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Abstract

In this paper we mainly study the vertex operator algebra CVA(e, f) generated by two

Ising vectors e and f with 〈e, f〉 = 5
210

. We prove CVA(e, f) is isomorphic to the 6A-algebra

U6A constructed in [LYY]. We also discuss the cases 〈e, f〉 = 1
4 ,

1
25
, 0 and the case 〈e, f〉 = 1

28

with (τeτf )
4 = 1.

1 Introduction

In the study of the moonshine vertex operator algebra (VOA) V ♮ constructed in [FLM], Dong, et al.

in [DMZ] showed that V ♮ contains 48 Virasoro vectors, each Virasoro vector generates a Virasoro

vertex operator algebra isomorphic to L(1
2
, 0) in V ♮ and L(1

2
, 0)⊗48 is a conformal subalgebra of

V ♮. Such a Virasoro vector is called an Ising vector. Later, Miyamoto in [M1] constructed a τ -

involution τe for each Ising vector e and showed that each axis of the monstrous Griess algebra in

[C] is essentially a half of an Ising vector e and τe is a 2A-involution of the Monster simple group

M constructed by Griess [G]. It was proved in [C] that the conjugacy class of the product of two

2A-involutions ττ ′ is one of the nine classes 1A, 2A, 3A, 4A, 5A, 6A, 4B, 2B and 3C in M and the

inner product of the axis eτ , eτ ′ is uniquely determined by the conjugacy class. The above result is

listed in terms of Ising vector and τ -involution as follows:

*The author is supported by the NSFC No. 11971167 and is partially supported by the STCSM No. 18dz2271000.
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〈τeτf 〉
M 1A 2A 3A 4A 5A 6A 4B 2B 3C

〈e, f〉 1/4 1/25 13/210 1/27 3/29 5/210 1/28 0 1/28

A VOA V = ⊕∞
n=0Vn is of moonshine type if dimV0 = 1 and V1 = 0. The inner product of any

two Ising vectors of a moonshine type VOA was determined in [M2] [S] and these inner products

are just given in the table. Lam, et al. in [LYY], [LYY1] constructed nine coset subalgebras UnX

of the lattice vertex operator algebra V√
2E8

corresponding to the type nX of 〈τeτf〉
M

. Moreover,

each UnX is generated by two Ising vectors whose inner product is exactly those given in the table.

It is natural to ask whether the subVOA generated by any two Ising vectors in a moonshine type

VOA is isomorphic to one of UnX . For the cases 〈e, f〉 = 13
210

, 〈e, f〉 = 3
29

and 〈e, f〉 = 1
28

with

|τeτf | = 3, the answer is yes [M2] [SY][Zh]. In this paper, we give a positive answer for all other

cases except the case 〈e, f〉 = 1
27

.

We now give a brief review of our main ideas. Let V = ⊕∞
n=0Vn be a moonshine type VOA

and e, f be two Ising vectors in V . Let CVA(e, f) be the subVOA generated by e and f . First we

study the Griess algebra CVA(e, f)2. We show that CVA(e, f)2 always contains a set of mutually

orthogonal conformal vectors such that their sum is the Virasoro element of CVA(e, f) and the

central charges of these conformal vectors are all coming from the unitary series

c = cm = 1−
6

(m+ 2)(m+ 3)

where m ∈ {1, 2, 3, ...}. Such a conformal vector generates a simple Virasoro VOA isomorphic

to L(cm, 0) inside CVA(e, f). Then we use representation theory of L(cm, 0) to determine the

structure of CVA(e, f). Though we used similar ideas as in [Zh], the arguments here for the case

〈e, f〉 = 5
210

are more complicated. Unfortunately, the idea we used in this paper does not work

for the case 〈e, f〉 = 1
27

since in this case we cannot decompose the Virasoro element into a sum

of mutually orthogonal conformal vectors coming from the minimal series. So we will not discuss

it in this paper.

The paper is organized as follows. In Section 2, we review some basic notions and some results

needed later. Section 3 is the main part. First we study the case 〈e, f〉 = 5
210

and prove that in this

case the VOA CVA(e, f) is isomorphic to the 6A-algrebra U6A. Then we study other cases.

2 Preliminary

This section is mostly expository. We recall basic definitions of various notions on vertex operator

algebras. We also give a brief review of some results about quantum dimensions and quantum

Galois theory from [DM],[DLM3],[DJX], the unitary series [DMZ], [W] of the Virasoro algebras.

In addition, we discuss the classification of the Griess algebras generated by two Ising vectors [S].

2.1 Basics

Let (V, Y, 1, ω) be a vertex operator algebra and let Y (v, z) =
∑

n∈Z vnz
−n−1 denote the vertex

operator of V for v ∈ V , see [B].
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Definition 2.1. A vertex operator algebra V is said to be CFT type if V = ⊕n∈Z+
Vn and V0 = C1.

Definition 2.2. An automorphism g of a vertex operator algebra V is a linear isomorphism of V
satisfying g(ω) = ω and gY (v, z)g−1 = Y (gv, z) for any v ∈ V . We denote by Aut(V ) the group

of all automorphisms of V .

For a subgroup G ≤ Aut (V ) the fixed point set V G = {v ∈ V |g (v) = v, ∀g ∈ G} has a vertex

operator algebra structure.

Let g be an automorphism of a vertex operator algebra V of order T . Denote the decomposition

of V into eigenspaces of g as:

V = ⊕r∈Z/TZV
r

where V r =
{
v ∈ V |gv = e2πir/T v

}
.

Definition 2.3. A weak g-twisted V -module M is a vector space with a linear map

YM :V → (EndM) {z}

v 7→ YM (v, z) =
∑

n∈Q
vnz

−n−1 (vn ∈ EndM)

which satisfies the following: for all 0 ≤ r ≤ T − 1, u ∈ V r, v ∈ V , w ∈ M ,

YM (u, z) =
∑

n∈− r
T
+Z

unz
−n−1,

ulw = 0 for l ≫ 0,

YM (1, z) = IdM ,

z−1
0 δ

(
z1 − z2

z0

)
YM (u, z1) YM (v, z2)− z−1

0 δ

(
z2 − z1
−z0

)
YM (v, z2) YM (u, z1)

= z−1
2

(
z1 − z0

z2

)−r/T

δ

(
z1 − z0

z2

)
YM (Y (u, z0) v, z2) , (2.1)

where δ (z) =
∑

n∈Z z
n and all binomial expressions (here and below) are to be expanded in

nonnegative integral powers of the second variable.

We use Z+ to denote the set of nonnegative integers.

Definition 2.4. A g-twisted V -module is a weak g-twisted V -module M which carries a C-grading

induced by the spectrum of L(0) where L(0) is the component operator of Y (ω, z) =
∑

n∈Z L(n)z
−n−2.

That is, we have M =
⊕

λ∈C Mλ, where Mλ = {w ∈ M |L(0)w = λw}. Moreover, dimMλ is

finite and for fixed λ, M n
T
+λ = 0 for all small enough integers n.
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Definition 2.5. An admissible g-twisted V -module M = ⊕n∈ 1

T
Z+
M (n) is a 1

T
Z+-graded weak

g-twisted module such that umM (n) ⊆ M (wtu−m− 1 + n) for homogeneous u ∈ V and

m,n ∈ 1
T
Z.

If g = IdV we have the notions of weak, ordinary and admissible V -modules [DLM1]. From

now on, if we say M is a V -module, we mean M is an ordinary V -module.

