices represent the true end-

members (solid line) and the estimated endmembers (dashed

line) by the VCA algorithm, respectively. Fig. 3(b) presents a

scatterplot (same bands) of projected data onto the estimated

affine set of dimension two inferred by SVD. Noise is clearly

reduced, leading to a visible improvement on the VCA results.

As referred before, we apply the rescaling to get rid

of the topographic modulation factor. As the SNR decreases,

this rescaling amplifies noise, being preferable to identify di-

rectly the affine space of dimension by using only PCA.

This phenomenon is illustrated in Fig. 4, where data clouds

(noiseless and noisy) generated by two signatures are shown.

Affines spaces and identified, respectively, by PCA

of dimension and SVD of dimension followed by projec-

tive projection are schematized by straight lines. In the absence

of noise, the direction of is better identified by projective

projection onto ( better than ); in the presence of
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strong noise, the direction of is better identified by orthog-

onal projection onto ( better than ). As a conclu-

sion, when the SNR is higher than a given threshold SNR ,

data is projected onto followed by the rescaling ;

otherwise data are projected onto . Based on experimental

results, we propose the threshold SNR dB.

Since for zero-mean white noise SNR , then

we conclude that at SNR , , i.e., the

SNR corresponds to the fixed value of the SNR mea-

sured with respect to the signal subspace.

B. VCA Algorithm

The pseudocode for the VCA method is shown in Algorithm

1. Symbols and stand for the th column of

and for the th to th columns of , respectively. Symbol

stands for the estimated mixing matrix.

Algorithm 1: Vertex Component Analysis (VCA)

INPUT p, R � [r1; r2; . . . ; rN ]

1: SNRth = 15 + 10 log10(p) dB

2: if SNR > SNRth then

3: d := p;

4: X := U
T

dR; {Ud obtained by SVD}

5: u := mean(X); {u is a 1 � d vector}

6: [Y]:;j := [X]:;j=([X]T:;ju); {projective projection}

7: else

8: d := p � 1;

9: [X]:;j := U
T

d ([R]:;j � r); {Ud obtained by PCA}

10: c := argmaxj=1...N k[X]:;jk;

11: c := [cjcj . . . jc]; {c is a 1�N vector}

12: Y := X

c

13: end if

14: A := [euj0j . . . j0]; {eu = [0; . . . ; 0; 1]T and A is a p � p

auxiliary matrix}

15: for i := 1 to pdo

16: w := randn(0; Ip); {w is a zero-mean random Gaussian

vector of covariance Ip}

17: f := ((I�AA
#)w)=(k(I�AA

#)wk); {f is a vector

orthonormal to the subspace spanned by [A]:;1:i.}

18: v := f
T
Y;

19: k := argmaxj=1;...;N j[v]:;j j; {find the projection ex-

treme.}

20: [A]:;i := [Y]:;k;

21: [indice]i := k; {stores the pixel index.}

22: end for

23: if SNR > SNRth then

24: M := Ud[X]:;indice; {M is a L � p estimated mixing

matrix}

25: else

26: M := Ud[X]:;indice+r; {M is a L�p estimated mixing

matrix}

27: end if

Step 2 tests if the SNR is higher than SNR in order to decide

whether the data are to be projected onto a subspace of dimen-

sion or . In the first case the projection matrix is

Fig. 4. Illustration of the noise effect on the dimensionality reduction.

obtained by SVD from , where

and is the number of pixels. In the second case the projection

is obtained by PCA from , where is the

sample mean of , for .

Steps 4 and 9 assure that the inner product between any vector

and vector is nonnegative, a crucial condition for the

VCA algorithm to work correctly. The chosen value of

, assures that the colatitude angle be-

tween and any vector is between 0 and 45 , then

avoiding numerical errors which otherwise would occur for an-

gles near 90 .

