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Abstract

arch-ive/9504055

We consider Clifford algebras with nonsymmetric bilinear forms, which are

isomorphic to the standard symmetric ones, but not equal. Observing, that

the content of physical theories is dependent on the injection ⊕n
∧

V(n) →

CL(V, Q) one has to transform to the standard construction. The injection

is of course dependent on the antisymmetric part of the bilinear form. This

process results in the appropriate vertex normalordering terms, which are

now obtained from the theory itself and not added ad hoc via a regularization

argument.

1 Introduction

Nonlinear spinor equations play an important role in several branches of physics.

They appear in high energy, nuclear or solid state physics. The most recent examples

are the Heisenberg, Nambu, Jona-Lasinio like models [1, 2] of elementary particle

theory or nuclear physics. Even nonlinear sigma models bear an analogous structure

[3]. In solid state physics the Hubbard model [4] is a widespread theoretical tool in

describing phenomena from super conductivity up to spin chains and so on.
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The general structure of such models is of the form kinetic term equals a cubic

interaction term with an arbitrary Vertex.

(
∑

iγµ∂µ −m)II′ΨI′ = gVII′I′′I′′′ΨI′ΨI′′ΨI′′′ . (1)

Here
∑

γµ∂µ is the Dirac–operator, with euclidean or lorentzian signature. The

mass could be zero. With the multi index I = {K,Λ} we represent the spinor and

its adjoint by Λ and the other algebraic and spatio temporal indices by K. If we

have fixed an adjoint spinor, the quadratic form of the Clifford algebra is already

determined. A suitable quantization procedure also has to be applied.

There are several problems with these equations, which we want to consider now.

i) The equations are not renormalizable, because g will be in general a dimen-

sional quantity.

ii) In order to define a unique quantization procedure one has to introduce an or-

dering, as say timeordering or on a space like hypersurface the (anti)symmetric

one.

iii) In the language of diagrams, you have to consider only connected ones, by

introducing a normalordering procedure.

For point one, there seems to be no principal problem in solid state physics,

because there may be a physically motivated cut off at the Brillouin zone. In the

case of particle physics, there are several ad hoc regularizations. An approach to

these topics will be given elsewhere [5].

The second point is usually solved by using causality arguments, which introduce

a natural ordering in the polynomials of the fields at hand. Therefore timeordered

products are used in the covariant formulation, see for example [6]. If we would

prefer the Hamilton formalism, the (anti)symmetric ordering could be used.

At this stage the definition process of the theory should stop, because including

a somehow given Vacuum state1 |0 >Ph, which gives the representation of the field

operators
∏

Ph(ΨI), all quantities are formally2 defined.

1 One should be able to calculate this vacuum state in a nonlinear theory, by solving the

dynamical problem at hand in a sort of self consistent problem.
2Formally, because one has to show uniqueness and existence of the defined objects too, which

is a nontrivial problem.
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Now the third point causes trouble, because the transformation to the connected

components yields infinities. In Fock space3 this transformation equals a Wick–

Dyson normalordering of the vertex [8]. This process results in the desired connected

amplitudes and so called contractions, which for bilinear and higher order terms

yields singularities at least on the lightcone. In quantum theory these contractions

are related to the finite ground state energies, which when field quantized become

infinite. In this way, and by the convention that the vacuum has no nonzero quantum

numbers a vertex regularization is also introduced. The field equations read now

(
∑

iγµ∂µ −m)II′ΨI′ = gVII′I′′I′′′:ΨI′ΨI′′ΨI′′′ :. (2)

With the physical propagator

PII′ := Ph < 0|T (ΨIΨI′)|0 >Ph (3)

the vertex term changes to

:ΨI′ΨI′′ΨI′′′ : = ΨI′ΨI′′ΨI′′′ + PI′I′′ΨI′′′ − PI′I′′′ΨI′′ + PI′′I′′′ΨI′ . (4)

But this procedure is nothing but a shift of the problem from one equation into the

other. With this definition the timeordered equation becomes singular, and hence

the whole theory is ill defined.

