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§0. Introduction

The 2-dimensional conformal field theory was initiated by A.A.
Belavin, A.N. Polyakov and A.B. Zamolodchikov [BPZ] and was developed
by many physicists, e.g. [DF], [ZF] etc. In the paper [BPZ], the signi-
ficance of the primary fields for this theory is pointed out. V.G, Knizhnik
and A.B. Zamolodchikov [KZ] developed the theory with current algebra
symmetry, proposed the notion of primary fields with gauge symmetry,
and gave the differential equations of multipoint correlation functions.

Our aim in this paper is to give rigorous foundations to the work of
[KZ], and to reformulate and develop the operator formalism in the con-
formal field theory on the complex projective line I?'. The space o of
operands is taken to be a sum =73 %2, o, of the integrable highest
weight modules 7, of the affine Lie algebra §=3[(2, C)QCIt, t']®Cc of
type A, We fix the value £ (positive integer) of the central element ¢
of § on the space s#. The Virasoro algebra & acts on each 5, through
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the Sugawara forms L(m), m ¢ Z. For each X ¢ 3[(2, C), the field operator
X(2)=73 ez X(m)z=™"" obeys the equations of motion:

d

[L(m), X(2)] =z" (z_d_z_

+m+1 )X 2.

The currents X(z), X ¢ 3{(2, C) and the energy-momentum tensor
T(2)=> mez L{m)z=™ % preserve each §-module 5#,. Thus each space 5,
may be considered as a free theory. In order to introduce operators de-
scribing the interactions in the theory, we define the vertex operators due
to V.G. Knizhnik and A.B. Zamolodchikov [KZ].

The vertex operators play a central role in this paper. In Section 2,
we show the existence and the uniqueness theorem of the vertex operators.
In Section 3 we get the differential equations satisfied by N-point functions,
which have only regular singularities. The properties of vertex operators
are derived from these differential equations (called the fundamental
equations). First, we get the convergence of compositions of vertex oper-
ators. The commutation relation of vertex operators is equivalently re-
phrased in terms of the connection matrix of the fundamental equations,
and is calculated explicilty in a special case. The monodromies of the
fundamental equations give rise to representations of the braid group B,.
We determine explicitly this monodromy representation in a more special
case. In fact, it gives an irreducible representation of the Hecke algebra
H,(q) of type Ay _,, where g=exp (2zv/— 1/(£+2)). Here it is remarkable
that the vacuum expectation values of the products of vertex operators
provide canonical bases of these representation spaces and the commu-
tation relations of vertex operators give a ‘factorization’ of the monodromy
representations.

Fix a positive integer £ for the value of the central element ¢, and a
half integer j with 0<{2j<C ¢, then there is a unique (up to isomorphisms)
irreducible highest weight left §-module 5#, with a highest weight vector
u,(j). The Lie algebra § has a decomposition j=m,DgPCcdm _, where
g=28l(2, O)=CFRCHDCE and m_=gQC[r*"]¢t*' (see Section 1.1) The
subspace V,={v e 5,; m,v=0} is an irreducible g-module of highest
weight 2j, i.e. of dimension 2j+4-1.

We can define the corresponding irreducible highest weight right §
(or g)-module o (or ¥}) (and fix a highest weight vector u!()), and the
nondegenerate bilinear pairing (called vacuum expectation value) {|%: %
X # ;~—C such that {ub(j)|u,(j)>=1 and {va|w)={v|aw) for any ve
H'h, aed, we ;. ltsrestriction on V]X V; is also nondegenerate.

Let o#=3 2, #; and #'=> 72, 5" By an operator we mean a
linear mapping @: #— #, where # is a completion of s#. Note that
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an operator @ is characterized by a bilinear mapping &: #'X #—C
defined by (v|@|w)=<(v|®(w)) for any ve #' and we #. Two
operators may not always be composable (see Section 2.1 for the defini-
tion of the composability).

For a positive half-integer j, a multi-valued, holomorphic, operator-
valued function @(z) on the manifold M,=C* is called a vertex operator of
spinjif forany u e V, and z € M,, B(z): V,Q#—> # satisfies the following:

(Gauge Condition) [X(m), D(u; 2)]=z"0(Xu; z) Xeg,meZ);
(Equation of Motion) [L(m), D(u: z)]=z’”{z;—+(m+l)dj}d§(u; 2)
! zZ
(meZ),

for any u e ¥, and z e M), where the number 4,=(j*+ j)/({+2) is called
the conformal dimension of the vertex operator @(z) and O(u; z): #— A
is an operator defined by &(u; z) (W) =0(2) (u@w) for w e .