Step 14 initializes the auxiliary matrix , which stores the

projection of the estimated endmembers signatures. Assume

that there exists at least one pure pixel of each endmember in

the input sample [see Fig. 1(b)]. Each time the loop for is

executed, a vector orthonormal to the space spanned by the

columns of the auxiliary matrix is randomly generated and

is projected onto . Notation stands for the pseudoinverse

matrix. Since we assume that pure endmembers occupy the

vertices of a simplex, then , for ,

where values and correspond to and only to pure pixels. We

store the endmember signature corresponding to .

The next time loop for is executed, is orthogonal to the space

spanned by the signatures already determined. Since is the

projection of a zero-mean Gaussian independent random vector

onto the orthogonal space spanned by the columns of ,

then the probability of being null is zero. Notice that the

underling reason for generating a random vector is only to get

a non null projection onto the orthogonal space generated by

the columns of . Fig. 1(b) shows the input samples and the

chosen pixels, after the projection . Then a second

vector orthonormal to the endmember is generated and the

second endmember is stored. Finally, steps 24 and 26 compute

the columns of matrix , which contain the estimated end-

members signatures in the -dimensional space.
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III. EVALUATION OF THE VCA ALGORITHM

In this section, we compare VCA, PPI, and N-FINDR al-

gorithms. N-FINDR and PPI were coded accordingly to [38]

and [33], respectively. Regarding PPI, the number of skewers

must be large [39], [40], [49]–[51]. Based on Monte Carlo

runs, we concluded that the minimum number of skewers

beyond which there is no unmixing improvements is about

1000. All experiments are based on simulated scenes from

which we know the signature endmembers and their frac-

tional abundances. Estimated endmembers are the columns of

. We also compare estimated abun-

dance fractions given by , ( stands

for pseudoinverse of ) with the true abundance fractions.

To evaluate the performance of the three algorithms,

we compute vectors of angles and

with1

(2)

(3)

where is the angle between vectors and ( th end-

member signature estimate) and is the angle between vectors

and (vectors of formed by the th lines of ma-

trices and , respectively). The symmetric

Kullback distance [52], a relative entropy-based distance, is an-

other error measure used to compare similarity between signa-

tures, namely under the name spectral information divergence

(SID) [53]. SID is defined by

SID (4)

where is the relative entropy of with respect to

given by

(5)

and and .

Based on , , and SID SID

SID , we estimate the following rms error distances:

(6)

(7)

(8)

where denotes the expectation operator. The first two quan-

tities measure distances between and , for ;

the third is similar to the first, but for the estimated abundance

1Notation hx;yi stands for the inner product x y.

Fig. 5. First scenario (N = 1000, p = 3, L = 224, � = � = � = 1=3,
� = 20, � = 1). (a) rmsSID as function of SNR. (b) rmsSAE as function of
SNR. (c) rmsFAAE as function of SNRs.

fractions. Herein we name , , and as rmsSAE, rmsSID,

and rmsFAAE, respectively (SAE stands for signature angle

error and FAAE stands for fractional abundance angle error).

Mean values in (6)–(8) are approximated by sample means

based on 100 Monte Carlo runs.

In all experiments, the spectral signatures are selected

from the USGS digital spectral library [48]. Fig. 2 shows

three of these endmember signatures. Abundance fractions

are generated according to a Dirichlet distribution given by

(9)

where , , is the

expected value of the th endmember fraction, and denotes

the Gamma function. Parameter is Beta distributed,
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Fig. 6. Illustration of the absence of pure pixels (N = 1000, p = 3, L =

224, � = � = � = 1=3,  = 1). Scatterplot (bands � = 827 nm and
� = 1780 nm), with fractional abundance smaller than 0.2 rejected.

Fig. 7. Robustness to the absence of pure pixels (N = 1000, p = 3, L =

224, � = � = � = 1=3, � = 20, � = 1). (a) rmsSID as function of
SNR. (b) rmsSAE as function of SNR. (c) rmsFAAE as function of SNR.

i.e., , which

is also a Dirichlet distribution. The Dirichlet density, besides

Fig. 8. Robustness to the topographic modulation (N = 1000, p = 3, L =

224, � = � = � = 1=3, SNR = 20 dB, � = 1), rmsSEA as function of
the � (variance of ).

