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1 Introduction

A recurring theme in supersymmetric gauge theory is the discovery of relations to the

theory of Vertex Operator Algebras. Early examples can be found in four-dimensional,

topologically twisted N = 4 Super Yang Mills [1] and in Ω-deformed four-dimensional

N = 2 gauge theory [2, 3]. All these examples can be understood by lifting the four-

dimensional theories to six dimensional SCFTs compactified on a Riemann surface, which

provide the “ambient space” for the VOAs.

The idea that VOAs can be embedded into the algebra of local operators in a higher-

dimensional quantum field theory can be generalized beyond the six-dimensional setting [4].

Indeed, certain protected correlation functions in superconformal field theories are encoded

in VOA’s [5, 6]. Furthermore, the six-dimensional setup can be mapped to configura-

tions involving junctions of boundary conditions in topologically twisted N = 4 Super

Yang Mills [7].

In all of these examples, the VOAs live in the physical space of the quantum field

theory. They encode algebras of local operators which are decoupled from the rest of

the theory either by supersymmetry considerations or by an explicit topological twist of

the theory.

In this paper we present a construction of VOAs in three-dimensional N = 4 gauge

theories. The VOAs emerge as algebras of local operators at special, holomorphic boundary

conditions for the topological twist of the bulk theory. They are very much analogous to the

RCFTs which can be found at holomorphic boundary conditions of ordinary Chern-Simons

theories.

The original motivation for introducing these VOAs is that they can provide a powerful

computational tool to study the bulk TFT. For example, they may make manifest IR

symmetries of the theory, which would be hard to account for with traditional methods [8]

but are necessary for certain applications, such as the gauge theory interpretation of the

Geometric Langlands program [9–11].

In this paper we will find further mathematical motivations, including relations to

the Symplectic Duality program. Information may also flow in the opposite direction, as

gauge theory constructions provide a new framework to understand, organize and predict

a variety of results in the theory of VOAs [12].
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1.1 Structure of the paper

In section 2 we discuss the definition of the holomorphic boundary conditions we employ. In

section 3 we discuss the relation between properties of the bulk TFT and of the boundary

VOA. In sections 4 and 6 we give a concrete definition of the two classes of boundary

VOAs, and verify in some simple examples that bulk theories have isomorphic boundary

VOAs. We conclude with some extra open problems.

2 Deformable (0,4) boundary conditions

2.1 Generalities

Supersymmetric quantum field theories can be twisted by passing to the cohomology of a

nilpotent supercharge Q, i.e. by adding the nilpotent supercharge to the BRST charge of

the theory [13, 14].

The remaining supercharges Qa of the theory play an important role: the anti-

commutator

{Q,Qa} = cµaPµ (2.1)

will make some of the translation generators Q-exact.

Correlation functions of Q-closed operators will remain unchanged if any of the op-

erators are translated in these directions. If the right hand side of the anti-commutator

is a real translation generator, the theory will be topological in that direction. If the

right hand side is a complex combination of two translation generators, the theory may be

instead holomorphic in the corresponding plane.

Similar considerations apply to BPS defects of the SQFT. Any defect which preserves

Q will survive as a defect in the twisted theory. As the defect will break some of the other

supercharges Qa, the topological or holomorphic properties of the defect local operators

may differ from these of the bulk local operators.

In particular, one may have holomorphic defects within a topological bulk theory. Our

objective is to build holomorphic boundary conditions and interfaces for topological twists

of three-dimensional N = 4 quantum field theories. Such defects will support Vertex

Operator Algebras of holomorphic local operators.

We will quickly demonstrate that this objective cannot be accomplished by twisting

any standard Lorentz-invariant BPS boundary conditions for N = 4 theories. Instead, we

will follow a more circuitous route.

2.2 Nilpotent supercharges

Consider at first the 3d supersymmetry algebra in the absence of central charges:

{Qi
α, Q

j
β} = δijPαβ (2.2)

where latin indices i,j run from 1 to N and label the different sets of supercharges, while

greek indices label the two spinor components.

– 2 –
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The superalgebra admits nilpotent supercharges. They take the form nα
i Q

i
α with∑

i n
α
i n

β
i = 0. This means that the two vectors n1

i and n2
i generate a null plane or a

null line in C
N .

The corresponding exact translations take the form nα
i Pαβ . If n

1
i and n2

i are collinear,

the twist is holomorphic. Without loss of generality we can take the exact generators

to be translations in the x3 direction and anti-holomorphic derivatives in the x1,2 plane.

Otherwise, the twist is topological.

If N = 1, no twists are possible. If N = 2, the only possible twists are holomorphic.

If N = 4, the 2-form ǫαβn
α
i n

β
j may either be self-dual, anti-self-dual or vanish. We denote

the corresponding families of nilpotent supercharges as H-type, C-type or holomorphic

supercharges.

We are mostly interested in the N = 4 case. Up to discrete identifications, the R-

symmetry group is conventionally denoted as SU(2)H × SU(2)C . The eight supercharges

can be correspondingly denoted as QAȦ
α , with all types of indices running over 1, 2 and

SUSY algebra

{QAȦ
α , QBḂ

β } = ǫABǫȦḂPαβ (2.3)

Up to complexified Lorentz transformations, generic H-type, C-type and holomorphic

supercharges take the form

ζ̃Ȧδ
α
AQ

AȦ
α ζAδ

α
Ȧ
QAȦ

α ζAζ̃ȦQ
AȦ
+ (2.4)

In particular, theories with unbroken SU(2)C admit a fully topological twist where the

Lorentz group is twisted by SU(2)C to produce a scalar, C-type supercharge. This is the

analogue of the Rozansky-Witten twist for N = 4 sigma models [15]. The parameter ζA is

a choice of complex structure on the Higgs branch of the theory.

Similarly, theories with unbroken SU(2)H admit a fully topological twist where the

Lorentz group is twisted by SU(2)H to produce a scalar, H-type supercharge. This is the

mirror of the Rozansky-Witten-like twist [16]. The parameter ζ̃Ȧ is a choice of complex

structure on the Coulomb branch of the theory.

It is useful to think about the C- and H-twists as “small” deformations of the holo-

morphic twist. For example, the holomorphic supercharge Q++̇
+ can be deformed to H- and

C- type supercharges

Q++̇
+ + ǫQ−+̇

− Q++̇
+ + ǫQ+−̇

− (2.5)

As the ǫ parameters are charged under Lorentz transformations, the precise value of ǫ

is really immaterial and the properties of the twisted theory will not depend on ǫ, so that

one may be able to employ an infinitesimal ǫ and describe the standard C- and H-twists

as a perturbation of the holomorphic twist, in a manner analogous to a spectral sequence

in cohomology.

2.3 Deformations of boundary conditions

Recall that a local quantum field theory has a space of “bulk” local operators, but in a

topological theory the correlation functions of bulk local operators cannot depend on their

– 3 –
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relative separation and thus there cannot be singularities in the OPE of two bulk local

operators. On the other hand, each local defect in a QFT also supports a space of defect

local operators, distinct from bulk local operators. It is perfectly possible for a defect to

be compatible with a topological twist but remain non-topological after the twist, so that

correlation functions involving defect local operators may depend on their relative position

and the OPE of defect local operators may be singular.

In the case at hand we seek boundary conditions which become holomorphic after the

twist, so that correlation functions of boundary local operators will depend meromorphi-

cally on their position (and on the complex structure assigned to the boundary). This

would imply automatically that the boundary local operators will form a Vertex Operator

Algebra (equipped with a 2d stress-tensor).

Physical, Lorentz-invariant BPS boundary conditions (or interfaces) for a 3d SQFT

will preserve some collections of N± supercharges with positive and negative chirality in the

plane parallel to the boundary.1 The basic constraint is that the preserved supercharges

should not anti-commute to translations in the direction perpendicular to the boundary.

Hence the supercharges of positive and negative chiralities should span two orthogonal

subspaces V± of CN .

The preserved supercharges will form an (N−,N+) 2d superalgebra. We denote the

corresponding class of boundary conditions as (N−,N+) boundary conditions.

Such boundary conditions will be compatible with an H- or C-type topological twist

only if n±
i belongs to V±. Recall that for these twists we need both n±

i to be non-zero,

so that ǫαβn
α
i n

β
j is non-zero. As these vectors are null, and thus complex, we need the

boundary condition to preserve at least two supercharges of each chirality. For N =4,

that means (2, 2) boundary conditions. These are interesting, well studied boundary con-

ditions [17–19], but it is easy to see that the bulk topological twist makes (2, 2) boundary

conditions topological as well.

In order to find interesting boundary VOAs, we need a boundary condition which is

compatible with a bulk topological twist but remains non-topological after the twist, so

that boundary local operators may have non-trivial OPEs.

This excludes the (2, 2) boundary conditions and forces us to look at non-Lorentz

invariant boundary conditions, which can preserve non-trivial combinations of supercharges

of the two chiralities without preserving each chiral part separately. On the other hand,

in order to make contact with dualities and other non-perturbative results we should not

stray far from physical, Lorentz-invariant BPS boundary conditions.

Based on previous work on a variety of examples [7, 8], our compromise will be to look

for some canonical deformations of physical boundary conditions preserving (0, 4) super-

symmetry, which are another interesting class of half-BPS boundary conditions which have

interesting duality properties [20, 21]. These boundary conditions are obviously compatible

with a bulk holomorphic twist, as they preserve all supercharges with positive chirality.

1If a Lorentz-invariant boundary condition preserves a linear combination of supercharges of different

chirality, it will preserve each chiral part separately.

– 4 –
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Concretely, the statement that the boundary condition breaks the anti-chiral super-

charges means that the restriction to the boundary of the normal component of the corre-

sponding supercurrents SAȦ
−,µ is not a total derivative.

Consider a small deformation of a generic (0, 4) boundary condition by some boundary

operator O:

ǫ

∫

∂

d2xO(x) (2.6)

Such a deformation will break the holomorphic supersymmetries QAȦ
+ if QAȦ

+ O is not a

total derivative. Concretely, that means that the restriction to the boundary of the normal

component SAȦ
+,⊥ of the corresponding supercurrent does not vanish after the deformation,

but equals QAȦ
+ O.

On the other hand, the deformed boundary condition will preserve the deformed H-

type supercharge Q++̇
+ − ǫQ−+̇

− if we can arrange for

S−+̇
−,⊥|∂ = Q++̇

+ O (2.7)

As long as Q−−̇
+ remains (or can be deformed to) a symmetry of the deformed boundary

condition, then the twisted, deformed boundary condition will be holomorphic.

Similarly, if S+−̇
−,⊥ = Q++̇

+ O we can deform the boundary condition to make it compat-

ible with a bulk topological twist based on SU(2)C .

For the examples we will study in this paper, one can laboriously check in the physical

theory by hand that the desired deformation exists. A simpler strategy is to first pass

to the holomorphic twist of the theory and boundary conditions and then work out the

obstruction within the twisted theory. We do so in a companion paper [22]

2.4 Example: free hypermultiplet

There are two natural (0, 4) boundary conditions for a free hypermultiplet: Neumann

and Dirichlet. The terminology is associated to the boundary conditions for the four real

scalars in the hypermultiplet. The fermion boundary conditions are then determined by

supersymmetry.

The boundary conditions and their deformations are discussed briefly in appendix E

of [7]. The result is that:

• Neumann b.c. can be deformed to be compatible with an SU(2)H twist. The resulting

boundary condition supports the VOA of symplectic bosons, which we denote as Sb.

