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VERTEX DECOMPOSABLE GRAPHS

AND OBSTRUCTIONS TO SHELLABILITY

RUSS WOODROOFE

(Communicated by Jim Haglund)

Abstract. Inspired by several recent papers on the edge ideal of a graph 𝐺,
we study the equivalent notion of the independence complex of 𝐺. Using the
tool of vertex decomposability from geometric combinatorics, we show that 5-
chordal graphs with no chordless 4-cycles are shellable and sequentially Cohen-
Macaulay. We use this result to characterize the obstructions to shellability
in flag complexes, extending work of Billera, Myers, and Wachs. We also
show how vertex decomposability may be used to show that certain graph
constructions preserve shellability.

1. Introduction

Let 𝐺 = (𝑉,𝐸) be a graph with vertex set 𝑉 = {𝑥1, . . . , 𝑥𝑛}. The independence
complex of 𝐺, denoted 𝐼(𝐺), is the simplicial complex with vertex set 𝑉 and with
faces the independent sets of 𝐺. When it causes no confusion, we will say that
𝐺 satisfies some property if its independence complex does. For example, we will
say that 𝐺 is shellable if 𝐼(𝐺) is shellable. The independence complex has been
previously studied in e.g. [1, 17, 19].

The Stanley-Reisner ring of 𝐼(𝐺) is

𝑘[𝑥1, . . . , 𝑥𝑛]/(𝑥𝑖𝑥𝑗 : 𝑥𝑖𝑥𝑗 ∈ 𝐸).

The quotient in the above ring is also called the edge ideal of 𝐺 and has been
an object of study in its own right [26]. In particular, a recent series of papers
[12, 13, 16, 24] has worked from the edge ideal to show that chordal graphs are
sequentially Cohen-Macaulay and shellable and that certain graph constructions
preserve shellability and/or being sequentially Cohen-Macaulay.

In this paper, we consider vertex decomposability in graphs. In Section 2, we
recall the definition of a vertex decomposable simplicial complex and show what
this means for (the independence complexes of) graphs. As an easy consequence
we recover the result that chordal graphs are shellable, hence sequentially Cohen-
Macaulay. In Section 3, we give a geometric proof that the only cyclic graphs which
are vertex decomposable, shellable and/or sequentially Cohen-Macaulay are 𝐶3 and
𝐶5. In Section 4, we prove the main theorem of the paper:
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Theorem 1 (Main Theorem). If 𝐺 is a graph with no chordless cycles of length
other than 3 or 5, then 𝐺 is vertex decomposable (hence shellable and sequentially
Cohen-Macaulay.)

In Section 5, we reinterpret Theorem 1 in terms of obstructions to shellings,
answering a question of Wachs. We also give an application to domination numbers,
in the style of [19]. In Section 6, we examine several graph constructions that
preserve vertex decomposability. Finally, in Section 7 we close with some comments
on classes of sequentially Cohen-Macaulay graphs.

Note 2. Independence complexes have been studied more extensively in the combi-
natorics literature as flag complexes [22, Chapter III.4 and references]. Many papers
on flag complexes study them by considering the clique complex. We notice that
the clique complex of a graph 𝐺 is the independence complex of the complement
graph of 𝐺.

1.1. Cohen-Macaulay complexes. We review briefly the background definitions
from geometric combinatorics and graph theory.

A simplicial complex Δ is pure if all of its facets (maximal faces) are of the same
dimension. A complex Δ is shellable if its facets fit together nicely. The precise
definition will not be important to us, but can be found, with much additional
background, in [28, Lecture 3]. The link of a face 𝐹 in Δ is

linkΔ 𝐹 = {𝐺 : 𝐺 ∪ 𝐹 is a face in Δ, 𝐺 ∩ 𝐹 = ∅}.

Let 𝑘 be a field or the ring of integers. A complex Δ is Cohen-Macaulay over 𝑘

if �̃�𝑖(linkΔ 𝐹 ; 𝑘) = 0 for all faces 𝐹 and 𝑖 < dim(linkΔ 𝐹 ). More intuitively, a
complex is Cohen-Macaulay if it has the homology of a bouquet of top-dimensional
spheres and if every link satisfies the same condition. It is a well-known fact that any
Cohen-Macaulay complex is pure. Any pure, shellable complex is Cohen-Macaulay
over any 𝑘. Our results will be independent of the choice of 𝑘, and we henceforth
drop it from our notation.

