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We generalize the vertex operator formula for the affine Lie algebra
Aﬁll) in the “homogeneous picture” and by using it we construct a
basis of any given standard Aﬁ,”-module parametrized by coloured
partitions. We also obtain a similar explicit construction of vacuum
spaces of standard Agl)-modules.

1. Introduction. In this paper we give an explicit construction of
standard (i.e. integrable highest weight) representations of affine Lie
algebra § of the type AS,I).

As usual, for g =sl(n+1, C) we fix a Cartan subalgebra h and root
vectors X, , and we identify b = h* via bilinear form (x, y) =trxy.
We denote by ¢ the canonical central element of the affine Lie algebra
§ and we write x(i) = x® ¢’ for x € g and i € Z. As usual we use
triangular decompositions

=n_+bh+ng, g=f_+h+n,.

Let nyg C ny be the nilpotent radical of a maximal parabolic subalgebra
of g such that its Levi factor is (isomorphic to) gi(n,C). Let T =
{71, ..., yn} be the set of weights of ny (see §2). Then

{xg()); Bel, jeZ}

is a commutative family in §.

Let L(A) be a standard g-module with a highest weight vector v, .
On L(A) we have a projective representation B +— eg of the root
lattice Q of g (see §5). Let

%2(0) = 3 %)Y
jeZ
By using the formal Laurent series technique we extend the ver-
tex operator formula for level 1 Ag)-modules and for level k£ > 1

A(ll)-modules to all standard Aﬁ,l)-modules, based on a simple obser-
vation that the vertex operator formula for level 1 representation can
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be written as an equality of products of exponentials:

m(Zmﬂ

Ber

= exp (Z ——¢(i)Ci/i) exp (Z (v, W)xy(C)>

i<0 yel”

X exp (Z —co(i)cf/i) epl ™",
i>0

where ¢ €', I" = 5,I" (s, being a reflection corresponding to the
root ¢), and &(y, ¢) € {£1}. Written in this way the vertex operator
formula holds for every standard module (see §6, Theorem 6.4). The
above formula is to be understood as the equality of coefficients in two
formal Laurent series. For example, the coefficient of {™ of the left-
hand side has the unique summand xg(m) of weight f, and hence
xg(m) can be expressed in terms of elements e,, ¢(i)’s and x,(i)’s.
Another consequence of the vertex operator formula is:

(1.1) > xpU0)xp, Uks) =0,

Syt =m
where meZ, By,..., Bks1 €T, k=A(c).
Set fo = [lgerep. Since L(A) = U(ii-)vp, by using the vertex
operator formula (as mentioned above) we see that a set of vectors of
the form

(1.2) 15xp,(J1) - X, (Js)Un >

where pe Z, s >0, fi,...,p€Tland j, £---<j;<0,isa
spanning set of L(A) (see §8, Theorem 8.2). This set of vectors is not
a basis of L(A)—we reduce it further by expressing one monomial

x(u) =xg (J1)---xp,, Uk+1)

appearing in (1.1) in terms of the rest of them. The final result is a
spanning set of vectors of the form (1.2) satisfying certain combina-
torial conditions, which, in fact, is a basis of L(A) (Lemma 9.4 and
Remark 9.5).

Monomials of the form

x(v) = x5, (/1) - x5 ().

where s >0, B;,..., sl and j, <--- < js <0, we call coloured
partitions. When we reduce a spanning set (1.2) to a basis of L(A)
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we use induction, and for this reason we introduce an order on the
set of coloured partitions (§3) with three basic properties: it allows
arguments by induction (Lemma 3.2), it respects the semigroup struc-
ture of coloured partitions (Lemma 3.3) and the set of monomials
appearing in (1.1) has the smallest element (Lemma 3.4).

We may call the smallest element appearing in (1.1) the leading term
of (1.1). Denote by D(A) the set of all leading terms for all m < 0
and B, ..., Bry1 €. By induction we see that vectors of the form
(1.2) which contain x(u) € D(A) as a factor may be erased from
the spanning set. We also identify a certain set I(A) of monomials
x(u) such that x(u)vy =0 (Lemma 9.2). In §4 we study a set of all
monomials (i.e. coloured partitions) which do not contain as a factor
any x(v) in D(A)UI(A). For such coloured partitions we say that
they satisfy difference and initial conditions.

Roughly speaking, the main theorem (Theorem 9.1) states that the
set of vectors

(1.3) BBx(v)v,,

where p < 0 and x(v) satisfy the difference and initial conditions, is
a basis of L(A).

In order to prove the linear independence of such a set of vectors, we
first study a particular basis of level 1 standard §-module in which vec-
tors of the form x(v)v, have a simple expansion (Lemma 7.2(i)). The
construction relies on the observation that if the Fock space for the
homogeneous Heisenberg subalgebra of sl(2, C)~ is identified with
the algebra of symmetric functions, then the exponential

exp (Z —a(i)Ci/i)
i<0

is to be identified with the generating function for complete symmetric

functions. However, the basis {K(v)(1 ®e*)} corresponding to Schur

functions is better suited for our purposes (see §7).

The second step uses Frenkel’s observation that a standard module
of level k > 2 may be viewed as a subspace of level 1 standard module
by the use of a full subalgebra. The main point is the expansion of
(to be basis) elements of the form (1.3) in terms of Schur functions
basis (Lemma 9.7):

(1.4) x()up 2 aKO)(1®eh)+ Y beK(x)(1®eh).

x>°
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In this formula a combinatorial argument is used to show a # 0.
Another combinatorial argument shows that a map v — v0 is (roughly
speaking) injective (Lemma 4.6). In this way the linear independence
follows.

This construction does not describe the vacuum space (for the ho-
mogeneous Heisenberg subalgebra) of a standard module, but still by
its main ideas and techniques may be regarded as a part of a general
approach proposed by Lepowsky and Wilson.

In §10 we extend a construction of the vacuum spaces (for the homo-
geneous Heisenberg subalgebra) of standard Agl)-modules (Theorem

10.2) to standard Agl)-modules (Theorem 10.3). In this case even
a spanning result requires a delicate study of (vertex operator for-
mula) relations (Lemma 10.9). In the proof of linear independence
the analog of expansion (1.4) (Lemma 10.12) is used. This example
suggests the combinatorial difficulties one may expect in the case of
AS,I) , n > 2, but we fail to understand them.

Theorems 6.4, 8.2 and 9.1 are formulated in [P].

Finally let us make a few remarks:

It should be noticed that the coefficient of {™ in the vertex operator
formula is an operator of degree m on L(A) (with respect to the usual
homogeneous grading). For this reason we prefer to use the formal
indeterminate {. However, from the point of view of vertex operator
algebra theory and conformal field theory it is far more natural to
express the level 1 setup using z = {~! instead of {, and the level k
setup in terms of z = (k.

Although the starting point of our construction is the vertex operator
construction of level 1 modules given by Frenkel and Kac, we obtain
a different basis. Some combinatorial evidence (see Remark 9.10)
suggest that there might be some connection between the basis of the
form (1.3) (or the corresponding Schur functions) and the construction
of level 1 standard modules in terms of Maya diagrams and paths given
by Date, Jimbo, Kuniba, Miwa and Okado.

From Agl) case it seemed that one should use the vertex operator
formula to obtain (and reduce further) a spanning set of L(A) of
the form egx(v)vp, where f € Q and x(v) satisfy the difference
conditions. The construction of standard §-modules in terms of Maya
diagrams and paths suggested to use a spanning set (1.3) instead. I
thank E. Date, M. Jimbo and T. Miwa for stimulating conversations
which inspired us to formulate the correct initial conditions. It turned
out that all other ideas necessary to construct a basis came through
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the work with J. Lepowsky and A. Meurman, to whom I express my
gratitude.

2. Affine Lie algebra Ag,l) .Letg=sl(n+1,C),n>1.LethCyg
be a Cartan subalgebra, R the corresponding root system, Q the root
lattice of R. Fix a basis {a;, ..., an} of R. Let (x,y) =trxy for
X,y €g and identify h and b* via (, ).

Fix a bilinear map ¢: Q x Q — {*1}, i.e.

ela+f,y)=¢la, r)e(B,7),
e(a, B+7y)=c¢la, Be(a, y),

such that

gla,a)=-1 foraeR,
e, Be(B, a) = (-1)*# fora, peQ.
Then there exist root vectors x, € g, a € R, such that (cf. [FK], [F],
see also [LP1])
8(a:ﬂ)xa+ﬂ 1fa+ﬂ€R9
[Xa, Xgl=14 —a ifa+ =0,
0 otherwise .

Let § = g®C[t, 1711+ Cc+ Cd be the affine Lie algebra associated
with g—a Kac-Moody Lie algebra of the type Aﬁ,l) (cf. [K]). As usual
set x(j) =x®t for x € g and j € Z. Then commutation relations
in § are given by

[c.8]1=0,

[, x()] = jx()),

[x(2), y(DI =[x, yI(E+J) + i{x, ¥)disj,0¢ .
We identify g with g®° C §.
_Let g =n_+b+n, be the triangular decomposition of g. Set
h=h+Cc+Cd, iy = g® t*'C[t*']+ n.. Then we have a triangular
decomposition §=fi_ + § + fiy .