• Dirichlet b.c. can be deformed to be compatible with an SU(2)C twist. The resulting

boundary condition supports the VOA of fermionic currents, basically a psu(1|1)

Kac-Moody VOA, which we denote as Fc.

There are two intuitive ways to understand these results.

The SU(2)C , or Rozansky-Witten, twist of free hypers is known to give a fermionic

version of Chern-Simons theory [15], with the symplectic form playing the role of Chern-

Simons coupling. Dirichlet boundary conditions in such a Chern-Simons theory naturally

produce a fermionic current algebra [23].

– 5 –
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On the other hand, the SU(2)H twist of free hypers gives precisely the bulk theory

which controls the analytic continuation of a two-dimensional path-integral, in the sense

of [24, 25], for the symplectic boson action [8]
∫

d2x〈Z, ∂̄Z〉 (2.8)

The deformed Neumann boundary conditions are precisely the boundary conditions whose

local operator algebra coincides with observables for the symplectic boson path integral.

2.5 Example: free vectormultiplet

We expect (0, 4) Neumann and Dirichlet boundary conditions for a pure U(1) gauge theory

to admit deformations compatible respectively with an H- and a C-twists. This should

follow, for example, from the mirror symmetry relation between free U(1) gauge fields and

a free hypermultiplet valued in S1 × R
3.

Dirichlet boundary conditions will support boundary monopole operators, whose quan-

tum numbers and properties depend on the bulk and boundary matter fields. These op-

erators will give important contributions to the boundary VOAs but are non-perturbative

in nature and require a careful analysis.

Neumann boundary conditions, instead, do not support boundary monopole operators

and the corresponding VOAs are simpler to understand.

The supersymmetry transformation of an Abelian vectormultiplet are schematically

QAȦ
α Aβγ = ǫα(βλ

AȦ
γ)

QAȦ
α ΦḂĊ = −λA(Ċ

α ǫȦ)Ḃ

QAȦ
α λBḂ

β = Fαβǫ
ABǫȦḂ + ǫAB∂αβΦ

ȦḂ (2.9)

The supercurrents are schematically

SAȦ
αβγ = F(αβλ

AȦ
γ) + ǫḂĊ∂(αβΦ

ȦḂλAĊ
γ) (2.10)

A (0, 4) boundary condition must satisfy at the boundary SAȦ
++− = 0.

Neumann boundary conditions for the gauge fields require

F++ = F−− = 0 λAȦ
+ = 0 ∂++Φ

ȦḂ = ∂−−Φ
ȦḂ = 0 (2.11)

and in particular impose Dirichlet b.c. for the vectormultiplet scalars.

The normal component S−+̇
−,⊥ = S−+̇

+−− becomes

F+−λ
−+̇
− + ǫḂĊ∂+−Φ

+̇Ḃλ−Ċ
− = Q++̇

+

(
ǫḂĊλ

−Ḃ
− λ−Ċ

−

)
(2.12)

suggesting that a deformation compatible with H-twist is possible, as expected.2

2On the other hand, the normal component S+−̇

−,⊥ = S+−̇

+−−
becomes

F+−λ
+−̇

− + ǫḂĊ∂+−Φ
−̇Ḃ

λ
+Ċ
− (2.13)

which is not Q++̇
+ -exact.

– 6 –
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Without loss of generality, we can set ǫ = 1 here and consider the standard H- and

C- twist supercharges. If we keep the same bosonic boundary conditions and deform the

fermion boundary condition λ+Ȧ
+ = 0 to λ+Ȧ

+ +λ−Ȧ
− = 0, then at the boundary S+Ȧ

++−+S−Ȧ
+−−

vanishes and we have an H-twist compatible Neumann boundary condition.

Dirichlet b.c. for the gauge fields require

F+− = 0 λAȦ
− = 0 ∂+−Φ

ȦḂ = 0 (2.14)

and in particular impose Neumann b.c. for the vectormultiplet scalars.

On the other hand, the normal component S+−̇
−,⊥ = S+−̇

+−− becomes

F−−λ
+−̇
+ + ǫḂĊ∂−−Φ

−̇Ḃλ+Ċ
+ = Q++̇

+

(
F−−Φ

−̇−̇ +Φ−̇−̇∂−−Φ
−̇+̇

)
+ ∂−− · · · (2.15)

That indicates the existence of a deformation compatible with C-twist, which changes

the boundary conditions for the bosons and leaves the boundary conditions for the fermions

unchanged, as expected. We can identify the deformed boundary condition simply by

adding the deformation Φ−̇−̇(F−− + ∂−−Φ
−̇+̇) in parenthesis to the boundary Lagrangian

for standard Dirichlet b.c.

The result is

λAȦ
− = 0

F+− = ∂−−Φ
−̇−̇

∂+−Φ
+̇+̇ + F−− + ∂−−Φ

−̇+̇ = 0

∂+−Φ
+̇−̇ + ∂−−Φ

−̇−̇ = 0

∂+−Φ
−̇−̇ = 0 (2.16)

It is straightforward to check that the boundary value of the supercurrent for the

C-twist supercharge indeed vanishes for these boundary conditions.

2.6 Index calculations

Supersymmetric localization allows for the calculation of non-trivial superconformal indices

(i.e. equivariant Witten indices of spaces of local operators) in 3d SQFTs with at least N =

2 SUSY [21, 26–29]. These indices essentially compute the Euler character of the spaces

of local operators compatible with an holomorphic twist, weighed by fugacities for the

symmetries which commute with the holomorphic super-charge. There is a supersymmetric

index which counts protected bulk local operators and a half-index which counts local

operators at (0, 2) boundary conditions.

There are two important specializations of the index or half-index of N = 4 systems,

which restrict the fugacities to symmetries preserved by either H- or C- topological super-

charges and thus compute the Euler character of the spaces of local operators compatible

with the corresponding twist. As long as the fugacities are specialized in that manner, that

Euler character is very robust and unaffected by continuous deformations of the boundary

conditions and choice of nilpotent supercharge.

In practice, that means half-index calculations (upon specialization of the fugacities)

give us access to the characters of the vacuum module of the boundary VOAs we seek.

– 7 –
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2.6.1 Example: hypermultiplet indices

The bulk index of a single chiral multiplet of fugacity x, in appropriate conventions, is

Ich(x; q) =
(qx−1; q)∞
(x; q)∞

=
∏

n≥0

1− x−1qn+1

1− xqn
(2.17)

This index simply counts words made out of derivatives of the chiral multiplet complex

scalar and one of the fermions in the multiplet. The q fugacity measures a combination of

spin and R-charge.

Half-indices for Neumann or Dirichlet boundary conditions include only one tower:

IIch,N (x; q) =
1

(x; q)∞
=

∏

n≥0

1

1− xqn

IIch,D(x; q) = (qx−1; q)∞ =
∏

n≥0

(1− x−1qn+1) (2.18)

The index for a full hypermultiplet combines two chiral multiplets:

Ihyper(x; y; q) = Ich(xy; q)Ich(x
−1y; q) =

(qxy−1; q)∞(qx−1y−1; q)∞
(xy; q)∞(x−1y; q)∞

(2.19)

The H-twist restricts the fugacities by y = q
1
2 . The resulting index is precisely 1: the

free hypermultiplet has no “Coulomb branch local operators”, which would survive in the

H-twist.

On the other hand, the C-twist restricts the fugacities by y = 1. The index becomes

simply (1− x)−1(1− x−1)−1, with the two factors corresponding to the two generators of

the algebra of Higgs branch local operators, C[u, v].

The half-index for a typical (2, 2) boundary condition, setting to zero at the boundary

one of the two complex scalars in the hypermultiplet, takes the form

IIhyper,(ND)(x; y; q) = IIch,N (x; q)IIch,D(x
−1; q)) =

(qxy−1; q)∞
(xy; q)∞

(2.20)

As we specialize y = 1 or y = q
1
2 , the half-index again simplifies drastically, as expected

for a topological boundary condition.

The half-index for a Neumann (0, 4) boundary condition takes the form

IIhyper,(NN)(x; y; q) = IIch,N (x; q)IIch,N (x−1; q)) =
1

(xy; q)∞(x−1y; q)∞
(2.21)

If we restrict fugacities according to the H-twist we obtain the vacuum character for the

symplectic boson VOA

IIhyper,(NN)(x; q
1
2 ; q) =

1

(xq
1
2 ; q)∞(x−1q

1
2 ; q)∞

= χSb(x; q) (2.22)

The half-index for a Dirichlet (0, 4) boundary condition takes the form

IIhyper,(DD)(x; y; q) = IIch,D(x; q)IIch,D(x
−1; q)) = (qxy−1; q)∞(qx−1y−1; q)∞ (2.23)

If we restrict fugacities according to the C-twist we obtain the vacuum character for the

fermionic current VOA

IIhyper,(DD)(x; 1; q) = (qx; q)∞(qx−1; q)∞ = χFc(x; q) (2.24)

– 8 –
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2.6.2 Example: vectormultiplet half-indices

The half-index for a U(1) N = 2 gauge multiplet with Neumann (0, 2) boundary conditions

and no charged matter is simply

IIgauge,N (q) = (q; q)∞ (2.25)

The half-index for a U(1) N = 4 gauge multiplet with Neumann (2, 2) boundary

conditions and no charged matter is

IIvector,NN (q) = IIgauge,N (q)IIchiral,N (qy−2; q) =
(q; q)∞

(qy−2; q)∞
(2.26)

As expected, most factors cancel out in the denominator both for y = 1 or y = q
1
2 : for the

C-twist everything cancels out and is trivial and for the H-twist one is left with a divergent

factor counting topological local operators made out of polynomials in a single field with

no fugacity.

The half-index for a U(1) N = 4 gauge multiplet with Neumann (0, 4) boundary

conditions and no charged matter is

IIvector,ND(q) = IIgauge,N (q)IIchiral,D(qy
−2; q) = (q; q)∞(y2; q)∞ (2.27)

In the H-twist we get (q; q)2∞, from the two fermionic local operators which survive at the

boundary. Later on, we will identify them with operators annihilated by b0 in a bc VOA

of ghosts for a 2d chiral gauge theory.

In the absence of matter fields, the boundary monopole operators at Dirichlet boundary

conditions have no spin or R-symmetry charge. They only carry integral charges for the

bulk “topological” U(1) gauge symmetry. In each topological charge sector,

IIgauge,D,n(q) = (q; q)−1
∞ (2.28)

The analysis is similar as before. For the (0, 4) Dirichlet boundary conditions we get

IIvector,DN,n(q) = (q; q)−1
∞ (qy−2; q)−1

∞ (2.29)

In the C-twist we get (q; q)−2
∞ in each charge sector.