Since simplicial complexes that are not pure are often interesting, we study
Stanley’s extension [22, Chapter III.2] of the definition of Cohen-Macaulay (and its
relationship with shellability) to arbitrary simplicial complexes. The pure 𝑖-skeleton
of Δ is the complex generated by all the 𝑖-dimensional faces of Δ. A complex is
sequentially Cohen-Macaulay if the pure 𝑖-skeleton is Cohen-Macaulay for all 𝑖. Any
shellable complex is sequentially Cohen-Macaulay.

Δ is a Cohen-Macaulay complex if and only if the Stanley-Reisner ring of Δ is a
Cohen-Macaulay ring. There is also a ring-theoretic notion of sequentially Cohen-
Macaulay [22, Definition III.2.9]. For more background, refer to [4] and [22] for the
combinatorial point of view or to [8] for a more ring-theoretic approach.

1.2. Chordless paths and cycles. A chordless path of length 𝑛 in a graph 𝐺 is
a path 𝑣1, 𝑣2, . . . , 𝑣𝑛 in 𝐺 with no chord, i.e. with no edge 𝑣𝑖𝑣𝑗 with 𝑗 ∕= 𝑖 + 1.
Equivalently, the induced graph on {𝑣1, . . . , 𝑣𝑛} is the path on 𝑛 vertices. In a like
manner, a chordless cycle of length 𝑛 is an induced 𝑛-cycle.

A graph is 𝑘-chordal if it has no chordless cycles of length > 𝑘, and chordal if it
is 3-chordal.
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2. Vertex decomposability and shedding vertices

A simplicial complex Δ is recursively defined to be vertex decomposable if it is
either a simplex or else has some vertex 𝑣 so that

(1) both Δ ∖ 𝑣 and linkΔ 𝑣 are vertex decomposable, and
(2) no face of linkΔ 𝑣 is a facet of Δ ∖ 𝑣.

A vertex 𝑣 which satisfies Condition (2) is called a shedding vertex. Vertex decom-
positions were introduced in the pure case by Provan and Billera [20] and extended
to non-pure complexes by Björner and Wachs [5, Section 11].

A vertex decomposable complex is shellable. One proof of this fact is via the
following lemma of independent interest:

Lemma 3 (Wachs [27, Lemma 6]). If Δ is a simplicial complex with shedding
vertex 𝑣 and if both Δ ∖ 𝑣 and linkΔ 𝑣 are shellable, then Δ is shellable.

The shelling order in Lemma 3 is that of Δ∖𝑣, followed by the facets of 𝑣∗linkΔ 𝑣
in the order of the shelling of linkΔ 𝑣.

To summarize, we have the chain of implications:

vertex decomposable =⇒ shellable =⇒ sequentially Cohen-Macaulay.

Both implications are known to be strict.
The definition of vertex decomposable (and so of shedding vertex) translates

nicely to independence complexes. Let 𝑁(𝑣) denote the open neighborhood of 𝑣,
that is, all vertices adjacent to 𝑣. Let 𝑁 [𝑣] denote the closed neighborhood of 𝑣,
which is 𝑁(𝑣) together with 𝑣 itself, so that 𝑁 [𝑣] = 𝑁(𝑣) ∪ {𝑣}.
Lemma 4. An independence complex 𝐼(𝐺) is vertex decomposable if 𝐺 is a totally
disconnected graph (with no edges) or if

(1) 𝐺 ∖ 𝑣 and 𝐺 ∖𝑁 [𝑣] are both vertex decomposable, and
(2) no independent set in 𝐺 ∖𝑁 [𝑣] is a maximal independent set in 𝐺 ∖ 𝑣.

Proof. Translate the definitions! □

A shedding vertex of 𝐺 is any vertex which satisfies Condition (2) of Lemma 4.
A useful equivalent condition for shedding vertices is:

Condition 5. For every independent set 𝑆 contained in 𝐺 ∖ 𝑁 [𝑣], there is some
𝑥 ∈ 𝑁(𝑣) so that 𝑆 ∪ {𝑥} is independent.

