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Abstract—Understanding which node failures in a network
have more impact is an important problem. Current under-
standing, motivated by the scale free models of network growth,
places emphasis on the degree of the node. This is not a
satisfactory measure; the number of connections a node has
does not capture how redundantly it is connected into the whole
network. Conversely, the structural entropy of a graph captures
the resilience of a network well, but is expensive to compute, and,
being a global measure, does not attribute any specific value to
a given node. This lack of locality prevents the use of global
measures as a way of identifying critical nodes. In this paper we
introduce local vertex measures of entropy which do not suffer
from such drawbacks. In our theoretical analysis we establish
the possibility that our local vertex measures approximate global
entropy, with the advantage of locality and ease of computation.
We establish properties that vertex entropy must have in order
to be useful for identifying critical nodes. We have access to
a proprietary event, topology and incident dataset from a large
commercial network. Using this dataset, we demonstrate a strong
correlation between vertex entropy and incident generation over
events.

Index Terms—Computer Network Management, Network
topology, Network theory, Graph Theory, Entropy.

I. INTRODUCTION AND RELATED WORK

Network fault management is principally concerned with the
analysis of notifications or events (log messages, SNMP traps
etc.) from network devices, with the goal of identifying failures
in critical nodes before service is impacted. Events often occur
at a very high rate, ranging from 102 to 106 events per second
(eps). In most cases they do not directly indicate a problem. To
illustrate, at a typical large enterprise network1 the event rate is
135 million events a day, whereas there are just a few hundred
‘actionable incidents’. The reason for this disparity between
the volume of events, and the number of incidents is the over-
instrumentation of monitored systems, and the tendency to
collect every event for post incident analysis, in case a cause
is missed. It is important to state that this heavy event load
can render current algorithms used to surface important events
unusable, and in many cases operational networks rely upon
users reporting failures.

1This work is motivated by the experience gained deploying network
management software at large commercial scale.

For the purposes of this work we define an event and an
incident as follows:
• Event: An event is typically a single log message or

notification from an underlying monitoring system. We
require that it has a timestamp, topology node identifier
and description. It is not necessarily a notification of a
fault condition, but fault conditions will generally send
out at least one event.

• Incident: An incident is a support ticket raised as a
result of receiving an event, and each incident references
a topology node from which the event was received.
Although not all incidents are indicative of a significant
impact, they are an indication that the node has a fault
condition that requires investigation. Typically an incident
ticket is raised manually by a support person, or automat-
ically from a monitoring system. Incidents can reference
one or more events.

In this paper, we base our analysis on a very large real world
network delivering global internet services. More specifically,
we have access to the following data2:
• Topology. The topology is a combination of automat-

ically discovered and manually created datasets. It is
normally an example of a Multiplex network, as described
in [1]. The analysis presented in this paper is for a
network of 225, 239 nodes.

• Events. Gathered from the same network is a collection
of network events that were monitored over a period
of several weeks. For the topology above we analyze
96, 325, 275 events.

• Incidents. For the same period in which the events were
collected, this resulted in 37, 099 such incidents being
raised, which in turn refer back to the source event.

Identifying which events are the cause of actual outages is
called Root Cause Analysis (RCA) [2]. Many algorithms are
used to perform RCA (for a detailed example see [3]), but
scalability limitations make applying these algorithms to the
full event stream impractical. In many cases the maximum
event throughput of such algorithms is of the order of 102 to

2The source of the data is currently confidential, but we are working towards
permission to release this dataset with appropriate anonymisation.
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Fig. 1: Ideal Thresholding Cumulative Distribution of Inci-
dents and Events

103 events per second (eps). In the example described above
the average event rate is 1562 eps, but, from our experience,
this can peak to 20,000 eps. To perform RCA across all events,
the flow of events has to be significantly reduced, by many
orders of magnitude (for example see [4]). Even commonly
known techniques, such as compressing repeat events with de-
duplication techniques (as described in [5]), which can result
in a reduction of events by a factor of 10-100 are not sufficient
when event throughputs are often measured in terms of billions
of events per day. Failure to control this event rate overload
is a principal cause of service outages going undetected by
monitoring tools.

The most common approach to reducing the event rate is
the simple act of removing uninteresting events with a manual
filter or exclusion list, a process known as ‘blacklisting’.
Blacklisting , which originated in the security event monitoring
discipline [6], is extremely time consuming and error prone.
At industrial scale, blacklisting can require thousands of rules;
in a fast changing network, such an approach is not practical.
It is also extremely easy to accidentally blacklist a critical
node and miss an event which leads to a service impacting
outage. A method to automatically eliminate uninteresting
events would yield significant savings, and is the central goal
of our research. In particular, we seek a method which can
take the topology of a network and automatically discard un-
interesting events. The central difference in such an approach
from blacklisting is that due to the efficient computability
of the metrics discussed in this paper the method can be
used even with a dynamic network topology. Blacklisting, by
design, is static and requires human intervention to adapt to
network changes. Although it may seem potentially risky to
throw away events, admitting the possibility that causal events
are discarded along with unimportant noise, the alternative is
being unable to monitor any events and therefore missing every
causal event.

A. Characteristics of an Ideal Metric

An effective metric should able to identify which nodes are
more likely to produce events that will escalate into incidents.
An ideal result, given that in the example above only 0.0003%
of events get escalated into alerts, would be a metric that
can discard 99.999% of events, whilst retaining the few that
become incidents. Practically though, given that the goal is

to fix the scalability limitations of RCA, we are seeking a
metric that can reduce the load by 90%. Further for this to
be a practical approach, calculating the metric must itself not
present scalability challenges. An ideal metric must:

1) identify which nodes are most likely to produce an
incident.

2) allow the discarding of at least 90% of events by the
network topology alone.

3) be easy to calculate (not involve any intrinsically non-
scalable computational steps) from the network topology
alone.

4) be easy to update when the topology changes, ideally
involving only computations for a small number of
nodes in the region of the network where changes
occurred.

5) Assuming a uniform probability of a node emitting an
event3, the metric must clearly segregate a small subset
of critical nodes.

Ultimately the measure of RCA is its ability to capture
all root causes and not mis-identify any false positives. This
is best described in the language of machine learning using
precision and recall. In particular the F1 score (see [7] for a
good description), is a popular measure of the effectiveness of
a categorization algorithm such as RCA. Any method which
discards root causes (false negatives) along with uninteresting
events (true negatives) (or conversely any method that flags
root causes (true positives) along with uninteresting events
(false positives)) will affect the F1 score of the overall system.
The F1 metric is most usually defined as the harmonic mean
of precision and recall, which we define in Equation (1). In our
context precision is measured as the fraction of incidents in
the events remaining after discarding all events and incidents
that occur below a given value of our metric. Similarly, recall
is the fraction of incidents remaining after this discard over
all recorded incidents. The value of β in this equation, when
set to 1, recovers the standard F1 measure. In essence when
precision and recall are balanced, F1 is maximized. For our
purposes we set a value of β higher to bias the importance of
recall over precision in monitoring applications.