Somewhat formally, this is compatible with the expectation from mirror symmetry to

the H-twist of a hypermultiplet valued in C× C
∗: a βγ system with γ valued in C

∗.3

3 Boundary conditions and bulk observables

3.1 Boundary VOA and conformal blocks

One way to define the space of conformal blocks of a VOA on a Riemann surface Σ is as

the universal vector space V where we can define “correlation functions”

〈O1(z1) . . .On(zn)〉 ∈ V (3.1)

3Indeed, if we ignore the γ zeromodes, the βγ vacuum character would be (q; q)−1
∞ (qt; q)−1

∞ , where the

t fugacity counts the U(1) charge carried by γ. Expanding that out into powers of t, and adding together

the contributions from operators of charge k multiplying γn−k gives back (q; q)−1
∞ (q; q)−1

∞ .
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for any points zi ∈ Σ, which are compatible with the OPE. This is the definition proposed

by Beilinson-Drinfeld [30], who show that in the case of the WZW model this definition

coincides with the familiar one based on coinvariants.4

If we take the twisted 3d gauge theory on a geometry of the form R
+ × C, inserting

local operators at the boundary and some asymptotic state at infinity for the TFT, we get

precisely such a consistent collection of correlation functions. This means that the choice

of asymptotic state at infinity gives us an element of the dual of the space of conformal

blocks, or dually, an element of the space of conformal blocks gives a linear function on

the Hilbert space at ∞. That means we always have a map from the space of conformal

blocks of the boundary VOA to the Hilbert space of the 3d TFT compactified on C.

Such a map is often an isomorphism. A familiar example is the fact that the space of

conformal blocks of the WZW model is the Hilbert space of Chern-Simons theory. This

map is often more than just a map of vector spaces or cochain complexes. As we vary

the complex structure of C, both conformal blocks and the Hilbert space are flat bundles

(or better, D-modules) over the moduli space of complex structures, and the map from

conformal blocks to the Hibert space is a map of D-modules.

The relation between the TFT Hilbert space and the VOA conformal blocks was an

important motivation for this work: physical constructions relevant for Geometric Langland

involve 3d TFTs which do not admit a complete Lagrangian description, but have known

boundary VOAs. The study of conformal blocks of these VOAs gives access to otherwise

unavailable information about the TFT Hilbert spaces.

3.2 Bulk operator algebra and Ext groups

The space of bulk local operators for the TFT is closely related to the Hilbert space of

states on a two-sphere. That means the VOA should also give access to the space of bulk

local operators.

We conjecture that the algebra of bulk local operators can be described as the self-Ext

groups of the vacuum module of the boundary VOA. This is one of the main conjectures in

this paper. As we will see, it is a rather non-trivial statement. For example, it will allow us

to recover the recent mathematical definition [31] of the algebra of Coulomb branch local

operators of 3d N = 4 gauge theories.

Let us explain heuristically why we expect this to be true. Let Obulk denote the space

of bulk local operators, and Oboundary the space of boundary local operators. The space of

bulk operators acts on the space of boundary operators, using the OPE between bulk and

4In the current setup, and in general in any situation involving non-unitary field theories, conformal

blocks should be intended in a derived sense. The derived version of the space of conformal blocks was

defined by Beilinson-Drinfeld [30], and is sometimes called factorization homology. The proper calculation

of the space of conformal blocks may result in unexpected contributions in non-trivial ghost numbers,

which can play important roles when conformal blocks are manipulated. For example, if we build conformal

blocks through a sewing construction, gluing trinions together into a Riemann surface, the gluing procedure

involves tensor products over the mode algebra of the VOA. These tensor products should be intended as

derived tensor products.
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boundary operators. This action gives an algebra homomorphism map

Obulk → End(Oboundary). (3.2)

The algebra of boundary charges5 — generated by countour integrals of boundary local

operators — also acts on the space of boundary local operators. If we denote the algebra

of boundary charges by
∮
Oboundary, we have a homomorphism

∮
Oboundary → End(Oboundary). (3.3)

The actions of Obulk and
∮
Oboundary on Obounary commute with each other. This

means that the algebra of bulk operators maps to the endomorphisms of Oboundary viewed

as a module for the algebra of charges. In symbols, we have an algebra homomorphism

Obulk → End∮ Oboundary
(Oboundary). (3.4)

Since modules for
∮
Oboundary are the same as modules for the vertex algebra, we see that

the algebra of bulk operators has a natural homomorphism to the endomorphisms of the

vacuum module of the boundary vertex algebra.

It is natural to expect that the same statement holds at the derived level. The derived

version of the endomorphisms of the vacuum module is the self-Ext’s of the vacuum module.

By this argument, we find a homomorphism of algebras from the bulk operators to the self-

Ext’s of the vacuum module of the boundary algebra.

Why do we conjecture that this map is an isomorphism? To understand this, it is

fruitful to look at the analog of the statement we are making that holds for topologically

twisted N = (2, 2) models in 2 space-time dimensions. In that setting, it is known [32, 33]

that the algebra of bulk operators is the Hochschild cohomology of the category of branes.

Let us choose a generating object of the category of branes, whose algebra of boundary

operators is Aboundary. Then the algebra of bulk operators is the Hochschild cohomology

of the algebra Aboundary.

In both the 3d N = 4 and 2d N = (2, 2) settings, we can define a module for the

boundary algebra to be a way of changing the boundary algebra at a single point. Equiva-

lently, a module in this sense is the end-point of a bulk line defect. In the 3d N = 4 setting,

these are ordinary modules for the boundary vertex algebra. In the 2d N = (2, 2) setting,

these modules are bi-modules for the associative algebra Aboundary of boundary operators.

In each situation, there is a special module in which the boundary algebra is unchanged,

corresponding to the trivial line defect in the bulk. In the 3d N = 4 case, this special

module is the vacuum module. In the 2d N = (2, 2) case, this special module is Aboundary

viewed as an Aboundary-bimodule.

Hochschild cohomology is the self-Ext’s of Aboundary taken in the category of Aboundary-

bimodules. This description makes clear the close analogy between self-Ext’s of the vacuum

module of the boundary VOA and Hochschild cohomology of the algebra of boundary

operators.

5The algebra of charges is a topological associative algebra with the property that modules for this

associative algebra are the same as modules for the vertex algebra we start with.
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In the 2d N = (2, 2) setting, we can only recover the algebra of bulk operators from the

algebra of boundary operators as long as the chosen boundary condition is “big enough”,

meaning it generates the category of boundary conditions. For example, if we are study-

ing the B-twist of a two-dimensional σ-model on some Calabi-Yau manifold X, we will

never learn about the entire algebra of bulk operators from a Dirichlet boundary condi-

tion in which the boundary fields map to a point x in the target manifold X. Instead,

the Hochschild cohomology of the boundary algebra for this boundary condition will tell

us about bulk operators in an infinitesimal neighourhood of this point x in the target

manifold X.

Similarly, in the three dimensional setting, we would not expect the algebra of bound-

ary operators to always recover the algebra of bulk operators. We conjecture that this is

true, however, as long as the theory flows to a CFT in the IR. The conjecture can be shown

to be false if we do not include this extra hypothesis.

To understand the need for this extra hypothesis, we note that boundary conditions

which, after deformation, are compatible with the SU(2)H -twist give rise to a complex

submanifold of the Coulomb branch, and boundary conditions compatible with the SU(2)C-

twist give a complex submanifold of the Higgs branch. In each case the submanifold is that

associated to an ideal in the algebra of bulk local operators in the twisted theory, which

is the algebra of holomorphic functions on the Coulomb or Higgs branch, depending on

the twist. The ideal consists of those operators which become zero when brought to the

boundary.

One can show that the submanifold associated to the deformed (0, 4) boundary con-

dition is always isotropic (where we equip the Higgs or Coulomb branch with the natural

holomorphic symplectic structure). Typically these submanifolds are not Lagrangian: La-

grangian submanifolds correspond to (2, 2) boundary conditions.

For general reasons, the self-Ext’s of a given boundary condition can only know about

the infinitesimal neighbourhood of the corresponding isotropic submanifold in the Higgs or

Coulomb branch. If the theory is conformal, however, this is enough. In a conformal theory,

the Higgs and Coulomb branch are conical, and for a reasonable boundary condition, the

isotropic submanifold will be conical. All the data of the Higgs and Coulomb branch is

encoded in a neighourhood of the cone point, and so can in principle be detected by any

boundary condition whose corresponding isotropic submanifold is conical.

Let us describe a simple counter-example to our conjecture in the non-conformal case.

Consider the free U(1) gauge theory. The Coulomb branch in this case is T ∗
C
×, where

C
× is parametrized by the periodic scalar dual to the gauge field and C is parametrized

by the scalar in the vector multiplet. The fact that the scalar dual to the gauge field is

periodic shows us that this theory is indeed not conformal. From the point of view of the

fundamental gauge field, this periodicity is a non-perturbative phenomenon, in the sense

that it will be missed by perturbative calculations in flat space involving elementary fields.6

6Some readers may prefer to call this effect “topological”, as the notion of perturbation theory is is often

associated to interacting theories. Here we use a very strict interpretation of the term “perturbative” as

pertaining to a systematic expansion around a specific classical vacuum.
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Neumann boundary conditions for the gauge field are compatible (after deformation)

with the SU(2)H -twist, and correspond to Dirichlet boundary conditions for the dual pe-

riodic scalar. One can check that the scalar in the vector multiplet also has Dirichlet

boundary conditions. Boundary values of the bulk fields parameterize a submanifold of the

Coulomb branch, which in this case is a point inside C× C
×.

The self-Ext’s of the boundary algebra can only probe an infinitesimal neighbourhood

of this point in C × C
×. We will show in sections 3.4 and 3.5 that the self-Ext’s are the

algebra C[[z1, z2]] of formal series in two variables. In particular, the self-Ext’s can not tell

us that the dual scalar is periodic.

3.3 The free hypermultiplet in the SU(2)H-twist

Let us explain how to verify this conjecture in the case of a free hypermultiplet.

If we perform the SU(2)H -twist, the algebra of boundary operators is Sb, the symplectic

bosons. We will change notation slightly, and write the symplectic bosons as X1, X2 instead

of X,Y . We will view the category of modules for this vertex algebra as the category of

modules for the algebra of charges. The algebra of charges is generated by

X1,n =

∮
znX1(z)dz (3.5)

X2,n =

∮
znX2(z)dz (3.6)

with commutators

[X1,n, X2,m] = δn+m=−1. (3.7)

The vacuum module is generated by a vector |∅〉 annihilated by Xi,n for n ≥ 0.

Let us denote the algebra of charges by A and the vacuum module by M|∅〉. The

vacuum module admits a free resolution A[ηi,n], in which we have adjoined infinitely many

odd variables ηi,n to A. The indices in ηi,n run from i = 1, 2 and n ≥ 0. The differential is

d =
∑

∂ηi,nrXi,n
(3.8)

where rXi,n
indicates right multiplication with the generator Xi,n of M|∅〉. The odd vari-

ables ηi,n are given cohomological degree −1.

This differential makes A[ηi,n] into a differential graded left module for A. The zeroth

cohomology of this dg module is M|∅〉, and one can check that the other cohomology groups

vanish.

The self-Ext’s of M|∅〉 are the cohomology of the complex of maps of A-modules from

the free resolution A[ηi,n] to itself, or equivalently, from A[ηi,n] to M|∅〉. This cochain

complex is M|∅〉[η
∗
i,n], where η∗i,n are odd variables dual to ηi,n, with differential

d =
∑

i,n≥0

η∗i,nXi,n. (3.9)

Here the charges Xi,n act in the usual way on the vacuum module. They commute with

the odd variables η∗i,n and increase spin by n+ 1
2 .
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The vacuum module M|∅〉 is freely generated from the vacuum vector by the lowering

operators Xi,n, n < 0. We can thus write the vacuum module as the polynomial algebra

C[Xi,n, n < 0]. For n ≥ 0, the charge Xi,n acts as ǫij∂Xj,−1−n
where ǫij is the alternating

symbol. After a relabelling of the odd variables η∗i,n by γi,−1−n = ǫijη
∗
j,n we find that the

differential takes the form

d =
∑

i,n<0

γi,n∂Xi,n
(3.10)

acting on the polynomial algebra C[Xi,n]. This is simply the algebraic de Rham operator on

the infinite-dimensional space with coordinates Xi,n for n < 0. Therefore the cohomology

consists of C in degree 0.