In this note we want to show, how an embedding of the theory in a Clifford

algebra structure can overcome this problem. Therefore we consider nonsymmetric

bilinearforms and the associated Clifford algebras. The transformation from such

algebras to the symmetric ones is an isomorphism, but the linear space of antisym-

metric p-vectors is moved. As they carry the physical information, this is therefore

altered.

2 Clifford Algebras with nonsymmetric bilinear-

forms

The Clifford Algebra entered physics with Pauli and Dirac [9], who used it to linearize

the D’Alambertian. So we should learn more about this procedure. Let Q be a

nondegenerate quadratic form, V a vector space over R or C, then the Clifford map

3 The Fock space is only appropriate in free theories or in perturbation theory, which proves

not useful in our case. A nonperturbative treatment is given in [7].
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is an injection from V into CL(V, Q) with the property that every square of a vector

element of the Clifford Algebra is a scalar.

γ : V → CL(V, Q), ei 7→ γi

x2 = x · x = Q(x) ∈ (R,C) (5)

With linearization we have on a generating set of V

(ei + ej)(ei + ej) = e2i + e2j + eiej + ejei

eiej + ejei = Q(ei + ej)−Q(ei)−Q(ej) =: 2G(ei, ej) ∈ (R,C). (6)

It is evident from this calculation, that the bilinear form G is symmetric. The whole

algebra is now generated from reduced products of one-vectors. Let N be the set of

ordered partitions of n pieces, |α| the cardinality of such a subset, and include the

empty set. We define 1A = e0, then an algebra element read

A :=
∑

α∈N

aαeα = A0 + A1 . . .+ An

eα := ei1 ∧ ei2 ∧ . . . ∧ eir , i1 < i2 . . . < ir, |α| = r ∈ N. (7)

The wedge product means antisymmetric multiplication as in the Grassmann case.

Indeed as a linear space these two constructions are identical. Thereby the Clifford

algebra has the direct sum decompositions

CL(V,Q) = CL+ ⊕ CL− as algebra, and

CL(V,Q) = ⊕n
∧

V(n) as linear space. (8)

But the product intermingles the grades. Let < >r be the projector to the homo-

geneous part of grade r, then one has

ArBs = < AB >|r−s| + < AB >|r−s+2| + . . .+ < AB >r+s, (9)

were in the Grassmann case ArBs = ABr+s results.

Physicists consider the anticommuting elements of grade r as eg. scalars, spinors

(vectors) , spintensors, (tensors) and so on. That is, the physical content of the

theory is coded explicitly in this structure.

Now let us see, in which way it is possible to introduce nonsymmetric bilinear

forms. It is obvious, that we have to leave the above construction, in favor of a more

general one. This can be done by introducing algebra derivatives as proposed by

Chevaley and Riesz [10, 11].
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First of all, we introduce two more algebraic constructions for further use. An

involution4 J of period two and the Reversion ˜ by the rules

J : J2 := idA

J(XY ) := J(X)J(Y )

J(R,C) := (R, C̄)

˜ : < ˜>0+1:= idA0+A1

(XY )̃ := Ỹ X̃. (10)

Now we may introduce the desired formulae

a B :=
1

2
(aB − J(B)a); a ∈ V; B ∈ A

a∧̇B :=
1

2
(aB + J(B)a), (11)

herewith we may decompose the Clifford product to

aB = a B + a∧̇B. (12)

The contraction is a graded derivative of degree -1, as can be seen as follows

(graded Leibnitz rule)

a (bc) :=
1

2
(abc− J(bc)a)

=
1

2
(abc− J(b)ac + J(b)ac− J(b)J(c)a)

= (a b)c+ J(b)(a c). (13)

With bc = 1 we have a 1 = 2a 1, so a (R,C) = 0, from which we could proof by

induction the homogeneity of a Br. Obviously the contraction is linear, that is

(αX + βY ) A = αX A+ βy A. (14)

These properties together state that is an algebra derivation. One can easy proof

the useful formulas [12]