Define 6 € h* by 6(d) =1, 6lh+Cc =0, and a9 = 5 — 6,

where 6 € R is the maximal root. Set ay = c— 6, o) = a; for .

i=1,...,n,and define fundamental weights A; €b*, i =0, ..., n,
by Ai(a)=6;, Ai(d) =0,
Let e, ..., ey, be the canonical basis in R**! and R = {¢;—¢;;

i#j}, a1=e1—ey,...,an=ep,—ep.. Forie{l,...,n+1} set



148 M. PRIMC

I'={e;—ej; j#i}. Notice that R=T;U---UTI,;; and that each
I'; is a basis of Q.
Set yj=e1—€py2-j, j=1,...,n,and y; >y >--- > p,. Set

F=Ty={y,....7}, T-={x0);rel,,j<0}

and define an order on I'_ by xg(i) < x,(j)ifi<jori=j, B<7.

Set fip = spanc I'_ . Notice that fip is a commutative subalgebra of
n_.

Denote by
s= Y het/'+Cc
JezZ\{0}

the infinite dimensional (graded) Heisenberg subalgebra and by s_ =
sNf_.

For integral dominant

A =koAg+ kAL + -+ knAy, kieZ,,
(where Z, ={0,1,2,...}) set
k=Alc)=ko+k +- +ky,
gi=Ay)=ki+- - +kp1-j, j=1,...,n.
Then kK > g > g > --- > g, > 0 determines A, and we shall also
write
A=[k; g, &,..., &l

3. Coloured partitions. Let S be a set. Denote by Z(S) the set
of all functions u: S — Z, with finite support supp(u) = {a € S;
u(a) # 0} . We will call such functions a partition with u(a) parts a.
Clearly Z(S) is a semigroup with pointwise addition u + v. Define
the length of x4 by

I(w) =" u(a)
a€s
and set
Fm(S) = {u; l(u) = m}.
Then we have
PS)=Y_Pn(S),  Pu(S) +Pu(S) C Poim(S).
m>0
Let 1, 0;,...: P(S) — Z be a sequence (or well ordered set) of
additive functionals, and set u > v if there exists s such that

os(u) > ds(v) and 6,(u) =0,(v) forallr<s.

Clearly we have:
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LEMMA 3.1. Let u,v,x € 2(S).
(i) If u>v and v >k, then 4 > k.
(i) If u>v, then u+x>v+ck.
(iii) If 8y, &2, ... is such that 6;(u) = 6;(v) forall i=1,2,..
implies u = v, then > is a linear order on Z(S).

Now take § = I = {xp(j); B €T,/ < 0}. Wewill call 4 €
@(f'-) a coloured partition with p(xg(j)) parts xg(j) of degree j
and colour (weight) S . Recall that we have defined the order on I_
by xp(i) < xy(j) if i< j or i=j, B <y. Then a coloured partition
4 may be written as a sequence

xp (J1) £ xg,(J2) < -+ < xg (Us)

where the element xg(j) appears in this sequence u(xg(j)) times.
We may visualize 4 by its “Young diagram” representing a part xg(J)
with —j boxes of colour 8. For example,

X, (=4, X, (=3),  x,(=3),  x,(=1)

is represented by the Young diagram on the left-hand side of Figure
1, where 3 stands for y3, etc. (Sometimes we shall also write (i)
instead of xz(i).)

For coloured partitions we write ¥ Ux and v = & instead of v +x
and ¥y =0,and v Ck if v(a)<k(a) forall aeT_. If v Ck, we
say that x contains v .

Define the length /(u), degree |u| and weight w(u) of u by

wy=s= 3 wa),

ael _
= ji+ o+ Js = D p(a)deg(a
ael _
wp) =P+ +Bs= Y payw(a),
ael_

where degxg(j) =Jj and w(xg(j)) = B
If u and v are given by

pra;<ayL---<as, vibi<by<---<by,

then we shall write
u<v
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if u # v and one of the following statements are true

() {(u) > I(v),
(ii) I(u) =1(v), |u| <|v|,
(iif) /(u) =1(v), |u| = |v| and

dega, = degb;, ..., dega;,  =degh;,,, dega; <deg;

for some s >i>1,
(iv) l(u) =I(v), |u|=|v|, dega; =degbh; for i=1,...,s and

w(as) = w(bs), ..., w(@is1) = w(biy1), wla;) < w(b;)

forsome s >i> 1.
For example,

AV \C B¢ ) B )
N W NG,

AN
DD WD
TAN

| || -

FIGURE 1

Obviously, we have:

LEMMA 3.2. The relation < is a (reverse) well order on ,97’(I~“_).

The element 0 is the largest element in ,9”(1:_).

< may be defined by a sequence of func-

Notice that the relation
tionals

_l’ II’ 515529---:61,1’-“a51,n3 52,1a"'352,ns"-
where
W) =3 u(xg(=i), & (W) =pu(x,(-j)).
Ber

Hence we have:
.LEMMA 3.3. Let u, v,k € P(S). If u>v, then u+xk>v+k.

This is a crucial property of the order > and our construction may
be regarded as a “commutative version” of the construction in [LW,
Proposition 6.2].

Later on we shall need the following:
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LeMMA 34. Let me -Z,, o =qiy1+ - +qn¥n, Qis--- > dn € Ly,
and g1+ +qu=k+1>2. Let

A={pePT_);l(w=k+1, |ul=m, wy =9}

(i) The set A +# @ has the smallest element.
(i) Let v be a coloured partition xp (1)< < xﬁk+l(jk+1), =
A. Then v is the smallest element of A if and only if

J1=Jks1 O ji=—=1+ jrq1, B1 = By

Proof. Since A is finite, (i) is clear. It is also clear that for the
smallest element

p:xg (1) <+ < xp (Urst)

must be either j; = jiq of jj = =1+ jiyq-
In the case

h==ji==l4jum =" =-1+jkyu
write a sequence

Wi 2 Z2W 2 W1 2 2 Vil

where y; appears ¢; times, ..., ¥, appears g, times. Then for
ﬂl =‘//t:~-,ﬂt='//1,
Bt = W15 - s Bir1 = Via1

u is the smallest element in A. Hence f1 > By, . Conversely,
Bt =2 P12 Biy1 2 -+ = Pry1 determines the sequence (y;). O

REMARK 3.5. If v € A is not the smallest element, then j; <
=1+ jgy1, and if j; = =1+ ji,(, then B; < B, . (Cf. a definition
of difference conditions in the following section.)

4. Difference and initial conditions. In this section we fix a natural
number k£ and a sequence of nonnegative integers k > g > g >
.- > g» > 0. We shall write

Az[k;glag25'-'9gn]a gizA(J)i): i=l:---a”-
Let us denote by D(A) a set of coloured partitions v of the form
xp,(J1) <+ < xpg (k1)
such that

Ji=Jks1 O ji=—=14+jie1, P12 Brsr-
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We shall say that a coloured partition u satisfies the difference con-
ditions D(A) if u does not contain any v € D(A). Equivalently, a
coloured partition u of the form

X, (1) < -+ < x5 ()
satisfies the difference conditions D(A) if
Js <=2+ jgn O js=-14jou, Bs < Bsik
for s=1,...,r—k.
Let us denote by I(A) a set of coloured partitions of the form
Xp(~1) < xp (1)< <xp(=1),  s=k—A(B).

We shall say that a coloured partition u satisfies the initial conditions
I(A) if u does not contain any v € I(A). Equivalently, a coloured
partition u satisfies the initial conditions I(A) if u has at most k—g;
parts of degree —1 and colours > y;, i=1,...,n.

Consider a set of points A4 C Z?

(n,0, (n,-1),...,(n,—g1+1);
(n-1,0, (n-1,-1),...,(n=1,—-g»+1);
(n-1,1),...,(n—-1,k—g),
n-=2,0, (n-2,-1),...,(n=-2,-g3+1);
(n-2,1,...,(n=2,k—g),

(1,0, (1,-1),...,(1,-g,+ 1);
1,0, ...,(1,k—gu_1), (0,1),...,(0,k—gn).
Notice that in the first row we listed g; points, in second row g, +

(k — g1) points, and so on.
Let

B={(p+(n+Vr,q—kr)eZ*;(p,q)€ A, reZ}.
LEMMA 4.1. (i) #4=k-n.

(ii) For each horizontal line | = {(a, b); a € Z} we have #(BNl) =
n and BN is an interval.

Proof. The first statement is clear. To prove the second statement,
let 0> b > —k. If for some r we have

—gr+l+l>b7 —gr+1$b,
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thenfor n>t>r+1>r>s>1 wehave g < g1 < g < g and
—&+1<b, —k+(k—g)2b.

Hence
Bnl={n+1-r,b),...,(n+1-1,0),
O+n+1,b),...,(n—r—-1+n+1,b)}.
Since B is periodic, the statement follows. O

Label each point of the interval B N/ by colours y; to y, (from
left to right). In particular, to each point of 4 C B we associate a
colour. Define a coloured partition v, by associating to each point
(P, q) €A of colour g apart xg(—p—1).

For example, if A =[2;2,1, 1], then we have (writing s(j) in-
stead of x, (J))

vp = (3(=4), 1(=4), 2(-3), 3(-2), 1(=2), 2(-1)).
From the above construction it is easy to see that we can construct v,
in another way: write
A=Ail +---+Aik

as the sum of fundamental weights

Ag=1[1;0,...,0],

A=[1;1,...,1,0,...,0], 1<i<n,
where zero appears [ — 1 times. Then

VA:VA,IU'“UVA%’

where
U, S vn(=1),5 ooy 2(=2), ni(=1),
vp, cri(=n=1); m(=n+1), ..., n(=1),
VA S Vn—irt(=n = 1), ., pi(=1 = 1); Pa(=i+ 1), ..o, Pnoin2(=1),

i

va, 2 on(=n—1), ..., 72(=3), 71(=2).

1

LEMMA 4.2, (i) [(vp) =k-n.
(i) —vpl =g+ -+ gn+kn(n+1)/2.
(iii) w(vp) =k(y1+---+ ).