Definition 2.6. A vertex operator algebra V is called g-rational if the admissible g-twisted module

category is semisimple. V is called rational if V is 1-rational.

We say V is simple if as a V -module, V is irreducible. If V is both rational and CFT type, then

it is easy to see that V is simple.

Definition 2.7. A vertex operator algebra V is called C2-cofinite if dimV/C2(V ) < ∞, where

C2(V ) = 〈u−2v|u, v ∈ V 〉.

It is proved in [DLM1] that if V is rational, then there are finitely many inequivalent irreducible

admissible modulesM0,M1, . . . ,Md and each irreducible admissible module is an ordinary module.

Each M i has weight space decomposition

M i = ⊕n∈Z+
M i

λi+n,

where λi ∈ C is a complex number such that M i
λi

6= 0 and M i
λi+n is the eigenspace of L(0)

with eigenvalue λi + n. The λi is called the conformal weight of M i. If V is both rational and

C2-cofinite, then each λi and the central charge of V are rational numbers [DLM2].

Definition 2.8. A vertex operator algebra V is said to be regular if any weak V -module M is a

direct sum of irreducible V -modules.

It is shown in [KL] and [ABD] that the regularity is equivalent to rationality and C2-cofiniteness.

2.2 Invariant bilinear form

Let M = ⊕λ∈CMλ be a V -module. The restricted dual of M is defined by M ′ = ⊕λ∈CM
∗
λ where

M∗
λ = HomC (Mλ,C) . It is proved in [FHL] that M ′ = (M ′, YM ′) is naturally a V -module such

that

〈YM ′ (v, z) f, u〉 =
〈
f, YM

(
ezL(1)

(
−z−2

)L(0)
v, z−1

)
u
〉
,

for v ∈ V, f ∈ M ′ and u ∈ M , and (M ′)′ ∼= M . Moreover, if M is irreducible, so is M ′. A

V -module M is said to be self-dual if M ∼= M ′.

Definition 2.9. A bilinear form 〈 , 〉 on a V -module M is said to be invariant if it satisfies the

condition

〈Y (a, z)u, v〉 = 〈u, Y (ezL(1)(−z−2)L(0)a, z−1)v〉

for a ∈ V, u, v ∈ M .
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The following result about invariant bilinear forms on V is from [L]:

Theorem 2.10. The space of invariant bilinear forms on V is isomorphic to the space

(V0/L (1) V1)
∗ = HomC (V0/L (1)V1,C) .

In particular, if V is a simple vertex operator algebra of CFT type with V1 = 0, then there is a

unique nondegenerate invariant bilinear form 〈 , 〉 on V satisfying 〈1, 1〉 = 1.

2.3 Intertwining operators and fusion rules

Definition 2.11. Let (V, Y ) be a vertex operator algebra and let (M i, Y i) , (M j , Y j) and
(
Mk, Y k

)

be three V -modules. An intertwining operator of type

(
Mk

M i M j

)
is a linear map

Y (·, z) : M i → Hom
(
M j , Mk

)
{z}

u 7→ Y (u, z) =
∑

n∈Q
unz

−n−1

satisfying:

(1) For any u ∈ M i and v ∈ M j , unv = 0 for n sufficiently large;

(2) Y(L(−1)v, z) =
(

d
dz

)
Y (v, z) for v ∈ M i;

(3) (Jacobi Identity) For any u ∈ V, v ∈ M i,

z−1
0 δ

(
z1 − z2

z0

)
Y k (u, z1)Y (v, z2)− z−1

0 δ

(
−z2 + z1

z0

)
Y (v, z2) Y

j (u, z1)

= z−1
2

(
z1 − z0

z2

)
Y
(
Y i (u, z0) v, z2

)
.

The space of all intertwining operators of type

(
Mk

M i M j

)
is denoted by IV

(
Mk

M i M j

)
. Without

confusion, we also denote it by Iki,j. Let Nk
i, j = dim Iki,j . These integers Nk

i,j are called the fusion

rules.

Let V 1 and V 2 be vertex operator algebras. Let {M i , i = 1, 2, 3} be V 1-modules, and {N i,

i = 1, 2, 3} be V 2-modules. Then {M i ⊗ N i, i = 1, 2, 3} are V 1 ⊗ V 2-modules by [FHL]. The

following property was given in [ADL]:

Proposition 2.12. If NM3

M1,M2 < ∞ or NN3

N1,N2 < ∞, then

NM3⊗N3

M1⊗N1,M2⊗N2 = NM3

M1,M2NN3

N1,N2.

Definition 2.13. Let M1 and M2 be V -modules. A fusion product for the ordered pair (M1,M2) is

a pair (M,Y (·, z)) which consists of a V -module M and an intertwining operator Y (·, z) of type
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(
W

M1 M2

)
satisfies the following universal property: For any V -moduleW and any intertwining

operator I (·, z) of type

(
W

M1 M2

)
, there exists a unique V -homomorphism φ from M to W

such that I (·, z) = φ ◦ Y (·, z) .

From the definition it is easy to see that if a fusion product of M1 and M2 exists, it is unique

up to isomorphism. In this case, we denote the fusion product by M1 ⊠V M2.

Definition 2.14. Let V be a simple VOA. A simple V -module M is called a simple current if for

any irreducible V -module W , M ⊠V W exists and is also a simple V -module.

2.4 Quantum dimensions and quantum Galois theory

Now we recall quantum Galois theory and quantum dimensions from [DM], [DLM3] and [DJX].

For a subgroup G ≤ Aut(V ), the fixed point set V G = {v ∈ V |g(v) = v, for any g ∈ G} has

a vertex operator algebra structure. By [DM] [DLM3], we have the following:

Theorem 2.15. Suppose that V is a simple vertex operator algebra and that G is a finite group of

automorphisms of V . Then the following hold:

(i) V = ⊕χ∈Irr(G)V
χ, where V χ is the subspace of V on which G acts according to the character

χ. Each V χ is nonzero;

(ii) For χ ∈ Irr (G), each V χ is a simple module for the G-graded vertex operator algebra

CG⊗ V G of the form

V χ = Mχ ⊗ Vχ,

where Mχ is the simple G-module affording χ and where Vχ is a simple V G-module.

(iii) The map Mχ 7→ Vχ is a bijection from the set of inequivalent simple G-modules to the set

of inequivalent simple V G-modules which are contained in V .

Now we recall the notion of quantum dimensions from [DJX]. Let M = ⊕n∈Z+
Mλ+n be a

V -module. The formal character of M is defined to be

chqM = trMqL(0)−c/24 = qλ−c/24
∑

n∈Z+

(dimMλ+n)q
n.

It is proved in [Z] and [DLM2] that chqM converges to a holomorphic function on the domain

|q| < 1 if V is C2-cofinite. We sometimes also use ZM(τ) to denote the holomorphic function

chqM with variable τ in the complex upper half-plane H and q = e2πiτ . By [DJX], we have the

following:

Definition 2.16. Let M be a V -module such that ZV (τ) and ZM(τ) exist. The quantum dimension

of M over V is defined as

q dimV M = lim
y→0

ZM(iy)

ZV (iy)
,

6



where y is real and positive. Sometimes we use an alternative definition which involves the q-

characters:

q dimV M = lim
q→1−

chqM

chqV
.

The following results are obtained in [DJX], [ADJR]:

Proposition 2.17. Let V be a rational and C2-cofinite simple vertex operator algebra of CFT type

with V ∼= V ′. Let M0, M1, · · · , Md be all the inequivalent irreducible V -modules with M0 ∼= V .