This is the expected answer, because a free hypermultiplet has no Coulomb branch.

3.4 The free hypermultiplet in the SU(2)C-twist

Next, let us explain what happens for the SU(2)C twist. In this case, the boundary algebra

is the algebra of fermionic currents, which we write as x1, x2 isntead of x, y. The associative

algebra of charges is generated by

xi,n =

∮
znxidz (3.11)

of spin −n with commutators

[xi,n, xj,m] = ǫijnδn+m=0. (3.12)

The vacuum module is generated by a vacuum vector annihilated by xi,n for n ≥ 0. Note

that the xi,0 are central.

Following the analysis in the case of symplectic bosons, we find a free resolution of

the vacuum module M|∅〉 by adjoining to the algebra A of charges an infinite number of

generators φi,n, for i = 1, 2 and n ≥ 0. In contrast to the case of symplectic bosons, these

generators are bosonic, because the fundamental fields are fermionic. The differential is∑
xi,n∂φi,n

.

The cochain complex computing the self-Ext’s of the vacuum module is M|∅〉[φ
∗
i,n],

where the ranges of the indices on φ∗
i,n are i = 1, 2, n ≥ 0. The differential is

d =
∑

n≥0

φ∗
i,nxi,n. (3.13)

We can identify M|∅〉 with the polynomial algebra on xi,n when n < 0. The operators

xi,n for n ≥ 0 become ǫijn∂xj,−n
. We let σi,n = ǫijφ

∗
i,−n for n ≤ 0. We find that the

complex computing the self-Ext’s is C[xi,n, σi,n], where x are odd variables and σ are even.

The odd generators xi,n have index n < 0, and the even generators σi,n have index n ≤ 0.

The differential is ∑

n<0

σi,nn∂xi,n
. (3.14)
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This is the tensor product of the de Rham complex on the infinite dimensional purely

odd super-manifold with coordinates {xi,n | n < 0}, with the polynomial algebra on σi,0.

After taking cohomology, the result is the polynomial algebra7 C[σi,0] on two variables.

This is the desired answer, becauses the Higgs branch of a hypermultiplet is C2.

3.5 A computation for a U(1) gauge field

As we will explain in detail shortly, if we perform an SU(2)H -twist to a 3d N = 4 gauge

theory, then there is a deformable (0, 4) boundary condition with Neumann boundary

conditions for all fields. The boundary algebra is the BRST reduction of a system of

symplectic bosons associated to the matter by the gauge group. (In general we need to

add extra boundary degrees of freedom to cancel an anomaly).

If we start with a U(1) pure gauge theory, then the boundary algebra is the BRST

reduction of the trivial theory by U(1). This algebra has the b, c ghosts which are fermionic

and of spins 1 and 0. The OPE is bc ≃ 1/z. There is a very important subtlety, however:

the c ghost by itself should not appear in the algebra, only its z-derivatives ∂k
z c can appear.

This subtlety applies any time we introduce ghosts for gauge transformations in a compact

group: we should only introduce ghosts for non-constant gauge transformations, and impose

gauge invariance for the constant gauge transformations directly.

If we bear this subtlety in mind, we see that the algebra is generated by two fermionic

fields b, ∂zc of spin 1 with OPE b∂zc ≃ z−2. This is the algebra of fermionic currents which

we find when studying the SU(2)C-twist of a free hypermultiplet.

This is a rather satisfying answer, because the SU(2)H -twist of a U(1) gauge theory

is dual to the SU(2)C twist of a free hypermultiplet living in the cotangent bundle of C×.

As we have seen, the Neumann boundary conditions for the gauge field become Dirich-

let boundary conditions for free hypermultiplet. The algebra of operators with Dirichlet

boundary conditions can not tell the difference between a periodic or non-periodic hyper-

multiplet, and so will be the algebra of fermionic currents. In this way, we have verified

that our boundary vertex algebras are compatible with the very simplest of dualities: a

free U(1) gauge field becoming a periodic hypermultiplet.

Previously we found that the self-Ext’s of the vacuum module of the hypermultiplet

are C[[x1, x2]], the ring of formal series in two variables x1, x2. As we have explained above,

this is not the Coulomb branch of the free U(1) gauge theory. The full Coulomb branch is

T ∗
C
×, and the self-Ext’s of the vacuum module only recovers a small open subset of the

Coulomb branch near the point where the dual periodic scalar is 1 and the scalar in the

vector multiplet is 0.

We have verified our conjecture for free hypermultiplets, and analyzed how it fails for

a free U(1) gauge theory. In section 4.4 we will show that the algebra of functions on

the Coulomb branch for U(1) gauge theory with one hyper is the self-Ext’s of the vacuum

7Strictly speaking, we find the power-series algebra C[[σi,0]] as the self-Ext’s. In this case, however,

because of the SU(2) symmetry rotating the σi,0, we can restrict to the subspace consisting of finite sums

of elements which are in irreducible representations of SU(2). We will typically not be very careful about

the difference between polynomial and power series algebras.
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module for the boundary VOA. We leave further checks of this conjecture to a separate

publication [34].

3.6 Bulk lines and modules

The physical theories also admit two classes of half-BPS line defects [35], which become

topological line defects upon H- or C- twists. These preserve supercharges which have the

same weight under the Cartan generators of rotations and SU(2)H or SU(2)C : either

Q+Ȧ
+ Q−Ȧ

− (3.15)

or

QA+̇
+ QA−̇

− (3.16)

Thus both types of line defects are compatible with the holomorphic twist (along the

x3 direction) and the appropriate topological twist. These line defects can end on (0, 4)

boundaries and at the endpoints one will find modules of the boundary VOAs.

Bulk line defects form a braided tensor category, with morphisms given by spaces of

local operators joining line defects. We expect these morphisms and the whole braided

category manifest themselves as the corresponding category of modules for the boundary

VOAs and their Ext groups, though strictly speaking the setup only predicts the existence

of a functor from the bulk braided tensor category to the category of boundary modules.

Let us explain how this should work for the free hypermultiplet, when we perform the

SU(2)C-twist. The bulk theory becomes Rozansky-Witten theory on C
2, and it is expected

that the category of line defects is the category of coherent sheaves on C
2, or equivalently,

the category of modules over the polynomial algebra C[z1, z2]. This is equivalent8 to the

category of modules over the exterior algebra C[x1, x2] generated by two odd variables.

This equivalence is the basic example of Koszul duality.

Under this equivalence, a coherent sheaf F gets sent to Ext∗(C0, F ) where C0 is the

skyscraper sheaf at the origin in C
2. This is a module for Ext∗(C0,C0), which is the exterior

algebra on two generators.

The exterior algebra on two generators can, in turn, be viewed as the universal envelop-

ing algebra of the Abelian fermionic Lie algebra ΠC2. This Lie algebra has an invariant

symmetric pairing, given by the symplectic form on C
2. The algebra of fermionic currents

is the Kac-Moody algebra built from this Lie algebra, at any non-zero level (all non-zero

levels can be related by rescaling the generators).

Modules for the exterior algebra C[x1, x2] are then the same as modules for the Lie

algebra ΠC2, i.e. super-vector spaces with two commuting odd symmetries. Given any such

module M , we can build a Weyl module W (M) for the algebra of fermionic currents. This

Weyl module is generated by vectors m ∈ M , annihilated by xi,n for n > 0, and which

transform under xi,0 according to the action of ΠC2 on M .

8A little care is needed in this equivalence: we should either restrict to the category of modules which

are compatible with the grading which assigns to the zi charge 1, or else look at the category of modules

over the ring of power series C[[z1, z2]]. We will not belabour this technical point.
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We expect that the braiding of line operators in the bulk theory of a free hypermultiplet

is the braiding of the corresponding Weyl modules for the fermionic current algebra.

Explicit formulas can be obtained by considering the Knizhnik-Zamolodchikov connec-

tion for the Abelian fermionic Lie algebra ΠC2. Given representations M1, . . . ,Mn of ΠC2,

in which the two elements of ΠC2 act by matrices xri (i = 1, 2, r = 1, . . . , n) we can define

a connection on the trivial vector bundle on C
n with fibre M1 ⊗ · · · ⊗Mn by the one-form

∑

r 6=s

xrix
s
jǫij

zr − zs
dzr. (3.17)

We have seen that the boundary algebra for a pure U(1) gauge theory is also the algebra

of fermionic currents. In this example, we do not expect an equivalence of categories

between bulk lines and boundary modules, only a functor. It would be interesting to

analyze the modules for the fermionic current algebra coming from line operators of the

U(1) gauge theory.

3.7 Topological boundary conditions

The (2, 2) boundary conditions, which become topological upon twisting, produce partic-

ularly nice states in the TFT Hilbert space, which have good behaviour under mapping

class group transformations. They should correspondingly map to special conformal blocks

for the boundary VOA.

We can be more specific. Consider a slab geometry with a deformed (0, 4) boundary

condition at one end and a (2, 2) boundary condition at the other end. This defines a

system which is effectively two-dimensional and inherits the topological supercharge of the

bulk theory, preserved by the two boundary conditions. The twist by that supercharge

gives a holomorphic 2d theory, which has a VOA of local operators. This new VOA is

not necessarily the same as the boundary VOA we found at the deformed (0, 4) boundary

condition, but there is an embedding of the boundary VOA into the new VOA, as a

boundary local operator surely gives us a local operator of the two-dimensional effective

theory. In other words, the new VOA is an extension of the original boundary VOA.

The new VOA is potentially larger than the original VOA because it may include any

non-local operator in the slab geometry which descends to a local operator in the effective

two-dimensional description. Prototypical examples are line defect segments with one end

on the (2, 2) boundary and the other on the deformed (0, 4) boundary.

The endpoint of line defects at the deformed (0, 4) boundary give interesting vertex

algebra modules for the boundary VOA. More precisely, there is a functor from the category

of line defects in the bulk TFT to the category of vertex algebra modules of the boundary

VOA. On the other hand, general TFT considerations tell us that the endpoints of line

defects at a (2, 2) boundary are topological and thus there also is a functor from the

category of line defects in the bulk TFT to vector spaces of such local operators.

Combining these two pieces of data give us a nice class of operators in the new VOA,

labelled by a choice of bulk line together with a choice of local operators at the two

endpoints. It would be nice to elaborate on this point further and fully characterize the

new VOA in terms of TFT data, but it goes out of the scope of this work.
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Another observation is that boundary local operators at (2, 2) boundary conditions give

interesting modules for the algebra of bulk local operators [19], which should be reflected in

the properties of this VOA extension. This opens up the possibility of a direct connection

between the properties of boundary VOAs and the aspects of Symplectic Duality associated

to (2, 2) boundary conditions. Again, we leave a detailed analysis to future work.

4 The H-twist of standard N = 4 gauge theories

We consider here standard N = 4 gauge theories, defined by vectormultiplets in a gauge

group G and hypermultiplets in a symplectic representation M of G.