Remark (Proposition 2.4) that there are no vertex operators of spin
jfor j>£)2. )

A triple v= (j]j) of nonnegative half integers j,, j; and j is called a

2J1

vertex. Put A(v)=4,4+4;,—4,,. Then the Clebsch-Gordan condition
|h—R|I<i<h+i and ji+jtjeZ

for a vertex v is a condition for Hom, (V,®V;,, V,;)+0. In this case
Hom, (V,QV;,, V;)=C and v is called a CG-vertex.
For a vertex v= (j]j> with j,, /,<C4/2, a vertex operator $(z) of spin
2J1
Jjis called of type v, if ®(u; z)=1I,P(u; 2)II,, for any u e V,, where I, is
the projection of # (or #2) onto #, (or A, respectively). Then we get
the condition for the existence of vertex operators:

1

Theorem 1 (Proposition 2.1 and Theorem 2.2).

1) A vertex operator O(z) of type v is uniquely determined by the
Jform (initial term) @, ¢ Hom, (V],®V,QV,,, C) defined by

D (v, u, w):(zﬁ”{v[d)(u; 24w -0 (ve Vi,ueV,weV,).

ii) There exists a nonzero vertex operator @ of type v= (]]]) on i,

2J1

if and only if the vertex v is an {CG-vertex, that is, it satisfies the ¢-con-
strained Clebsch-Gordan condition:

i=r|<i<h+i hthtieZ and ji+j+j<e.
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Remark. i) The inequalities j,+ f,+j<<¢ and |j,— j|<j<ji+ 1
imply the conditions j,, j,, << 4/2.

ii) Nonzero vertex operators of a fixed type v are unique up to a
constant multiple. For each £CG-vertex V———'( J ) we choose and fix a

2J1
nonzero element ¢, ¢ Hom (V,®V,,, V,,)=Hom, (V.,®V,QV,,, C)(=C)
and denote by @ (z) the assomated vertex operator of type v with the
initial term @, ;=¢..

For each ¢CG-vertex v= (jjj ), introduce the g-module Z(v) defined
2J1

by Z(v)={Du;z); ue V;}: X0, (u; 2)=0(Xu; z) (X ¢ g).

We can show that any operators of the form X(£), X e g, T({) and
vertex operators are composable. The composability of vertex operators
is obtained by using the fact that the differential equations of N-point
functions have only regular singular points.

Introduce the space ¢(v) of operators on s as the C-vector space
spanned by the set

v P  deye - dt@y— G

- X(§)D(u; 2); N e cha Xieg,meZ (1<i<N),ue Vj},
where C,’s are contours around C,_, such that 0 is outside Cy and z is
inside C,.

Introduce a §-module structure and an #-module structure in O(v)
defined by

Fem) @)= —— j AL~ "X (QA() € O(v)
and
LomA@) = j dL(C— 2" T A() € O(v)

for A(z) € O(v), X e g, m € Z, and some contour C around z such that 0
is outside C.

Theorem 2 (Theorem 2.9). For each (CG-vertex v, the g-module
mapping @: V; 5 u—Q(u; z) € P(v) is extended to the §-isomorphism of
H; onto O(v).

Here we summarize the relations satisfied by vertex operators:
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Fundamental relations for vertex operators

Let @(z) be a vertex operator of spin j. Then

Xm)®(u; 2)=0 m>1,Xeguely);

X(0)P(u; 2)=[X(0), D(u; 2)]=D(Xu; 2) XegueVy);

L(m)®(u; 2)=0 (m>l,ueV,);

LO)P(u; 2)=4,0(u; 2) (weVy;

L(—1Do(u; z)=aiq)(u; 2) weV);
4

E(—1)=4'0(u,(j); 2)=0.

Remark that the last equation is derived from the structure of the

irreducible §-module s, by using Theorem 2.
Now we call the vectors |vac)=u,(0) ¢ 2, and {vac|=u}(0) e 5}
the Virasoro vacuum. They satisfies the equalities

X(m)[vac):L(n)]vac):d Xeg, m>0,n>—1);
(vac| X(m)={vac|L{n)=0 (X eg, m<0,nl).

For an N-ple J=(jy, - --,j) of half integers with 0<{2j,< 4, let
V()=V;®- - -®V;, and let V'y(J) denote the invariant subspace of
V~(J) under the diagonal g-action, where ¥} denotes the dual g-module
of V,. Let @(z,) be a vertex operator of spin j, (1<i<<N), then the
vacuum expectation value of the composed operator

(Dy(zy)- - - Oi(z)) ={vac|Py(zy) - - - Dy(z))|vac)

is considered as a V(J)-valued, formal Laurent series on (zy, - - -, z,) and
is called an N-point function (of spin J): If @,(z,) is of type v, (1<i< N),

N
(Oulzy): - Ou(z)) =[] 2770 2, CopproomaZi ™+ o -2 ™,

where C,, ..., € V7(J) and the sum is taken over integers m, e Z (1<k

< N) with my >0 and m, <0.
Let 7, be the g-action on the i-th component of ¥(J) and introduce

the operator 2,, defined by

1

Qu= ”i(H)ﬂk(H)+7fi(E)”k(F)+”i(F)ﬂ'k(E)a

|

and 2, =, is the action of the Casimir element 2=4HH+ EF+FE on
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the i-th component of V7 (J). Then @,,=(x,+7)(Q)—0,— 2.} (i#k)
and Q,=2(j2+7/,) id on V(J).