Suppose the conformal weights of M i (1 ≤ i ≤ d) are positive. Then a V -module M i is a simple

current if and only if q dimV M i = 1.

Theorem 2.18. Let V be a rational and C2-cofinite simple vertex operator algebra. Assume V is

g-rational and the conformal weight of any irreducible g-twisted V -module is positive except for

V itself for all g ∈ G. Then

q dimV G Vχ = dimWχ.

Remark 2.19. Let U and V be vertex operator algebras under the same assumption of Proposition

2.17, M be a U-module and N be a V -module. Then

q dimU⊗V M ⊗N = q dimU M · q dimV N.

2.5 The unitary series of the Virasoro VOAs

Let

cm := 1−
6

(m+ 2)(m+ 3)
, m = 1, 2, . . . ,

h(m)
r,s :=

[r(m+ 3)− s(m+ 2)]2 − 1

4(m+ 2)(m+ 3)
, 1 ≤ s ≤ r ≤ m+ 1.

L(cm, h
(m)
r,s ) is the irreducible highest weight representation of the Virasoro algebra L with highest

weight
(
cm, h

(m)
r,s

)
. It is shown in [W] that L(cm, 0) is a rational VOA and L(cm, h

(m)
r,s ), 1 ≤ s ≤

r ≤ m+1, are all irreducible L(cm, 0)-modules. This is the so-called unitary series of the Virasoro

VOAs.

The fusion rules among L(cm, 0)-modules are computed in [W] and given by

L(cm, h
(m)
r1,s1

)⊠ L(cm, h
(m)
r2,s2

) =
∑

i∈I,j∈J
L(cm, h

(m)
|r1−r2|+2i−1,|s1−s2|+2j−1), (2.2)

where

I = {1, 2, . . . ,min{r1, r2, m+ 2− r1, m+ 2− r2}}

J = {1, 2, . . . ,min{s1, s2, m+ 3− s1, m+ 3− s2}}.

7



Definition 2.20. Let V be a VOA. A vector e ∈ V2 is called a conformal vector with the central

charge ce if it satisfies e1e = 2e and e3e =
ce
2
1. Then the operators Le

n := en+1, n ∈ Z, satisfy the

Virasoro commutation relation

[Le
m, L

e
n] = (m− n)Le

m+n + δm+n, 0
m3 −m

12
ce

for m, n ∈ Z. A conformal vector e ∈ V2 with the central charge 1
2

is called an Ising vector if e
generates the simple Virasoro vertex operator algebra L(1

2
, 0).

The fusion rules among L(cm, 0)-modules give rise to an involutive automorphism of a VOA.

Theorem 2.21 ([M1]). Let V be a VOA and e ∈ V be a simple Virasoro vector with a central

charge cm. Denote by Ve[h
(m)
r,s ] the sum of irreducible VA(e) ∼= L(cm, 0)-submodules isomorphic

to L(cm, h
(m)
r,s ), 1 ≤ s ≤ r ≤ m+ 1. Then the linear map

τe =

{
(−1)r+1 on Ve[h

(m)
r,s ] if m is even,

(−1)s+1 on Ve[h
(m)
r,s ] if m is odd,

defines an automorphism of V called the τ -involution associated to e.

We will later consider conformal vectors with central charge 1/2 and 7/10. So we give the

τ -involution associated to c = 1/2 and c = 7/10 conformal elements precisely. For an Ising vector

e ∈ V , one has

V = Ve[0]⊕ Ve[1/2]⊕ Ve[1/16].

By Theorem 2.21, the linear map τe on V is defined in the following way:

τe(v) =

{
1 v ∈ Ve[0]⊕ Ve[1/2],

−1 v ∈ Ve[1/16].

For a conformal vector u ∈ V with a central charge 7/10, we have

V = Vu[0]⊕ Vu[3/2]⊕ Vu[1/10]⊕ Vu[3/5]⊕ Vu[7/16]⊕ Vu[3/80].

The τ -involution is defined as

τu(v) =

{
1 v ∈ Vu[0]⊕ Vu[3/2]⊕ Vu[1/10]⊕ Vu[3/5],

−1 v ∈ Vu[7/16]⊕ Vu[3/80].

For later use, we recall the definition of σ-type c = 1/2 and c = 7/10 conformal vectors. The

corresponding σ-involutions will also be defined.

Definition 2.22. An Ising vector e of a VOA V is said to be of σ-type on V if τe = id on V .

8



In this case, one has V = Ve[0]⊕ Ve[1/2] and the map σe defined by

σe :=

{
1 on Ve[0],

−1 on Ve[1/2]

is an automorphism of V [M1].

Definition 2.23. A conformal vector u of a VOA V with central charge 7/10 is said to be of σ-type

on V if Vu[7/16] = Vu[3/80] = 0.

Let u ∈ V be a conformal vector of σ-type with c = 7/10. Then one has

V = Vu[0]⊕ Vu[3/2]⊕ Vu[1/10]⊕ Vu[3/5].

Define

σu :=

{
1 on Vu[0]⊕ Vu[3/5],

−1 on Vu[3/2]⊕ Vu[1/10].

The fusion rules imply that σu is an automorphism of V.

The quantum dimensions of L(cm, h
(m)
r,s ) are given in [DJX]:

q dimL(cm,0) L
(
cm, h

(m)
r,s

)
= (−1)r+s

sin πr(m+3)
m+2

sin πs(m+2)
m+3

sin π(m+3)
m+2

sin π(m+2)
m+3

. (2.3)

2.6 Griess algebras generated by two Ising vectors

Next we discuss some results about the weight two space V2, where we assume V is a VOA over the

real number field R which is CFT and moonshine type. Then by [L], there is a unique symmetric

invariant bilinear form 〈 , 〉 on V such that 〈1, 1〉 = 1. We also assume that 〈 , 〉 is positive

definite. For any two elements x, y ∈ V2, if we define the product xy := x1y, then V2 becomes

a commutative nonassociative algebra, which is called the Griess algebra [G]. Besides, V2 has a

bilinear form which is the restriction of 〈 , 〉 on V2. Furthermore, for any x, y, z ∈ V2, we have

〈x, y〉1 = x3y, 〈xy, z〉 = 〈y, xz〉.

Remark 2.24. From the relation 〈xy, z〉 = 〈y, xz〉, we can easily deduce that for any Ising vector

e ∈ V , 〈τe(x), τe(y)〉 = 〈x, y〉 for any x, y ∈ V2.

The following lemma will be needed later.

Lemma 2.25. [M2] Let e be an Ising vector. Then V2 decomposes into

V2 = Re⊕Ee(0)⊕ Ee(
1

2
)⊕ Ee(

1

16
),

where Ee(h) denotes the eigenspace of e1 with eigenvalue h.

9



Now let e, f be two Ising vectors in V2. We use VA(e, f) to denote the subVOA generated by

the two Ising vectors e and f over R and let CVA(e, f) be its complexification. Let G ⊆ VA(e, f)2
be the Griess subalgebra generated by e and f . For any automorphsim σ of VA(e, f), we use eσ to

denote the action of σ on e. For any two elements a, y ∈ G, define α(a, y) := ay− 1
16
(a+ y). The

following results were given in [S]:

Lemma 2.26. G is spanned by

S := {e, eτf , eτf τe, f, f τe , f τeτf , α(e, f), α(e, eτf )}.

Remark 2.27. α(e, f) and α(e, eτf ) are fixed by both τe and τf .