Proof. (i) follows from Lemma 4.1(i). From the construction it is
clear that each colour in 4 appears k times, and hence (ii1) holds. To
prove (ii), notice that there is k—g, parts of degree —1, (k—g,_1)+8&n
parts of degree —2, ..., g, parts of degree —n — 1. O
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PROPOSITION 4.3. A coloured partition v, satisfies the difference
conditions D(A) and initial conditions I(A).

Proof. For each horizontal line [, = {(a, b); a € Z} we have that
BN, is an interval with n points. From construction of 4 we see
that for 0 > b > —k+1 the beginning of the segment BN/,_; is to the
right from the beginning of the segment BN/, . Since B is periodic,
this is true in general. By the way B is coloured, it is clear that on
each vertical line {(a, b); b € Z} N B the colours are descending
(while going up): B, ) < Ba,p-1)- (Recall that y > --- > p,.) This
means that colours of the parts of v, of degree —a — 1 are arranged
in the Young diagram of v, in the same way as the colours on the
vertical line 4N {(a, b); b € Z}. Now to check that the difference
conditions hold for v, is the same as to check whether for adjacent
points (a, b), (a+1, b) € A (on horizontal line) their colours satisfy
relation 1,5 < B(a,p) - But this is true by construction.

By inspecting the construction of v, , we see that on the first vertical
linein A colours f > y; appear k—g; times, colours f > y, appear
k — g, times, ..., and hence v, satisfy initial conditions as well. O

For a coloured partition x and j > 0 denote by u; a coloured
partition defined by

1j(xp(q — 7)) = u(xp(q)) , 1j(xp(r)) =0 forr=—j.

Clearly the Young diagram of x; is obtained by adding to each part
of u additional j boxes.
For a coloured partition x4 and ¢ > 1 set

Ug, A = UHgint1) + (WA) (g=D)(ns1) + -+ (WA ns1 + V4
For example, if u is given by
3(-2), 1(-2), 2(-1)
and A being as in the previous example, then u, , is given by
3(—-6), 1(—6), 2(=5), 3(—4), 1(—4), 2(-3), 3(-2), 1(-2), 2(-1).

PROPOSITION 4.4. Let u € ?(f” _). Then it is equivalent

(i) u satisfies the difference conditions D(A) and initial conditions
I(A).
(ii) u, A satisfies the difference conditions D(A) for ¢ > 1.
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Proof. 1t is enough to consider the case when ¢ = 1. Clearly one
has to compare the parts of p;.(s41) of degree —1—(n+1) with parts
of v, of degree —(n + 1), let us denote them by

asS"'Sal<bng"'Sbl-

In v, there is g, parts of degree —(n +1). If g = 0, i.e. there
are no parts of degree —(n + 1), then the difference conditions are
clearly satisfied. But then g; =--- = g, = 0, so u satisfies the initial
conditions if it satisfies the difference conditions. Hence in this case
the proposition holds.

Now assume g; > 1, and let (i) hold. We have to compare colours
of parts b; and Aje—g +j - In b;’s colour y; appears g; — g; times, ¥,

appears g, — g3 times, ..., Y, appears g, times, i.e.
wby) == w(bgl—gz) =71,
w(bgl~g2+1) = =wW(bg-g) =72,
w(bg,—gn+1) = =w(bg)="Vn-

Since u satisfies the initial conditions, we have

w(ak-gl+l) <",
W(a—g,+1) < 72,

W(ak-g 1) < Pn, L. § < k—gn.

Hence w(by) = y1 > w(ak_4 1), ..., and the difference conditions
hold for p; 4.
The other implication is proved similarly. O

Later on we shall need the following construction (recall that k > 1
is fixed): For a coloured partition

v=(xg(J1),-..,xp(Js)),  xp (1) S---<xp(Js),
set
v' = (xp (kj1), ..., xp (kJs))
and
v = (xp (kji+s=1), ..., xg (kjs))
= (xg (P1), .., x5 (Ps5)) -

Clearly, we have a map v — v/ — v° from ,9”(I~“_) into “coloured
sequences” which may be visualized as multiplying the number of
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boxes in the Young diagram of v by k, and then going upwards
erasing 0, 1,2, ... boxes. For example (k =2, v = v, as before):
v =(3(-4), 1(-4), 2(-3), 3(-2), 1(-2), 2(-1)),
v' = (3(=8), 1(-8), 2(-6), 3(—4), 1(-4), 2(-2)),
v0 = (3(=3), 1(-4), 2(-3), 3(=2), 1(-3), 2(-2)).

First we list some obvious properties of v9:

LEMMA 4.5. Let v satisfy the difference conditions D(A). Then

(1) Pr < Dryk.

(1) pr = Dpryr implies Br < Prik,

(1i1) ps j :] mod k,
v) p

@
) for r # q we have xg (pr) # Xp (Dq)-

Let j > 1. Call the sequence of all parts of v of degree —j a j-block

of v (if nonempty), denote it by B(v, j). Clearly, #B(v, j) <k.
(vi) {pr; xg (jr) € B(v, j)} isan interval in Z, denote it by [a;, b;].
(vii) If i > j, then b; < b;.

We may think of 0 as a coloured partition, i.e. v0 € @(f_) .

LEMMA 4.6. Fix ¢ = a;y1+ -+ anyn, @1, ..., an € L, . The map
v — Y from the set

{ve g’(f‘_); v satisfies difference condition D(A) and w(v) = ¢}
into .@(f"_) is an injection.

Proof. Let 1 and v be coloured partitions which satisfy the dif-

ference conditions and w(v) = w(u) = ¢. Then l(v) = [(u) =
ay+---+a,=s. Let

v=_(xp (1), ..., xp(s), xp (J1) £+ < xp.(Js),
= (xp (i1)s ... Xp (is)), Xp (1) < - < Xy (Is),
and
VO = (Xﬂl(pl)s s xﬂx(ps))’ ’uO = (x(ﬂ,(ql)a rees -x¢7:(q_?))-

We need to prove that u # v implies u® # 0.
For this purpose define a relation < by conditions (i), (ii), (iii) in
§3, i.e. by a sequence of functionals —/, ||, d;,d,.... Let u #v.
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(a) If v < u, then 29 < 40,
The case |v| < |u| is obvious, so assume |v| = |u|. Let
Js = sy evny Jrgl = lry1s Jr <lir.
Then
Ds=4s;s ..., Drs1 =(rsls Dr<gr.
By Lemma 4.5 we have
pr<-k+g<g.
Moreover

D1 < —k+g+1<gq,
Praol—-k+qg+2<gq,

Drk+1 < ~k+g+k-1<gq,
pr——k S Dr < dr,
Drok—1SDPr-1<4r-

Hence p,_; < g, for j > 0,and pj=gq; for s> j>r+1. If we
arrange the parts of 0 and u® by degrees, we see that in degree ¢,
u° has (at least) one part more than »°, and that v0 < 0.

(b) Let js =1i5,..., j1 =i;. Then v and u differ in “colouring”.
To prove v% # 4P it is enough to show that the colouring of v is
determined by the colouring of 9.

Consider
vi=(xpg (kj1), ..., xp(kjs)), xp(kji) < < xp(kjs),
10 = (xp(kjr+s=1),...,xp_(kjs—1+1), xg (kJs))
= (xg,(P1), .., X (Ds)) -
In the sequence p;,...,ps consider all elements equal —1, say
Pt ..., Pt . By Lemma 4.5(ii) we have f; < f; <---< ;. Hence

v0 (starting from the right) looks like
o< xy(=2) <xp (1) <o <xp (—1).

The point is, if we know »° and ji, ..., js, then we know kjs +s5—
1,..., kjs_1+1, kjs, and we know the places for colours B , ..., f; .
Next we consider all elements equal —2 in the sequence p;, ..., D

and, arguing as above, we reconstruct positions of colours in an-
other part of ». Hence in finite number of steps we determine v
completely. m}



158 M. PRIMC

5. Standard representations. A highest weight §-module V' is gen-
erated by a highest weight vector v, such that

h-vya=A(h)v, forallheh,
x-vpa=0 forall x en,,

where A € §* is the highest weight of 7. A highest weight §-module
V' is a direct sum of weight subspaces V, = {v e V; h-v = u(h)v
forall heh}, ueh*.

Standard g-module (i.e. integrable highest weight g-module) we
may define (cf. [K]) as an irreducible highest weight module with high-
est weight

A=koyAg+ kA + -+ kA,

where k; € Z,, for i =0, ..., n, and we denote it by L(A). The
central element ¢ acts on L(A) as a scalar

k=A(C)=ko+k1+"'+kn

called a level of L(A).
On each standard module L(A) we define operators

So = €XP X4 (0) €xp x_o(0) exp x4 (0) ,
S5—a = €XPX_o(1) €xp Xa(—1) expX_o(1),
€q = Sg—aSa >

for each a € R. Then a map o — e, extends to a projective repre-
sentation of Q on L(A) such that

e.ep = e(a, Bke, s foralla, feQ,

where k is level of L(A).
On a standard §-module we have

eqde;! =d+a—%(a, ajc,
e.fe;' =B —(a, B)c,
eBi)e;! = B(j) forj#0,

eax)'(j)eojl = (_1)<a’y>x}’(j - (aa Y>) s
where o, f € Q, j€Z, y € R. (Cf. [FK] or the next section.)