Fβ = (1 + β2)× precision× recall
β2 × precision+ recall

(1)

In Figure 1 we illustrate an idealized cumulative distribution
of events versus incidents for an ideal metric. This distribution
would be achieved if incidents were more likely to occur on
nodes with high values of the metric, versus events, according
to a distribution around a distinct mean value. This type of
skew of incidents towards a higher metric value would allow
us to discard events below a given threshold that would remove
proportionately far more events than incidents.

A starting place to identify a workable metric is the work
of Barabàsi and Albert [8] on network resilience, which was
based upon data described by Faloutsos et al [9] and Li et al
[10]. Analysis of this data was used by Barabási and Albert
to assert that communications networks have a power law

3Experience from commercial deployments points to this assumption being
reasonable.
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Fig. 2: Cumulative Distribution of Incidents and Events by Node Degree (a) and Betweenness Centrality (b)

node degree sequence, possessing the Scale-Free property,
whereby, node degree distributions obey the inverse power
distribution law. This was further used to justify the claim that
communications networks, like the Internet, are both robust to
random attack and vulnerable to targeted attack (the central
arguments are outlined in [11], [12], [13], and again in [8]).
In essence, when removing nodes from a graph randomly, the
collapse in connectivity, as measured by the reduction in the
size of the giant component, is gradual. However, if nodes are
removed by choosing those with highest degree, this reduction
is much more rapid (typically removing less than 10% of the
nodes will reduce the size of the giant component by more
than 90% [8]). It is therefore natural to postulate that node
degree could be a metric that satisfies our criteria.

In Figure 2a we present the cumulative distribution of events
and incidents by node degree. When we inspect the distribution
in Figure 2a the lack of distinction between the cumulative
event and incident distribution makes it clear that this does
not conform to the idealized distribution in Figure 1. This
distinction, which is apparent in the idealized distribution
described above, means, at a fixed value of the metric, a
far larger proportion of events initiate from nodes of values
below this point than incidents. The absence of this preferential
tendency for high degree nodes to produce incidents, means
degree is a poor metric to achieve a suitable cutoff that would
preferentially discard events over incidents. Although degree
is extremely easy to calculate (3rd criterion), it fails the first
and most important criterion, as it does not provide any useful
way of identifying nodes more likely to produce an incident.
This lack of correlation is most likely due to high degree nodes
being redundantly connected into the network and they may
also not impact network function when they fail.

Beyond degree measures there are many other proposed
metrics that measure node importance, often centering around
centrality measures such as betweenness and eigenvalue cen-
trality ([14], [15]). In Figure 2b we plot the cumulative distri-
bution of events and incidents by betweenness centrality, for
our sample data. Betweenness centrality measures the number
of shortest paths between any two points in the network that
pass by a given node as a fraction of all shortest paths. High
values of centrality indicate a node that is critical to the
connectivity of the network. It is clear that the effectiveness
of this metric is far higher than degree, which is unsurprising
as centrality quantifies the importance of a node in terms of
connectivity between all points in the graph. Unfortunately the

calculation of betweenness centrality scales badly. In the best
case for betweenness centrality the fastest known algorithm
developed by Brandes ([16], still scales as O(|V |×|E|), which
in the case of our proprietary data is practically unfeasible to
compute. To illustrate the problem, on our sample data this
calculating the centrality for every node in our proprietary data
set required 41 days on server grade hardware. This compares
with the entropy metrics described in Section IV, which in
identical conditions, require around 1.5 hours to compute every
metric for every node sequentially. As our metrics only depend
upon local properties of a node and could be calculated locally
without a whole graph computation. In practice this means that
for a given node, our most efficient metrics V E and V E′,
compute in less than a second, opening up the possibility
that they can be maintained automatically in even the most
dynamic environments.

The focus of our research has been with graph entropy,
building on the entropy metric presented by Tee et al in
[17]. Entropy has been studied in other contexts for anomaly
detection (recently [18], and [19] applied the approach to
traffic anomaly detection), but graph entropy has received little
attention in the context of fault management. As a measure
of graph structure it has serious computational drawbacks as
its calculation is well known to be NP-Hard ([20]), which
may account for this. However if these could be overcome
with a node level, vertex, approximation, it would be ideal.
Using such a node level measure of graph entropy, the
proposed technique would be automatically driven from a
graph representation of the topology of the monitored network,
and importantly could be quickly computed from available
inventory databases. Ideally, such a metric would conform to
the cumulative distribution illustrated in Figure 1. In this way,
at the expense of missing a small number of incidents, the
volume of events that need processing can be significantly
reduced. As all incidents have an associated event, it is not
expected that the distribution would allow perfect recall of
incidents as you discard events, but any actual distribution
approximating this would be useful in establishing an entropy
threshold to allow the discarding of events from nodes less
likely to produce an incident. We will seek to demonstrate
that our proposed vertex entropy metrics approximate this
distribution. A central objective of our research has been to
identify easily computable metrics that measure the contri-
bution of an individual node to the entropy of the whole
graph. Additionally, for these metrics to be valid entropy
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measures, we need to establish their extremal behavior satisfies
the criteria of maximality, and demonstrate that they satisfy the
other essential entropic properties of additivity, symmetry and
positivity [21], [22]. Ideally the extremal values of our local
variants would coincide with the global entropy measures and
provide confidence that these metrics measure the complexity,
and therefore, resilience of the networks they represent.

B. Overview

In this paper we describe both the theoretical approach for
choosing a valid vertex entropy measure, and also analyze
the results when this is applied to our “ground truth” data.
Our core motivation is to identify an approximate way of
measuring the contribution an individual node makes to the
whole graph’s entropy, and use that as our metric to eliminate
noisy events. However, traditional definitions of graph entropy
have insurmountable computational difficulties when applied
to networks at scale. The starting point for our investigation is
to establish whether there exists node or vertex level measures
that when summed across the whole graph behave like the tra-
ditional measures. Establishing the existence of such a vertex
level metric necessitates an exploration of the characteristics
of global entropy measures on simple connected graphs. In
section II we present an overview of graph entropy, introducing
both Chromatic and Structural Entropies. Structural Graph
Entropy quantifies the degree of connectivity resilience of a
graph to edge removal, with low values of structural entropy
corresponding to a fully connected or perfect graph, and
high values a non-uniform graph with low resilience to edge
removal. Chromatic Graph Entropy operates in the reverse
sense, with uniform graphs having high chromatic entropy.

A valid entropy measure must satisfy the criteria of max-
imality, additivity, symmetry and positivity. Although addi-
tivity, symmetry and positivity are satisfied trivially by the
definitions of global entropy, maximality is investigated in
detail in Section III. We only concern ourselves with simple
connected graphs and we prove that for an arbitrary sized
graph, the Star Graph (Sn) and the Complete Graph (Kn) are
extremal for both Structural and Chromatic Entropies. Ideally
these properties should be shared by our vertex level metrics
when summed across the whole graph.