Let T be the subgroup of Aut(V ) generated by τe and τf , xT denotes the orbit of x ∈ V2 under

the action of T . Let ρ = τeτf . Then:

Lemma 2.28. [S]

(1) |eT | = |fT |. In particular, e = eρ
n

if and only if f = f ρn .

(2) eT = fT if and only if |eT | is odd and f = eρ
n+1
2 , where n = |eT |.

(3) (τeτf )
|eT

⋃
fT | = 1 as an automorphism of V .

Theorem 2.29. [S] Let N = |eT
⋃
fT |.

(1) If N = 2, then 〈e, f〉 = 0 or 1
25

.

(2) If N = 3, then 〈e, f〉 = 13
210

or 1
28

.

(3) If N = 4, then (〈e, f〉, 〈e, eτf 〉) = ( 1
27
, 0) or ( 1

28
, 1
25
).

(4) If N = 5, then 〈e, f〉 = 〈e, eτf 〉 = 3
29

.

(5) If N = 6, then 〈e, f〉 = 5
210

, 〈e, eτf 〉 = 13
210

and 〈eτf , f τe〉 = 1
25

.

Remark 2.30. For each case in Theorem 2.29, the structure of G can be fully determined by direct

calculation following the formulae given in [S], which is needed in the next section. We recall

those formulae from [S].

Proposition 2.31. Let e and f be two Ising vectors in V2, and ρ = τeτf . Then:

(1) For any n ∈ Z, we have 〈e, eρ
n

〉 = 〈f, f ρn〉.
(2) For a ∈ {e, f}, y ∈ VA(e, f)2, we have

〈a, α(a, y)〉 =
31

16
〈a, y〉 −

1

26
,

a · α(a, y) =
7

16
α(a, y) +

(
12〈a, y〉 −

25

28

)
a +

7

29
(y + yτa).

10



(3) We also have the following:

1

24
(e− f)−

1

24
(f τe − eτf ) +

1

24
(eτf τe − f τeτf )− (α(e, eτf )− α(f, f τe)) = 0, ,

f · α(e, eτf ) = −
1

48
(e+ eτf )−

7

3 · 28
eτf τe −

13

28
f +

7

28
(f τe + f τeτf )−

3

8
α(e, f) +

7

48
α(e, eτf ),

e · α(f, f τe) = −
1

48
(f + f τe)−

7

3 · 28
f τeτf −

13

28
e+

7

28
(eτf + eτf τe)−

3

8
α(e, f) +

7

48
α(f, f τe),

α(e, f) · α(e, f) =
7

3 · 211
(e+ eτf + eτf τe) +

7

213
(f + f τe + f τeτf )−

17

28
α(e, f)−

7

3 · 29
α(e, eτf ),

α(e, f) · α(e, eτf ) = −
35

213
(e+ eτf + eτf τe) +

7

212
(f + f τe + f τeτf )−

21

28
α(e, f) +

15

29
α(e, eτf ),

α(e, eτf ) · α(e, eτf ) =
147

213
(e + eτf + eτf τe)−

63

29
α(e, eτf ).

3 The VOA generated by two Ising vectors e and f

In this section, we will establish the uniqueness of the vertex operator algebras generated by two

Ising vectors e and f with 〈e, f〉 = 5
210

. We prove such a vertex operator algebra is isomorphic

to the 6A-algebra U6A constructed in [LYY]. We also discuss the uniqueness for the cases when

〈e, f〉 = 1
4
, 1
25
, 0 and the case 〈e, f〉 = 1

28
with (τeτf )

4 = 1.

Throughout this section, we will treat V = (V, Y, 1, ω) be a VOA over the real number field

R which is CFT and moonshine type. Then by [L], there is a unique symmetric invariant bilinear

form 〈 , 〉 on V such that 〈1, 1〉 = 1. We also assume that 〈 , 〉 is positive definite.

Remark 3.1. Here the reason why we assume 〈 , 〉 is positive definite on V is to guarantee 〈 , 〉 is

nondegenerate on any subVOA of V . Then by [L], any subVOA of V is simple.

For a VOA V over R, we use CV to denote its complexification C⊗R V . The following results

show that there there is no essential difference between the representation theory of V over R and

that of CV over C (see [M]):

Theorem 3.2. Let V be a VOA over R and let U be an irreducible CV -module with real weights;

then U is an irreducible V -module or there is a unique V -module U such that CU ∼= U as CV -

modules.

Corollary 3.3. Let c ∈ R and L(c, 0)R, L(c, 0) be the simple Virasoro vertex operator algebra

over R, C respectively. Then CL(c, 0)R is isomorphic to L(c, 0) as a VOA. Furthermore, assume

that L(c, h) is an irreducible L(c, 0)-module with highest weight h. If h ∈ R, then there is a

unique irreducible L(c, 0)R-module L(c, h)R such that L(c, h) ∼= CL(c, h)R. If W is an irreducible

L(c, 0)R-module, then there is an h ∈ R such that W ∼= L(c, h)R and L(c, h) is an irreducible

L(c, 0)-module with highest weight h.

Theorem 3.4. If C⊗R V is rational, then so is V .

We now prove the uniqueness of VOAs generated by two Ising vectors case by case.
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3.1 The case 〈e, f〉 = 5
210

Now let e, f be two Ising vectors in a VOA V with 〈e, f〉 = 5
210

. We use VA(e, f) to denote

the subVOA generated by e and f over R and let CVA(e, f) be its complexification. Let G ⊆
VA(e, f)2 be the Griess subalgebra generated by e and f .

Set

x1 = e, x2 = eτf , x3 = eτf τe ,

x4 = f, x5 = f τe , x6 = f τeτf ,

x7 = α(e, f), x8 = α(e, eτf ).

The elements xi, i = 1, · · · , 8, give a spanning set of G (see Lemma 2.26). First we will show that

{xi|i = 1, · · · , 8} are linearly independent.

Lemma 3.5. The determinant of the matrix (〈xi, xj〉)16i,j68 is nonzero. Equivalently, dim G = 8
and {xi|i = 1, . . . , 8} is a basis of G.

Proof. The Gram matrix (〈xi, xj〉)16i,j68 can be fully determined. We will compute each 〈xi, xj〉.
It follows from Theorem 2.29 and Lemma 2.28 that 〈e, eτf 〉 = 13

210
, 〈eτf , f τe〉 = 1

25
and ρ6 = 1. By

appropriate use of Proposition 2.31, we get:

(〈xi, xj〉)16i,j68 =




1
4

13
210

13
210

5
210

5
210

1
25

−101
214

147
214

13
210

1
4

13
210

5
210

1
25

5
210

−101
214

147
214

13
210

13
210

1
4

1
25

5
210

5
210

−101
214

147
214

5
210

5
210

1
25

1
4

13
210

13
210

−101
214

−93
214

5
210

1
25

5
210

13
210

1
4

13
210

−101
214

−93
214

1
25

5
210

5
210

13
210

13
210

1
4

−101
214

−93
214

−101
214

−101
214

−101
214

−101
214

−101
214

−101
214

773
219

−1011
219

147
214

147
214

147
214

−93
214

−93
214

−93
214

−1011
219

3717
219




. (3.1)

The determinant of the matrix is nonzero, thus {xi|i = 1, · · · , 8} forms a basis of G.
We give the calculations for some entries of the above matrix. Similar methods can be applied

to other entries. For example,

〈x1, x3〉 = 〈e, eτf τe〉 = 〈τe(e), τe(e
τf τe)〉 = 〈e, eτf 〉 =

13

210
,

〈x4, x5〉 = 〈f, f τe〉 = 〈τf (f), τf(f
τe)〉 = 〈f, f τeτf 〉 = 〈x1, x3〉 =

13

210
,

12



〈x4, x8〉 = 〈f, eeτf 〉 −
1

16
(〈f, e〉+ 〈f, eτf 〉)

= 〈ef, eτf 〉 −
1

16
(〈f, e〉+ 〈f, eτf 〉)

= 〈α(e, f) +
1

16
(e+ f), eτf 〉 −

1

16
(〈f, e〉+ 〈f, eτf 〉)

= 〈e, α(e, f)〉+
1

16
〈e, eτf 〉 −

1

16
〈e, f〉,

〈x7, x8〉 = 〈ef, α(e, eτf )〉 −
1

16
〈e, α(e, eτf )〉 −

1

16
〈f, α(e, eτf )〉

= 〈f, e · α(e, eτf )〉 −
1

16
〈e, α(e, eτf )〉 −

1

16
〈f, α(e, eτf )〉.