Denote by T the group generated by e,, a € R. We may identify
T with {*e,; ¢ € Q}.
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6. Vertex operator formula. For a given standard module L(A) of
level k and a € R denote by x,({) a formal Laurent series

Xa() =) xa()¢
Jjez
in { with coefficients in End(L(A)), where x,(j) are fixed as in §2.
For a € Q define a formal Laurent series {~¢~¢ with coefficients
in End(L(A)) by
C—c—a,vﬂ — 'ch_k_(a’”)

whenever v, € L(A) is such that h.v, = u(h)y, forall hep.
For a € h define a formal Laurent series

E*(a, {) = exp (Z a(incﬂ/(izd) .
i>0
Then the vertex operator formula due to I. Frenkel and V. G. Kac
[FK, Theorem 1] (in our notation) states:

THEOREM 6.1. Let A be a fundamental weight. Then on L(A)
Xo({) = E™(~a, HE* (—a, {eL 717"
for a € R.

It will be convenient to recall the Frenkel-Kac vertex operator con-
struction of a fundamental g-module (our notation is as in [LP1]):
Recall that we denote by

s= Y het/+Cc
JEZ\{0}

the infinite dimensional (graded) Heisenberg subalgebra of § and by
s_ = sNfi_. On the symmetric algebra S(s_) we define a representa-
tion of s so that for 2 € h and i € Z the elements A(i) act as multi-
plication operators (i) if i < O and as derivations i{%, h)d/0h(—i)
if i >0, and set ¢ = 1. Grading on s_ induces the grading on S(s_)
and we denote by d the degree operator. Define a formal Laurent
series E*(a, {) with coefficients in End(S(s_)) as before. Then we
have [LP1, Lemma 3.2]:

LEMMA 6.2. Let ¢, w €. Then
E+((0, CI)E-_(Wa CZ) = (1 - CI/CZ)(w’W)E—(W’ CZ)E+(¢’ Cl)
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(Here {; and {, are commuting indeterminates and the expression
(1 = ¢1/&2)? is understood to be the formal power series in {{/{, ob-
tained by means of the binomial expansion.)

Let Q be the root lattice of R and P the weight lattice. Then
QcCcP. Let A, ..., 4, be the fundamental weights. Set 4o = 0.
Denote by C[Q] and C[P] the group algebras of @ and P with
basis elements of the form e# and multiplication e#e” = e#*¥ . For
¢ € Q and fixed i € {0, ..., n} define a linear map

e, : e4C[Q] — e4C[Q],
ep: et S e(p, werth? . peQ.

Hence we have a projective representation ¢ — e, of Q such that
epey =&(Q, V)epry .

Define a grading on C[P] by de* = —1(u, p)e*.

Define the action of § on C[P] by he = (u, h)e”. As before we
define a formal Laurent series {* for a € §.

For i€ {0, ..., n} set

Vi = S(s_) ® e4C[Q].

Then on ¥; we have the action of the Lie algebra s (acting on the first
tensorand), the action of h and Q (acting on the second tensorand)
and the grading defined by d = d®1+1®d . Clearly V; is irreducible
for action of these operators.

By using Lemma 6.2 it is easy to see that coefficients of the formal
Laurent series

E—(—a ’ C)E+(_a ’ C) ® eaC_l_a
satisfy the same commutation relations as Lie algebra elements x,(j),
so by the vertex operator formula V; is a g-module equivalent to
L(A;). (To be precise, the action of [§, §] is equivalent, and the
grading is shifted by —%(/Ii , 4;) .) Moreover, operator e, is equal to
Ss—aS« (Introduced in §5).

If «, B €R and (a, B) > 1, then the family {x.(j), xg(j); j €
Z} is commutative and the formal Laurent series x,({)xg({) is well
defined. As a consequence of the vertex operator construction and
Lemma 6.2 we have:

PROPOSITION 6.3. Let A be a fundamental weight and o, f € R,
(a, By > 1. Then on L(A)

Xa(§)xp(C) = 0.



CONSTRUCTION OF STANDARD MODULES FOR 4 161

Similarly, for By, ..., Bs € I'; the coefficients of xﬂl(C) y eens xﬂs(C)
commute and the formal Laurent series xg ({)---xg ({) is well de-
fined. Since by the complete reducibility theorem [K, Theorem 10.7]
a standard module L(A) of level k is a submodule of the tensor
product of k fundamental modules, Proposition 6.3 implies that for

Brs--is By €T
xp ({)---xg ()=0

on L(A). Hence the formal Laurent series

exp (Z xﬂ(c))

BeT,

is well defined on L(A).
Now we can state a generalization of the vertex operator formula:

THEOREM 6.4. Let i,j € {1,...,n+ 1}, i # j, and set ¢ =
e,—e; €l';N(-TI;). Then on L(A)
(6.1)
exp| Y x5(0)
peT,

=E" (-9, {)exp (Z (v, ¢)xy(C)) E*(~¢, {)e,L777.

yal‘j

Proof. In the level 1 case these are vertex operator formulas. Since
the relation (6.1) holds for fundamental modules, it holds on tensor
products of fundamental modules, and hence on every standard mod-
ule (cf. [LP2, Theorem 5.6]). O

Formula (6.1) can be written by components:

(6.2) e(w—ko,o)a! g/ (pr! - pal)xg (OP1---xp ({)Pn
=E~ (=0, O)x, ({1)% - Xy (O%EY (=9, et ™*7,

(6.3) xp () xp (O =0,

where for fixed i # j wetake I'i={f1, ..., Bu}, Ui ={"1, ..., ¥n},

pelin(-I)),p1fr+ - +bnPn =¥ =aqp+ -+ duvn + ko,
r1+"'+rn=k+1, Ds>Qqs, s > 0.
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7. Schur functions. In this section we set V' = S(s_) ® C[P] =
Vo+---+ V, and we consider formal Laurent series in commuting
indeterminates {1, ..., {m, m > 1, with coefficients in End(V').

Denote by S,, the symmetric group and by &(w) a sign of per-
mutation w € S,,. The symmetric group S,, acts on Z™ by per-

muting the coordinates. Set d, = (m — 1, ,1,0) € Z". For
w="_C1,...,Jjm) €EL™ write {# = C" N Then we have
(7.1) [T G-¢)= > ew)i .

1<i<j<m wes,,

Notice that for 81, ..., fm € I' =1'| formal Laurent series Xﬁl(Cx),
» Xg (Cm) commute.
For By, ..., Bm €T set

(7.2)  K(Bu(&1)s oo s Bm(Cm))

=e-ep, I &' -G
i<j,B=5,

m

< [1E ﬂ,,c,H =8, o [ 577
i=1 i=1

K(Bi(C1)s -vv s Bm(lm)) | |
= Y KB -5 BulGm))Cl - G-

Jysees Im€Z
We shall also write

K(ﬂl(]l)saﬂm(]m))=K()81>sﬁm,Jl’alm)

By using the vertex operator formula and Lemma 6.2 we get:

LEMMA 7.1.

i) K(Bi&1), s Bullm))
=TI GO =8/8) " % G0 x5, Cm)-

1<i<j<m
(i)  xg (C1) - xp (Cm)
= JI «&'- GDKBIED), v s Bm(Em)) -

1<i<i<m
(i)  K(Buwny(Cw))s -+ » Buwim)(Cwm)))
= e(w)K(B1(C1)5 -v > Bm(Cm))-

In particular, Lemma 7.1 and (7.1) imply:
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LemMMA 7.2. For B1,....,Bm €T, ji,....Jjm € Z and w € Sy,
we have:

(@) xg,(j1) x5 (jm)
= Y e)K(Bi(s + w(m) = 1), ..., Bulim +w(1) = 1)).

wes,

(i1) K(BuwyUw)) s - » Buim)Uwm)))
=ew)K(B1(J1)s - s Bm(im)) -

Let A € P be dominant. Elements in V' of the form
K(Bi(j1)s - s Bu(im))(1 @ ")

we will call Schur functions. _
For B = y; € T denote by V) ¢ P#(I'_) the set of all coloured
partitions of colour f# = y;:

x(j1) < < xg(Jm)-
For B = y; €I" define elements s,(,i) € S(s-) by
1 GG =GHE (=B, 8)E (=B, {m)

1<i<j<m
= Zs(_’,)tC"(“‘sm) = Zs,(c’i(;m(”
U K

summed over all u € Z™ (or k € Z™).
By [LP2, Proposition 7.3] the family

{si(lg---si('fg; tDePDfori=1,...,n}

is a basis of S(s_). (Here we identify (f =y;, 1 < < Jjm <0)
with 7;(j;) <--- < 9:(Jm).) Also notice that for j, < --- < j, <0 we
have " )
i o
S i) = Sy 0
It is clear that a coloured partition v € z@(f”_) can be written in
the unique way as
V:y(1)+...+y(n)’
where v() € 20
For a sequence

vV = (xﬁl(jl), ceey xﬂm(]m))
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we set
Kw)=K(BU1), - s Bu(im))-
Let v € P(I_) with weight w(¥) = ¢ = myp; + -+ + Muyn. Set
8 = (yi, A). Then it is clear from the definition that

n
Ay — () A
(7.3) Kv)(1®e') = HIS'C“’MW ®ee*t?
1=

where ¢ € {1} and
K(i)+(_1_gis"',—l_gi)=y(i)’ i=1,...,n.

LEMMA 7.3. The following two statements are equivalent:

1) K(B1(J1)s -+ » Bm(Um))(1 ®@e*) #0.
(i) jr < —=1—{(A, B, forall r=1, ..., m and all parts B.(j,) are

mutually different, i.e. B, = B implies j, # Js.

Proof. Let K(v)(1®e*) # 0. By Lemma 7.2(ii) all parts of v must
be different. It follows from definition (7.2) that

K(Bi(L1), v s Bu(Cm))(1®@ €
may have a nontrivial coefficient of {J'-- ¢y onmly if j, < -1 —

{4, Br).