Fig. 9. The rmsSEA as function of the number of pixels in a scene (p = 6,
L = 224, � = � = � = 1=3, SNR = 20 dB, � = 20, � = 1).

enforcing positivity and full additivity constraints, displays a

wide range of shapes, depending on the parameters .

This flexibility underlies its choice in our simulations.

The results next presented are organized into five experi-

ments: in the first experiment, the algorithms are evaluated

with respect to the SNR and to the absence of pure pixels. As

mentioned before, we define

SNR (10)

In the case of zero-mean noise with covariance and Dirichlet

abundance fractions, one obtains

SNR
tr

(11)

where

diag
(12)

, and is the variance of param-

eter . For example, assuming abundance fractions

equaly distributed, we have, after some algebra,

SNR for

and SNR for

.
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In the second experiment, the performance is measured as

function of the parameter , which models fluctuations on the

illumination due to the surface topography. In the third experi-

ment, the number of pixels of the scene varies, in order to il-

lustrate the algorithm performance with the size of the cov-

ered area: as the number of pixels increases, the likelihood of

having pure pixels also increases, improving the performance

of the unmixing algorithms; in the fourth experiment, the algo-

rithms are evaluated as function of the number of endmembers

present in the scene; finally, in the fifth experiment, the number

of floating-point operations (flops) is measured, in order to com-

pare the computational complexity of VCA, N-FINDR, and PPI

algorithms.

In the first experiment, the hyperspectral scene has 1000

pixels and the abundance fractions are Dirichlet distributed with

, for ; parameter is Beta distributed with

and implying and .

Fig. 5 shows performance results as function of the SNR.

As expected, the presence of noise degrades the performance

of all algorithms. In terms of rmsSID, VCA, and N-FINDR al-

gorithms have identical performances, whereas PPI displays the

worst result. In terms of rmsSAE and rmsFAAE [Fig. 5(b) and

(c)], we can see that when SNR is less than 20 dB VCA al-

gorithm exhibits the best performance. Note that for noiseless

scenes, only the VCA algorithm has zero rmsSAE.

Fig. 7 shows performance results as function of the SNR in

the absence of pure pixels. Spectral data without pure pixels

was obtained by rejecting pixels with any fractional abundance

smaller than 0.2. Fig. 6 shows the obtained scatter plot. VCA and

N-FINDR display similar results, being both better than PPI.

Notice that the performance is almost independent of the SNR

and is uniformly worse than that displayed with pure pixels and

SNR dB in the first experiment. We conclude that this

family of algorithms is more affected by the lack of pure pixels

than by low SNR.

For economy of space and also because rmsSID, rmsSAE,

and rmsFAAE disclose similar pattern of behavior, we only

present the rmsSAE in the remaining experiments.

In the second experiment, abundance fractions are generated

as in the first one, SNR is set to 20 dB, and parameter is Beta

distributed with and in the interval [2, 28]. This corre-

sponds to vary from 0.66 to 0.96 and from 0.23 to 0.03.

By varying parameter , the severity of topographic modula-

tion is also varied. Fig. 8 illustrates the effect of topographic

modulation on the performance of the three algorithms. When

grows ( gets smaller) the performance improves. This is

expected, since the simplex identification is more accurate when

the topographic modulation is smaller. PPI algorithm displays

the worst performance for . VCA and N-FINDR algo-

rithms have identical performances when takes higher values

; otherwise the VCA algorithm has the best per-

formance. VCA is more robust to topographic modulation, since

it seeks for the extreme projections of the simplex, whereas

N-FINDR seeks for the maximum volume, which is more sen-

sitive to fluctuations on .

In the third experiment, the number of pixels is varied, the

abundance fractions are generated as in the first one, and SNR

dB. Fig. 9 shows that VCA and N-FINDR exhibit identical

Fig. 10. Impact of the number of endmembers (N = 1000,L = 224, � =

� = � = 1=3, SNR = 30 dB, � = 20, � = 1). (a) rmsSEA as function
of the number of endmembers. (b) rmsSEA function of the SNR with p = 10.