Next we work on the VOA CVA(e, f). Since e is an Ising vector, eτf is also an Ising vector.

Let V be the subalgebra of CVA(e, f) generated by e and eτf . Since 〈e, eτf 〉 = 13
210

, it follows from

[M2], [SY] that

V ∼=

(
L

(
4

5
, 0

)
⊕ L

(
4

5
, 3

))
⊗

(
L

(
6

7
, 0

)
⊕ L

(
6

7
, 5

))

⊕ L

(
4

5
,
2

3

)+

⊗ L

(
6

7
,
4

3

)+

⊕ L

(
4

5
,
2

3

)−
⊗ L

(
6

7
,
4

3

)−
. (3.2)

Remark 3.6. On M = L
(
6
7
, 4
3

)
, there are two L

(
6
7
, 0
)
⊕ L

(
6
7
, 5
)
-module structures. Namely, if

YM(v, z) is a vertex operator of v ∈ L
(
6
7
, 0
)
⊕ L

(
6
7
, 5
)
, then the other is defined by YM(v, z) for

v ∈ L
(
6
7
, 0
)

and −YM(v, z) for v ∈ L
(
6
7
, 5
)
. We denote them by L

(
6
7
, 4
3

)±
. The definition of

L
(
4
5
, 2
3

)±
are similar.

The following two lemmas are from [SY]:

Lemma 3.7. V is rational.

Lemma 3.8. All the irreducible V-modules are as follows:

V = V(0) ∼=

(
L

(
4

5
, 0

)
⊕ L

(
4

5
, 3

))
⊗

(
L

(
6

7
, 0

)
⊕ L

(
6

7
, 5

))

⊕ L

(
4

5
,
2

3

)+

⊗ L

(
6

7
,
4

3

)+

⊕ L

(
4

5
,
2

3

)−
⊗ L

(
6

7
,
4

3

)−
.

V

(
1

7

)
∼=

(
L

(
4

5
, 0

)
⊕ L

(
4

5
, 3

))
⊗

(
L

(
6

7
,
1

7

)
⊕ L

(
6

7
,
22

7

))

⊕ L

(
4

5
,
2

3

)+

⊗ L

(
6

7
,
10

21

)+

⊕ L

(
4

5
,
2

3

)−
⊗ L

(
6

7
,
10

21

)−
.
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V

(
5

7

)
∼=

(
L

(
4

5
, 0

)
⊕ L

(
4

5
, 3

))
⊗

(
L

(
6

7
,
5

7

)
⊕ L

(
6

7
,
12

7

))

⊕ L

(
4

5
,
2

3

)+

⊗ L

(
6

7
,
1

21

)+

⊕ L

(
4

5
,
2

3

)−
⊗ L

(
6

7
,
1

21

)−
.

V

(
2

5

)
∼=

(
L

(
4

5
,
2

5

)
⊕ L

(
4

5
,
7

5

))
⊗

(
L

(
6

7
, 0

)
⊕ L

(
6

7
, 5

))

⊕ L

(
4

5
,
1

15

)+

⊗ L

(
6

7
,
4

3

)+

⊕ L

(
4

5
,
1

15

)−
⊗ L

(
6

7
,
4

3

)−
.

V

(
19

35

)
∼=

(
L

(
4

5
,
2

5

)
⊕ L

(
4

5
,
7

5

))
⊗

(
L

(
6

7
,
1

7

)
⊕ L

(
6

7
,
22

7

))

⊕ L

(
4

5
,
1

15

)+

⊗ L

(
6

7
,
10

21

)+

⊕ L

(
4

5
,
1

15

)−
⊗ L

(
6

7
,
10

21

)−
.

V

(
39

35

)
∼=

(
L

(
4

5
,
2

5

)
⊕ L

(
4

5
,
7

5

))
⊗

(
L

(
6

7
,
5

7

)
⊕ L

(
6

7
,
12

7

))

⊕ L

(
4

5
,
1

15

)+

⊗ L

(
6

7
,
1

21

)+

⊕ L

(
4

5
,
1

15

)−
⊗ L

(
6

7
,
1

21

)−
.

By [M2], we have the following proposition:

Proposition 3.9. x1, x2, x3, x8 are defined as before. Then:

(1) V2 = span{x1, x2, x3, x8}.

(2) Let

ω1 =
26

135

(
x1 + x2 + x3 − 24x8

)
,

ω2 =
24

27

(
x1 + x2 + x3 +

25

7
x8

)
.

Then ω1 and ω2 are orthogonal conformal vectors with central charges 4
5
, 6
7

respectively.

Proposition 3.10. xi, i = 1, . . . , 8 are defined as before. Let

ω3 = −
1

18

(
x1 + x2 + x3 − 21(x4 + x5 + x6)− 9 · 25x7 −

29 · 25

7
x8

)
.

Then ω3 is a conformal vector with central charge 25
28

. Furthermore, ω1 + ω2 + ω3 is the Virasoro

vector of CVA(e, f) and xiω3 = 0 for i = 1, 2, 3, 8.

Proof. It can be verified directly that ω3 is a conformal vector with central charge 25
28
, xiω3 = 0 and

〈xi, ω3〉 = 0 for i = 1, 2, 3, 8 by computing the product xixj and using the inner product 〈xi, xj〉
for 1 ≤ i, j ≤ 8 calculated before.
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For the proof of ω1 + ω2 + ω3 is the Virasoro vector of CVA(e, f), it suffices to show that

Y ((ω1 + ω2 + ω3)(0)v, z) = d
dz
Y (v, z) for any v ∈ CVA(e, f). By [M2], ω1 + ω2 = e+ a where

a is a highest weight vector of L(1
2
, 0). Since eω3 = 0, we can write ω1 + ω2 + ω3 = e+ a′ where

a′ = a + ω3 is a highest weight vector of VA(e) ∼= L(1
2
, 0). So e(0)a′ = 0. By skew-symmetry

property, a′(0)e = 0. So we have

Y ((ω1 + ω2 + ω3)(0)e, z) = Y ((e+ a′)(0)e, z) = Y (e(0)e, z) =
d

dz
Y (e, z).

Similarly, let

ω̃1 =
26

135

(
x4 + x5 + x6 − 24α(f, f τe)

)
,

ω̃2 =
24

27

(
x4 + x5 + x6 +

25

7
α(f, f τe)

)
,

ω̃3 −
1

18

(
x4 + x5 + x6 − 21(x1 + x2 + x3)− 9 · 25x7 −

29 · 25

7
α(f, f τe)

)
.