We make a first observation:

Lemma 6. If 𝑁 [𝑣] ⊆ 𝑁 [𝑤] (so that in particular 𝑣 and 𝑤 are adjacent), then 𝑤 is
a shedding vertex for 𝐺.

Proof. Since every neighbor of 𝑣 is also a neighbor of 𝑤, there are no edges from
𝑣 to any vertex of 𝐺 ∖𝑁 [𝑤]. Thus, any 𝑣 can be added to any independent set in
𝐺 ∖𝑁 [𝑤] while preserving independence. □

Recall that a simplicial vertex is a vertex 𝑣 such that 𝑁 [𝑣] is a clique. A well-
known theorem of Dirac [21, Theorem 6.3] says that every chordal graph has a
simplicial vertex. Thus, we have:

Corollary 7.

(1) Any neighbor of a simplicial vertex is a shedding vertex for 𝐺.
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(2) A chordal graph is vertex decomposable (hence shellable [24, Theorem 1.2]
and sequentially Cohen-Macaulay [13, Theorem 1.2]; also closely related is
[19, Theorem 1.4]).

Proof. If 𝑣 is a simplicial vertex and 𝑤 is a neighbor of 𝑣, then 𝑁 [𝑣] ⊆ 𝑁 [𝑤],
and Lemma 6 gives (1). For (2), the theorem of Dirac thus says that a chordal
graph has a shedding vertex 𝑤 if it is not totally disconnected. Since every induced
subgraph of a chordal graph is chordal, both 𝐺 ∖ 𝑤 and 𝐺 ∖ 𝑁 [𝑤] are inductively
vertex decomposable. □
Remark 8. Vertices satisfying the condition of Lemma 6 have been studied before
under the name dominant vertices, in the context of so-called dismantlable graphs
[15, 6]. However, dismantlability is a tool for understanding the homotopy type of
the clique complex of 𝐺, i.e., for understanding the independence complex of the
complement of 𝐺. Since 𝑣 and 𝑤 will not be adjacent in the complement, there
does not seem to be any direct interpretation of dismantlability in terms of vertex
decomposability.

Remark 9. Anton Dochtermann and Alexander Engström also examined vertex
decomposability in graphs, independently and at about the same time [11, Section 4]
as the author did. In particular, they prove Corollary 7, and a special case of
Proposition 22; they also notice that the result of Billera and Myers discussed in
Section 5.1 is a special case of Corollary 7.

3. Cyclic graphs

Corollary 7 (2) states that if 𝐺 has no chordless cycles of length greater than
3, then it is vertex decomposable. Let 𝐶𝑛 be the cyclic graph on 𝑛 vertices. We
discuss a partial converse:

Theorem 10 (Francisco/Van Tuyl [13, Proposition 4.1]). 𝐶𝑛 is vertex decompos-
able/shellable/sequentially Cohen-Macaulay if and only if 𝑛 = 3 or 5.

Theorem 10 was proved with algebraic techniques in [13, Proposition 4.1]. We
give a geometric proof here.

We start with a technical lemma:

Lemma 11. Let 𝑛 = 2𝑟 + 1, 0 < 𝑑 < 𝑟. Let the 𝑑-dimensional complex Δ𝑑
𝑛 be

the complex with vertex set ℤ/𝑛ℤ and with facets 𝐹𝑖 = {𝑖, 𝑖 + 2, . . . , 𝑖 + 2𝑑} for
𝑖 = 1, . . . , 𝑛. Then Δ𝑑

𝑛
∼= 𝑆1.

Proof. Consider Δ𝑑
𝑛 for 𝑑 > 1. A facet 𝐹𝑖 has codimension 1 intersection with two

other facets: 𝐹𝑖−2 and 𝐹𝑖+2. Since 𝑑 > 1, and since all codimension 1 faces of 𝐹𝑖

other than 𝐹𝑖 ∩ 𝐹𝑖−2 and 𝐹𝑖 ∩ 𝐹𝑖+2 are “free” (contained in a unique facet), we can
collapse 𝐹𝑖 onto 𝐹𝑖 ∩ 𝐹𝑖−2 and 𝐹𝑖 ∩ 𝐹𝑖+2. More formally, the face {𝑖, 𝑖 + 2𝑑} ⊂ 𝐹𝑖

is free, so we can remove all faces containing {𝑖, 𝑖+ 2𝑑} via an elementary collapse
[3, Section 11.1], which preserves homotopy type. Every face 𝐹 not containing
{𝑖, 𝑖+ 2𝑑} is in either 𝐹𝑖 ∩ 𝐹𝑖+2 (if 𝑖 /∈ 𝐹 ) or 𝐹𝑖 ∩ 𝐹𝑖−2 (if 𝑖+ 2𝑑 /∈ 𝐹 ).