Based on the elementary examples and calculations in the holomorphically twisted

theory, we expect the following class of (0, 4) boundary conditions to be compatible with

the deformation to the H-twisted theory:

• Neumann boundary conditions for the vectormultiplets.

• Neumann boundary conditions for the hypermultiplets.

• Extra boundary degrees of freedom, in the form of a holomorphic CFT A2d with a G

current algebra coupled to the bulk gauge fields at the boundary.

Notice that both the boundary conditions for the hypermultiplets and for the vector-

multiplets introduce potential gauge anomalies. The extra boundary degrees of freedom

can be used to cancel that.

The half index for such a boundary condition takes precisely the form of the character

for a g-BRST reduction of the product VOA

SbM ×A2d (4.1)

of symplectic bosons valued in M together with the auxiliary boundary VOA. Boundary

anomaly cancellation precisely matches the requirement that the total level of the G current

algebra is −2h, the value required for the BRST reduction.

Concretely, that means considering the BRST complex [36]

[
SbM ×A2d × bcg, Qg

BRST =

∮
c
(
JSbM ×A2d

+ Jbcg
)]

(4.2)

This BRST reduction is our candidate boundary VOA.

The following observations are in order:

• For classic gauge groups, A2d can usually be taken to be some collection of chiral

free fermions. For conciseness, we can denote the G-BRST reduction of the product

of symplectic bosons valued in a representation M and chiral fermions valued in a

representation R as:

AH [G,M,R] := {Sb[M ]× Ff[R]× bcg, Qg
BRST} (4.3)
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• The association of a VOA to the H-twisted 3d gauge theory was proposed first in [8],

with A2d consisting of a chiral WZW model of the appropriate level. That choice

is not ideal, as chiral WZW models are only relative theories. We will revisit and

improve that construction in our examples.

• The same type of BRST reduction, without auxiliary degrees of freedom, appears in

the construction of chiral algebras associated to 4d N = 2 gauge theories. Compact-

ification of a 4d N = 2 gauge theory on a cigar geometry yields precisely our (0, 4)

boundary condition. The further deformation we introduce to go to the topologically

twisted 3d theory should be analogous to a twisted Nekrasov deformation in the 4d

N = 2 gauge theory, employing the U(1)r R-symmetry group instead of the SU(2)R
group employed in the traditional Nekrasov deformation. The fact that the 4d N = 2

theory is super-conformal implies that the BRST reduction on the boundary of the

3d theory is anomaly free, without the need to introduce extra degrees of freedom.

It would be interesting to fully explore the properties of such a twisted Nekrasov

deformation and the relation with the super-conformal twist used in the definition of

the chiral algebras associated to 4d N = 2 gauge theories.

4.1 Symmetries of H-twistable boundaries

The boundary conditions compatible with the H-twist preserve the global flavor symmetry

GH which acts on the hypermultiplets.

The bulk gauge theory also has a global flavor symmetryGC which acts on the Coulomb

branch. Only the Cartan sub-algebra U(1)rC is visible in the UV, as topological symmetries

whose currents are the gauge field strength.

Neumann boundary conditions for the gauge field naively break the topological sym-

metry of the gauge theory, as the inflow of charge into the boundary equals the gauge field

strength at the boundary, which is unconstrained. A specific U(1)3d topological symmetry

can be restored if we can find some boundary symmetry U(1)2d (i.e. a symmetry which

only acts on boundary local operators) whose current fails to be conserved precisely by the

same amount, so that the divergence of the U(1)2d current equals the gauge field strength

at the boundary. Then the diagonal combination of the bulk topological U(1)3d symmetry

and the boundary symmetry U(1)2d will be conserved, i.e. we have at the boundary

J⊥
3d = ∂ij

i
2d (4.4)

By definition, the divergence of the U(1)2d current equals the gauge field strength

precisely if U(1)2d has exactly one unit of boundary mixed anomaly with the gauge sym-

metry associated to U(1)3d. A standard example of 2d global symmetries which have mixed

anomaly with bulk gauge symmetries are symmetries which act on 2d chiral fermions which

are charged under the gauge group. For example, if the Neumann boundary conditions we

employ are enriched by coupling the bulk gauge fields to 2d Fermi multiplets living at the

boundary (which may be anyway needed to cancel boundary gauge anomalies), we can try

to use the 2d symmetries rotating these Fermi multiplets in order to restore the bulk U(1)rC
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symmetry algebra. With a bit of luck with the RG flow, the resulting boundary condition

may even end up preserving the whole GC which appears in the IR.

The boundary Fermi multiplets may transform under a further symmetry group G2d

commuting with the gauge group, modulo the symmetries we absorbed in U(1)rC .

Notice that different collections of 2d Fermi multiplets may be allowed by gauge-

anomaly cancellation. This will result in somewhat different boundary VOAs. The bulk

gauge theory really only couples to the WZW currents for the gauge symmetry acting on

the Fermi multiplets, so one could define a “universal” boundary VOA by only including

such chiral WZW model as opposed to the full collection of Fermi multiplets.

The downside of that choice is that the chiral WZW model has conformal blocks of

its own, so that the conformal blocks of the universal boundary VOA should factor into

such chiral WZW model conformal blocks and the true space of states of the 3d TFT we

are after.

The boundary VOA for a specific collection of Fermi multiplets will be recovered from

the universal boundary VOA by combining it with the coset of the corresponding collection

of chiral fermions by the chiral WZW model.

4.2 Conformal blocks and Ext groups

It is interesting to ask which properties of the AH [G,M,R] would follow directly from its

definition. For example, can we compute some (or all) conformal blocks for AH [G,M,R]

directly from the definition, as correlation functions of BRST-closed operators in Sb[M ]×

Ff[R]× bc[g]?

The g-ghosts have zeromodes on a general Riemann surface C. Analogously to what

is done in string theory, we can compensate for these zeromodes with b-ghost insertions.

These insertions make correlation functions into top forms in the space BunG(C) of G-

bundles on the Riemann surface, which should be formally integrated over BunG.

Thus we can realize conformal blocks for AH [G,M,R] by taking conformal blocks for

Sb[M ] × Ff[R], seen as a D-module on BunG(C), and taking de Rahm cohomology over

BunG. Note that Ff[R] (or more generally any well-defined 2d degrees of freedom) have

one-dimensional spaces of conformal blocks.

If we apply this idea to the Ext groups, we need to do calculations with bundles over

the raviolo. We expect these calculations to directly reproduce the definitions in [31, 37].

We will include a more detailed argument in upcoming work [34].

4.3 U(1) gauge theory with one flavor

This gauge theory is mirror to a free twisted hypermultiplet valued in C
2 [38].9 The global

symmetry of the twisted hypermultiplet is identified with the topological symmetry U(1)t
of the gauge theory, whose current is the gauge field strength.

The H-twist compatible boundary conditions require a single Fermi multiplet of gauge

charge 1 at the boundary, for gauge anomaly cancellation [21]. We can take U(1)t to act

9The target is really Taub-NUT, but in the IR it flows to a flat target.
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on the Fermi multiplet with charge 1 in order to define an unbroken symmetry. No extra

boundary symmetries remain. Thus the overall symmetry of the system is U(1)t.

This is compatible with the mirror description of the boundary condition to be the basic

C-twist compatible boundary condition for the free twisted hypermultiplet, i.e. Dirichlet

boundary conditions for twisted hypermultiplet scalars. The simplest U(1)t-charged, gauge-

invariant boundary local operator on the gauge theory side is the product of a (chiral)

boundary fermion and the boundary value of a hypermultiplet scalar. This is a natural

mirror for the fermionic chiral component of the twisted hypermultiplet which survives

Dirichlet boundary conditions.

The C-twist compatible boundary condition preserves U(1)t and the boundary symme-

try U(1)2d from the bulk gauge symmetry. The U(1)2d has a ‘t Hooft anomaly because of

the hypermultiplet boundary conditions. The U(1)t and U(1)2d symmetries have a mixed ‘t

Hooft anomaly at the boundary. U(1)t has no boundary ‘t Hooft anomaly. Bulk monopoles

brought to the boundary will now map to boundary monopoles.

It is not hard to propose a candidate mirror: an H-twist compatible Neumann boundary

condition for the twisted hypermultiplet, enriched by an extra free Fermi multiplet at the

boundary. We identify U(1)t with the global symmetry rotating both the bulk twisted

hypermultiplet and the boundary Fermi multiplet, while U(1)2d only acts on the boundary

Fermi multiplet. This choice precisely matches the anomalies of U(1)t and U(1)2d in the

mirror theory.

Notice that on both sides of the mirror symmetry relations we either find (twisted)

hypers with Dirichlet b.c. or (twisted) hypers with Neumann b.c. paired up with a Fermi

multiplet of the same charge.

Closely related mirror symmetry relations for boundary conditions were studied re-

cently in [21] and tested at the level of the index.

We can readily test the mirror symmetry at the level of the boundary VOA. On the

H-twisted side, the algebra AH [U(1),C2,C2] is built as the u(1) BRST reduction of the

product

Sb×Ff (4.5)

of a symplectic boson pair and a free complex fermion VOAs.

Denote the symplectic bosons as X,Y and complex fermions as χ, ψ, with OPE

X(z)Y (w) ∼
1

z − w
χ(z)ψ(w) ∼

1

z − w
(4.6)

The BRST charge involves the total u(1) current Jtot = XY − χψ which gives charge 1 to

X and χ and −1 to Y and ψ.

Bilinears XY , χψ, χY and Xψ of charge 0 for Jtot form a set of u(1|1)−1 Kac-Moody

currents.10 Indeed, the whole charge 0 sector of the algebra can be identified with the

u(1|1)−1 Kac-Moody algebra, say by matching characters. The other charge sectors trans-

forms as interesting modules for u(1|1)−1, but they will drop out of the BRST reduction.11

10The full set of bilinears actually forms a set of osp(2|2)1 currents, but we will not need that.
11The whole Sb×Ff can be seen as a sort of “WZW model” associated to u(1|1)−1, in a sense that we

will explain better in section 6.
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The u(1) BRST reduction thus acts directly on the u(1|1)−1 Kac-Moody algebra. As

we will see in detail shortly, it reduces it to a psu(1|1)−1 Kac-Moody algebra, generated by

two BRST-closed fermionic currents x = Xψ and y = Y χ with OPE

x(z)y(w) ∼
1

(z − w)2
(4.7)

This is the same as the VOA for the conjectural mirror: a Dirichlet boundary conditions

for a free twisted hypermultiplet!

This statement can be easily checked at the level of half indices/characters for the

VOA (and we will give an explicit derivation at the level of the VOA itself in the next

section). The character for the BRST reduction reads

(q; q)2∞

∮
dz

2πiz

(yzq
1
2 ; q)∞(y−1z−1q

1
2 ; q)∞

(zq
1
2 ; q)∞(z−1q

1
2 ; q)∞

= (yq; q)∞(y−1q; q)∞ (4.8)

The equality can be proven with the tools in [21].

4.4 A detailed verification of the duality

We have sketched above that the BRST reduction of two symplectic bosons with a pair of

complex fermions, under the U(1) action with current XY − χψ, should be the fermionic

current algebra. This represents the duality between U(1) with one hyper and one free

hyper, at the level of boundary algebras. In this section we will verify this in detail, by

explicitly calculating the BRST cohomology.