A framework for the construction of node level entropies
has been extensively explored in the work of Dehmer et al,
and summarized in [23]. In section IV we build upon this
framework to introduce our proposed forms of local vertex
entropy, and investigate their extremal behavior. An important
result of our paper is that the vertex entropies we propose
have strong analogous behavior to the global variants, when
summed across the whole graph, and satisfy maximality,
additivity, symmetry and positivity. We further demonstrate
that our metrics share similar extremal behavior to both global
variants.

In section V we evaluate the proposed measures over a
large enterprise network. The principal result of our paper is
that the vertex entropy measures provide a computable and
effective way to identify important nodes that are more likely
to produce incidents. This is established by identifying that

A D

B C

(a) K4

A D

B C

(b) S4

A D

B C

(c) P4

A D

B C

(d) C4

Fig. 3: Special Graphs on Four Nodes

the distribution of event and incident frequency by vertex
entropy strongly favors incident production at high values
of the metric, verified by analysis of the data using a 2
sample Kolmogorov-Smirnov null hypothesis test to identify
whether the distribution of incidents and events by our metrics
are trivially correlated. In all cases we can dismiss the null
hypothesis and conclude that the metrics produce independent
distributions of the events versus the incidents. In addition
we calculate for the data a version of the F1 score, adjusted
to account for the preponderance of raw events. Again all
proposed metrics demonstrate acceptable improvement in the
pre-conditioning of the event data. It is certainly not the case
that all incidents occur above a fixed threshold, but at the cost
of missing 20% of the incidents, 60-70% of the events can be
safely ignored. We conclude our paper in Section VI, with an
outlook regarding further research directions.

II. THEORETICAL BACKGROUND

Historically, entropy was defined in Graph Theory as a
measure of the complexity and non-uniformity of the global
structure of a graph. Its use as an analytical tool in network
science has been most studied in the dynamical evolution of
network growth (see for example [24] and [25]). As a metric
it captures many important characteristics, which are of direct
interest in a number of applied fields, including the analysis
of failure modes of communication networks (see [3]). In
particular, networks with non-uniform connectivity will have
high values of entropy. Unfortunately the most well understood
measures of entropy involve calculations that have impractical
computational complexity, as a graph scales in size (see [20]
for a good explanation of this point). Further, any change to
either the edges or vertices of a graph requires recomputing
entropy across the whole graph. It is also extremely difficult
to compute the contribution of each individual node to the
graph entropy. The variants of Graph Entropy that we explore
in this paper are, Körner or Structural Entropy and Chromatic
Entropy. Structural entropy measures the mutual information
of the stable sets of vertices defined on a graph, a string proxy
for the complexity of the graph. Chromatic entropy is defined
using the size of subsets of non adjacent vertices, or colorings,
of a graph.

In our treatment we confine ourselves to simple, undirected
graphs that are connected, and make reference to a number of
special graphs, which we define as follows:
• The Complete Graph (Kn): This graph is formed from

a set of n vertices, maximally connected.
• The Star Graph on n Vertices (Sn): This graph has one

vertex v which is connected to all other vertices, with no
other edges in the graph.

• The Path on n Vertices (Pn): This graph is a simple
chain of n vertices, connected by a single edge with no
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loops. The path has a single start node v1 and end node
vn.

• The Cycle on n Vertices (Cn): This graph is a special
case of Pn such that v1 = vn; each node has degree 2.

In Figure 3 we present simple examples of these special graphs
with n = 4.

Any valid entropy measure must satisfy a number of criteria,
(for detailed descriptions see [21], [22]) to be admissible as
a well behaved entropy metric. We define these properties on
the entropy H of two graphs F (V,E) and G(V,E) as follows:

Definition 1. For all graphs F (V,E) and G(V,E′), sharing
the same vertex set V a valid entropy H(G) must satisfy:

1) Additivity: H(F ∪G) ≤ H(F ) +H(G)
2) Symmetry: H(F ∪G) = H(G ∪ F )
3) Positivity: ∀G,H(G) ≥ 0
4) Maximality: For a given collection of vertices V there

is an edge set E such that the entropy H(G) of a graph
G(V,E) is maximized

As we explore our candidate entropy measures we will seek
to prove that they satisfy these criteria where proofs do not
exist in the standard literature.

III. EXTREMAL BEHAVIOR OF GLOBAL GRAPH
MEASURES

A. Chromatic Entropy

A proper coloring of a graph is the division of the set of
vertices V into a collection of subsets such that no member of
any subset is adjacent to another member of the same subset.

For a given graph G there maybe multiple colorings, which
amount to a collection, or set, of subsets of V . Each of these
subsets we call a Chromatic Class Ci, with the constraint that⋃
i Ci = V . The Chromatic Number of a graph, χ(G), is the

smallest number of such subsets that satisfy this constraint.
The chromatic number of an graph is bounded by the maxi-
mum vertex degree kmax [26], [27]:

1 ≤ χ(G) ≤ (1 + kmax) (2)

Definition 2. Chromatic Entropy

Ic(G) = min

[
−
∑
Ci

|Ci|
n

log2

(
|Ci|
n

)]
,∀Ci. (3)

where the minimization is over all possible colorings of the
graph, and the summation is over all chromatic classes Ci,
for a given coloring.

It is possible to establish the following limit on the value
of IC(G) :

Theorem 1. For all graphs G, the Chromatic Entropy Ic(G)
is bounded by:

0 ≤ Ic(G) ≤ log2(n) (4)

Proof. We note that the lower bound is trivial, and consider
the upper bound. We need only to maximize the function
f(pi) = −

∑
i pi log2(pi) (in our case pi = |C|

n ), subject
to the constraint

∑
i pi = 1 and pi ≤ 1,∀i, with equality

only in the case of a trivial graph of one vertex. Given the

definition of IC(G) as the minimum of equation (3) over
all possible colorings, our maximum value will always be
an upper bound of IC . To maximize, we use the method
of Lagrange multipliers, considering the following construct,
subject to the unity sum constraint

∑
i pi = 1 where pi =

|Ci|
n :

L = max
pi

[
−
∑
i

pi log2 pi − (λ− 1)

(∑
i

pi − 1

)]
(5)

Differentiating by pi and setting to zero we obtain:
∂L
∂pi

= 0; =⇒
(
pi = 2(1−λ−

1
ln(2)

)
)
∀i (6)

From equation (6) our maximum is achieved when all values
of pi are identical and constant. In this case each chromatic
class Ci is of identical size |Ci| = n

χ(G) . Feeding this back
into equation (3), and substituting for the bounds on χ(G)
from (2) we obtain the desired result.

0 ≤ Ic(G) ≤ log2(n)

In practice these extremal values for Ic(G) are achieved by
the perfect graph on n vertices Kn for the maximum, which
has a Chromatic Entropy of log2(n), and its complement Kn,
where the set of edges is empty, has the minimum value of
zero. However Kn is not a connected graph; for connected
graphs we make the following proposition.