Performing a similar collapse at each 𝐹𝑖 leaves us a simplicial complex with facets
𝐹𝑖 ∩ 𝐹𝑖−2 for 𝑖 = 1, . . . , 𝑛. But 𝐹𝑖 ∩ 𝐹𝑖−2 = {𝑖, . . . , 𝑖+ 2𝑑− 2}, and we see that we
have collapsed Δ𝑑

𝑛 to Δ𝑑−1
𝑛 . Thus, Δ𝑑

𝑛
∼= Δ𝑑−1

𝑛 when 𝑑 > 1.
Since 𝑛 is odd, repeatedly adding 2 to some 𝑖 ∈ ℤ/𝑛ℤ will cover all vertices;

hence Δ1
𝑛 is the 1-complex 𝐶𝑛

∼= 𝑆1. □

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



VERTEX DECOMPOSABLE GRAPHS 3239

56

1

2 3

4

Figure 3.1. The pure 2-skeleton of 𝐼(𝐶6) has two disconnected faces.

Proof of Theorem 10. The if direction is easy: the independence complex of 𝐶3 is
three disconnected vertices, while that of 𝐶5 is 𝐶5 as a 1-complex. Both are clearly
vertex decomposable.

In the other direction, we show that the pure 𝑑-skeleton is not Cohen-Macaulay,
where 𝑑 is the top dimension of the complex (i.e., 𝑑 = dim 𝐼(𝐶𝑛)). There are two
cases, based on whether 𝑛 is even or odd. (It may be helpful to look at Figures 3.1
and 3.2 while reading the following.)

Case 1. 𝑛 = 2𝑟. Then the top-dimensional facets have dimension 𝑟−1, and there
are two of them: one with all even vertices, the other with all odd vertices. As the
pure 𝑟 − 1 skeleton is not even connected, it is certainly not Cohen-Macaulay.

3
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Figure 3.2. 𝐼(𝐶7) is the Möbius strip. The dark line shows the
subcomplex Δ1

7.

Case 2. 𝑛 = 2𝑟+1, where 𝑟 ≥ 2. Then the top-dimensional facets once more have
dimension 𝑟− 1. All such facets are obtained by taking a sequence of 𝑟 alternating
vertices in 𝐶𝑛, with one skip of 2 vertices. We see that the top-dimensional skeleton
of 𝐼(𝐶𝑛) is the complex Δ𝑟−1

𝑛 discussed in Lemma 11, and so homotopic to 𝑆1.
Thus, the pure 𝑟 − 1 skeleton is Cohen-Macaulay only when 𝑟 − 1 = 1, i.e., when
𝑛 = 5.

Since every pure skeleton of a sequentially Cohen-Macaulay complex is Cohen-
Macaulay, we have shown that 𝐶𝑛 is not sequentially Cohen-Macaulay (hence not
shellable or vertex decomposable) for 𝑛 ∕= 3, 5. □

Example 12. The pure 2-skeleton of 𝐼(𝐶6) consists of two disconnected triangles,
as shown in Figure 3.1, while 𝐼(𝐶7) is a (pure) triangulation of the Möbius strip,
as seen in Figure 3.2. Lemma 11 collapses 𝐼(𝐶7) to the cycle 1, 3, 5, 7, 2, 4, 6.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3240 RUSS WOODROOFE

Remark 13. We computed the homotopy type of the top-dimensional skeleton of
𝐼(𝐶𝑛). The homotopy type of the entire complex 𝐼(𝐶𝑛) was calculated by Kozlov
[18, Proposition 5.2].

4. Proof of main theorem

The previous two sections motivate the result of Theorem 1. In this section, we
will give a proof.