At a first pass, the BRST complex is obtained by adjoining to the symplectic boson

and free fermion system Sb×Ff a b-ghost and a c-ghost, of ghost numbers −1, 1 and spins

1, 0. The BRST operator is defined by

Qb = Jtot = XY − χψ (4.9)

Qc = 0 (4.10)

Qα =
∑ 1

n!
∂n
z c

∮
znJtot(z)α(0)dz, (4.11)

where α is any local operator in the Sb×Ff system. This is not quite correct, however,

as we should not include the c-ghost itself in the BRST complex, only its derivatives. The

constant c-ghost enforces gauge invariance for constant gauge transformations. The correct

definition of BRST reduction is obtained by adjoing to the charge 0 sector (Sb×Ff)0 of

Sb×Ff a pair of fermionic currents denoted b and ∂zc, with BRST operator defined by

equation (4.11).

To calculate this, we first need to describe more carefully the charge 0 sector (Sb×Ff)0

of Sb×Ff. We stated above that this algebra includes charge 0 bilinear currents XY , χψ,

Xψ, χY with the OPE of a u(1 | 1)−1 Kac-Moody algebra. It is not completely obvious,

however, that the algebra of charge 0 operators is generated by these bilinears;12 and

12For example, the charge 0 sector of just the symplectic bosons is not generated by the bilinears XY .

There are three operators of spin 2 in the charge 0 sector of the symplectic bosons, namely X∂zY , ∂zXY ,

and X2Y 2; whereas there are only two operators of spin 2 in the U(1) current algebra.
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furthermore the operators generated from these bilinears may satisfy relations which do

not occur in u(1 | 1)−1.

Let us now show that the charge zero sector (Sb×Ff)0 is generated as a vertex algebra

by the four u(1 | 1) currents. To see this, we first note that the charge 0 algebra is generated

by the operators X∂n
z Y , χ∂n

z ψ, X∂n
z ψ, χ∂

n
z Y . We need to show that these operators can

be obtained as iterated OPEs of the four bilinears which don’t have any derivatives.

Suppose, by induction, that all charge 0 bilinears with n − 1 derivatives are in the

subalgebra generated by the u(1 | 1)−1 currents. We will show that the charge 0 bilinears

with n derivatives are also in this subalgebra. To see this, we note that

χ(0)∂n
z ψ(0) =

∮
χ(0)ψ(0)χ(z)∂n−1

z ψ(z)z−1dz

X(0)∂n
z ψ(0) =

∮
X(0)ψ(0)χ(z)∂n−1

z ψ(z)z−1dz

+

∮
X(0)∂n−1

z ψ(0)χ(z)ψ(z)z−1dz

Y (0)∂n
z χ(0) =

∮
Y (0)χ(0)ψ(z)∂n−1

z χ(z)z−1dz

+

∮
Y (0)∂n−1

z χ(0)ψ(z)χ(z)z−1dz

X(0)∂n
z Y (0) =

∮
X(0)ψ(0)χ(z)∂n−1

z Y (z)z−1dz

−

∮
X(0)∂n−1

z Y (0)ψ(z)χ(z)z−1dz.

Each line expresses one of the bilinears with n derivatives in terms of the non-singular term

in the OPE between bilinears with n− 1 and fewer derivatives.

This completes the proof that the charge 0 sector (Sb×Ff)0 is a quotient of u(1 | 1)−1.

We let

Jtot = XY − χψ (4.12)

J̃ = XY + χψ. (4.13)

Note that JtotJ̃ ≃ z−2. Therefore these operators together form the currents for u(1)1 ×

u(1)1. We will decompose (Sb×Ff)0 (identified with its own vacuum module) as a module

over the currents given by Jtot, J̃ .

We let Jn =
∮
Jtotz

ndz, and J̃n =
∮
J̃zndz. These are operators acting on the vacuum

module for (Sb×Ff)0, where Jn, J̃n for n < 0 are raising operators and Jn, J̃n for n > 0

are lowering operators.

Let (Sb×Ff)00 denote the subspace of highest-weight vectors, that is, the elements of

the vacuum module of (Sb×Ff)0 killed by all the lowering operators Jn, J̃n for n > 0.

Then basic facts about the representation theory of the u(1) current algebra tells us that

the vacuum module for (Sb×Ff)0 is freely generated from (Sb×Ff)00 by an application of

the lowering operators Jn, J̃n for n < 0. That is,

(Sb×Ff)0 = (Sb×Ff)00[J−1, J−2, . . . , J̃−1, J̃−2, . . . ]. (4.14)
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Next, we need to compute the BRST cohomology. Looking at equation (4.11), we see

that the BRST operator on the charge 0 operators, with the b and ∂zc ghosts adjoined,

takes the form

Qb = Jtot (4.15)

QJ̃ = ∂zc. (4.16)

The vacuum module of the BRST reduction can be written

(Sb×Ff)BRST = (Sb×Ff)0[b−1, b−2, . . . , (∂zc)−1, (∂zc)−2, . . . ] (4.17)

= (Sb×Ff)00[J−1, J−2, . . . , J̃−1, J̃−2, . . . , b−1, b−2, . . . , (∂zc)−1, (∂zc)−2, . . . ].

(4.18)

The BRST operator transfroms bk into Jk and J̃k into (∂zc)k. The BRST operator is trivial

on the subspace (Sb×Ff)00 of highest weight vectors in the charge 0 sector of Sb×Ff.

From this it follows that the cohomology of (Sb×Ff)BRST is concentrated in ghost

number 0 and is isomorphic to (Sb×Ff)00, the space of highest-weight vectors in the charge

0 sector of Sb×Ff. Because the charge 0 algebra is generated by the two bosonic currents

Jtot, J̃ and the two fermionic currents

x = Xψ (4.19)

y = χY (4.20)

we find that the space (Sb×Ff)00 can be generated from the vacuum by the fermionic cur-

rents x, y. Since the BRST cohomology of the vacuum module is isomorphic to (Sb×Ff)00,

we deduce that the BRST cohomology must be some quotient of the algebra Fc of fermionic

currents.

Finally, we show that the vacuum module of Fc does not admit any non-trivial quo-

tients. The mode algebra of Fc is a tensor product of an infinite dimensional Clifford

algebra with the zero mode algebra, which is an exterior algebra on two variables. The

vacuum module is the trivial module for the exterior algebra, tensored with a Fock module

for the infinite dimensional Clifford algebra. This Clifford module clearly admits no non-

trivial quotients. This completes the argument that the BRST cohomology is isomorphic

to the algebra Fc of fermionic currents.

We have gone through this example in such great detail because it provides the

first non-trivial example of the main conjectures of this paper. The BRST quotient

(Sb×Ff)BRST is the algebra of boundary operators for U(1) with one hypermultiplet. We

have found that it is equivalent to the algebra of boundary operators for one free hyper,

which is the dual theory.

We have already shown that the self-Ext’s of the vacuum module of the fermionic

current algebra is the algebra of functions on C
2, which is the Higgs branch of one free

hyper. The fact that the boundary vertex algebras are compatible with the duality tells us

that the self-Ext’s of the vacuum module for (Sb×Ff)BRST is the same space, which is the
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Coulomb branch of U(1) with one hyper. This is the first non-trivial check of our proposal

for describing moduli of vacua in terms of boundary vertex algebras.

One aspect of this description of the Coulomb branch is somewhat remarkable. The

boundary VOA for U(1) with one hyper was described entirely in perturbative terms.

All boundary operators are functions of the fundamental fields, and the OPEs and BRST

operator can be derived from explicit semi-classical computations (see [22] for more details).

Even so, the boundary VOA contains enough information to recover the monopole operators

in the bulk, which are non-perturbative objects.

5 More elaborate examples of H-twist VOAs

In this section we study a sequence of examples of increasing complexity.

5.1 U(1) gauge theory with N flavors

The algebra AH [U(1),C2N ,C2N ] is built as a U(1) BRST coset of the product of N sets of

symplectic bosons Xa,Ya and complex fermions χi, ψi with OPE

Xa(z)Yb(w) ∼
δab

z − w
χi(z)ψj(w) ∼

δij
z − w

(5.1)

The BRST charge involves the total level 0 U(1) current XaYa + χiψi which gives charge

1 to Xa and χi and −1 to Ya and ψi.

We will denote the charge 0 sector of the VOA as u(N |N)1, as we expect it to be

generated by u(N |N)1 currents defined as bilinears XaYb, X
aψi, Yaχ

i, ψiχ
j . The u(N |N)1

subalgebra is clearly not the same as a u(N |N)1 Kac-Moody sub-algebra. For example, the

fermionic bilinears form an u(N)1 current algebra which includes an su(N)1 WZW simple

quotient of su(N)1 Kac-Moody.

The U(1) BRST coset removes two of the currents, leaving behind a vertex algebra

which contains a psu(N |N)1 current algebra. Again, we expect the vertex algebra to be

generated by the psu(N |N)1 currents and to be some quotient of the psu(N |N)1 Kac-

Moody algebra.

For general N , the psu(N |N)1 VOA has a U(1)C outer automorphism acting on the

two blocks of fermionic generators with charges ±1. We will see that for N = 2 this

symmetry group is enhanced.

For some values of N , we can also look at non-canonical choices of fermion representa-

tions. For example, we can consider AH [U(1),C8,C2(2)], involving a single set of complex

fermions of charge 2.

Typical operators in AH [U(1),C8,C2(2)] are the SU(4)−1 currents XaYb and the

fermionic generators XaXbψ and YaYbχ of dimension 3/2.

5.1.1 The T [SU(2)] theory

The case N = 2 is special because the corresponding gauge theory is expected to have a

low-energy enhancement U(1)C → SU(2)C . Indeed, this is the T [SU(2)] theory which plays
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a crucial role in S-duality for four-dimensional SU(2) gauge theory [11]. The symmetry

enhancement is crucial for that role and necessary for Geometric Langlands applications [8].

Looking at the boundary VOA we built for the H-twisted theory, we see that the two

blocks of fermionic generators have the same quantum numbers under the su(2)1× su(2)−1

bosonic subalgebra. As indicated above, we denote with su(2)1 the WZW VOA at level

1, which is a simple quotient of the Kac-Moody VOA su(2)1. The psu(2|2)1 algebra has

an SU(2)C outer automorphism and thus enjoys the full IR symmetry enhancement of the

bulk theory!

Index calculations show a remarkable structure for AH [U(1),C4,C4]. The central

charge of the VOA is −2 and coincides with the central charge of su(2)1 × su(2)−1, sug-

gesting that the VOA may be a conformal extension of that current sub-algebra. Indeed,

the character decomposes as

χpsu(2|2)1 =
∞∑

j=0

χ
(j)
SU(2)C

χ
(j)
su(2)−1

χ
(jmod 2)
su(2)1

(5.2)

We expect that conformal blocks for psu(2|2)1 should play the role of a kernel for

the SU(2) Geometric Langlands when coupled both to SU(2) flat connections through the

SU(2)C outer automorphism and to SU(2) bundles through the su(2)−1 current algebra.13

As discussed in [8], coupling a VOA with SU(2) global symmetry to an SU(2) flat con-

nection, as opposed to an SU(2) local system, requires some extra structure: a deformation

of the OPE involving coupling to a background holomorphic connection. In turn, this is

an infinitesimal version of a more general deformation psu(2|2)1 → d(2, 1,−Ψ)1 to a vertex

algebra which appears at certain junctions of boundary conditions in GL-twisted N = 4

SYM [7], and is associated to quantum Geometric Langlands duality.