(u ∧ v) X = u (v (X))

a (xi1 ∧ . . . ∧ xin) =
n
∑

i=1

(−)i−1(a xi)(x1 ∧ . . . ∧i−1 ∧xi+1 ∧ . . . ∧ xn)

det(xi xj) = (xn ∧ . . . ∧ x1) (x1 ∧ . . . xn)

= xn (xn−1 . . . (x1 (x1 ∧ . . . ∧ xn)) . . .). (15)

4 This property is sometimes called conjugation.
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Now the asymmetry of this result is obvious, and we may define an arbitrary non

degenerate bilinear form B exactly as the contraction. In a not necessarily orthonor-

malized system of generating elements ei we have

B = [Bij] = [ei ej ] . (16)

The injection, introduced by Chevalley,
∧

V → CL(V, Q), is of course known by

physicists in the disguise of the Kähler–Atiyah isomorphism.5

Therefore we have identified the Clifford algebra as a subalgebra of

End(⊕n

∧

Vn), the endomorphism algebra of the Grassmann algebra. A very ex-

plicit example will be given in the appendix, in a manner closely related to the work

of Lounseto.

Clearly, if we had chosen J to be the common use involution on V, that is

J(V) = −V, we would reobtain the original formulas, with a symmetric bilinearform

Gij =
1

2
(eiej − J(ej)ei) =

1

2
(eiej + ejei). (17)

Thus, if there exists a distinct involution of period two, we have the desired exten-

sion.

We are now able to construct a new generating system of the Clifford algebra,

which is antisymmetric with respect to the reversion, by using the corresponding

wedge product ∧̇.

{e0; ei1 ; ei1∧̇ei2 ; ei1∧̇ei2∧̇ei3 ; . . .}, ∀in; i1 < i2 < . . . (18)

But now we have

ei1∧̇ei2 = ei1ei2 − ei1 ei2 = ei1ei2 − Bi1i2, (19)

which is not antisymmetric with respect to the reversion as one can see as follows

(ei1∧̇ei2 )̃ = (ei1ei2 −Bi1i2 )̃

= ei2ei1 −Bi2i1 + (Bi2i1 −Bi1i2)

= ei2∧̇ei1 + (BT
i1i2

−Bi1i2) 6= ei2∧̇ei1 (20)

Here T means matrix transposition. To avoid such a situation, and for establishing

the reversion as the (hermitean) transpose of the matrix representation, we are

5 See [12] for an account on that, and for a review on the historical development.
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forced to choose the bi– and multivectors in a definite way. With i1 < i2 < . . . we

set

ei1i2 :=
1

2
(ei1∧̇ei2 − ei2∧̇ei1)

=
1

2
(ei1ei2 − Bi1i2 − ei2ei1 +Bi2i1)

=
1

2
(ei1ei2 − ei2ei1)−

1

2
(Bi1i2 +Bi2i1)

= ei1 ∧ ei2 − Fi1i2 , (21)

were B is now splitted into symmetric and antisymmetric parts B = GS +FA, with

respect to the usual matrix transpose. We obtain the following rules, utilizing now

the reversion and the standard involution.

1

2
(ei1ei2 + (ei1ei2 )̃ ) =

1

2
(ei1ei2 + ei2ei1) = Gi1i2

1

2
(ei1ei2 − (ei1ei2 )̃ ) =

1

2
(ei1ei2 − ei2ei1) =: ei1i2

=
1

2
(ei1 ei2 + ei1 ∧ ei2 − ei2 ei1 − ei2 ∧ ei1)

= ei1 ∧ ei2 + Fi1i2

ei1i2˜ = ei2i1 = −ei1i2

J(ei1i2) = ei1i2. (22)

A third order term will be given as

ei1i2i3 =
1

2
(ei1ei2i3 + ei2i3ei1)

= ei1 ∧ ei2 ∧ ei3 + Fi1i2ei3 + Fi2i3ei1 − Fi1i3ei2 . (23)

If we would like to have the transposition to act trivial on the matrix representation

of the vector elements, we have to introduce a dual set of generating elements.

We finish this section, by recalling the main consequences of the analysis done,

with respect to the application in the next section.