Then we get a system of differential equations and a system of al-
gebraic equations for N-point functions:

Theorem 3 (Theorem 3.1). Let @,(z,) be a vertex operator of spin j;
(1<i<CN), then the N-point function {@(zy)- - - @,(2))) satisfies the follow-
ing equations:

(1) (projective invariance) For m=—1,0and 1,

DS

(I1) (gauge invariance) For any X e g,

D4, KOsz 0(2))=0.

SNz -0 (2))=0.

(Iif) For eachi=1, --., N,

(

(AV) Foreachi (1 <i<N)andany u, e V,, (k+i),

X o )ose- -0 z)=0.

S5 ) @m0 OB s 2)- 0,0, (105 20O 2)
=0,
where m,==(My, « - -, Hiy -, 1) € (L) P with 3 o smy=L,=0—-2j,+
+1 and ( ) is the multinomial coefficient.
i
Consider the systems E (J) of differential equations and B (J) of al-

gebraic equations for V' (J)-valued functions @(zy, - - -, z;) on the mani-
fold Xy={z=(zy, - - -, 2,) € C¥; z,5 2z, (ik)}:

E@: Z )cb(zN, L z)=0 (<i<N),

RES —z,c
L, .
BO): ¥ (m) [T ez ™0z, -+, 2) (™t -,y (G -+, E™0)
:O’

for each / (1<i<N)and any u, e V,, (k+1i), where m,=(my, - - -, i,

i
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“r, my) € (Z5)" " with DweiMe=L,=40—2j+1.
Introduce the set #,(J) defined by

1 i
%(JT)={ID=(pN, DD Dy € —Lisy Vi=< I )E(CG)Z,
2 DiPi

pNZPOZO}a

where (CG), is the set of all /CG-vertices. For each p ¢ #,(J), the N-
point function

Doz, « - > 2)=A D, (z) - - D(2))

of type pis a formal Laurent series solution of the joint system E(J) and
B(J), moreover

Theorem 4 (Theorem 3.3).
i) For any p e Z(J), the Laurent series O (zy, - - -, z,) is absolutely

convergent in the region #,={(zy, ---,2) e C¥;|zy|> -+ - >|z,|} and is
analytically continued to a multivalued holomorphic function on the mani-
fold X .

i) {@,(zy, ---, z); D e PI)} gives a basis of the solution space of
the joint system E(J) and B(J).

As a corollary of Theorem 4, we get

Theorem 5 (Theorem 3.4). Let @,z,) be the vertex operator of spin
Jiandu, e V,, (1<i<N). Then the sequence {@y(uy; zx), - -+, O,(u;; z,)}
is composable in the region X, y={(zy, - - -, 2) e C¥; |zx|> - - - >|2| >0}
and the composed operator @ y(uy; zy)- - - @,(u,; z,) is analytically continued
to a multivalued holomorphic function on the manifold My={(zy, -+ -,2) €
Xy; 2,0}

For 4CG-vertices sz( Ja ) and V1=( jz.), the composed operator
Jok k j;

D, w)D, (z) of the vertex operators @, (w) and @, (z) is multi-valued holo-
morphic on the manifold M,.

For a quadruple J=(j,, /s, J», /i) of half integers with 0<{2j,< ¢,
introduce the set I(J) of intermediate edges, defined by

L= {k e %.Z; 0< 2k < 4, vylk)= (J?3k) ¢ (CG),

vi(k)= (k ]) ¢ (CG),}.
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Let J=(j, /s ju»ji), then we get the g-isomorphism T: V> (J)—V(T)
defined by

(To) (u,Qu,Qu;Quy) = ¢(u4®us®uz®ul)
for ¢ € V(J) and 4,Qu,Qu,Qu, € V(J).
For an intermediate edge k € I(J), similarly define the ¢CG-vertices
VNE):( J2—> and Vl(E)—_—( —]3.> and consider the composed operator
Tk k Jj;

D, WD, 1 (2) of the vertex operators @,,;,(w) and @, ;,(2).