A simplicial 𝑘-path in 𝐺 is a chordless path 𝑣1, 𝑣2, . . . , 𝑣𝑘 which cannot be ex-
tended on both ends to a chordless path 𝑣0, 𝑣1, . . . , 𝑣𝑘, 𝑣𝑘+1 in 𝐺. Thus, a simplicial
vertex is a simplicial 1-path.

Chvátal, Rusu, and Sritharan [9] proved a nice generalization of Dirac’s Theorem
to (𝑘 + 2)-chordal graphs using simplicial 𝑘-paths. The following lemma of theirs
will allow us to use the 5-chordal structure of 𝐺.

Lemma 14 (Chvátal, Rusu, and Sritharan [9, Lemma 3]). If 𝐺 is a 5-chordal graph
and 𝐺 contains a chordless 3-path 𝑃3, then 𝐺 contains a simplicial 3-path.

Note 15. From a geometric combinatorics point of view, it might make more sense
to count edge length and have the above definition be a simplicial (𝑘 − 1)-path, so
that a simplicial vertex would be a simplicial 0-path. However, to avoid confusion,
I have kept the original, more graph-theoretic definition.

We also need to use the lack of chordless 4-cycles:

Lemma 16. Let 𝑤1, 𝑣, 𝑤2 be a simplicial 3-path which is not a subgraph of any
chordless 𝐶4 in 𝐺. Then 𝑣 is a shedding vertex.

Proof. We first notice that, since there is no edge 𝑤1𝑤2, that any 𝑧 adjacent to both
𝑤1 and 𝑤2 must also be adjacent to 𝑣. Otherwise, 𝑤1, 𝑣, 𝑤2, 𝑧 would be a chordless
4-cycle.

Suppose by contradiction that 𝑣 is not a shedding vertex. Then by Lemma 4
and Condition 5, there is an independent set in 𝐺 ∖𝑁 [𝑣] which contains a vertex 𝑧1
adjacent to 𝑤1, and a vertex 𝑧2 adjacent to 𝑤2. Since 𝑧1, 𝑧2 ∈ 𝐺 ∖𝑁 [𝑣], neither is
adjacent to 𝑣. No 𝑧 in 𝐺∖𝑁 [𝑣] is adjacent to both 𝑤1 and 𝑤2, so 𝑧1 is not adjacent
to 𝑤2, and 𝑧2 is not adjacent to 𝑤1. Since 𝑧1 and 𝑧2 are in an independent set, 𝑧1
is not adjacent to 𝑧2.

Counting non-adjacent pairs of vertices, we have just shown that 𝑧1, 𝑤1, 𝑣, 𝑤2, 𝑧2
is a chordless path, which contradicts the definition of simplicial 3-path. Thus 𝑣 is
a shedding vertex, as desired. □

Proof of Theorem 1. If 𝐺 is chordal, then 𝐺 is vertex decomposable, as shown in
Corollary 7. Otherwise, 𝐺 has some chordless 5-cycle, hence a chordless 3-path,
and by Lemma 14 a simplicial 3-path. Lemma 16 shows that the middle vertex of
any simplicial 3-path in 𝐺 is a shedding vertex, and so by induction 𝐺 is vertex
decomposable. □

5. Applications

5.1. Obstructions. An obstruction to shellability is a non-shellable complex, all
of whose proper subcomplexes are shellable. Thus, any non-shellable complex must
contain at least one obstruction to shellability, while a shellable complex may or
may not contain some obstructions to shellability as proper subcomplexes.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



VERTEX DECOMPOSABLE GRAPHS 3241

The order complex of a poset is the simplicial complex with vertex set the ele-
ments of the poset and with face set the chains of comparable elements. Thus, the
order complex of 𝑃 is the independence complex of the incomparability graph on
𝑃 , which puts an edge between two elements if they are incomparable.

The study of obstructions to shellability was initiated by Billera and Myers, with
the following theorem:

Theorem 17 (Billera and Myers [2, Cor. 1]). If 𝑃 is a non-shellable poset, then
𝑃 contains an induced subposet isomorphic to the poset 𝐷 = {two disjoint edges}.