Conversely, if (ii) holds, then clearly k() € —Z7*. Moreover, all
parts of partition »() being different, we have k) + 8, € A
Hence by [LP2, Proposition 7.3(b)] s.o,; # 0 and the lemma

follows. 0O

LEMMA 7.4. Fix o =mpy1+--+mMpyn, Mmy,..., my€Z,. Set
A={K@)1®e);veP[T.), ww) =9}.
Then A\{O} is linearly independent.
Proof. Since ¢ is fixed, the length /(vY) = m; is fixed, and hence
A\{0} is a subset of the basis of V' of the form
s s @ gette
v v

and the lemma follows.
REMARK 7.5. If g €T, then Lemma 7.1(i) implies

Xg(EOKBUE) s -+ » BmlCm))
= I & -¢/E)KPBE), Bil&)s - s Bullm)),

1<j<m
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and the action of xgz(j) on Schur functions can be given a simple
combinatorial interpretation in terms of Young diagrams. In order to
obtain a similar description for the action x_g(j) for g € I' one may
use the fact that elements defined by

IT &= I E (=88 =) sl o,

1<i<j<m 1<i<m
T &' =Y I1 BB, =0y =Y 5-uf W+
1<i<j<m 1<i<m
satisfy
§—'u = S—/l'

for a partition u, where 4’ denotes the transposed partition (cf. [M,
§1.3]).
8. A spanning set of L(A). Recall that 7 = (¢,; a € R). Set

t0=ey1"'ey,,

and denote by 7, ¢ T a subgroup generated by ¢;.
Recall that
o= > Cxa())
ael’, j<0
is a commutative subalgebra of A_ .
Let L(A) be astandard §-module of level k and let v, be a highest
weight vector.

LEMMA 8.1. L(A) = TU(#ip)vy .

Proof. Set
fl = Z Cxa (.] ) .

a€l’, jeZ
Then # C § is a commutative subalgebra. Notice that # is invariant
for the adjoint action of the Heisenberg subalgebra s and that @ and
s are invariant for the adjoint action of the group 7. Since R =
I'u---uT,,, by using a relation (see (6.2))

xp,({) € CE™ (=9, )%, (0% -, (O%E* (=9, D)epl ™77

we see that
L(A) =TU®R)U(s)vy -

From the relation (see (6.2))
E (-9, )E*(=p, {) € Cxp(0)<¢F*2e, !
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we see that U(s)v, € TU(d)v, (cf. [LP2, Propositions 7.1 and 7.2]),
SO

L(A) = TU(R)vp
and

L(A) = TU(ﬁo)’UA . O

THEOREM 8.2. For a given weight subspace L(A), there exists py >
0 such that
L(A), C t57U(fig)vp
whenever p > po .

In particular
L(A) = T()U(ﬁ())’UA .

Proof. Since dim L(A), < oo, by Lemma 8.1 there exists a spanning
set S of finitely many vectors of the form
eyt ---eynxg (j1) -+ xpg (Js)Va »
where q1,...,qn € Z, B1,..., s €T and ji,...,Js < 0. Let

Po > 0 be such that pg > —q;, ..., —g, for each vector in S, and let
p 2 po. Then t§ = +ef ---€} , and vectors S are of the form
el ef P xp (1) xp (s)ua
= :txﬂl (Ji) .. .xﬂs(j;)e}?lﬁ‘p ... e}?:—i-p’UA c U(ﬁO)UA ,
the last statement being a consequence of relations (see (6.2))
Xy (O)F = kVE~ (=7, OE (=7, De,{F7

(y €T, applied to v, and reading off the coefficient of {~*~A0) 0

9. A basis of L(A). In this section we construct a basis of a stan-
dard module of level £k > 1.

To each coloured partition v we associate x(v) € U(#iy) by

x(v) = xg (j1)-- x5 (Js) = [] a®.
ael_

For a coloured partition v define ¢(v) € {1} by

tox(v)ty' = e(V)x(Vni1).
Then e(v U p) =e(v)e(n), e(v;) =e(v) and e(vy) =1.

By Lemma 9.8 (in this section) x(vp)vy, # 0. Since x(vp)v, €
L(A)tOA and dimL(A), o = dimL(A), = 1, we may define ap # 0
by

Lhvp = dAX(I/A)’UA .
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THEOREM 9.1. Let L(A) be a standard level k §-module, u € b*
and meZ. Let p >0 be such that L(A),_ms C t57U(fig)vs. Then
the set of vectors

ewPaitPx(v)vy, veP(-)
such that
(1) v satisfies the difference conditions D(A) and the initial condi-
tions I(A),

(2) w()=pu—Alb+kp(y1+--+7n),
(3) vl = -m—n(n+ Dkp?/2 —p{y1 + -+ ¥n, 1), is a basis of
L(A)u—mé-

Moreover, this basis does not depend on a choice of p .

Notice that

ey akty?x(v)vs = e(w)alty? tox(v)ig vy
1,—(p+1
= ey a5 P x(vns1)x (A )ua
1,—(p+1
= ey, APl g P vy A)va
Since under our assumptions v — v is injective, it is clear that a
] 1,A
basis does not depend on a choice of p.

The rest of this section is devoted to the proof of Theorem 9.1.
Let g C § be the full subalgebra of § of depth k > 1 defined as

§y =8®C[*, 7%+ Cc+ Cd.

Then §y) = g via the isomorphism

Te: 8= B
given by
T(x(J)) =x(kj), x€g, j€L,
Ti(c) = ke,
1 (d)=d/k.

If #: § — EndV defines a §-module structure on a vector space
V', then the restriction of # to the full subalgebra gy, defines the
representation

Npy=TNoTy
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of §, and we denote this g-module by V). If V' is a standard §-
module of level 1, then V) is a direct sum of standard g-modules of
level k. Moreover, if we take

V =S(s-) ® C[P],
then all standard modules of level k appear in V). Let
A=koAog+ kA + -+ knAy, kieZ,,
k=ky+ki+---+ky,

and set 4 = Alh. Then the g-submodule of V) generated by the
vector 1 ® e* is equivalent to L(A) and 1 ® ¢* is a highest weight
vector, i.e.

L(A) = U(§)(1 ® e*) C S(s-) ® C[P],
UAE]@el’
xﬂ,(]’l)'-'x/s:(js)UA%’xﬂl(kh)---xﬁs(kjs)(l®e’1).
Fix
A=k0A0+k1A1+---+knAn=[k;g1,...,gn],
where g =A(y;), i=1,...,n, k=ky+- +k,.

LeEMMA 9.2, If v € I(A), then x(v)(vy) =0.

Proof. By using the full subalgebra, we have
X(w)vp =xp (j1) - xp (Js)vA
= xg (kji) - xg (kjs)(1 @ e*)
=x()(1@e").
Now let v € I(A), i.e.
v'=(xg(=k), ..., xp(~k)),
where f; <---< fs, s— 1=k —A(f;). By Lemma 7.2(i)
x(v)(1®e?)
= e(W)K(By, ..., Bs; (=k, ..., ~k) +wd) (1 ®e),

wWES,
and by Lemma 7.3 each of the summands on the right-hand side equals
zero since for some r

Jr=—k+s—1==-A(B1) 2 -A(By) > -1-A(B). o
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LEMMA 9.3. Let p € Z and v € P(T_). Then toPx(vyvy €
L(A)y—ms, where p € b* and m € Z are given by

u=ww)+Alb—-kp(yi +---+ ),
~m = |v|+ Ad) +n(n+ 1)kp*/2+p{y1 + -+ 7nl) -

Proof. The statement follows by using the formulas for adjoint ac-

tion of e, listed in §5. ]
LEMMA 94. Let ¢ = ayyy + -+ + Qn¥n, 41, ...,0G, € Z,, and
reZ,. Then

span {x(v)vs; v € P(TL), w(w) =9, |v|=-r}
=span{x(v)v,; v e P(T.), ww) =9, |v|=~rand
v satisfies conditions D(A) and I(A)}.

Proof. If v contains a partition 7 € I(A), then by Lemma 9.2
x(t)vp =0, and hence x(v)vy, =0.

If v contains a partition 7 € D(A), relation (6.3) and Lemma 3.4
implies that

x(T)up = acx(ic)vp

for some a, € C, and hence by Lemma 3.3

x(v)va = 3 Bux(wyop

u>v
for some b, € C. Now the lemma follows by induction. m)

REMARK 9.5. Lemmas 9.3 and 9.4 imply that vectors described in
Theorem 9.1 form a spanning set of L(A),_,,;. What remains to
prove is the linear independence of this set.

LEMMA 9.6. Let v € 9"‘(1~"~) satisfy the difference conditions D(A)
and initial conditions 1(A). Then

K@) (1®e") #0.
Proof. Let v be given by

xﬂ,(jl) <--< xp,(jr) < xﬂm(—l) <. ... <L xﬁs(_l)’

where j, < —2. Since difference conditions are satisfied, we have
s—-r<k.
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Moreover, since initial conditions are satisfied, we have for r+1 <
i<s
s—i<k-—-A(B).

Now the corresponding 9 is given by

xp(kji+s—=1), ..., xp(kjr+s=-171),

xp (“k+s—r—1),...,x5(=k),
and for r+1<i<s

pi=—-k+s—i<—-1-A(B).