Then we have

Y ((ω̃1 + ω̃2 + ω̃3)(0)f, z) =
d

dz
Y (f, z).

By (4) of Proposition 2.31, it is easy to see that ω1 + ω2 + ω3 = ω̃1 + ω̃2 + ω̃3, so we have

Y ((ω1 + ω2 + ω3)(0)f, z) =
d

dz
Y (f, z).

Since CVA(e, f) is generated by e and f , by [L1], we have Y ((ω1+ω2+ω3)(0)v, z) = d
dz
Y (v, z)

for any v ∈ CVA(e, f).

We can find common eigenvectors of ω1, ω2, ω3 in G. We also compute some products that will

be used later.

Lemma 3.11. Set

v0 =
16

27
(−2x1 + x2 + x3),

v1 =
16

9
(x2 − x3),

v2 =
4

3

(
−
1

9
(−2x1 + x2 + x3) + (x4 + x5 − 2x6)

)
,

v3 =
4

9
(x2 − x3) + 4(x4 − x5),

v4 = 13(x1 + x2 + x3) + 27(x4 + x5 + x6) + 81 · 16 · x7 + 23 · 16 · x8.
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Then we have the following:

ω1v0 =
2

3
v0, ω1v1 =

2

3
v1, ω1v2 =

2

3
v2, ω1v3 =

2

3
v3, ω1v4 = 0,

ω2v0 =
4

3
v0, ω2v1 =

4

3
v1, ω2v2 =

1

21
v2, ω2v3 =

1

21
v3, ω2v4 =

5

7
v4,

ω3v0 = 0, ω3v1 = 0, ω3v2 =
9

7
v2, ω3v3 =

9

7
v3, ω3v4 =

9

7
v4,

v0v0 =
5

6
ω1 +

14

9
ω2 −

10

9
v0, v0v1 =

10

9
v1, v0v3 =

1

9
v3, v2v3 = −

5

9
v1 +

22

9
v3,

〈v0, v0〉 =
1

2
, 〈v1, v1〉 =

3

2
, 〈v2, v2〉 =

5

2
, 〈v3, v3〉 =

15

2
.

For any L
(
4
5
, 0
)
⊗L

(
6
7
, 0
)
⊗L

(
25
28
, 0
)
-module L

(
4
5
, h1

)
⊗L

(
6
7
, h2

)
⊗L

(
25
28
, h3

)
, we simply

denote it by [h1, h2, h3]. Now we can state our main theorem:

Theorem 3.12. As a module of V ⊗ L
(
25
28
, 0
)
,

CVA(e, f) ∼= V ⊗ L

(
25

28
, 0

)
⊕ V

(
1

7

)
⊗ L

(
25

28
,
34

7

)
⊕ V

(
5

7

)
⊗ L

(
25

28
,
9

7

)
.

In order to prove the theorem, one needs to show that as an extension of the VOA V⊗L
(
25
28
, 0
)
,

each irreducible V ⊗ L
(
25
28
, 0
)
-module in CVA(e, f) has multiplicity 1. So we recall some results

on extensions of VOAs.

Let V 1, V 2 be two vertex operator algebras which are regular, self-dual, simple and of CFT-

type. Assume V is an extension of V 1 ⊗ V 2, i.e.

V =
⊕

i∈I,j∈J
ZijM

i ⊗N j

where Zij(i ∈ I, j ∈ J) are nonnegative integers which are not all zeros and {M i|i ∈ I}
(respectively {N j |j ∈ J}) are inequivalent irreducible V 1-modules (respectively V 2-modules).

It is proved [HKL] that V is regular and simple CFT-type. The following theorem is given in

[Lin]:

Theorem 3.13. Let V, V 1, V 2 and Zi,j be as above. Assume that HomV 1⊗V 2 (V 1 ⊗N j , V ) = C

(respectively HomV 1⊗V 2 (M i ⊗ V 2, V ) = C) if and only if N j = V 2 (respectively M i = V 1).

Then we have

Zij = 1 if Zij 6= 0.

Let Z+ be the set of nonnegative integers. Next we will use the following two propositions to

establish Theorem 3.12.

Proposition 3.14. As a V ⊗ L(25
28
, 0)-module,

CVA(e, f) ∼= V ⊗ L(
25

28
, 0)⊕m · V(

1

7
)⊗ L(

25

28
,
34

7
)⊕ V(

5

7
)⊗ L(

25

28
,
9

7
),

where m ∈ Z+ is the multiplicity of V(1
7
)⊗ L(25

28
, 34

7
). In particular, CG = CVA(e, f)2.
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Proof. By Proposition 3.9 and Proposition 3.10, we have V ⊗ L(25
28
, 0) ⊆ CVA(e, f). Note that

V ⊗L(25
28
, 0), V(1

7
)⊗L(25

28
, 34

7
) and V(5

7
)⊗L(25

28
, 9
7
) are the only irreducible V ⊗L(25

28
, 0)-modules

which have integral weights. So we have

CVA(e, f) ∼= V ⊗ L

(
25

28
, 0

)
⊕m · V

(
1

7

)
⊗ L

(
25

28
,
34

7

)
⊕ n · V

(
5

7

)
⊗ L

(
25

28
,
9

7

)
(3.3)

where m,n ∈ Z+. By Lemma 3.11, we have n 6= 0. Since both V and L
(
25
28
, 0
)

are regular

and simple CFT-type vertex operator algebras, we have V ⊗ L
(
25
28
, 0
)

is regular and simple CFT-

type vertex operator algebra. By [HKL], CVA(e, f) is also regular and simple CFT-type vertex

operator algebra. Since CVA(e, f) is a moonshine type vertex operator algebra, by [L], CVA(e, f)
is self-dual. Similarly, V and L

(
25
28
, 0
)

are self-dual. By the equation 3.3,

HomV⊗L( 25

28
,0)

(
V ⊗ L

(
25

28
,
9

7

)
,CVA(e, f)

)
= 0.

Now n = 1 follows directly from Theorem 3.13.

Next, we show that dimCVA(e, f)2 = 8, i.e. CG = CVA(e, f)2. By Lemma 3.5, we have

dimCG = 8. It is easy to see that

dim

(
V ⊗ L

(
25

28
, 0

))

2

= 5,

dim

(
V

(
1

7

)
⊗ L

(
25

28
,
34

7

))

2

= 0,

dim

(
V

(
5

7

)
⊗ L

(
25

28
,
9

7

))

2

= 3.

So dimCVA(e, f)2 = 8 = dimCG, hence CG = CVA(e, f)2.

Proposition 3.15. The number m in Proposition 3.14 is nonzero. Thus m = 1.