Proposition 1. For all connected, simple graphs G(V,E) of
order n > 3 it holds that Sn minimizes Ic(G)

Proof. For n > 3 any graph G of n vertices, can be created
by progressively adding edges to either Sn or Pn, and by
inspection of Table I, Sn has lower entropy than Pn. We
will prove our proposition if we can demonstrate that the
addition of an edge to any connected graph increases its
chromatic entropy, as all graphs obtainable from Sn would
have higher chromatic entropy than Sn. Consider any star
graph Sn for n > 3. If any edge is removed, Sn will cease to
be connected, and so by definition is not under consideration
of the proposition. As we add edges to the graph Sn the change
in chromatic number δ(χ(G)), can only ever be ≥ 1, or 0. So
to complete the proof we consider both cases upon addition
of an edge:

Case 1, δ(χ(G)) ≥ 1 : The addition of a single edge
creates an adjacency between two nodes, which must previ-
ously have been in the same chromatic class as δ(χ(G)) ≥ 1.
If the vertices where not in the same class we cover this in
Case 2. The recoloring of the graph will take one or both of
the vertices connected by the new edge and add to, or create,
a chromatic class of size x. This will reduce the size of a
prior chromatic class of size y by x. Edge addition operations
that increase chromatic number will always produce classes
of increasingly uniform size as we approach a perfect graph
Kn. Without loss of generality we will assume that y > x,
as classes that grow to uniformity will by necessity borrow
from larger classes as the size of all classes tend to unity. The
change in chromatic information due to this re-assignment is:

δIc(G) =
x

n
log2

(n
x

)
−

(
y

n
log2

(n
y

)
−y − x

n
log2

( n

y − x

))
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We seek to prove that δIc(G) ≥ 0 for all x, y where y > x.
Elementary manipulation yields the following inequality:

δIc(G) ≥ 0→ x log2

(
y

x
− 1

)
≥ y log2

(
1− x

y

)
As y

x−1 > 1− x
y when y > x, we conclude that the inequality

holds and δ(Ic(G)) ≥ 0,∀n > 3 under the operation of edge
addition when δ(χ(G)) ≥ 1.

Case 2, δ(χ(G)) = 0 : In this instance the addition of
an edge does not increase the chromatic number. and as
no chromatic classes need to change size, δIc(G) = 0.

Eventually additional edges increase the number of adjacen-
cies and consequentially the chromatic number of the graph to
its maximum of n, until we arrive at the complete graph Kn,
which maximizes Ic(G).In all cases we have seen that adding
edges creates a δIc(G) ≥ 0, and as the first additional edge
must belong to Case 1, the proposition is proved.

B. Structural Entropy

The original paper of Körner [28], [21] introduced the en-
tropy of graphs by extending traditional Shannon informational
entropy. Körner’s analysis considered an alphabet of signals,
emitted according to a probability distribution, with not all
of the alphabet being distinguishable. A graph is constructed
such that each member of the alphabet is considered a vertex,
with two vertices being connected by an edge if they are
distinguishable, and a probability of emission, P (V ), being
associated with each vertex. To develop the mathematical for-
mulation of structural entropy, Körner introduces a probability
distribution P (V ), to the normal construct of a graph G(V,E),
and defines S to be the maximal set of stable sets of G(V,E).
A stable set is a subset of the vertices which are not adjacent
to any other member of the stable set, the maximal set being
the collection of largest stable sets.. A number of equivalent
definitions of structural entropy, H(G,P ) are possible, of
which the simplest is in terms of the mutual information
between P (V ) and G(V,E) as follows [21]

Definition 3. Körner or Structural Graph Entropy

H(G,P ) = H(P )−H(P |S) (7)

This measure, which we call structural entropy, is related
closely to the Chromatic Entropy. In our treatment we identify
P (V ) with the probability of the emission of an event, which
we further assume to be uniform. With that simplification the
two quantities are related as follows (for an in depth treatment
see [22]):

H(G,P ) = log2(n)− Ic(G) (8)

Structural entropy can most easily be interpreted as quantify-
ing the extent to which the local neighborhood of a node is
unique. In other words the value of H(G,P ) is minimized
when all vertices are equivalently connected, and maximized
when each node is distinguishable by its local topology. Given
equation (8) we can state the following lemma on the bounds
for H(G,P ).

Lemma 1. For any graph G(V,E) on n nodes, assuming
that P is uniform, the structural graph entropy is bounded as
follows:

0 ≤ H(G,P ) ≤ log2(n) (9)

Proof. This bounding of H(G,P ) is easily verified by direct
substitution of (4) into (8), and as such the proof is trivial.

We summarize the extremal behavior of our global graph
measures in table II.

TABLE I: Values of Global Entropies for Special Graphs

Ic(G) H(G,P ) - P Uniform

Sn
n−1
n

log2
(
n
n−1

)
− 1
n
log2(n)

n−1
n

log2(n− 1))

Kn log2(n) 0

Pn, n even 1 log2(n)− 1

Pn, n odd 1 + log2(n)− (n+ 1) log2(n+ 1)

−(n− 1) log2(n− 1)

(n+ 1) log2(n+ 1)

+(n− 1) log2(n− 1)

−1

Cn, n even 1 log2(n)− 1

Cn, n odd log2(n)− n−1
n

(
1− log2(n− 1)

)
1−n
n

(
1− log2(n− 1)

)

TABLE II: Graph Types that Maximise and Minimize Entropy

Chromatic Structural
Maximum Kn Sn

Minimum Sn Kn

IV. LOCAL VERTEX ENTROPY MEASURES

Recent work on Graph Entropy by Dehmer [23], [29] pro-
vides a framework that unifies the global invariants discussed,
and provides a pathway to extend these measures in a more
computable direction. Both Structural and Chromatic entropy
rely upon partitions of the vertex set of the graph, which are
known NP-Hard problems.

Dehmer defines the concept of a local functional for a
vertex, which can be scoped to calculate values for every
vertex based upon the local topology of the graph. The degree
of locality in the treatment is controlled by using the concept
of j-spheres, Sj in the graph, centered at a given vertex. For
clarity, in the definition that follows a superscript indicates the
order of the j-sphere, whereas subscripts run over the members
of the vertex set of the graph. Dehmer’s original definition
relied upon subsets of vertices of a fixed distance from a given
vertex vi. where distance d(vi, vj) is the shortest distance
between distinct vertices vi and vj (i.e. i 6= j). The distance is
measured in the number of edges traversed in a walk from vi to
vj , and in communications networks is commonly referred to
as the ‘hop’ count. This definition excluded the vertex vi, and
other interior nodes for j ≥ 1, but in our later treatment this
introduces problematic zeroes when we define the clustering
coefficient. We extend the definition of a j-sphere to include
the node vi as part of the set. This avoids certain special graphs
such as Sn having zero clustering coefficients that would
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introduce infinities into our later definitions of normalized
entropies. This is different to the definition given by Dehmer,
in that we include all interior nodes to a given j-Sphere. The
definition so modified is as follows:

Definition 4. For a graph G(V,E), we define for a node
vi ∈ V , the ‘j-sphere’ centered on vi as:

Sji = {vk ∈ V |d(vi, vk) ≤ j, j ≥ 1} ∪ {vi} (10)

and for convenience when we define the clustering coefficient
in equation (21), the related ‘j-edges’ Eji as

Eji = {ekl ∈ E|vk, vl ∈ S
j
i } (11)

In essence the sets Sji and Eji are the local j-hop neighbor-
hood of the node vi, with Sji being the collection of all nodes
j hops away from vi, and Eji being the set of edges between
them.