If there is a nonsymmetric part in the contraction, then the usual multivectors

are not the desired algebraic elements. The nondiagonal part of the contraction

leads to a refined treatment of the algebraic properties. The antisymmetric parts

are incorporated in the multivectorial structure, where as the symmetric part should

be handled with dual sets of generating elements6.

6 The matrix transpose is only in this special situation equivalent to the reversion.
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By looking at this constructions, we are forced to introduce a new kind of multi-

vectors. As a Clifford algebra, the two constructions prove to be isomorphic, at least

in the nondegenerate case. But the linear subspaces ⊕n ∧

V(n) and ⊕nspan{ei1...in}

are quite different represented.

3 Application to the nonlinear spinor field model

Now we want to have a look at the vertex term of the nonlinear spinor field theory.

This should correctly be done in the functional space formulation, which exhibits

the structure quite more clearly [7]. For brevity and simplicity, we will give our

arguments direct on the level of the field operators.

The quantization of fermionic fields is in effect the introduction of a Clifford

algebra, or CAR algebra as in this context usually named [6, 13].

{Ψ†
K ,ΨK ′}+ = δKK ′ (24)

With our indexing ΨI = ΨKΛ = {Ψ†
K1; ΨK2} we have7

{ΨI ,ΨI′} =





0 1

1 0





ΛΛ′

δKK ′ (25)

This relation can be rewritten in the form

ΨI ΨI′ +ΨI′ ΨI = 2GII′ = δII′ (26)

which now can be extended to an arbitrary bilinear form B. We obtain in this way

the antisymmetric part, exhibiting a new term

[ΨI ,ΨI′] = 2FII′ + 2ΨI ∧ΨI′. (27)

From the Clifford algebraic point of view, this corresponds to the scalar and bivector

part, if we use the usual wedge product.

This entity is in fact related with the propagator of the theory.

PII′ = Ph < 0|T (ΨIΨI′)|0 >Ph

= Ph < 0|θ(tI − tI′)ΨIΨI′ − θ(tI′ − tI)ΨI′ΨI |0 >Ph . (28)

7 This is of course a special basis, we may call it a Witt basis [13]. If the hermitean conjugation

is the usual one, then the connection to Fock space is very close [14]. Therefore we will expect to

have a (in this formulation) invisible antisymmetric part. So it is essential to have non Fock–states.
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For equal times we have

P t
II′ = Ph < 0|ΨIΨI′ −ΨI′ΨI |0 >Ph,t=t′

= Ph < 0|2FII′ + 2ΨI ∧ΨI′|0 >Ph,t=t′ . (29)

Now the FII′ are ’scalars’, that is in field theory a distribution valued function, and

act not as operators.

Looking in this way at the vertex term, we have antisymmetric products, and

are free to choose the appropriate one, which absorbs the additional terms, resulting

in the normalordering procedure. Of course, this should be done in such a way that

the transposition and reversion behave in the right way, but here we will not bother

about that8.

By comparing [7]

:ΨI′ΨI′′ΨI′′′ : = ΨI′ΨI′′ΨI′′′ − PI′I′′ΨI′′′ + PI′I′′′ΨI′′ − PI′′I′′′ΨI′

ei1 ∧ ei2 ∧ ei3 = ei1i2i3 − Fi1i2ei3 + Fi1i3ei2 − Fi2i3ei1 , (30)

it is shown, that if we choose PII′ as the antisymmetric part of the contraction, then

we are forced to introduce the normalordering terms in the field equation from the

beginning. This is, because we want the usual conjugation and the multivectorial

construction to hold in the algebraic and matrix case.

For the field equation this yields

(
∑

iγµ∂µ −m)II′ΨI′ = gVII′I′′I′′′ΨI′ ∧ΨI′′ ∧ΨI′′′, (31)

or

(
∑

iγµ∂µ −m)II′ΨI′ + gVII′I′′I′′′{PI′I′′ΨI′′′ − PI′I′′′ΨI′′ + PI′′I′′′ΨI′} =

gVII′I′′I′′′ΨI′I′′I′′′ . (32)

Omitting now the interaction term (RHS of 32) we are left with a still singular

equation, but now the singularity is only the dynamical one. As proposed in the

introduction, the dynamical singularities may also be treated in an algebraic manner,

which will be shown elsewhere.