Proof. The idea of the proof is similar to Theorem 5.3 in [SY]. First we compute the highest

weight vector for [0, 0, 0] with highest weight [3, 0, 0]. For any [0, 0, 0]-module U , let U (τe,±) =
{u ∈ U |τe(u) = ±u}. We claim that {ω1

0v
1, ω2

0v
1, v00v

1} is a set of linearly independent vectors

in
(
V ⊗ L

(
25
28
, 0
))(τe,−)

3
. Set t1 = ω1

0v
1, t2 = ω2

0v
1 and t3 = v00v

1. Using the commutator formula

[am, bn] =
∑

i∈Z+

(
m
i

)
(aib)(m+n−i), an invariant property 〈amb

1, b2〉 = 〈b1, a(−m+2)b
2〉 for a ∈

CVA(e, f)2, and an identity (a0b)m = [a1, b(m−1)] − (a1b)(m−1), we can calculate all 〈ti, tj〉,
1 ≤ i, j ≤ 3. For example, we compute 〈t1, t3〉 = 〈ω1

0v
1, v00v

1〉:

〈ω1
0v

1, v00v
1〉 = 〈v1, ω1

2v
0
0v

1〉 = 〈v1, [ω1
2, v

0
0]v

1〉

= 〈v1,
(
(ω1

0v
0)2 + 2(ω1

1v
0)1 + (ω1

2v
0)0

)
v1〉

= 〈v1,
(
[ω1

1, v
0
1] + (ω1

1v
0)1

)
v1〉

= 〈ω1
1v

1, v01v
1〉 − 〈v1, v01ω

1
1v

1〉+ 〈v1, (ω1
1v

0)1v
1〉

=
2

3
〈v1, v01v

1〉 =
20

27
〈v1, v1〉 =

10

9
.
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By a similar way, we can compute all 〈ti, tj〉, 1 ≤ i, j ≤ 3, and it is a routine work to check that

det (〈ti, tj〉)1≤i,j≤3 6= 0. Therefore t1, t2 and t3 are linearly independent. One can also see that

u1 = v00v
1 −

5

9
(ω1

0 + ω2
0)v

1

is a non-zero highest weight vector for [0, 0, 0] with highest weight [3, 0, 0]. Next we compute the

highest weight vector for [0, 0, 0] with highest weight [0, 12
7
, 9
7
]. We claim {ω1

0v
3, ω2

0v
3, ω3

0v
3, v00v

3}

is a set of linearly independent vectors in
(
V
(
5
7

)
⊗ L

(
25
28
, 9
7

))(τe,−)

3
. Set r1 = ω1

0v
3, r2 = ω2

0v
3,

r3 = ω3
0v

3 and r4 = v00v
3. By a similar method used in computations of 〈ti, tj〉, 1 ≤ i, j ≤ 3, we

can calculate all 〈ri, rj〉, 1 ≤ i, j ≤ 4. It is also a routine work to check that det (〈ri, rj〉)1≤i,j≤4 6=

0. Therefore r1, r2, r3 and r4 are linearly independent. One can also see that

u2 = v00v
3 −

1

18
ω1
0v

3 −
14

9
ω2
0v

3

is a non-zero highest weight vector for [0, 0, 0] with highest weight [0, 12
7
, 9
7
]. Next we compute the

highest weight vector for [0, 0, 0] with highest weight [0, 5, 0]. Set

a1 = ω1
−2v

1, a2 = ω1
−1ω

1
0v

1, a3 = ω1
−1ω

2
0v

1, a4 = ω1
0ω

1
0ω

2
0v

1,

a5 = ω1
0ω

2
−1v

1, a6 = ω1
0ω

2
0ω

2
0v

1, a7 = ω1
0ω

3
−1v

1, a8 = ω2
−2v

1,

a9 = ω2
−1ω

2
0v

1, a10 = ω2
0ω

3
−1v

1, a11 = ω3
−2v

1, a12 = ω1
−1u

1,

a13 = ω1
0ω

1
0u

1, a14 = ω2
−1u

1, a15 = ω3
−1u

1, a16 = v0−2v
1.

By a similar method used in computations of 〈ti, tj〉, 1 ≤ i, j ≤ 3, we can calculate all 〈ai, aj〉,
1 ≤ i, j ≤ 16. It is also a routine work to check that det (〈ai, aj〉)1≤i,j≤16 6= 0. Therefore

{ai, i = 1, . . . , 16} is a linearly independent set. One can also see that

u3 =
275

243
ω1
−2v

1 −
50

81
ω1
−1ω

1
0v

1 +
25

36
ω1
−1ω

2
0v

1 −
25

72
ω1
0ω

1
0ω

2
0v

1

+
14

45
ω1
0ω

2
−1v

1 −
7

180
ω1
0ω

2
0ω

2
0v

1 +
140

243
ω2
−2v

1 −
7

81
ω2
−1ω

2
0v

1

+
5

39
ω1
−1u

1 +
3

26
ω1
0ω

1
0u

1 +
28

9
ω2
−1u

1 − v0−2v
1

is a non-zero highest weight vector for [0, 0, 0] with highest weight [0, 5, 0]. Next we compute the

highest weight vector for [0, 0, 0] with highest weight [3, 12
7
, 9
7
]. Set

b1 = ω1
−2v

3, b2 = ω1
−1ω

1
0v

3, b3 = ω1
−1ω

2
0v

3, b4 = ω1
0ω

1
0ω

2
0v

3, b5 = ω1
−1ω

3
0v

3,

b6 = ω1
0ω

1
0ω

3
0v

3, b7 = ω1
0ω

2
−1v

3, b8 = ω1
0ω

2
0ω

2
0v

3, b9 = ω1
0ω

2
0ω

3
0v

3, b10 = ω1
0ω

3
−1v

3,

b11 = ω1
0ω

3
0ω

3
0v

3, b12 = ω2
−2v

3, b13 = ω2
−1ω

2
0v

3, b14 = ω2
0ω

2
0ω

2
0v

3, b15 = ω2
−1ω

3
0v

3,

b16 = ω2
0ω

2
0ω

3
0v

3, b17 = ω2
0ω

3
−1v

3, b18 = ω2
0ω

3
0ω

3
0v

3, b19 = ω3
−2v

3, b20 = ω3
−1ω

3
0v

3,

b21 = ω1
−1u

2, b22 = ω2
−1u

2, b23 = ω2
0ω

2
0u

2, b24 = ω2
0ω

3
0u

2, b25 = ω3
−1u

2,

b26 = ω3
0ω

3
0u

2, b27 = v0−2v
3.
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By a similar method used in computations of 〈ti, tj〉, 1 ≤ i, j ≤ 3, we can calculate all 〈bi, bj〉,
1 ≤ i, j ≤ 27. It is also a routine work to check that det (〈bi, bj〉)1≤i,j≤27 6= 0. Therefore

{bi, i = 1, . . . , 27} is a linearly independent set. One can also see that

u4 =−
55

486
ω1
−2v

3 +
5

81
ω1
−1ω

1
0v

3 −
35

18
ω1
−1ω

2
0v

3 +
35

36
ω1
0ω

1
0ω

2
0v

3

+
7

18
ω1
0ω

2
−1v

3 −
49

36
ω1
0ω

2
0ω

2
0v

3 +
17

27
ω2
−2v

3 +
7

9
ω2
−1ω

2
0v

3 −
49

27
ω2
0ω

2
0ω

2
0v

3

−
5

3
ω1
−1u

2 −
7

99
ω2
−1u

2 −
49

132
ω2
0ω

2
0u

2 + v0−2v
3

is a non-zero highest weight vector for [0, 0, 0] with highest weight [3, 12
7
, 9
7
]. Next we show that m

is nonzero. Set

si = ai, i = 1, . . . , 15, s16 = u3,

sj = bj−16, j = 17, . . . , 42, s43 = u4,

s44 = v2−2v
3.

Then
(
V ⊗ L

(
25
28
, 0
)
⊕ V

(
5
7

)
⊗ L

(
25
28
, 9
7

))(τe,−)

5
is spanned by si, i = 1, . . . , 43. By a similar

method used in computations of 〈ti, tj〉, 1 ≤ i, j ≤ 3, we can calculate all 〈si, sj〉, 1 ≤ i, j ≤ 44.

It is also a routine work to check that det (〈si, sj〉)1≤i,j≤44 6= 0. Therefore m must be nonzero.