The concept of j-spheres is a very convenient formalism to
capture locality in the graph. Essentially j can range from 1 to
the diameter, D(G), of the graph (as defined as the maximum
length shortest path between two nodes). By breaking a large
graph into j-spheres, we can progressively examine complex
combinatorial quantities such as graph entropy on increasingly
larger subsets of the graph until at j = D(G) the global value
is being effectively computed. Using our extended definition,
we proceed by equipping each Sji with a positive real-valued
function fi : vi ∈ Sji → R+. This function is proposed to be
dependent upon properties of the nodes that are members of
the j-sphere, such as their degree, number of cycles and so
on, which capture the local structural properties of the graph.
From this, we can construct a probability function for each
vertex as

pi =
fi∑

vj∈V fj
(12)

which trivially satisfies
∑
i pi = 1.

Essentially these functions are used to construct entropy
measures in direct analogy to Shannon entropy as follows:

H(vi) = −pi log2 pi (13)

The principal direction of Dehmer’s proposition is that these
functions fi when used to construct entropy, describe the
local ‘information’ that a given vertex carries about the global
structure of the graph. However, in the published work [23],
[29], these functions are complex expressions, which introduce
global invariants of the graph complicating their computation.

We can now apply Dehmer’s formalism using the available
invariants available in j-spheres for different values of j. For
reasons of computational simplicity in this work we restrict
ourselves to j = 1, which is the immediate local neighborhood
of a given node. Although this sacrifices global structure of
the graph, we will show that the results are still of operational
significance and, because of locality, very efficient to compute.
Indeed if 〈k〉 is the average degree of a node, most of our
metrics are computable in O(|V | × 〈k〉), significantly less
than, for example, centrality measures. Given the constraint of
locality, a number of constructs can be designed that satisfy
the probability functional defined in equation (12) up to a
normalization constant. In the immediate neighborhood of a

vertex the available measures are restricted to the degree of the
vertex ki, and the presence of cycles in the local subgraph. It is
important that the measures that are constructed are bounded
in an acceptable way, when summed across the whole graph
and satisfy the fundamental properties of an entropy measure:
maximality, additivity, symmetry and positivity [21], [22].

In Table III we summarize the available probability con-
structs that we will investigate. For j-spheres where j > 1
we have not conducted any analysis, and this remains an
open question for further research. It should be noted though
that as j approaches D(G), the diameter of the network, the
probability functionals approach a constant value, which is
unlikely to reveal much of the structure of the network.

TABLE III: Local Probability Functional Constructs on a j-
sphere

j = 1 j > 1 j = D(G)

1
ki

V E(v) Unexplored, 1

|Ej
i |

Constant Value 1
|E|

ki
|E| V E′(v)) Unexplored,

|Ej
i |
|E|

Constant Value 1

Cji
NV E(v),NV E′(v),

Unexplored Unexplored
CE(v),CV E′(v)

A. Inverse Degree Entropy

The first and most basic probability functional, which we
can construct on the 1-sphere of a vertex, uses its inverse
degree ki and is defined as follows:

pi =
1

ki
(14)

and the corresponding entropy of the vertex V E(vi), and
whole graph HInvDegree as

V E(vi) =
1

ki
log2(ki), (15)

for the whole graph:

HV E =
i<n∑
i=0

1

ki
log2(ki) (16)

The first observation is that the sum of inverse degrees does
not satisfy the constraint

∑
i pi = 1. However, one can observe

that for any given graph G, this probability functional sums
to the constant:

C =
i<n∑
i=0

pi =

∑i<n
i=0

(∏
j 6=i kj

)
∏i<n
i=0 ki

(17)

We note that pi = 1
C ×

1
ki

, and discard the constant as part of
the normalization.

As the expression in equation (15) involves a sum of
logarithmic terms (which are all positive), the conditions of
additivity, symmetry and positivity are satisfied trivially, in
particular for additivity as the combination of two graphs
must as a minimum increase the degree of a vertex from each
graph, or leave the degrees of the two graphs unchanged, the
combined graphs entropy will be greater than or equal to the
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sum of the two graphs, thereby satisfying the additivity criteria
of Definition 1.

Regarding maximality, it suffices to establish that equation
(16) has a maximum for a fixed set of vertices and edges. This
can be done using Lagrange multipliers with the constraint∑
i

pi = C, where C is the constant from equation (17). This

yields an expression for the pi as pi = 2(C−1−λ), where
λ is the Lagrange multiplier, confirming that the entropy
has a maximal value for a graph whose degrees are equal.
Referring to Table VI, we can see this is obtained by the
cycle graph on n vertices Cn. Indeed the special graphs are
ordered by increasing inverse degree entropies in the sequence
Sn < Kn < Pn < Cn.

TABLE IV: Values of Vertex Entropy for Special Graphs

V E(n) V E′(n)

Sn
1

n−1
log2(n− 1) 1 + 1

2
log2(n− 1)

Kn
n
n−1

log2(n− 1) log2(n)

Pn
n−2
2

1
n−1

+ log2(n− 1)

Cn
n
2 log2(n)

B. Fractional Degree Entropy

Inverse degree is unsatisfactory. Firstly the probability
functional is not naturally defined to satisfy the unity sum
constraint. Secondly, and more importantly, the degree of a
vertex does not capture how ‘hub-like’ the node is relative to
others. To capture this, we can define an alternative functional,
which is based upon the ratio of the vertex degree to the total
number of edges in the graph, as follows:

pi =
ki
2|E|

(18)

Given that
∑
vi∈V ki = 2|E| this functional directly satisfies

the unity sum constraint. In a parallel way to equation (15),
we define the fractional degree entropy as:

V E′(vi) =
ki
2|E|

log2

(2|E|
ki

)
, (19)

for the whole graph:

HV E′ =
i<n∑
i=0

ki
2|E|

log2

(2|E|
ki

)
(20)

Following the treatment of Inverse Degree Entropy, we note
that the expression in equation (20) again involves a sum of
logarithmic terms (which are all positive), so the conditions of
additivity, symmetry and positivity are satisfied. To establish
maximality, we can again use the technique of Lagrange
multipliers using the constraint

∑
i

pi = 1, which yields a

similar result to inverse degree entropy that the maximal value
is obtained for a graph with equal vertex degrees satisfying
pi = 21−λ. In Table VI this is satisfied by Kn and Cn. The
special graphs using this measure are ordered in increasing
fractional degree entropy as Sn < Pn < Cn = Kn. We
summarize these results in Table V.