Equivalently, the unique obstruction to shellability in a poset is 𝐷. We note that
the incomparability graph of 𝐷 is 𝐶4. Gallai gave a forbidden subgraph charac-
terization of incomparability graphs of posets in [14] (translated to English in [21,
Chapter 3]; a more accessible version of the list is in [23, Chapter 3.2]). The forbid-
den subgraphs include 𝐶𝑛 for 𝑛 ≥ 5. Thus, Theorem 17 follows from Corollary 7
(2).

Wachs studied obstructions to shellability further in [27], where she asked about
the obstructions to shellability in a flag complex. Theorem 1 gives a classification,
which we summarize in the following theorem:

Theorem 18. The obstructions to shellability in flag complexes are exactly the
independence complexes of 𝐶𝑛, where 𝑛 = 4 or 𝑛 ≥ 6.

Proof. By Theorem 1, any non-shellable graph 𝐺 has an induced subgraph (hence
subcomplex) isomorphic to such a 𝐶𝑛. In Theorem 10 we showed that such 𝐶𝑛 are
not shellable, but any proper induced subgraph of 𝐶𝑛 is chordal, hence shellable. □

A natural question suggested by Theorem 18 is whether there is some similar
characterization of obstructions to shellability in non-flag complexes, where the
minimal non-faces form a hypergraph. One might be led to ask whether the hy-
pergraph of minimal non-faces is always cyclic in an obstruction to shellability.
However, examples studied by Wachs [27] show this is not so, as follows.

Let 𝑀𝑛 be the simplicial complex with faces {1, 2, 3}, {2, 3, 4}, . . . , {𝑛− 1, 𝑛, 1},
{𝑛, 1, 2}. In [27, Lemma 5], Wachs shows that 𝑀5, 𝑀6, and 𝑀7 are obstructions
to shellability.

Inspection verifies that 𝑀7 is a flag complex, in fact that 𝑀7 = 𝐼(𝐶7). The com-
plexes 𝑀5 and 𝑀6 are not flag. The minimal non-faces of 𝑀5 are {1, 2, 4}, {2, 3, 5},
{3, 4, 1}, {4, 5, 2}, {5, 1, 3}, which is a cyclic hypergraph, insofar as there is an al-
ternating sequence of edges 𝑒 and vertices 𝑣 ∈ 𝑒 which visits each edge and vertex
exactly once. However, the minimal non-faces of 𝑀6 are {1, 4}, {2, 5}, {3, 6} and
{1, 3, 5}, {2, 4, 6}, as pictured in Figure 5.1. I can see no natural generalization of
cyclic graph which applies directly to this hypergraph. Interestingly, however, there
is an indirect relationship: the edges are the facets of 𝐼(𝐶6).

5.2. Domination numbers. A set 𝑆 ⊆ 𝑉 is a dominating set if
∪

𝑠∈𝑆 𝑁 [𝑠] =
𝑉 . The dominating number of 𝐺, denoted 𝛾(𝐺), is the minimum cardinality of
a dominating set. Meshulam showed [19, Theorem 1.2 (iii)] that the homology of
𝐼(𝐺) vanishes below dimension 𝛾(𝐺)− 1 when 𝐺 is a chordal graph.

We generalize this result in two respects. Let 𝑖(𝐺) be the independent domination
number, that is, the minimum cardinality of a maximal independent set. Any
maximal independent set is a minimal dominating set, so 𝛾(𝐺) ≤ 𝑖(𝐺).
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Figure 5.1. The minimal non-face hypergraph of 𝑀6.

Since a sequentially Cohen-Macaulay complex has homology vanishing below the
dimension of the smallest facet, and since the smallest facet of 𝐼(𝐺) has cardinality
𝑖(𝐺), an immediate consequence is the following:

Corollary 19. If 𝐺 is any sequentially Cohen-Macaulay graph (over 𝑘), then

�̃�𝑗(𝐼(𝐺); 𝑘) = 0 for any 𝑗 < 𝑖(𝐺)− 1.

In particular, we recover the result [19, Theorem 1.2 (iii)] for chordal graphs and
𝛾(𝐺) and extend it to a larger class of graphs and a larger graph invariant.

6. Graph constructions

We now give examples of how shedding vertices can be used to show that certain
graph constructions respect shellability.