Now let xg (p:) be a part of v® such that p; > —k. We want to show
that

pr<-1-A(By).
For t=r+1,...,s thisis true. Let £ <r+ 1. By Lemma 4.5(vii)
Dt < Pryy - Moreover, by Lemma 4.5(i), (ii), (iii) we have

Ds ==K <Pt <Prik S Priok < < D1

hence
Dt =Dk =Pk =" =Di,  Bi<Bi
forsome ie{r+1,...,s}. But then
pr=pi<—1-A(Bi) <—-1-A(B).
Since by Lemma 4.5(v) all parts of v? are mutually different, Lemma
7.3 implies that K(v°)(1 ® e*) #0. m

LEMMA 9.7. Let ¢ = a1y1 + -+ an¥n, aQ1,...,an € Zy. Let
v € P(I'_) satisfy the difference conditions D(A) and let w(v) = ¢.
Consider v° as coloured partition. Then there exists an integer a # 0
such that

x(v)uy ZaK (W) (1@eh) + > bK(k)(1®e%),

summed over k € P(T_), w(k)=¢, k > 0.

Proof. Let
v= (xﬂ](jl): e >xﬂm(jm))’
b=(ﬂls "'aﬂm)a
.u'z(kjls oo akjm)’
= (kji+m-1,...,kjm)=@1, ..., Pm).
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By using the full subalgebra and Lemma 7.2(1) we have
x(v)vp = x(v)(1@e?)
= E e(W)K(b; 1+ wdm)(1 @e?).

wes,,
Recall that J,, = (m—1, ..., 0), so the parts of wd,, are 0, 1, 2, ....
Write 7 = (b;/l""wam) = (ﬂl:ﬂZa'-' ;t11123"') = (xﬂl(tl)a

x,;z(tz) , ...) and consider it as a coloured partition. We want to see
that either K(7)(1®e*) =0 or 7 > v0. Let j = —jV) = j,, and
consider j(1)-block of v (see Lemma 4.5)

xp(=Jj) << xp (=)

and the corresponding sequence in v
xXg(Pr)s -+ > Xg (Pm),
pr=—=kj+m-—-r,...,pm=-kj.
By Lemma 4.5(vii) p, > p; for i=1,..., m. If wd, is not of the
form

(9.1) (...,ir,...,im), {ir,...,im}z{o,l,...,m—r},

then 7 has a part which is strictly greater than p,, and hence 7 > /0.

Hence consider 7 such that wd,, has the form (9.1). Now consider
next j(®-block of v, where —j(® = j,_;. By the same argument we
see that if wd,, is not of the form

(... ’ iq, ces g ir_l;ir, ces o im),

{irs ..oy im} =10, =1 +#B(v, jV)],
{ig, .., i1} =[#B, jV), 1+ #B(v, jO) + #B(v, jP)),

then 7 > v0. By proceeding in this manner we see that it is enough
to consider 7 of the form

Tz(ﬁly"':ﬁm;tl"'-:tm)a
where
(9.2) (t],...,tm)zﬂ'i"w(sm,

and the permutation w leaves each interval [c, ¢, — 1] invariant,
where
cs=#B(v, jO) +-- +#B(v, j©).
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In particular, for coloured partitions ©? and 7 the condition (iv)
in the definition of order < (see §3) should be checked. So consider
colours of v and 7, first for the first block B(v, j(I):

xp ( r)’-‘-,xﬂm(pm),
xg (t), -, Xg (Im),
{ry ..., om}={tr, ..., tm},
Br< < Bm.
Let B, =--- = B; < Biy1, where r < i < m. By Lemma 4.5 we

have p; < p,, and p; = p, implies f; < B,. Hence the largest part
in % is Bi(py). If pr = t; for j > i, then xp(p;) < xp (t;) and
hence v® < 7. So let 7 be such that p, = ¢; for r < j < i, ie.
xpg (pr) = xﬂj(t ;). If another part of degree p; = p, appears in V0 it
must be with colour f; < B,, so (cf. Lemma 4.5) consider the next
block B(v, j®). Then v® looks like --- < xg(p;) < xp(pr), (B
being the smallest colour in the second block). As above, we conclude
that it is enough to consider 7 such that xp (p;) = xﬂj(t /) for some

m_#B(V’J(l))"#B(V,J(Z))-i-lS]SM—#B(V,](I))

After considering parts of ©° and t of degree p,, we consider parts
of degree p,.1 = —1 + p,, etc. In finite number of steps we see that
either v0 < 7, or v9 = 7. Moreover, if ¥0 = 7, then 7 is of the form
(9.2), where for each i € [c;, ¢ 1 — 1] the permutation w leaves the
interval
{j€les, 61— 11; 0 = 9:}
invariant.
Now let 7 =v?. Then the above property of 7 implies

e(W)K(B; u+woy) =e(w)e(w)K(B; u+0m).
Hence the term K (v°)(1 ® e*) appears with a non-zero coefficient. O
LEMMA 9.8. Let ¢ = a1yy + -+ @n¥n, Q1,...,an € Z. Then
the set of vectors x(v)v, such that v € P(T'_) satisfies the difference
conditions D(A) and initial conditions I(A) and w(v) = ¢ is linearly
independent.
Proof. By Lemmas 9.7 and 9.6 we have

Xy 2ak(O)(1ee)+ Y bKm)(1®),

w(K)=g, x>v°
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where aK(v%)(1 ® e*) # 0. Moreover, in the notation of Lemma 7.4
Kv9(1®e*), K(k)(1®e*) € A. Since by Lemma 4.6 v — v is an
injection, the lemma follows by induction on order >. o

REMARK 9.9. Lemma 9.8 completes the proof of Theorem 9.1.

REMARK 9.10. Let L(Ag) = S(s_)®C[Q] be the basic 45" module,
n > 2, and consider its restriction to the subalgebra g, C § of the type

Afll_)l,where
§1 = Z Cx,(j)+Cc+ Cd + spanc Ry,
a€R,, jEL
Ri={e—e;;i#j, i,j=2,...,n+1}.

Let Q) = Zay +---+Za, be aroot lattice of R; and C[Q)] its group
algebra viewed as a subalgebra of C[Q]. Set

Wi =S(s_) ® "+ 1CQ)]

fori=1,...,n. Then W isa g;-module. If weset & = y;+---+¥n,
then AL Ry andfor i=1,...,n
(9.3) W= L(A,_;) ® Clh(-1), h(-2),...],

where L(A;.) is the fundamental §;-module for a fundamental weight
A}, j=0,...,n—-1.
Notice that

v; =Xy (=1) - %y (- 1)(1 ®ed)eCent v

for i=1,...,n.
By Theorem 9.1 elements of the form
(9.4) v(v) = 8(1/)an; 157 x(v)up € W,

such that v satisfies difference conditions and that p is large enough
so that v D VA, (see Proposition 4.4) is a basis of ;. Since
V(W) = V(WUn1Uvp ) = =0y p)=""",

we may identify v(v) with an infinite sequence (v, A ; ¢ 2 0). For
such a sequence (or “long enough” coloured partition) consider a cor-
responding sequence of “colours”

ﬂ19ﬂ2> ﬂ3a--' sﬂjera

B being the weight of jth part of v, A, Clearly, for some j; a
sequence (B;);>;, is periodic with period n:

s s P15 Py s Pl
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and (9.4) holds if and only if the length / = /(v) = i modn and
p = (I—i)/n. We will call such a sequence (f;) a path (corresponding
to v).

For each path (f;) there are many coloured partitions satisfying
difference conditions and having (f8;) as a corresponding path. De-
note by v((f;)) the largest one (with respect to order <). For a path

Bis ooy Bo—tynsis Bo—tnsiz1s - s Bpnsi
v((B;)) has parts
xg,(J1)s -o 5 Xp,_  (Jp=-Dnsi) s X3, (=1), ..., 11(=1),

and if we set

1) rZ r 1
b b ={ ) 2
then
(9-5) Jr= jr+1 -1- H(ﬂra ,Br+l)-

Denote by (B,) a path (of length | = np + i)
yi""’?l’ yn:ﬂ"yl"'")}n:"'DYI‘

Then v; € Cv(v((B)))).
Denote by h; = spanc R; . Then b;-weight of the vector v(v((8;)))
€ W, equals

(9.6) w(v((8;)lhy = (Zﬂ; ﬂ,) [b1 .

j>1

We also see that the degree of v(v((B;))) € W; equals

degv(v((B)))) = (BN = v ((B))I.
By the way v((8;)) is constructed (9.5), we see that

(9.7) degv(v((B)) = =Y r(H(Br, Bre1) = H(B,» Bria)) -
r>1
Formulas (9.6) and (9.7) are used in [DJKMO 1] to define the weight
and degree of path (5;).
Finally notice that for a given path (f;) the set of all coloured
partitions satisfying difference conditions and having (B;) as a corre-
sponding path may be obtained from v((8;)) and partitions

n>n>---20, nm+n+---<oo
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by adding n; boxes to the first part of v((8;)), ny boxes to the
second part of v((f;)), ... of the Young diagram of v((8;)). Since
by Theorem 9.1 v(v) € W; form a basis, the above argument and
(9.3) imply that dim L(A]_;), equals to the number of paths (8;)
such that the weight of (f;) given by formulas (9.6) and (9.7) equals
1. This was proved in [DJKMO 1 and 2].

10. Basis of vacuum spaces of standard modules for A(ll) and Agl) .
For the homogeneous Heisenberg subalgebra s set s, = sNf,, and
denote by £2(A) the vacuum space of a standard §-module L(A):

Q(A) ={v e L(A); s1v = (0)}.

Then we have the following linear isomorphism due to Lepowsky
and Wilson (cf. [LW], [LP1})

U(s-) ® Q(A) — L(A), URU — U V.