TABLE I
COMPUTATIONAL COMPLEXITY OF VCA, N-FINDR, AND PPI ALGORITHMS

results, whereas, the PPI algorithm displays the worst result.

Note that the behavior of the three algorithms is quasi indepen-

dent of the number of pixels.

In the fourth experiment, we vary the number of signa-

tures from to , the scene has 1000 pixels, and

SNR dB. Fig. 10(a) shows that VCA and N-FINDR

performances are comparable, while PPI displays the worst

result. The rmsSAE increase slightly as the number of end-

members present in the scene increases. It is also plotted the

rmsSAE as function of the SNR with [see Fig. 10(b)].

Compared with Fig. 5(b), we conclude that when the number

of endmembers increases the performance of the algorithms

slightly decreases.

In the fifth and last experiment, the number of flops is mea-

sured, in order to compare the computational complexity of

VCA, PPI, and N-FINDR algorithms. Herein, we use the sce-

narios of the second and third experiments. Table I presents ap-

proximated expressions for the number of flops used by each

algorithm. These expressions do not account for the computa-

tional complexities involved in the computations of the sample

covariance nor in the eigendecomposition.

The reason is that these operations, compared with the VCA,

PPI, and N-FINDR algorithms, have a negligible computational

cost, since the following.

• The computation of has a complexity

of flops. However, in practice one does not need

to use the complete set of hyperspectral vectors. If the

scene is noiseless, only linearly independent vectors

would be enough to infer the exact subspace . In the

presence of noise, however, a larger set should be used. For

example, in a 1000 1000 hyperspectral image, we found

out that only 1000 samples randomly sampled are enough

to find a very good estimate of . Even a sample size

of 100 leads to good results on this respect.

• Concerning the eigendecomposition of

(or the SVD of ), we only need to com-

pute (or ) eigenvectors corresponding to the largest
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Fig. 11. Computational complexity measured in number of flops.

Fig. 12. The rmsSEA as function of different abundance fractions distributions
(N = 1000, p = 3, L = 224, SNR = 20 dB, � = 20, � = 1). From left
to right: (a) � = 1=2, (b) � = 1, (c) � = 2), (d) � = 3, (e) Dirichlet density
(� = � = � = 1=3).

eigenvalues (or single values). For these partial

eigendecomposition, we have used the PCA algorithm

[45] (or SVD analysis [47]) whose complexity is negli-

gible compared with the remaining operations.

The VCA algorithm projects all data ( vectors of size )

onto orthogonal directions. N-FINDR computes times the

determinant of a matrix, whose complexity is , with

[54]. Assuming that , VCA com-

plexity is lower than that of N-FINDR. Concerning PPI, given

that the number of skewers ( ) is much higher than the usual

number of endmembers, the PPI complexity is much higher than

that of VCA. We conclude, then, that the VCA algorithm has al-

ways the lowest complexity.

Fig. 11 plots the flops for the three algorithms after data

projection. In Fig. 11(a), the abscissa is the number of end-

members in the scene, whereas in Fig. 11(b), the abscissa is the

number of pixels. Note that for five endmembers, VCA compu-

tational complexity is one order of magnitude lower than that

of the N-FINDR algorithm. When the number of endmembers

is higher than 15, the VCA computational complexity is at

least two orders of magnitude lower than PPI and N-FINDR

algorithms.

The results presented in this section were based on abundance

fractions with symmetric Dirichlet distribution. The same pat-

tern of behavior was, however, found for any other abundance

fraction distribution tested. Fig. 12 shows the results for abun-

dance fractions for , with uni-

formly distributed in [0, 1] and (a), (b),

(c), and (d). Dirichlet density with

Fig. 13. Band 30 (� = 667:3 nm) of a subimage of the AVIRIS Cuprite
Nevada dataset.

Fig. 14.  as function of the number of endmembers.