The Clifford algebraic point of view should of course be taken from the very

beginning.

8 See the remarks in the appendix.
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4 Conclusion

With help of some results obtained by studying Clifford algebras with non symmetric

bilinear forms, we are able to understand the process of normalordering in a new and

deeper way. Without this sort of tool, it seems hardly to be possible to recognize the

algebraic difference between T and N ordered transition matrix elements. In fact

they belong to quite different multivector constructions. In ordinary treatments the

vertex normalordering is done ad hoc, simply motivated by obtaining an afterwards

finite theory.

At least in the computation of composites one has to expect the appearance

of nonsymmetric parts of the bilinear forms. This stems from the antisymmetric

constructions of the composite, in which case the effective bilinearform should have

such a part.

The next step is the observation, that the usually obtained divergencies are

related to the dynamical ones. Therefore it is obvious, that they are irrelevant to the

not yet well defined theory, because they evaporate when the theory is regularized.

A posteriori the ’dot’ procedure is thus justified. But the important thing is, that we

have, even in this case, to choose an other timeordered equation. The construction

itself gives the hint, that we should start from the very beginning with Clifford

methods. Thereby Clifford analysis, or monogenetic function theory, should us

provide a finite theory, from first principles.
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Appendix

In the Appendix an example is given, in the spirit of Lounesto[12]. Because all used

quantities can only be constructed explicitly in very low dimensional cases, we use

the Pauli algebra. It is well known and the smallest Clifford algebra over the reals

which exhibits a three–vector quantity.

The bilinear form is decomposed into symmetric and antisymmetric parts, using

matrix transposition. We have the linear independent not normalized, not orthogo-
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nal set {e1, e2, e3} spanning V. The algebra is generated by

{e0; e1, e2, e3; e1 ∧ e2, e2 ∧ e3, e3 ∧ e1; e1 ∧ e2 ∧ e3}. (33)

In this basis the bilinear form is

B = [Bij] = [ei ej ] = [gij] + [fij ]

[gij]
T = [gij]

[fij]
T = − [fij] . (34)

Next we search for a matrix representation. This can be done [12] by Clifford

multiplying from the right an algebra element with all elements of the algebraic

basis and expanding the result in homogeneous parts. Those are written as columns

of the matrices. Matrix multiplication corresponds to the Clifford product. Of

course we have

[1] = [δij] , (35)

and we calculate as an example [e1]

e11 = e1

e1e1 = g11

e1e2 = e1 e2 + e1 ∧ e2 = g12 + f12 + e1 ∧ e2

e1e3 = g13 + f13 + e1 ∧ e3

e1(e1 ∧ e2) = e1(e1e2 − e1 e2) = g11e2 − (g12 + f12)e1

e1(e2 ∧ e3) = (g12 + f12)e3 − (g13 + f13)e2 + e1 ∧ e2 ∧ e3

e1(e3 ∧ e1) = −g11e3 + (g13 + f13)e1

e1(e1 ∧ e2 ∧ e3) = g11e2 ∧ e3 + (g12 + f12)e3 ∧ e1 + (g13 + f13)e1 ∧ e2 (36)