In this section we construct a basis of Q(A) for Aél) standard
modules. This is a generalization of the construction given in [LP2]
for Agl) standard modules. We include the Agl) case as well: although
the proofs are (almost) the same to the original ones, they illuminate
similarities and differences of results in §§9 and 10.

Let L(A) be a standard §-module of level k.

For By,..., Bm €T set

(10.1) Z(B1, .o Bms Ciseens Em)
=TI E~Birk, ¢)xp (L1)---xp (Cm) [[ ET(Bi/K, &5)

j=1 j=1

Z(ﬁls"'sﬂm;CIa“'aCm) . .
=ZZ(B13"'5ﬂm;j17""jm)C{l"'C£;ln,

summed over all j;, ..., jn € Z. Clearly, for every permutation o
we have
Z(Bsrys -5 Botm)s Jot)s +v > Jogm) = Z(B1s - s Bms Jis v s Jm)-

For a coloured partition

v=_B1(J1)s - s Bm(im))

set
Z(V)=Z(Blaaﬂm,.]laa.]m)
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It is clear from Lemma 8.1 and (10.1) that
L(A) = TU(s_) span{Z (u)vp ; u € P(T-)}.

It is easy to see (cf. [LP1, Proposition 2.7]) that the action of the
Heisenberg subalgebra s commutes with each Z(v). In particular,
each Z(v) preserves Q(A). Hence we have:

Lemma 10.1.

Q(A) = T'span{Z (u)vp; u € P(T_)}.
In this section we prove the following two theorems:

THEOREM 10.2. Let g =sl(2, C) and T = {a}. The set of vectors

enaZ (H)V4
where n € Z, and (coloured) partition p does not contain any partition
of the form
I(A): (a(-1), ..., a(=1)) of length k — A(a) + 1,
D'(A):a(ji) £ <a(x), lhi—Jl<1,
is a basis of the vacuum space (A) of the standard §-module L(A).

THEOREM 10.3. Let g=5s(3,C) and I'={f,a}, f < a. The set
of vectors

e(oZ(/l)’UA >
where ¢ € Q and coloured partition u does not contain any partition
of the form

I(A): pr(=1) <--- < Bs(-1), Biel', s=k—-A(B1)+1,
DA): p1(J1) £+ < Bry1Uk+1) s pieTl,
J1=Jks1 Or j1=-14jis1, Br 2> B>
D'(A):@) y() < <yUk) 1=kl L1, yel,
(b) B — 1)*a(j — VP B()ali)*BU + 1),
j<-2,a,b,d,e>1,c>0,
a+b+c=k,c+d+e=k,b+c+d<k,
(©) a(j — )*B()a(i) B + D)?a(j + 1)°,
j<-2,a,b,d,e>1,c>0,
a+b+c=k,c+d+e=k,b+c+d<k,
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is a basis of the vacuum space Q(A) of the standard §-module L(A).
(Here y(i)* denotes that the part (i) appears a times.)

REMARK 10.4. Notice that coloured partitions listed in D'(A) sat-
isfy the difference conditions D(A).

First we prove a spanning:

Clearly the definition (10.1) and Lemma 9.2 imply (cf. [LP2, Propo-

sition 6.4]):

LeMMA 10.5. If a coloured partition u contains v € I(A), then
Z(p)vpy=0.

Together with Lemma 6.2 we now recall [LP1, Lemma 3.1] (notice
a difference in the definition of E*(¢, {)):

LEMMA 10.6. On a level k > 1 module L(A) we have

(i) E¥(p, QOE~ (v, &) = (1= /5) WX E~ (v, L)E* (9, §1),
(i) EX(e, {)xy(82) = (1 = $1/8) 72 ¥Vx, (L)EH (0, &),
(i) xp(CNE~ (W, &) = (1 = 1/8) WV E~ (v, {)x(81).

By applying Lemma 10.6, the definition (10.1) and the relations
x(OF =kVE~ (=7, OE (=7, Oe, %77,
Xg (0)1 x5 () =0,
for B1,...,Bn €, n+-+r,=k+1, (see (6.2) and (6.3)), we
get (cf. [LP2, Theorem 5.8]):
LemMa 10.7. (i) For By, ..., Bmel’, m>k, 1 <s<m-k+1,
Bs=: = Bsrk—1 =7, we have

im  ZBi,...,Bm:Cts ...y lm)

s bgpp 17

s—1 m
= kle,t* 7 TI( - ¢/ A T (= ¢/8#

i=1 i=s+k

'Z(Blyoﬂaﬁs—ls Bs-f—ka'--sﬂm;Cl,---aCs—l; §s+k,---,Cm)-
(i) For By, ..., Bmel, m>k+1, 1<s<m-—k, we have

lim CZ(/h,-.-,ﬂm;C1,---,Cm)=0-

s 209 stk
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REMARK 10.8. Let a coloured partition x4 contain a partition of the
form
Y1) < < yU), lj1—Jjkl <1, yel.
Then Lemma 10.7 implies that
Z(uy =Y a,Z(v)vy

v>i

for some a, € C[Q]. In the case of AEI) standard modules this rela-
tion together with Lemma 10.5 implies that the set of vectors defined
in Theorem 10.2 is a spanning set of Q(A) (cf. [LP2, Theorem 6.5]).

LEMMA 10.9. Let g =si(3, C). Let a coloured partition u contain
a partition of the form (a), (b) or (c) listed in Theorem 10.3. Then

(10.2) Z(pwva =Y a,Z(v)vs
v>u

for some a, € C[Q].

Proof. In the case when u contains a partition of the form (a) the
statement follows from Lemma 10.7(i).
Now let x4 contain a partition 7 of the form (b): let u=p'Ur,

T= B — D)% - D)?BG)a() B +1)°,
]3_2’ aab’d:ezl’ CZO,
a+b+c=k,c+d+e=k, b+c+d<k.

First notice that our assumptions imply that d < a and that the
number of parts of t of colour B is > k,say a+c+e =k +r.
Clearly, 0 <r=a—d < a. Let s be the number of parts 7 of colour
a,ie. s=b+d. Noticethat r+s=a+b.

Define a sequence of coloured partitions

‘C’r<‘[r+1 <...<Ta__:1-
by
T = B0~ a1 BG)TBG + 1),
T = B0 = 1) a(i - 17 B()HT (NG + 1)°,

T = B = D Ma(j — VBT a(j) B+ 1)°,

1, = B — 1)%(j — DPB(j)a()? B + 1)°.
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Notice that we keep constant the number of parts of a given colour,
as well as the number of parts of a given degree. Define an “upper
triangular matrix” of partitions of length k + 1

Top <Tpp+1 < < Tpg<..., P=r,...,a, p<g<la,
by
Top = B — DPa(j = D PRG)H,  p=r,...,a-1,
Taa = B(J = )%(j - D?B()°a()),
Tp,pri = B(j = 1P a(j — )™= B(j)* ~a(j)t,

for p=r,...,a-1and for i =0,...,a—p such that c+1 —
i > 0. Notice that, whenever 7,, (p < ¢q) is defined, we have for
p=r,...,a-land g=p,...,a

g = U — 1)ia(j — )09 B(j)H9a(j)? -4+ B(j)*
= Tpg U ﬂ(j)a—p—la(j)d_aﬂ)ﬂ(j)e .
Let
Ug =1 U1y, q=r,...,a.

Then

Pr < flpyy < < flg = [
and for p=r,...,a-1, p<gqg<a, wehave

Mg =Tpg U U BG)* P a(j)F P B(j)° .
Notice that 17,, € D(A) for pe{r,...,a—1} (and 14, ¢ D(A)).

Hence by applying Lemma 10.7(i1) we have for p=r, ..., a1
a-p
Zcp p+iZ(Tp pti) Z e Z(K) =
=0 K>T,,
and
(10.3) Z Cop+iZ (Up+i) + 2 o Z(v)=0
v>p,

for some ¢, ¢, € C, and

c+1+p a+b-p
T\ pti i

__ (et+1l+p)Na+b-p) (c—f—l)
T+da+b-p-Dic+ 1)\ i )’

g =0 forp>gq.
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Notice that calculating the determinant of a submatrix of (cp4) re-
duces to calculating the determinant of the corresponding submatrix
of the matrix ((qc’_fll, )) . Hence one can easily see (by induction on ¢
and d) that

:et((c 1 )) >O:
9=P/)/p=r,...,a-1;q=r+1,....a
and

(10-4) det(cpq)p=r,...,a*l sq=r+l1,..,a # 0.

By using Gauss elimination procedure for the set of relations (10.3)
we get
crrZ () + cZ (o) = Z dyZ(v)

v>u,
for some c¢,d, € C. Now (10.4) implies ¢ # 0. Since u, D 7, D
B4 B(j + 1)¢, by using Lemma 10.7(i) we get (10.2).
In the case when u contains a partition of the form (c) the proof
is similar. O

ReEMARK 10.10. In the case of Agl) standard modules Lemmas 10.5,
10.7(ii) and 10.9 imply (by induction) that the set of vectors defined
in Theorem 10.3 is a spanning set of Q(A).

In the rest of this section we prove the linear independence:
Assume that k > 2. Set (cf. [LP2, §7])

A=span{y(j);y€eTl, j<0, j=0 modk},
A=span{y(j);yeTl, j<0, j#0 modk}.
Then
S(s-) = U(s_) = S(4) @ S(4), S(4) c S(s-).
Define an algebra homomorphism
U(s-) = S(A),
U7
by mapping
y(j)—0 for j=0modk, j<0, yel,
y(j)—y(j) for j£0modk, j<O0, yerl.
Extend this map to
S(s_) ® C[P] — S(4) ® C[P],
veef T e,



CONSTRUCTION OF STANDARD MODULES FOR 4 181

In particular, for Schur functions we have
K(u) = K(u) € S(4) ® C[P].
Now recall that by using the full subalgebra of level k£ we have (see
§9)
L(A) = U(§u) (1 ®e*) ¢ S(s-) ® C[P],
A 1@et,
xp (j1) -+~ xg (jm)Vp = xg (kj1) - xg (kjm)(1®€").