TABLE V: Extremal Graphs for Unnormalized Vertex Entropy

V E V E′

Maximum Cn Kn = Cn

Minimum Sn Sn

C. Normalized Degree Entropy

There is a considerable practical difference between a star
network topology (Sn) and a fully meshed one (Kn). In the
former, the network is vulnerable to the loss of its central
high degree vertex; in the latter, the loss of any one vertex
can never create isolated vertices. Both prior measures make
little distinction between these two topologies for nodes of
identical degree, but there are available metrics measurable at
one hop distance that capture this concept. Indeed, in the case
of fractional degree, there is no way for the degree to capture
the intricacies of the local topology of the node. Introduced
in [30] and [8] is the concept of the clustering coefficient
of a vertex. The traditional definition counts edges between
neighbors of a vertex, which yields a zero value for Sn that
is problematic in our treatment. We avoid zeros using our
extended version of the j-sphere in equation (10). In terms of
the degree of vertex i, ki, the following definition captures how
similar the j-sphere surrounding a vertex is to the complete
graph Kn and is defined in terms of the 1-sphere edge set Eji
as:

C1
i =

2|Eji |
ki(ki + 1)

(21)

In essence the clustering coefficient measures the probability
that two randomly chosen nodes in the 1-hop subgraph have
an edge between them. In this way the lower the value of the
coefficient, the higher the likelihood that the failure of the node
at the center of the subgraph will cause two nodes to become
disconnected (see for example [31]). This completely captures
how well meshed a node is into its local neighborhood, and
therefore serves as an ideal candidate for further refining the
vertex measures introduced earlier. In particular, we want to
highlight vertices whose clustering coefficient is low, that is,
their local neighborhood is more similar to Sn locally than
Kn. To that end we define the following Normalized Vertex
Entropies:

Definition 5. We define for a graph G(V,E) the following
Normalized Inverse Degree Entropy for both vertex and total
graph as follows:

NV E(vi) =
1

C1
i

× V E(vi), (22)

for the whole graph:

HNV E =
i<n∑
i=0

(ki + 1)

2|E1
i |

log2(ki), (23)

and the corresponding definition for fractional vertex entropy
is defined similarly:

NV E′(vi) =
1

C1
i

× V E′(vi), (24)
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and total entropy:

HNV E′ =
i<n∑
i=0

k2i (ki + 1)

4|E||E1(vi)|
log2

(2|E|
ki

)
(25)

Proving compliance with Definition 1 for these normalized
values is not as straightforward as the non normalized values.
However, as the expression in equation (21) is always pos-
itive, the symmetry and positivity criteria are automatically
satisfied. With regard to additivity and criteria 1 of Definition
1, although not a rigorous proof, considering two graphs
being minimally joined by a single vertex, the clustering
coefficient of that vertex will decrease and so the value of
NV E or NV E′ of the shared vertex will increase, satisfying
the inequality.

For maximality, the introduction of the clustering coefficient
complicates the use of the Lagrange multiplier method, as pi
and C1

i are related quantities. It is the beyond the scope of
this work to present a formal proof of maximality but we
can calculate the values of the normalized entropies for our
special graphs and we summarize the results in Table VI. The
special graphs using NV E ordered in increasing entropy are in
the sequence Sn,Kn, Pn, Cn and for NV E′, Kn, Cn, Pn, Sn.
With the assumption that it is possible to maximize these
entropies these values are admissible measures of entropy. It is
interesting to note that the distinction between star topologies
and meshed ones is much less distinct with NV E. Comparing
extremal behaviors to our global entropy measures, we identify
NV E with Chromatic entropy and NV E′ with Structural
entropy.

TABLE VI: Values of Normalized Entropy for Special Graphs

NV E NV E′

Sn
n

2(n−1)
log2(n− 1) 1

2
log2{2(n− 1)}+ n

4

Kn
n
n−1

log2(n− 1) log 2(n)

Pn
3
4
(n− 2) 1

n−1
+ 3n−4

2(n−1)
log2(n− 1)

Cn
3
4
n 3

2
log 2(n)

TABLE VII: Maximal and Minimal Total Vertex Entropy
Graph Types

NV E NV E′

Maximum Cn Sn

Minimum Sn Kn

D. Alternative Vertex Entropy Constructions

The local clustering coefficient C1
i can also be used to

construct two alternative probability functionals, which an
exhaustive study necessitates. In the first instance, as the
clustering coefficient itself is a value strictly in the range (0, 1]
it is a valid informational functional in its own right. We can
define a clustering coefficient entropy, CE(vi) by identifying
pi = C1

i , as follows:

Definition 6. For a graph G(V,E) the clustering coefficient
entropy, CE(vi) of a vertex vi is defined as

CE(vi) = C1
i log2 C

1
i , (26)

and for the whole graph:

HCE =
i<n∑
i=0

C1
i log2 C

1
i (27)

In addition, we can also approach the normalization of the
fractional vertex entropy by defining an alternative probability
functional using the clustering coefficient as:

pi =
1

C1
i

× ki
|E|

(28)

This probability functional is within the range (0, 1] as
for a given vertex this simplifies to pi =

|E1
i |

(ki+1)|E| , which
for a connected node is strictly non-zero and |E1

i | ≤ |E|.
It is not possible to extend the inverse degree functional in
a similar way as the equivalent definition pI = 1

kiC1
i

is
not bounded to fall into the range (0, 1]. We therefore make
the following definition for the Cluster Coefficient Fractional
Degree Entropy as follows:

Definition 7. For a graph G(V,E) the Cluster Coefficient
Fractional Degree Entropy CV E′(vi) of a vertex vi is defined
as:

CV E′(vi) =
ki

C1
i |E|

log2

(
C1
i |E|
ki

)
, (29)

and for the whole graph:

HCV E′ =

i<n∑
i=0

ki
C1
i |E|

log2

(
C1
i |E|
ki

)
, (30)

Using similar arguments to the previous entropy types
we can establish conformance with additivity, symmetry and
positivity of Definition 1 by observing that in equations (27)
and (30) are sums of logarithms . The remaining property
of maximality, in complex to verify due to similar issues
to the normalized entropy values NV E and NV E′. It is
beyond the scope of this paper to present a rigorous proof
of maximality, but we can calculate the values for our special
graphs, which we summarize in Table VIII. The special graphs
using CE ordered by increasing entropy are in the sequence
Kn, Sn, Pn, Cn and for CV E′, Sn, Cn, Pn,Kn.