Fig. 15. Percentage of signal energy as a function of the number of
eigenvalues.

is included (e) for comparison purposes. The VCA algo-

rithm display always the lowest rmsSEA. The performance in-

crease for all algorithms as increases, because the likelihood

of having pure pixels increases with .

In the introduction, besides PPI and N-FINDR algorithms,

we have also mentioned ORASIS. Nevertheless, no comparison

whatsoever was made with this method. The reason is that

there is no ORASIS implementation details published in open

the literature. We can, however, make a few considerations

based on the results recently published in [51]. This work com-

pares, among others, PPI, N-FINDR, and ORASIS algorithms.

Although the relative performance of the three algorithms

varies, depending on SNR, number of endmembers, spectral

signatures, type of atmospheric correction, etc., both PPI and
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Fig. 16. Fourteen abundance fractions estimated with the VCA algorithm. (a) Alunite. (b) Kaolinite #1. (c) Kaolinite #2. (d) Sphene. (e) Andradite. (f) Kaolinite
#3. (g) Nontronite. (h) Muscovite. (i) Pyrope #1. (j) Pyrope #2. (k) Kaolinite #4. (l) Dumortierite. (m) Montmorillonite. (n) Buddingtonite.

N-FINDR generally perform better than ORASIS when SNR is

low. Since in all comparisons herein conducted, VCA performs

better than or equal to PPI and N-FINDR, we expect that the

proposed method performs better than or equal to ORASIS

when low SNR dominates the data, although further experi-

ments would be required to demonstrate the above remark.

IV. EVALUATION WITH EXPERIMENTAL DATA

In this section, we apply the VCA algorithm to real hyper-

spectral data collected by the AVIRIS [4] sensor over Cuprite,

NV. Cuprite is a mining area in southern Nevada with min-

eral and little vegetation [55], located approximately 200 km

northwest of Las Vegas. The test site is a relatively undisturbed

acid-sulphate hydrothermal system near U.S. Highway 95. The

geology and alteration were previously mapped in detail [56],

[57]. A geologic summary and a mineral map can be found in

[55] and [58]. This site has been extensively used for remote

sensing experiments over the past years [59], [60].

Our study is based on a subimage (250 190 pixels and 224

bands) of a dataset acquired on the AVIRIS flight June 19, 1997

(see Fig. 13). In order to compare results with a signature library,

we process the reflectance image after atmospheric correction.
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Fig. 17. Comparison of (dotted line) the extracted signatures with (solid line) the USGS spectral library. (a) Alunite. (b) Kaolinite #1. (c) Kaolinite #2. (d)
Sphene. (e) Andradite. (f) Kaolinite #3. (g) Nontronite. (h) Muscovite. (i) Pyrope #1. (j) Pyrope #2. (k) Kaolinite #4. (l) Dumortierite. (m) Montmorillonite. (n)
Buddingtonite.

To determine the type of projection applied by VCA, we

compute

SNR (13)

where and in the case of

SVD and in the case of PCA.

In order to compare the performance of the three algorithms

when applied to real data, we compute

(14)

where is the angle between the th estimated signature, ,

and the nearest laboratory spectra, and

, is the sample mean energy of the hyperspec-

tral image projected onto . Therefore, is a mean angle error

weighted by the energy on the direction . Fig. 14 presents the

performance of the three algorithms, as function of the number

of endmembers. VCA and N-FINDR performances are compa-

rable and better than PPI one, when the number of endmembers

varies from 4 to 23.

In order to estimate the number of endmembers present in the

processed area, we resort to the virtual dimensionality (VD),

recently proposed in [61]. The VD is defined as the minimum

number of spectrally distinct signal sources that characterize the

hyperspectral data, from the target detection and classification

point of view. Harsanyi et al. developed a Neyman–Pearson

detection theory-based thresholding method (HFC) to deter-

mine the VD of hyperspectral imagery, where eigenvalues are

used to measure signal energies in a detection model [62]. A

modified version of this method called noise-whitened HFC

(NWHFC) includes a noise-whitening process as preprocessing

step to remove the second-order statistical correlation [17]. In

the NWHFC method a noise estimation is required.