The same can be done for the other elements, which yields

[e1] =











































0 g11 g12+f12 g13+f13 0 0 0 0

1 0 0 0 −g12−f12 0 g13+f13 0

0 0 0 0 g11 −g13−f13 0 0

0 0 0 0 0 g12+f12 −g11 0

0 0 1 0 0 0 0 g13+f13

0 0 0 0 0 0 0 g11

0 0 0 −1 0 0 0 g12+f12

0 0 0 0 0 1 0 0
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[e2] =











































0 g21+f21 g22 g23+f23 0 0 0 0

0 0 0 0 −f22 0 g23+f23 0

1 0 0 0 g21−f12 −f23 0 0

0 0 0 0 0 g22 −g12+f12 0

0 −1 0 0 0 0 0 g23+f23

0 0 0 1 0 0 0 g12−f12

0 0 0 0 0 0 0 g22

0 0 0 0 0 0 1 0











































[e3] =











































0 g13−f13 g23−f23 g33 0 0 0 0

0 0 0 0 −g23+f23 0 g33 0

0 0 0 0 g13−f13 −g33 0 0

1 0 0 0 0 g23−f23 −g13+f13 0

0 0 0 0 0 0 0 g33

0 0 −1 0 0 0 0 g13−f13

0 1 0 0 0 0 0 g23−f23

0 0 0 0 1 0 0 0











































This 8 × 8 dimensional representation of the Pauli algebra is not reducible to a real 4

× 4 or complex 2 × 2 one. The matrix transposition is not the reversion, because the

[ei] are not symmetric matrices. Also the trace is not an algebraic invariant object,

because there are elements with non vanishing trace beside [δij ], which means, that

the trace is not a projection on to the homogenouse part of degree zero. So the

matrix trace is not a linear form in the algebra, because there are algebra elements

except [δij] which are not traceless. The trace is clearly a linear form on the matrix

representation, but into the field (R,C) and not in the image of the field in the

algebra.

The volume element has nearly the bilinearform as entries in the vector–vector

block. The element e123 reads

[e123] = [e1e2e3 − f12e3 + f13e2 − f23e1] , (37)

which yields a matrix not easy to display. The entries are linear, quadratic and

cubic functions of the fij and gij parameters.

The same procedure can be done with the reordered basis, belonging to the

dotted wedge product or with respect to the basis

{e1, e2, e3; e123; e0; e12, e23, e31}. (38)
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ordered in odd and even elements. The vector elements read

[e1] =











































0 0 0 0 1 −g12 0 g31

0 0 0 0 0 g11 −g13 0

0 0 0 0 0 0 g12 −g11

0 0 0 0 0 0 1 0

g11 g12 g13 0 0 0 0 0

0 1 0 g13 0 0 0 0

0 0 0 g11 0 0 0 0

0 0 −1 g12 0 0 0 0











































[e2] =











































0 0 0 0 0 −g22 0 g23

0 0 0 0 1 g12 −g23 0

0 0 0 0 0 0 g22 −g12

0 0 0 0 0 0 0 1

g12 g22 g23 0 0 0 0 0

−1 0 0 g23 0 0 0 0

0 0 1 g12 0 0 0 0

0 0 0 g22 0 0 0 0











































[e3] =











































0 0 0 0 0 −g23 0 g33

0 0 0 0 0 g13 −g33 0

0 0 0 0 1 0 g23 −g13

0 0 0 0 0 1 0 0

g13 g23 g33 0 0 0 0 0

0 0 0 g33 0 0 0 0

0 −1 0 g13 0 0 0 0

1 0 0 −g23 0 0 0 0











































Which yields a much more convenient and symmetric form. If the bilinear form is

in the symmetric part diagonal, then this representation becomes symmetric with

respect to the trace. In this case trace and reversion are identical. The antisymmetric

part has been absorbed fully in the multivectorial construction.

A full satisfactory representation could be obtained by using a dual set of gen-

erating algebra elements, to the above ones. Therefore let the Volume element be

E := e123 = −E˜
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E−1 = fracE˜E˜E

E˜E = detG = |G|. (39)

Then we may construct

ei := (−)i+1e1...i−1i+1...nE
−1 (40)

which is a generalization to nonsymmetric bilinearforms of the detailed results in

[15].

Now the representation with the algebra basis X i yields via [eiX
J ] symmetric

matrices, even if the symmetric part of B is nontrivial.

This form is the most distinguished and symmetric one. Transposition and

conjugation are the usual operations, but for arbitrary B the representation is still

of dimension 8 × 8.

In this light, we have to change the ’quantization’ process, to use this dual

elements. Therefore we should write

ΨIΨI′ +ΨI′Ψ
I = δiI′. (41)

But now the dual set depends on the possibly varying volume element of the algebra,

and makes the definition of ’creation’ and ’destruction’ operators position dependent.

We may hope to get a better understanding of quantization on curved space in this

way.
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