TABLE VIII: Values of Clustering Coefficient Entropies for
Special Graphs

CE CV E′

Sn
2
n
log2(

n
2
) log2(n− 1)− n

2
log2(n)

Kn 0 2 log 2(
n
2
)

Pn
2(n−2)

3
log2(

3
2
) 1

n−1

[
3(n− 2) log2(

n−1
3

)− 2 log2(n− 1)
]

Cn
2n
3

log2(
3
2
) 3 log2(

n
3
)

From these calculations we can summarize in Table IX the
extremal graphs for these entropies.
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Fig. 4: Frequency Distributions for a Network of 225,239 Nodes

TABLE IX: Extremal Graphs for Clustering Coefficient En-
tropy

CE CV E′

Maximum Cn Kn

Minimum Kn Sn

V. EVALUATION AND DISCUSSION

A. Data and Methods

We analyzed data from a large operational dataset obtained
from a web portal operator. In previous work [17] we also
applied our techniques to the ‘Internet Topology Zoo’ (ITZ)
([32]), but this critically does not have any event or incident
data.

Our commercial data, however, contains a rich source of
events and incidents, and in particular allows the analysis of
event and incident distribution by originating node. The analy-
sis was performed using a suite of software tools implemented
in JAVA, and operated in conjunction with a MySQL database
for permanent storage4. A brief description is below:

4The source code for these analysis tools is available at
https://github.com/philtee2001/analyzer.git, and instructions for building
are available from phil@moogsoft.com

• graph_analyser: This executable was built to ingest
source topology as a list of edges in a comma separated
file format. The program calculates all of the metrics
described in Section IV and betweenness centrality and
stores the results both in raw and frequency distribution
format in the database. The value stored in the database
are used by the other analysis programs to produce
distributions of events and incidents by node metric.

• event_analyser: This executable ingests and parses
the full sample of events obtained from the customer.
Each event is presented as a string of symbols separated
by the ‘|’ character. The format of the events followed
a fixed pattern with the syntax: timestamp |datacenter
| application | node | description. After each event is
parsed the executable populates a distribution of event
count by value of the metric for each value of ‘node’.

• incident_analyzer: This executable operates in an
almost identical fashion to the event analyzer, but instead
analyzes data that is obtained from a report ran on the
customer’s incident management system. Each incident
represents an event that has been escalated according
to their manual triage process and is presented with
the following syntax: date | timestamp |datacenter |
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Fig. 5: Cumulative Distributions of Events and Incidents in a Network of 225,239 Nodes

ticket number | node | type | property | agent |
description. node field ties directly back to the topology
data and is used to populate a distribution of incidents
by considered metric. For this data not all values of
‘type’ are considered, as they indicate whether or not
the incident was deemed to be significant. We discard
any incidents that were not accepted by the help desk
without escalation.

B. Evaluation

Using the dataset described in Section V-A, we begin in
Figure 4 by plotting the distribution of nodes by the various
entropy measures. For a number of the metrics, the data
is heavily skewed by large numbers of the nodes having a
zero of low value. In Figures 4a, 4c, 4d, 4e and 4f we plot
the distribution excluding these values, rescaled. All of the
measures share a common feature in that the vast majority
of the nodes posses a heavy skew towards low values of the
metrics. This is encouraging, because for an entropy metric to
be useful in identifying important nodes a uniform distribution
would be unexpected. Except in the case of fractional degree
entropy V E′ (Figure 4b) the skew is so pronounced that
to illustrate the distribution above minimal values of the

metric we have embedded a subgraph rescaled to eliminate
the dominating cluster of values towards the low values of the
metric.

With both inverse degree V E(v) and fractional degree
entropy V E′(v) the distribution achieves the first objectives
of being non-uniform and separating out a small subset of
nodes with high values of the metric. In the earlier discussion
in section I, this distribution profile was a necessary condition
of the metric having utility when identifying nodes likely to
produce incidents. However, these metrics do not distinguish
between a high degree node that has many redundant paths
into the network and one that does not. In our theoretical
analysis in Section III, we identified the need to highlight
nodes whose local topology was more similar to Sn than Kn,
which the non-normalized metrics do not. The point of our
normalized metrics is to capture this aspect of local topology
and provide a way of identifying nodes that have high degree
but low redundancy. From considerations of network design,
these nodes are more likely to produce events that escalate
into incidents when they fail.

To establish whether the data supports this hypothesis,
we turn to the distributions of normalized inverse degree
NV E(v) and normalized fractional degree entropy NV E′(v)
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(b) Fβ Score for V E′(v)
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(c) Fβ Score for NV E(v)
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(d) Fβ Score for NV E′(v)
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(e) Fβ Score for CE(v)
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(f) Fβ Score for CV E′(v)

Fig. 6: Fβ Score Plots in a Network of 225,239 Nodes

in Figure 4c and Figure 4d. It is interesting to note that both
quantities share the same non-uniform distribution as the non-
normalized forms, with a much more pronounced separation
of the extremal values. This is consistent with our supposition
that the normalized metrics exclude a subset of high degree
nodes that have multiple paths through the network.

To fully exhaust all potential metrics available on a 1-sphere,
we also plot the distributions for clustering coefficient CE(v)
and cluster coefficient fractional entropy CV E′(v) in Figures
4e and 4f. Again these distributions are skewed fairly heavily
towards low values of the metric, and show interesting, much
smaller clusters at higher values of the metrics.

Our central claim is that the local measures of vertex entropy
are more effective at identifying nodes that will generate
incidents than simply selecting the nodes of highest degree,
as suggested by scale free models of dynamic networks. In
Figure 2a we presented the distribution of events and incidents
by node degree, from which it is clear that there is very little
difference in the distribution between events and incidents, and
that there are no useful distinctions between the distribution
of incidents by degree versus events. Although high degree
nodes are more likely to cause impact than low degree nodes
when failing, network design usually mitigates failure points

by adding in redundant paths through the network to avoid
single points of failure. This is further underlined by the
cumulative distribution plot in Figure 2a, where it is evident
that the distribution of events and incidents is effectively the
same. In Table XI we note that the 2-sample Kolmogorov-
Smirnov test does not allow us to dismiss the null hypothesis,
with a P-Value in excess of the α value, indicating that degree
is not a discriminatory factor. A side effect of this analysis
is affirmation that one of our key assumptions that events are
emitted with uniform probability across all nodes. For these
reasons, degree is not a reliable indicator of impact when a
node fails.

To contrast this with our entropy based metrics in Figure 5
we plot the cumulative distributions of events and incidents
by each of our candidate metrics. In each case there is a
heavy skew towards higher values of the metrics for incidents
versus events. This is the first indication that the vertex entropy
metrics are indeed useful for identifying nodes more likely
to produce incidents. As discussed in the introduction we can
make use of the F score methodology to identify how effective
our entropy metrics are at optimizing recall and precision.
To do so, however, we must build upon the basic measure
introduced in [7] to take account of the fact that our metric is
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being proposed to pre-condition data before a categorization
algorithm (RCA) is used to determine whether an event is
causal. In general raw events contain many duplicate noti-
fications which can be compressed by the application of a
de-duplication (see for example [5]). This can result in the
number of events being compressed by a factor of 10-100. In
addition, the cost of a missed incident is significantly more
impactful to a business than the cost of processing an event.
As the basic measure of an F score assumes equal weight,
we instead adopt a weighting factor β and measure the Fβ
score for our event and incident distributions. The Fβ score
is defined in equation (1). Effectively this metric measures
the balanced effectiveness of an algorithm at identifying true
positives without producing too much noise in the form of false
positives. In the context of event management and RCA, this
is the ability of an algorithm to capture every incident without
surfacing false incident notifications. The typical application
of the Fβ score though weights precision and recall evenly,
and given that a missed incident is potentially costly, the β
parameter allows us to bias in favor of recall. We choose a
heavy bias of β = 100.