One can also see that

u5 = γ1 + γ2 + v2−2v
3

where

γ1 =
275

486
ω1
−2v

1 −
25

81
ω1
−1ω

1
0v

1 +
25

72
ω1
−1ω

2
0v

1 −
25

144
ω1
0ω

1
0ω

2
0v

1 +
5

414
ω1
0ω

2
−1v

1 +
65

1656
ω1
0ω

2
0ω

2
0

+
4

5
ω1
0ω

3
−1v

1 −
425

11178
ω2
−2v

1 +
325

3726
ω2
−1ω

2
0v

1 +
4

5
ω2
0ω

3
−1v

1 +
4

5
ω3
−2v

1 +
25

39
ω1
−1u

1

+
15

26
ω1
0ω

1
0u

1 +
5

9
ω2
−1u

1 +
72

5
ω3
−1u

1 +
5

782
u3

and

γ2 =−
605

243
ω1
−2v

3 +
110

81
ω1
−1ω

1
0v

3 −
55

36
ω1
−1ω

2
0v

3 +
55

72
ω1
0ω

1
0ω

2
0v

3 −
55

36
ω1
−1ω

3
0v

3 +
55

72
ω1
0ω

1
0ω

3
0v

3

−
13

90
ω1
0ω

2
−1v

3 −
17

180
ω1
0ω

2
0ω

2
0v

3 −
11

36
ω1
0ω

2
0ω

3
0v

3 −
16

23
ω1
0ω

3
−1v

3 +
20

207
ω1
0ω

3
0ω

3
0v

3 −
13

90
ω2
−2v

3

−
13

90
ω2
−1ω

2
0v

3 +
1

135
ω2
0ω

2
0ω

2
0v

3 −
13

90
ω2
−1ω

3
0v

3 −
17

180
ω2
0ω

2
0ω

3
0v

3 −
16

23
ω2
0ω

3
−1v

3 −
188

147
ω3
−2v

3

+
20

207
ω2
0ω

3
0ω

3
0v

3 +
40

189
ω3
−1ω

3
0v

3 +
5

6
ω1
−1u

2 +
11

450
ω2
−1u

2 +
41

600
ω2
0ω

2
0u

2 +
1

8
ω2
0ω

3
0u

2

+
72

253
ω3
−1u

2 −
10

253
ω3
0ω

3
0u

2 −
11

5
u4

is a non-zero highest weight vector for [0, 0, 0] with highest weight [0, 1
7
, 34

7
]. Thus the number m

must be 1 following from Theorem 3.13.
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Corollary 3.16. CVA(e, f) is isomorphic to the 6A-algebra constructed in [LYY] as a VOA.

Proof. It is proved in [DJY] a VOA with decomposition

V ∼= V ⊗ L

(
25

28
, 0

)
⊕ V

(
1

7

)
⊗ L

(
25

28
,
34

7

)
⊕ V

(
5

7

)
⊗ L

(
25

28
,
9

7

)
.

is unique and isomorphism to the 6A-algebra in [LYY]. So is CVA(e, f).

3.2 Other cases

Since the calculations are similar with what we did in the case 〈e, f〉 = 5
210

, we only list some

results and omit the details of the proof in this subsection. The following lemma is needed later

[DZh]:

Lemma 3.17. For each UnX , nX = 1A, 2A, 2B, 4B constructed in [LYY], the VOA structure on

UnX is unique.

3.2.1 The case 〈e, f〉 = 1
4

In this case e = f . So CVA(e, f) is generated by e. Thus CVA(e, f) ∼= L
(
1
2
, 0
)
∼= U1A as VOAs.

3.2.2 The case 〈e, f〉 = 1
25

In this case G has a basis e, f, α(e, f). By [S], τe = τf = id on CVA(e, f). So e and f are Ising

vectors of σ type. By [JLY] and [LYY] , we have CVA(e, f) ∼= U2A as VOAs.

3.2.3 The case 〈e, f〉 = 0

In this case G has a basis {e, f}. By [S], τe = τf = id on CVA(e, f). So e and f are Ising vectors

of σ type. By [JLY] and [LYY] , we have CVA(e, f) ∼= U2B as VOAs.

3.2.4 The case 〈e, f〉 = 1
28

with (τeτf )
4 = 1

In this case CG has a basis {e, eτf , f, f τe , α(e, f)}. Let ω be the Virasoro vector of CVA(e, f). Let

ω1 = e,

ω2 =
1

5

(
3e+ 8eτf + 4f + 4f τe + 27α(e, f)

)
,

ω3 = −
1

5
(e+ eτf − 3f − 3f τe + 32α(e, f)) .

Then ω1, ω2, ω3 are mutually orthogonal conformal vectors whose central charges are 1
2
, 7

10
, 7

10

respectively and ω = ω1 + ω2 + ω3 is the Virasoro vector of CVA(e, f). We denote irreducible
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L
(
1
2
, 0
)
⊗ L

(
7
10
, 0
)
⊗ L

(
7
10
, 0
)
-module L

(
1
2
, h1

)
⊗ L

(
7
10
, h2

)
⊗ L

(
7
10
, h3

)
as [h1, h2, h3]. Then

the following L
(
1
2
, 0
)
⊗ L

(
7
10
, 0
)
⊗ L

(
7
10
, 0
)
-modules have integral weights:

[0, 0, 0], [
1

2
,
3

2
, 0], [

1

16
,
7

16
,
3

2
],

[0,
3

2
,
3

2
], [

1

2
, 0,

3

2
], [

1

16
,
3

2
,
7

16
].

One can easily get that [0, 0, 0], [1
2
, 3
2
, 0], [0, 3

2
, 3
2
], [1

2
, 0, 3

2
] are simple current modules for the VOA

L
(
1
2
, 0
)
⊗ L

(
7
10
, 0
)
⊗ L

(
7
10
, 0
)
.

Let

v1 = e + f + f τe + 32α(e, f),

v2 = f − f τe.

Then we have

ω1v1 =
1

2
v1, ω2v1 =

3

2
v1, ω3v1 = 0,

ω1v2 =
1

16
v2, ω2v2 =

7

16
v2, ω3v2 =

3

2
v2. (3.4)

Since the multiplicity of a simple current module in an extension VOA is 0 or 1 [DMZ], we have

CVA(e, f) ∼= [0, 0, 0]⊕ [
1

2
,
3

2
, 0]⊕ a · [0,

3

2
,
3

2
]⊕ b · [

1

2
, 0,

3

2
]⊕m · [

1

16
,
7

16
,
3

2
]⊕ n · [

1

16
,
3

2
,
7

16
]

as L
(
1
2
, 0
)
⊗ L

(
7
10
, 0
)
⊗ L

(
7
10
, 0
)
-modules, where a and b are 0 or 1, m,n ∈ Z+ and m 6= 0.

Using the τ -involution and σ-involution defined in §2.5, we apply Theorem 2.18 to G = 〈τω1〉,
〈τω2〉, 〈σω3〉 and V = CV A(e, f). Then we immediately get





2 + a + b = 2m+ 2n,

2 + a+ b+ 2n = 2m,

2 = a+ b+ 2m.

So n = a = b = 0 and m = 1, i.e.

CVA(e, f) ∼= [0, 0, 0]⊕ [
1

2
,
3

2
, 0]⊕ [

1

16
,
7

16
,
3

2
].

By [LYY] and Lemma 3.17, a VOA with such a decomposition is unique. Thus we have CVA(e, f) ∼=
U4B as VOAs.
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