Lemma 20. If 𝐺 = 𝐺1 ∪̇ 𝐺2, then 𝐼(𝐺) = 𝐼(𝐺1) ∗ 𝐼(𝐺2), the join of simplicial
complexes. Hence 𝐺 is vertex decomposable, shellable and/or sequentially Cohen-
Macaulay if and only if 𝐺1 and 𝐺2 are.

Proof. It is obvious from the definition that 𝐼(𝐺) is the given join and that the
join is vertex decomposable if and only if both 𝐼(𝐺1) and 𝐼(𝐺2) are. That the
join of two complexes is shellable or sequentially Cohen-Macaulay if and only if
both complexes are is well known and can be found for example in [28]. (Part of
Lemma 20 can be found as [24, Lemma 2.4].) □

Example 21. Adding a single vertex to 𝐺 via a disjoint union forms a cone over
𝐼(𝐺). Adding on the graph consisting of two vertices connected by an edge via
disjoint union corresponds to taking the suspension of 𝐼(𝐺). Thus, for example,
the union of 𝑛 disjoint edges is homotopic to 𝑆𝑛−1.

Francisco and Hà [12], following Villarreal [25, Theorem 2.2], define a whisker in
a graph as a vertex of degree 1. A similar idea seems to be studied in the wider graph
theory literature under the name of pendant. We will prefer the latter term here.
In [12] and [24], it is shown that, speaking broadly, adding pendants to graphs has
good properties for maintaining shellability and the sequentially Cohen-Macaulay
property. Their construction essentially works because adding a pendant adds a
simplicial vertex. We give an obvious generalization:
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Proposition 22. Let 𝐺0 be a graph with a complete subgraph 𝐾, and let 𝐺 be
obtained from 𝐺0 by adding a new vertex 𝑣 with edges to all vertices of 𝐾. (That
is, let 𝐺 be obtained from 𝐺0 by “starring 𝐾”.) Then any element of 𝐾 is a shedding
vertex in 𝐺; conversely, 𝐺 is shellable (sequentially Cohen-Macaulay) only if 𝐺0∖𝐾
is.

Proof. Since 𝑁 [𝑣] = 𝐾∪{𝑣}, we have that 𝑣 is a simplicial vertex; hence any neigh-
bor is a shedding vertex (Corollary 7). For the converse statement, we recall that
links in a shellable/sequentially Cohen-Macaulay complex have the same property
and notice that link𝐼(𝐺) 𝑣 = 𝐺 ∖𝑁 [𝑣] = 𝐺0 ∖𝐾. □

The “clique-starring” construction described in Proposition 22 adds a pendant
when ∣𝐾∣ = 1. Whatever the size of 𝐾, the construction adds a simplicial vertex
to 𝐺. We now consider a construction analogous to a pendant which adds a 3-
simplicial path.

Proposition 23. Let 𝐺0 be a graph with a complete subgraph 𝐾, and let 𝐾1,𝐾2

be disjoint subgraphs of 𝐾. Let 𝐺 be obtained from 𝐺0 by adding new vertices 𝑤1,
𝑤2, and 𝑣, with 𝑤1 adjacent to all vertices of 𝐾1, 𝑤2 adjacent to all vertices of 𝐾2,
and 𝑣 adjacent to 𝑤1 and 𝑤2. Then 𝑣 is a shedding vertex of 𝐺. Conversely, 𝐺 is
shellable (sequentially Cohen-Macaulay) only if 𝐺0 is.

Proof. By definition, the path 𝑤1, 𝑣, 𝑤2 is 3-simplicial, while 𝑣 is in no chordless
4-cycles because 𝐾1 and 𝐾2 are disjoint. Lemma 16 shows that 𝑣 is a shedding
vertex. Conversely, link𝐼(𝐺) 𝑣 = 𝐺0, and any link in a shellable/sequentially Cohen-
Macaulay complex has the same property.