The coincidence of our boundary VOA with the Ψ → ∞ limit of d(2, 1,−Ψ)1 is quite

remarkable, as the two VOAs are obtained by very different means. The coincidence will

become somewhat less surprising once we look at the mirror construction of the C-twist

boundary VOA, which can be continuously connected to the four-dimensional construction.

The naive VOA proposed in [8] can be identified with

Vold =
psu(2|2)1
su(2)1

(5.3)

Within the BRST complex defining AH [U(1),C4,C4], the coset reduces the four chiral

fermions to a u(1)2 lattice vertex algebra. Conversely, AH [U(1),C4,C4] can be interpreted

as an extension of Vold × su(2)1.

5.2 SU(2) gauge theory with N ≥ 4 flavors

This gauge theory has SO(2N)H global symmetry. The boundary gauge anomaly is 4−N ,

which we cancel with N − 4 doublets of Fermi multiplets.

13There are important subtleties to consider here concerning the global form of the gauge group, which will

be discussed in a separate publication [39]. In short, psu(2|2)1 can be coupled to SO(3) connections/bundles

by coupling them to the su(2)1 currents as well.
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Thus the algebra is AH [SU(2),C4N ,C4N−16], defined as the su(2) BRST quotient of

the symplectic bosons Za
α and fermions ζiα, α being the doublet index.

Simple gauge-invariant operators made as bilinears of symplectic bosons and fermions

generate an su(2N |2N − 8)−2 current algebra. That algebra has a Sugawara stress tensor

of central charge matching the central charge of AH [SU(2),C4N ,C4N−16]. It is not unrea-

sonable to conjecture that AH [SU(2),C4N ,C4N−16] coincides with su(2N |2N − 8)−2, to be

thought of as some quotient of the su(2N |2N − 8)−2 Kac-Moody algebra.

5.3 U(2) gauge theory with N ≥ 4 flavors

This gauge theory has SU(N)H ×U(1)C global symmetry.

The SU(2) gauge anomaly is 4 − N , which we cancel with N − 4 doublets of Fermi

multiplets. That leaves an anomaly for the diagonal U(1) subgroup in U(2). If we normalize

that in such a way that a fundamental representation has charge 1/2, then the residual

anomaly is −2. In order to cancel it, we add two more Fermi multiplets which are charged

only under the diagonal U(1).

The overall symmetry algebra is thus SU(N)H×U(1)C×SU(N−4)2d×SU(2)2d×U(1)2d.

The corresponding boundary VOA is AH [U(2),C4N ,C4N−16 ⊕ C
4(2)], defined as the

u(2) BRST quotient of the symplectic bosons Xa
α, Y

α
a , fermions χi

α, ψ
α
i , α being the doublet

index, and extra fermions ψ̃n, χ̃n in the determinant representations of U(2).

Simple operators made as U(2)-invariant bilinears of symplectic bosons X, Y and

fermions ψ, χ generate an u(N |N −4)−2 current algebra. The u(1) part of the BRST coset

will reduce that to su(N |N − 4)−2 and remove the χ̃nψ̃
n current. The bilinears χ̃nψ̃

m give

an su(2)1 WZW current algebra. The su(N |N − 4)−2 × su(2)1 currents are associated to

the SU(N)H × SU(N − 4)2d × SU(2)2d ×U(1)2d symmetries of the system.

Notice that the overall central charge of the boundary VOA is −2N + 2(N − 4) + 2−

4 × 2 = −14, which coincides with the central charge of su(N |N − 4)−2 × su(2)1. This

suggests the boundary VOA will be an extension of this product of vertex algebras, which

itself is a quotient of the product of su(N |N − 4)−2 × su(2)1 Kac-Moody algebras.

Operators involving an ǫαβ or ǫαβ tensors, of the schematic form XX, Xχ, χχ, etc.

need to be further dressed by ψ̃n in order to be gauge invariant. These operators transform

as dimension 3/2 anti-symmetric 2-index tensors of su(N |N − 4)−2 which are doublets

under the extra SU(2)1 rotating the n index of the extra fermions. They are also charged

under U(1)C . Another operator of opposite U(1)C charge arises from bilinears of Y , ψ

dressed by χ̃.

It is reasonable to expect these extra currents will generate the extension of

su(N |N − 4)−2 × su(2)1 to the boundary VOA.

The case N = 4 is special, as U(1)C should be enhanced to SU(2)C in the bulk. The

operators of the form ψ̃XX transform in antisymmetric fundamental tensors of SU(4)−2.

The operators of the form χ̃Y Y transform in antisymmetric anti-fundamental tensors of

SU(4)−2. These representations coincide, and could be rotated into each other by an

enhanced SU(2)C outer automorphism. Thus the VOA appears to enjoy the same symmetry

enhancement as the bulk QFT.
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All in all, AH [U(2),C16,C4(2)] includes an su(4)−2 ∼ so(6)−2 current algebra, an

su(2)1 current algebra and spin 3/2 fields transforming as vectors of so(6)−2, doublets of

su(2)1 and doublets of SU(2)C .

5.4 A boundary VOA for T [SU(3)]

The three-dimensional gauge theory which flows to T [SU(3)] is a U(1)×U(2) gauge theory

coupled to bifundamental hypermultiplets and 3 fundamentals of U(2) [11].

The corresponding system of symplectic bosons includes the U(1)-charged U(2) doublet

Xa, Ya and the three extra U(2) doublets Xi
a, Y

b
j .

The level of the total su(2) currents in u(2) is −4, which is precisely what is needed

for anomaly cancellation. We only need to worry about the levels of the u(1) current J1
and the diagonal u(1) J2 current in u(2):

J1 = XaYa

J2 =
1

2
(Xi

aY
a
i −XaYa) (5.4)

We have OPEs

J1(z)J1(w) ∼
−2

(z − w)2

J1(z)J2(w) ∼
1

(z − w)2

J2(z)J2(w) ∼
−2

(z − w)2
(5.5)

Notice the resemblance to a Cartan matrix for SU(3).

In order to correct that anomaly with a well-defined set of boundary degrees of freedom,

we include three complex fermions χ1, ψ1, χ
2, ψ2 and χ3, ψ3. We will define the shifted

total currents

J t
1 = XaYa + χ1ψ1 − χ2ψ2

J t
2 =

1

2
(Xi

aY
a
i −XaYa) + χ2ψ2 − χ3ψ3 (5.6)

with no anomaly. The bulk Coulomb branch (U(1)×U(1))o symmetry is identified with

the global part of the U(1) symmetries acting on the complex fermions.

Thus our proposed boundary VOA is the u(2) × u(1)-BRST quotient of the VOA of

eight symplectic bosons and three complex fermions. It has central charge −15.

The su(3)−2 currents

JSU(3) = Xi
aY

a
j −

δij
3
Xk

aY
a
k (5.7)

are obviously BRST closed.
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We also have an additional BRST closed u(1)3 current together with two vertex oper-

ators built from the same current:

J̃ = χ1ψ1 + χ2ψ2 + χ3ψ3

Õ+ = χ1χ2χ3

Õ− = ψ1ψ2ψ3 (5.8)

These are analogue to the su(2)1 generators in the T [SU(2)] boundary VOA.

The current algebra su(3)−2×u(1)3 has central charge −15. It is reasonable to assume

the full VOA is an extension of that current algebra.

We can find three natural BRST-closed operators transforming in a fundamental of

su(3)−2 with charge −1 under u(1)3:

Oi
1 = ψ1X

aXi
a

Oi
2 = ψ2ǫ

abYbX
i
a

Oi
3 = ψ3ǫ

ijkǫabY
a
j Y

b
k (5.9)

These three operators all have dimension 3
2 . They have (U(1)×U(1))o charges which

precisely agree with a potential promotion of (U(1)×U(1))o to an SU(3)o which would

make them into an SU(3)o triplet Oi
A. Another dual triplet OA

i can be built in the same

manner using χ fermions.

The OPE of Oi
A and Oj

B contain another set of anti-fundamental operators of dimension

2 which we can denote as O
[ij]
[AB], distinct from OA

i :

O
[ij]
[12] = ψ1ψ2ǫ

abXi
aX

j
b

O
[ij]
[23] = ψ2ψ3ǫ

ijkYbY
b
k

O
[ij]
[31] = ψ3ψ1ǫ

ijkǫabX
aY b

k (5.10)

A set of fundamental operators O
[AB]
[ij] of dimension 2 can be defined in a similar manner

using χ fermions.

The Oi
A and O

[AB]
[ij] operators are related by the action of Õ± and so are OA

i and O
[ij]
[AB].

We can denote as u(1)3 the vertex algebra defined by u(1)3 together with the associated

vertex operators of charge q and dimension 3
2q

2. This has modules Mi[u(1)3] formed by

the vertex operators of charge q + i
3 .

We may conjecture that the operators above generate the full boundary VOA, as a

conformal extension of su(3)−2 × u(1)3.

We observe that the character decomposes accordingly as

χ =
∞∑

λ

χ
(λ)
SU(3)C

χ
(λ)
su(3)−2

χ
(λmod 3)
u(1)3

(5.11)

where λ are weights of su(3) and λmod 3 uses the identification of the weight modulo root

lattice with the center Z3.
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5.5 A VOA for T [SU(N)]

The three-dimensional gauge theory which flows to T [SU(N)] is a linear quiver, with

U(1) × U(2) × · · · × U(N − 1) gauge fields coupled to bifundamental hypermultiplets and

N fundamentals of U(N − 1).

We can denote the symplectic bosons between the i-th and (i+1)-th nodes as matrices

Xi and Yi. We will denote as ǫi the ǫ tensor at the i-th node and omit indices when

contractions are unique.

The level of the total su(n) currents in u(n) at each node is −2n, which is precisely

what is needed for anomaly cancellation. We only need to worry about the levels of the

u(1) currents Jn, diagonal components in u(n):

Jn =
1

n
(Xn ·Yn −Yn−1 ·Xn−1) (5.12)

We have non-trivial OPEs

Jn(z)Jn(w) ∼
−2

(z − w)2

Jn(z)Jn+1(w) ∼
1

(z − w)2
(5.13)

Notice the resemblance to a Cartan matrix for SU(N).

In order to correct that anomaly with a well-defined set of boundary degrees of freedom,

we include N complex fermions χi, ψi, i = 1, · · ·N . We will define the shifted total currents

J t
n =

1

n
Tr(Xn ·Yn −Yn−1 ·Xn−1) + χnψn − χn+1ψn+1 (5.14)

with no anomaly.

The bulk Coulomb branch U(1)N−1
C symmetry is identified with the global part of the

U(1) symmetries acting on the complex fermions.

Thus we propose to take the U(1)N−1-BRST quotient of the above combination of

symplectic bosons and complex fermions.

The su(N)1−N currents

JSU(N) = XN−1 ·YN−1 −
1

N
TrXN−1 ·YN−1 (5.15)

are obviously BRST closed.

We also have an additional BRST closed u(1)N current together with two vertex op-

erators built from the same current:

J̃ = χiψi

Õ+ =
∏

i

χi

Õ− =
∏

i

ψi (5.16)

These are analogue to the su(2)1 generators in the T [SU(2)] case.
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We can find N natural BRST-closed operators transforming in a fundamental of

su(N)1−N with charge −1 under u(1)N :

O1 = ψ1X1 ·X2 · · ·XN−1

O2 = ψ2(ǫ2 ·Y1) ·X2 · · ·XN−1

O3 = ψ3(ǫ3 · (Y2 ∧Y2) · ǫ2) ·X3 · · ·XN−1

· · · = · · · (5.17)

These operators all have dimension N
2 . They have U(1)N−1

C charges which precisely agree

with a potential promotion of U(1)N−1
C to an SU(N)C which would make them into a

SU(N)C × su(N)1−N bi-fundamental multiplet Oi
A of charge −1 under u(1)N .