Moreover, we have:

LEmMA 10.11.
Zwya= > e(w)K(b; p+won)(1®eh),

weSm
where
v= (ﬁl(jl): ceey ﬂm(]m)):
b:—'(ﬁly e aﬁM)’
ﬂz(kjl, PR ,kjm)-
Proof. Clearly (7.2) implies

(10.5)
K(B1(81)s ..o s Bm(Cm))

= [1EqG (=Bi, CORB1(C1)s - s Bmn(Cm) [T By (—B:5 €F) 5
i=1 i=1
where
E% (B, () = exp (ZO ﬁ(ikj)é*"f/eckj)) :
>
For a Laurent series
AGi, b= Y @ 0

R /

write

Pe(AC, ..., b)) = Y @ O

JiseesJy=0modk
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Then we have

Z(ﬂl:-'-aﬂm, Cka ceey Clcn)
B (ilk, €y e, Ch [T B ik, &b

o (Bis CEYPe(xp (C1)s - s xﬁ,n(cm))HE(z)(ﬂi, %))

ég

~
1
—

12
z 3

T

= (HEk)(ﬂz ’ Cl )xﬂl(CI Cm)HE (e, Ck )

=P ( II &' -GhHEBiC), .- ﬂm(Cm))) :

1<i<j<m

(The last equality follows from (10.5) and Lemma 7.1.) By comparing
the coefficients on both sides and using (7.1) the lemma follows. 0O

The proof of Lemma 9.7 together with Lemma 10.11 imply:
LEMMA 10.12. Let v satisfy the difference conditions D(A). Con-

sider v° as a coloured partition. Then there exists an integer a # 0
such that

Z(v)vy =aK)(1®@e") + Y bK(x)(1®e")

r>v°

Jfor some b, € C.

Denote by %;.(A) the set of all coloured partitions v = (81(j1), ...,
Bm(Jm)) such that

(i) jy<-1—(4, B) forall r=1,..., m and all parts of v are
mutually different.
(ii) v does not contain any partition of length k& of the form

YU—k+1), v(j-k+2),....,7(0-1), y(J)
for j<-1,yerl.
ProrosITION 10.13. (i) The family
(e, Kw)(1®e)); ¥ €kQ, v € ()
is a basis of S(4) ® e*C[Q].
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(ii) If v is a coloured partition, v ¢ &.(A), then

Kw(iee)= > aKp(iee)
veF(A), u>v

Jor some a, € C{kQ].

Proof. (i) For f =y; €' define elements s e S(s_) by
(10.6) II G =GHE(-B,8) - E (-8, m)

1<r<s<m
— () y—(u+d
_Zs_uc (u+d,,)
u

summed over all 4 € Z™ . Also denote by %,c(i) the set of all partitions
(0

ﬂ(jl)a cee s B(.js)3j1 <-e _<_]S <0
such that every part of 70 occurs in 7)) at most k — 1 times. Then
by [LP2, Proposition 7. 6] the family

Yy sy T e B fori=1, ..., n}

is a basis of S(A) .
Now fix 4 € Q. Then the set of vectors

(10.7) S4y - Sy @ €4,

where 10 € B for i =1,...,n, is a basis of S(4) ® e**#. Let
U=Try1+ -+ rayn. For fixed U, ..., 7" let integers py, ..., Pn
be such that

It +p;=r; modk, 0<pi<k.
Notice that for ) = (8(j,), ..., B(js)) we have

(1) - (l) =
Sty = 50,0 i) T 50,000 0,.00,0)2

where p; zeros are added. Write
(10.8) = (BUj1), ..., BUs), B(O), ..., B(0)),
k@ = g Fs+p >
y(i) 'T“K(t)—'—(—l = &iseers -1 _gi)a
where g; = (y;, A). Set v =v(DyU---Uv® , Then (cf. (7.3))

(10.9) Kv)(1geh) = H"f,’(), ® eett?
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where e€ {1} and y = u—-9p €kQ. Obviously veE(A).
Conversely, for v € &.(A), v =vD y...ur® | the partition g
defined by (10.8) has at most k — 1 parts equal B (0), and hence v
and y uniquely determine a basis element of the form (10.7).
(ii) For B =7y; € T define elements A" € S(s_) by

(10.10) [TE- (8.0 =Y h¢
j=1

summed over all v € Z™.
Then (10.6) and (10.10) imply

SosPer= T -8/0) S mP

I<r<s<m
Yhr=I1 a-6/07 3 s,

1<r<s<m

summed over all o € Z™ . Hence for a partition ¢
D=h) + Z aﬂh/(ti) , h = 5P+ Z bﬂsl(tl) ;
u>o u>a

for some a,b, € C. The proof of [LP2, Proposition 7.5] shows (notice
that our order < is slightly different) that for ¢ ¢ ﬁk(’)

h(l) E ﬂh(l)

u>o

for some a, € C, and hence for ¢ ¢ ﬂ(’)

(10.11) 59 =3 a3,
u>o

for some a, €C.

Now assume v = v(Dy...uv® ¢ %k(A) Define o) by (10.8).
Then for some i € {1, . n} o = ') either has p; < k parts of
the form B(0) and (ﬂ(]l) s BUs)) & %, or it has p; > k parts
of the form (0).

In the first case by using (10.11), (10.9) and Lemma 3.3 we see
that the statement (ii) holds. In the second case we may erase in g
k parts of the form £(0) and

Kw)(1®e*) = eeK(u)(1®e),

where ¢ € {£1}, /() = [(v) — k, and the statement (ii) follows as
well. D

Let g = sl(2, C). Notice that if v does not contain any partition
of the form D’(A), then v satisfies the difference conditions D(A).
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LEmMA 10.14. Let g = sl(2, C). Suppose that v does not contain
any partition in I(A)UD'(A). Then v° € Z.(A).
Proof. Let

V=(a(j1),...,a(js)), JISS.]Sa
V0= (a(p1), ..., a(ps)).

Now recall Lemma 4.5: Since v does not contain partitions of the
form D/(A), fora j-block B(v, j) of v we have #B(v, j)<k-—1.
By (vi) we have an interval

{pr, ﬂ(]r) € B(U, .])} = [aj’ b]],

and by (vii) b; < b; for i > j. Since we have only one colour a, and
all parts of v° are mutually different, we have that b; < a; for i > j.
Now consider two adjacent intervals

fa;, bi]U[a;, b)].

Assumption b; = a; — 1 implies (Lemma 4.5(iii)) i = j+ 1 and
#([a;, b;]Ula;, b;]) = k, which is impossible since v does not contain
any partition of the form D’/(A).

Hence v° does not contain any interval of k elements, and v0 €
&.(A) (cf. Lemma 9.6). O

LEMMA 10.15. Let g = sl(3, C). Suppose that v does not contain
any partition in I(A)UD(A)UD'(A). Then v° € G.(A).

Proof . Let

v= (Bl(jl)a LR | ﬁs(js)):
vO=(By(p1), ..., Bs(ps)),

and let »9 contain parts
B(), ielr, 1], #[r, 11> k.
By Lemma 4.5 there exists a j-block B(v, j)

{p,—;,B(j,—)GB(V,j)}=[r1,t], r<r.

If #[r, t] = k, then v contains a partition B(—j)*, which is of
the form (a).

Let r < r;. Then the part B(r, — 1) = B,(p;) appears in v0.
Let B(r;) = Bm(pm). First notice that ¢ < m: otherwise we would
have a part Bp1(Pms1) of v0, where Bpy1(Pms1) = a(ry = 1) or
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DPm+1 > r— 1, both of these impossible because of Lemma 4.5(i), (ii).
Hence g < m.

Because of Lemma 4.5(vii) and (ii) we have that either v contains
two blocks B(v,j+ 1), B(v,j+2) and g = m+1 -2k, or v
contains a block B(v, j+ 1) and ¢ =m+ 1 — k. In the first case all
colours of parts in B(v, j+ 1) are a, and

#r, | +#Bw,j+1) =k, #Bv,j+2)=k.

Now it is clear that these three blocks form a partition which is
either listed in (b), or it contains a partition listed in (a).

In the second case (j + 1)-block B(v, j+ 1) contains at least one
part B(—j — 1), and again

#B(v, j)+#B(v,j+1)=k.

If all the parts of B(v, j+1) have colour f, then clearly v contains
a partition listed in (a). If there is at least one part in B(v, j + 1)
with colour «, we repeat the above argument for B(v, j+ 1) instead
of B(v, j), and see that either v contains a partition of the form (a)
or (b), or it contains a third block B(v, j+2) which contains at least
one part f(—j —2), and

#[rz,r1—1]+#B(l/,j+2)=k,

where [r;, 1, — 1] = {p;; B(ji) € B(v, j + 1)}.

Now it is clear that these three blocks contain a partition which is
either in (a), D(A) or in (b).

The proof that v contains 7 of the form (a), D(A) or (c) in the
case when v contains parts

all), ie[r,t], #r,t1>k

is similar. O

The Proof of Theorems 10.2 and 10.3. The set of vectors defined in
Theorems 10.2 and 10.3 are spanning sets (Remarks 10.8 and 10.10).
The linear independence follows from Lemmas 4.6, 10.12, 10.14 and
10.15 and Proposition 10.13. O
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