We notice in passing that 𝐺∖𝑣 = 𝐺0∪{𝑤1, 𝑤2} is formed from 𝐺0 by performing
the construction of Proposition 22 on 𝐾1 and 𝐾2. □

Another graph construction is that of twinning. If two vertices 𝑣 and 𝑤 have
the same neighbors, i.e., if 𝑁(𝑤) = 𝑁(𝑣), then we say 𝑣 and 𝑤 are true twins if
there is an edge 𝑣𝑤, and false twins otherwise. There are corresponding graph
constructions: add a new vertex 𝑤 to 𝐺, together with edges to all neighbors of
some 𝑣. The family of distance hereditary graphs can be defined as the graphs that
can be built from a single vertex by adding pendants, true twins, and false twins
[7, Chapter 11.6]; twins are also useful in proofs of the Perfect Graph Theorem [10,
Chapter 5.5].

Proposition 24. If 𝑣 and 𝑤 are true twins, then 𝑣 and 𝑤 are shedding vertices.

Proof. We note that 𝑁 [𝑣] = 𝑁 [𝑤], and thus by Lemma 6 they are both shedding
vertices. □

False twins are never shedding vertices, since any maximal independent set in-
cluding 𝑤 in 𝐺 ∖𝑁 [𝑣] is also maximal in 𝐺 ∖ 𝑣.
Example 25. The 4-cycle is obtained by adding a false twin of the middle vertex
in a 3-path. Thus, adding a false twin to a sequentially Cohen-Macaulay graph can
result in a non-sequentially Cohen-Macaulay graph.

One more family of graph operations which has frequently been studied is that
of graph products. There are a large number of such operations, based on different
rules for putting edges on the Cartesian product of the vertex set. We cannot
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examine all of them, but note that the commonly considered operations of direct
product and Cartesian product of graphs do not respect shellability or the sequential
Cohen-Macaulay property, for the Cartesian product of two edges (shellable) is a
4-cycle (not sequentially Cohen-Macaulay), while the direct product of an edge
with a 3-cycle (both shellable) is the complete bipartite graph 𝐾3,3, which [24,
Corollary 3.11] shows is not sequentially Cohen-Macaulay.

7. A comment on perfect graphs

Herzog, Hibi, and Zheng [16] point out that classifying sequentially Cohen-
Macaulay graphs is likely an intractable problem. We recall their argument. If
Δ is a simplicial complex, then the order complex of the face lattice of Δ is a
flag complex, and it is sequentially Cohen-Macaulay if and only if Δ is. (The or-
der complex of the face lattice is the barycentric subdivision of Δ.) Herzog, Hibi
and Zheng conclude that characterizing sequentially Cohen-Macaulay graphs is as
difficult as characterizing all sequentially Cohen-Macaulay complexes. The closely
related property of shellability is likely of a similar difficulty.

As we have seen, however, there are families of graphs in which classifying the
sequentially Cohen-Macaulay members of the family is possible. That all chordal
graphs are sequentially Cohen-Macaulay (Corollary 7) is an example of this type of
classification, as is the recursive characterization of sequentially Cohen-Macaulay
bipartite graphs in [24, Corollary 3.11]. Other families of graphs may also have
interesting answers.

We notice that the argument of Herzog, Hibi, and Zheng can help indicate the
families of graphs in which we can hope for such a classification. For example, a
perfect graph is one where every induced subgraph has chromatic number equal to
the size of its largest clique. The Strong Perfect Graph Theorem says that a graph
𝐺 is perfect if and only if there are no chordless odd cycles of length ≥ 5 in either 𝐺
or its complement. Another fundamental result is that the complement of a perfect
graph is also perfect. See [21] for more information and references about perfect
graphs. Both chordal graphs and bipartite graphs are perfect, and characterizing
the shellability and/or sequential Cohen-Macaulay connectivity of their common
super-family would seem like a reasonable aim.

Unfortunately for this aim, poset (in)comparability graphs are perfect, as can
be proved either by the direct argument of coloring elements by their rank, or else
from Gallai’s previously mentioned characterization of poset comparability graphs,
which lack odd cycles of length ≥ 5 [14]. Moreover, a complex is sequentially
Cohen-Macaulay if and only if its face poset is sequentially Cohen-Macaulay. Thus,
characterizing the sequentially Cohen-Macaulay perfect graphs is at least as hard
as characterizing which complexes in general are sequentially Cohen-Macaulay.

Considering the intersection of a graph family ℱ with the family of poset incom-
parability graphs is a recommended exercise before looking for shellings of graphs
in ℱ .
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