The OPE of multiple Oi
A will contain operators O

[i1···in]
[A1···An]

involving n of the ψi, trans-

forming in antisymmetric powers of the fundamentals of SU(N)o × su(N)1−N .

Dual operators O
[A1···An]
[i1···in]

can be built in the same manner, but are obtained from the

previous set by action of Õ±.

We may conjecture that the operators above generate the full boundary current algebra.

We expect the character to decompose as

χ =
∞∑

λ

χ
(λ)
SU(N)C

χ
(λ)
su(N)1−N

χ
(λmodN)
u(1)N

(5.18)

where λ are weights of su(N) and λmodN uses the identification of the weight modulo

root lattice with the center ZN .

6 The C-twist of standard N = 4 gauge theories

Consider a standard N = 4 gauge theory with gauge group G, matter fields in a symplectic

representation M .

Upon C-twist, the bulk topological field theory can be identified with a Chern-Simons

theory [22] based on a Lie algebra

l = g⊕ g∗ ⊕ΠM (6.1)

with non-trivial brackets

[ta, tb] = f c
abtc

[ta, t̃
b] = f b

act̃
c

[ta,m
i] = T ik

a mjωkj

{mi,mj} = T ij
a t̃a (6.2)

and level

Kab = kab Ka
b = δab Kij = ωij (6.3)

We included a possible one-loop shift kab of the level for the compact part of the group.

The level shift is the anomaly for the G boundary symmetry of the Dirichlet boundary
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conditions. It is due to the chiral boundary conditions for the bulk fermions. The same

boundary anomaly, though with opposite sign, occurs for the gauge group at Neumann

boundary conditions and manifests itself in the anomaly of the Kac-Moody currents in-

volved in the BRST reduction defining the H-twist boundary VOA. This allows us to

immediately determine the level kab: it receives a −2h contribution from the gauge multi-

plet fermions and positive contributions from the hypermultiplet fermions proportional to

their quadratic Casimirs.14

The gauge group is a bundle over the compact form of the gauge group.

6.1 Boundary conditions and VOA

The simplest boundary condition we can conjecture being deformable consists of Dirichlet

boundary conditions for both the gauge fields and the vectormultiplet scalars. This corre-

sponds to a standard WZW boundary condition for the bulk Chern-Simons theory [22].

As in more familiar situations, the boundary VOA AC [G,M, 0] should be, essentially

by definition, the WZW model associated to lK .

A WZW model current algebra is not quite the same as the Kac-Moody algebra, even

in the usual case of compact unitary gauge group:

• The null vectors of the Kac-Moody algebra are removed.

• Extra integrable modules for the Kac-Moody algebra are added in when the group is

not simply connected. The modules are labelled by characters of the gauge group.

Both the removal of null vectors and the extension by additional modules can be interpreted

as the contribution of boundary monopole operators to the boundary VOA.

For example, a U(1)1 Chern-Simons theory should support a chiral free fermion at a

WZW boundary. This is an extension of a u(1)1 current algebra by modules of integral

charge. We can denote the extension as u(1)1.

Similarly, a U(1)2 Chern-Simons theory should support a u(1)2 ≃ su(2)1 WZW model

at a WZW boundary. This is an extension of a u(1)2 current algebra by modules of even

integral charge; and so on.

We expect the same to happen for the WZW model associated to lK . Half-index

calculations allow us to write down the character of such WZW models, but not to derive

the precise form of the VOA.

A more careful analysis presents the VOA as the Dolbeault homology of the affine

Grassmanian, valued in certain bundles associated to the m and t̃ generators of the Lie

algebra [22]. It should be possible to fully compute the VOA structure from such definition.

We leave it to future work.

14We can check that this level satisfies the appropriate constraints:

f
d
a[bkc]d = 0

f
d
abδ

c
d = f

c
adδ

d
b

T
ik
a ωktω

tj = T
jk
a ωktω

ti = T
ij

d δ
d
a . (6.4)

– 32 –



J
H
E
P
0
5
(
2
0
1
9
)
0
1
8

Dirichlet boundary conditions for the gauge theory can be modified to Nahm pole

boundary conditions, where the gauge multiplet scalars diverge at the boundary as some

reference solutions to Nahm equations. These should descend to “oper-like” boundary

conditions for the CS theory.

Again, we leave a discussion of the boundary VOA for these boundary conditions to

future work. Brane constructions suggest that these boundary conditions will play an

important role in mirror symmetry.

6.2 Half-index calculations

If we ignored monopole contributions, the half-index for Dirichlet b.c. would simply be

II0C(q; y) =

∏
α∈w(M)

∏
n>0(1− yαqn)

∏
α∈w(g)

∏
n>0(1− yαqn)2

(6.5)

The addition of monopole sectors modifies that to

II0C(q; y; s) =
∑

µ∈Λw

sµab(−q
1
2 )k(µ,µ)

∏
α∈w(M)

∏
n>0(1− yαqn+(µ,α))

∏
α∈w(g)

∏
n>0(1− yαqn+(µ,α))2

(6.6)

where k is the quadratic form which encodes the boundary ’t Hooft anomaly for G and

s a fugacity for the U(1)t charges in case the gauge group has Abelian factors. One can

recover this formula as a localization formula over the affine Grassmanian [22].

It is not hard to test some simple cases of this formula. For example, applied to a U(1)

gauge theory coupled to a single hypermultiplet of charge 1, it gives an answer

∞∑

m=−∞

sm(−q
1
2 )m

2
∏

n>0

(1− qn+1−my)(1− qn+1+my)

(1− qn+1)2
(6.7)

which coincides with the vacuum character of a simple VOA: Sb×Ff. This is reasonable:

it indicates that Dirichlet b.c. are mirror to Neumann b.c. for the mirror hyper, dressed by

a decoupled free complex fermion so to produce the expected u(1|1)1 boundary currents.

The simplest H-twisted boundary condition adds a Fermi multiplet for each hypermul-

tiplet, leading to a u(1)n BRST quotient of (Sb×Ff)N . The resulting VOA has N pairs of

fermionic currents produced as gauge-invariant bilinears of fermions and symplectic bosons

of opposite charges. It also has (N−n) pairs of bosonic currents. Inspection and index cal-

culations strongly suggest an identification of such coset VOA with the C-twist of Dirichlet

b.c. for the mirror theory.15

6.3 Relation to constructions in GL-twisted four-dimensional gauge theory

It is possible to lift pure 3d N = 4 gauge theory to a configuration of four-dimensional

N = 4 gauge theory compactified on a segment, with Neumann boundary conditions.

15Recall that the mirror of an Abelian gauge theory with n gauge fields and N hypermultiplets and an

n × N matrix of integral charges Q is mirror to a gauge theory with matrix of charges Q! = Q⊥. The

statement holds if the gauge charges are minimal, i.e. if we can find an (N − n) × N matrix q of integral

“flavor charges” such that det(Q, q) = 1. Then the mirror charges are (q!, Q!) = (Q, q)−1.
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The four-dimensional theory has a continuous family of twists, parameterized by a

“topological gauge coupling” Ψ [9]. The C-twist of the 3d theory lifts to the Ψ → ∞ limit

of the four-dimensional twisted theory. The configuration with finite Ψ, though, make

sense and can be considered a further deformation of the 3d TFT.

Some boundary conditions for the 3d theory can also be lifted to the four-dimensional

setup, by considering a half-strip configuration, with Neumann boundary conditions on the

semi-infinite sides and Dirichlet or Nahm boundary conditions at the finite side. Appro-

priate junctions will have to be selected at the corners of the strip [7, 12].

We can attempt to use the VOA technology of [7, 12] to identify a VOA associated to

such finite-Ψ deformation of the 3d TFT. The general principle is that the VOA should

be related in a specific way to the VOAs associated to the two junctions at the corners of

the strip.

The precise relation is only known when the boundary condition on the finite side of

the strip is a Nahm boundary condition. Then the finite-Ψ vertex algebra is a specific

extension of a product W g
Ψ−h ×W g

−Ψ−h of two W-algebras, obtained as a regular Drinfeld-

Sokolov reduction of the corresponding g Kac-Moody algebras. The extension involves

certain products of degenerate modules forW g
Ψ−h×W g

−Ψ−h. These modules have arbitrarily

negative dimension, which makes the resulting VOA unwieldy. Still, it may offer a useful

starting point to understand the C-twist of the analogue of Nahm pole boundary conditions

for the 3d gauge theory.

When the finite side of the strip supports Dirichlet boundary conditions, the correct

prescription is unknown. The corners of the strip naively support a product of Kac-Moody

algebras gΨ−h × g−Ψ−h. This naive answe has a neat Ψ → ∞ limit which matches the

perturbative approximation to our boundary VOAs: the diagonal combination of these

currents gives the level −2h currents for the t generators, while the anti-diagonal goes in

the Ψ → ∞ limit to the t̃ generators. It would be nice to extend these consideration to the

full boundary VOA.

The lift to four dimensions and deformation to finite Ψ is possible in the presence

of matter as well, but only if the matter can be organized into two representations M (1)

and M (2) which can be used as fermionic generators to extend a g to two super-algebras

g(1) and g(2).

Then the appropriate VOAs should be built as above from Kac-Moody algebras (or

associated W-algebras) of the form g
(1)

Ψ−h(1) × g
(2)

−Ψ−h(2) .

It would be nice to explore these points further.

7 Open questions and other speculations

We may conclude with a few extra open problems:

1. There are a variety of “exotic” 3d N = 4 theories [40, 41], and Chern-Simons theories

with even more supersymmetry, such as the ABJM theory [42]. These theories can

be twisted [43] and may have interesting holomorphic boundary conditions. It would

be nice to study them.
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2. Two-dimensional systems with (0, 4) supersymmetry are quite constrained. It is

tricky, but possible [44], to write down interactions between (0, 4) Fermi multiplets

and other multiplets called (0, 4) hypermultiplets and (0, 4) twisted hypermultiplets.

Similar couplings also exist when the 2d (0, 4) hypermultiplets or twisted hypermul-

tiplets are replaced by boundary values of the corresponding 3d N = 4 multiplets.

This may allow one to define richer (0, 4) Neumann boundary conditions, where the

bulk matter fields are coupled to, say, combinations of (0, 4) Fermi multiplets and

(0, 4) twisted hypermultiplets in various representations of the bulk gauge group.

Of course, it is not obvious that such boundary conditions should be deformable in

a manner compatible with topological twists. We can imagine, though, a speculative

setup where (0, 4) 2d twisted hypermultiplets combine with the bulk vectormultiplets

in such a way as to give at the boundary a system of ghosts for a super-Lie algebra

ĝ which extends g by some fermionic generators originating from the 2d twisted

hypermultiplets.

In such a situation, the bulk hypermultiplet representation M might also be extended

to a representation M̂ of ĝ, involving symplectic bosons in M plus extra complex

fermions originating from the (0, 4) Fermi multiplets. Then the boundary VOA might

take the form of an ĝ coset.
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