In Figure 6 we plot for each of our metrics the Fβ scores
as a function of the metric for a β = 10 and β = 100.
Plotting the Fβ score identifies a value of the entropy metric
that maximizes the Fβ score. This maximum corresponds to
the best threshold to use to discard events from nodes with
a value of entropy that is below it, allowing you to reduce
event load whilst preserving events that are likely to escalate
into incidents. These plots illustrate the importance of the
weighting factor in the Fβ score for identifying the correct
choice of entropy to set a discard threshold at. In each case the
β = 100 establishes a lower discard threshold as you would
expect, given that we are treating recall as more important
than precision, as the maxima of the Fβ score occurs at a
lower value of the entropy measure. In Table X we collect the
discard rates at the maximum of the Fβ score for β = 100. In
each case it is evident that it is possible to choose a value of
the metric, in this case our choice of vertex entropy, that will
selectively discard many more events than incidents, and in
fact, by the nature of the scaling of the Fβ score, at a value of
entropy that would discard 20% of the incidents, some 65%
or 15, 000, 000 events can be safely discarded. For the data
we analyzed , this amounts to discarding 62, 600, 000 events
before expensive RCA processing. This amounts to reducing
the event rate from approximately 12 per second to 4, which
operationally could be very significant. In order to replicate
this result using manual blacklisting, this would require the
maintenance of a list of nodes that are relatively unimportant.
In the case of the network we analyzed, that would amount to
some 200, 000 nodes, which are apt to change frequently. As
we indicated in the Section I alternative simpler metrics such
as node degree are unable to achieve similar effectiveness in
identifying important incident producing nodes as our entropy
metrics or centrality measures.

To further test the correlation between our vertex entropies
and incident creation, statistical hypothesis testing of the
distributions using a 2-sample Kolmogorov-Smirnov goodness
of fit between cumulative distributions of events and incidents

TABLE X: Maximal % Discards of Events and Incidents (β =
100)

Metric Max Value % Events %Incidents
VE 0.116 87% 52%
VE’ 0.170 68% 22%
NVE 0.400 57% 12%
NVE’ 3.200 85% 45%

CE 0.127 67% 20%
CVE’ 4.000 76% 32%

was undertaken. Using an α of 5%, and assuming the Null Hy-
pothesis that both event and incident distributions of all metrics
shared the same cumulative distribution, very low P-Values
were obtained, indicating that the difference in distributions is
highly unlikely to be the effect of randomness. We summarize
the findings in Table XI. This result convincingly contradicts
the Null Hypothesis, and we can safely conclude the difference
in the distribution is a result of a strong correlation between
high values of both metrics, and a higher likelihood of events
escalating into incidents. This result continues to be valid
down to values of α = 1%, and is a strong indication that
our local metrics are capturing enough of the local topology
of the network to be useful as a way of assessing the impact
of a nodes failure on the overall connectivity of the network.
In essence, impact is a result of the node being part of a large
number of shortest paths between any two arbitrary points
in the network. Although high degree makes it more likely,
the similarity of the local topology of the node to Kn versus
Sn mitigates that, and our normalized metrics successfully
account for this subtlety. It is interesting to note that the Null
Hypothesis cannot be dismissed for the degree distributions as
the P-Value is higher than α = 5%.

It is interesting to speculate which of the metrics is the most
effective metric to use to pre-condition events for RCA. In
practice any of the metrics investigated appear to have merit,
but it is important to note that the local clustering coefficient
of a node can be expensive to compute for highly connected
and nodes in a heavily meshed network. For a network that
is maximally connected with n nodes, the calculation of the
clustering coefficient is an O(n3) calculation, as each of the
n nodes will have n(n−1)

2 edges. This is to be balanced
with the more favorable Kolmogorov-Smirnov analysis of the
normalized entropies NV E, and NV E′, which yield lower
P-Values. This lower value indicates greater predictive power,
but at the expense of a more expensive calculation.

TABLE XI: Kolmogorov-Smirnov Analysis of Null Hypothe-
sis for Event Incident Distributions

Metric D-stat D-Crit α P Value Significant
VE 0.5055 0.0396 5% 0.63% Yes
VE’ 0.4624 0.0399 5% 0.26% Yes
NVE 0.4489 0.0399 5% 0.19% Yes
NVE’ 0.4462 0.0404 5% 0.16% Yes

CE 0.4665 0.0399 5% 0.29% Yes
CVE’ 0.4394 0.0403 5% 0.14% Yes

Degree 0.0368 0.0403 5% 9.29% No
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VI. CONCLUSIONS

In this paper we introduced computable, node level alter-
natives to structural entropy measures that are useful when
identifying critical nodes in a network. Building on the ap-
proach of network science established in Barabási’s pivotal
paper, and suggestions made in the work of Dehmer, we have
advanced computable metrics using structural information
available within one hop of a network node. By analyzing
the extremal properties of well known global graph entropies,
we were able to identify that they satisfy the criteria required
to be a valid entropy, and have similar extremal behavior to
the global values when considering special graphs. Critically,
the introduction of normalization based upon the clustering
coefficient of a nodes neighborhood improves the utility of the
metric. We applied these measures to our proprietary data set.
Applied to the datasets, we obtain a distribution that isolates a
small subset of nodes with high values, a necessary condition
to be acceptable as a metric.

This analysis is further supported when we look at the
distribution of events and incidents by the value of the metric.
We have a clear correlation between high values of the metric
and the propensity for the node to produce incidents. This is
substantiated by hypothesis testing to eliminate the possibility
that the distributions are similar to each other, and therefore
that any difference in distribution of events and incidents is
purely random. Additional precision and recall analysis using
a modified Fβ score indicates that there is the possibility
of establishing a value of the metric whereby minimal loss
of recall (20% of incidents missed) is tolerable to achieve a
reduction of 65% in the event rate that needs to be processed.
In the context of the large and dynamic networks of current
implementations this could be a critical improvement in the
performance of root cause algorithms.

All of our analysis has been constrained to the immediate
one-hop neighborhood of a node. The justification of studying
these values in practical networks has been achieved in theory,
and in further work we intend to analyze more real world
datasets, and extend our entropy measures to include j-spheres
for j > 1. In addition, we plan to compare vertex entropy
against other node importance measures such as betweenness,
to assess the difference in effectiveness as compared to cost
of calculation. REFERENCES
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