By specifying a false-alarm probability , a

Neyman–Pearson detector is derived to determine

whether or not a distinct signature is present in each of spectral

bands. How many times the Neyman–Pearson detector fails
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TABLE II
SPECTRAL ANGLE DISTANCE BETWEEN EXTRACTED ENDMEMBERS AND

LABORATORY REFLECTANCES FOR VCA, N-FINDR, AND PPI ALGORITHMS

the test is exactly the number of endmembers assumed to be

present in the data.

By inspection of the eigenvalues of the sample covariance

matrix and of the sample correlation matrix of the subimage,

the VD was estimated by the NWHFC-based eigenthresholding

method using the Neyman–Pearson test with the false-alarm

probability set to . This method leads to an esti-

mation of the number of endmembers equal to .

Fig. 15 presents the cumulative signal energy as function of

the number of eigenvalues. We can see that the signal energy

contained in the first eight eigenvalues is higher than 99.93% of

the total signal energy, meaning that the other six endmembers

only occurs in a small percentage of the subimage.

A visual comparison between VCA results on the Cuprite

dataset and the ground truth presented in [58] shows that the

first component [see Fig. 16(a)] is predominantly Alunite, the

second, third, sixth, and11th components [see Fig. 16(b), (c),

(f), and (k)] are Kaolinite, the fourth component [see Fig. 16(d)]

is Sphene, the fifth component [see Fig. 16(e)] is Andradite,

the seventh component [see Fig. 16(g)] is predominantly Non-

tronite, the eighth component [see Fig. 16(h)] is Muscovite, the

ninth and tenth components [see Fig. 16(i) and (j)] are Pyrope,

the 12th component [see Fig. 16(l)] is Dumortierite, the 13th

component [see Fig. 16(k)] is Montmorillonite, the 14th com-

ponent [see Fig. 16(n)] is Buddingtonite.

In order to confirm the classification based on the estimated

abundance fractions, a comparison of the estimated VCA end-

member signatures with laboratory spectra [48] is presented in

Fig. 17. The signatures provided by VCA are scaled by a factor

in order to minimize the mean square error between them and

the respective library spectra. The estimated signatures are close

to the laboratory spectra. The larger mismatches occur for An-

dradite and Pyrope signatures, but only on a small percentage

of the total bands.

Table II compares the spectral angles between extracted end-

members and laboratory reflectances for VCA, N-FINDR, and

PPI algorithms. First column shows the laboratory substances

with smaller spectral angle distance with respect to the signa-

ture extracted by VCA algorithm; Second column shows the re-

spective angle. Third and fourth columns are as the second one,

except when the closest spectral substance is different from the

correspondent VCA one. In these cases, we write the name of

the substance. The displayed results follow the pattern of be-

havior shown in the simulations, where VCA performs better

than PPI and better or similarly to N-FINDR.

V. CONCLUSION

In this paper, we have proposed a new algorithm to unmix

linear mixtures of hyperspectral sources, termed vertex compo-

nent analysis. The VCA algorithm is unsupervised and is based

on the geometry of convex sets. It exploits the fact that endmem-

bers occupy the vertices of a simplex.

VCA algorithm assumes the presence of pure pixels in the

data and iteratively projects data onto a direction orthogonal to

the subspace spanned by the endmembers already determined.

The new endmember signature corresponds to the extreme of

the projection. The algorithm iterates until the number of end-

members is exhausted.

A comparison of VCA with pixel purity index [33] and

N-FINDR [38] algorithms is conducted. Several experiments

with simulated data lead to the conclusion that VCA performs

better than PPI and better than or similarly to N-FINDR. VCA

has, however, the lowest computational complexity among

these three algorithms. Savings in computational complexity

ranges between one and two orders of magnitude. This conclu-

sion has great impact when the dataset has a large number of

pixels. VCA was also applied to real hyperspectral data. The

results achieved show that VCA is an effective tool to unmix

hyperspectral data.
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