Assume that I(J)=0. For a point (w, 2) € L={(z,, z,) e R?; z,>
z,>0}, let @, (2)D,, (W) denote the analytic continuation of the compo-
sition @, ,,(W)P,,,(2) of the vertex operators along the path 5(z), where
the path b(t) =((?), £(¢)) from the point (w, z) e I, to the point (z, w) &
L={(z,, z) € R?; z,>>2,>>0} on the manifold M, is defined by

_ w4z rvm W2 _ WAz W2
7(t) - +e 5 {0 — e (t < [0, 1)).

Then

Proposition 6 (Proposition 4.2). i) There exists a constant square
matrix C(3)=(C¥DNier,n.5¢1,a) Such that for each intermediate edge k ¢
1J),

TQ o, YD) D1y (W) = g}( H Do iy (W) Do (2) CHJ)-
i) Let J=(t, Js, o, j1» 5), then the braid relation holds:
C(ss Jos Jis SYCE, Jas J15 J)YCliss Jos Jos 5)
= C(t, s Jo JOC s Jos J1> YC, Jos Jis Ji)-
Now our fundamental problem is:

Fundamental Problem. Determine the matrix C(J)=(C¥J)) for any
quadruple J with 7(J)=8.

In Section 4.2, we solve the fundamental problem for the case where
Jj:=%in J. For general j,, we can solve it in principle by the fusion rule

(see Section 5.4).
Now we take j,=j;=3%. Then the conditions for the nontriviality,

Ve (J)=0, are divided into the following cases:

L. . ..
(D2), 7>J1=]4>0; (D2), §=JI=J4;
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D), j=i+1; D), ji=j=0; DD, ji=j+1.

Proposition 7 (Proposition 4.8). Let g=exp 2y — 1/(£+2)).
1) For je 37 with 0<2j<4,

=1 Jel210j+2]

' . o (T 1] / .
C(],-;—,—;—,J>=q ! (T TZI) \/12[]2%;—2] [Zj:}] (T r_>
[2j+1] [2j+1]

where [y] denotes the g-integer

F(+2___.j+1)
M=z 1= (r(£2£2)r(Z2))"
) 442

i) c(ﬁ, 11 £>= c(o, 11 o>= g,
2°2°2°2 2’72

11, P T
c( 41, L1 )_c( 1, L1 )__ ",
iif) J ) J J M) J q

Let N>2 and fix a half integer ¢ (target edge) with 0<{2r<C¢. Put
J.=(@ 1%, -+, 1) and introduce the set

1
'@‘(N’ t)={p=(p1v’9 . ',Pl,Po);sz:t, p0=0; P; € ?Z, ngpzégy
1 ,
Ipi“pi—1l=—2— (1£l_<_N)}

For each p € #,(N; t), define the V' (J,)-valued, multi-valued holomorphic
function ¥ (z, - - -, z,) on X, by

wp(zl\b Y Zl)(v’ Uyy =+ 7 u1)=<y(v)l@vN(uN; ZN) . .Qvl(ul; Zl)‘ VaC>

forve V,and u, e V,,, (1<i<N), where the vertex v, is defined as v,(p)

=(p 1/; )(1_<_igN) and v is the isomorphism v: V,~~V] defined in
2 i-1

Section 2.3.

Then the function &, (zy, - - -, z,) satisfies the systems E(N; ) and
B(N; 1) derived from the systems E(J,) and B(J,), where J,=(¢, 4, -- -, %)
(see Section 5.2). Moreover we get that the solution space W(N; t) of
the systems E(N; ¢t) and B(N; ¢) has a basis {¥ (zy, - - -, 2); D € PAN; 1)}
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The braid group B, acts on this space W(N;t) as monodromies.
The commutation relation of vertex operators gives a ‘factorization’ of this
monodromy representation (zy ,, W(N; t)). By the explicit formulae of
the representation r, , obtained from Proposition 7, we get

2n/ — 1 )
442 /)
i) The monodromy representation q**zy , of the braid group By on
the space W(N; t) gives an irreducible and unitarizable representation of
the group By.
il) This representation factors through a representation of the Hecke
algebra H,(q) of type Ay _,.
iii}y Our representation (¢*'xy,,, W(N; t)) of the Hecke algebra Hy(q)
is equivalent to the representation (z{**®, V»4*D) constructed by H. Wenzl
[W], where 2 is a Young diagram A=[N/24+t, N]2—1].

Theorem 8 (Theorem 5.2 and Proposition 5.3). Let g= exp(

Notations

g=3[ (2, C)=CFOCH®CE, where F=<(1) 8), H=<(1) _‘1)) and E—

(00)

00

§=gQCIzt, t~1®Cc: the affine Lie algebra of type AL

§=CH(0)®Cc: the Cartan subalgebra of §

Xm)=X®:t"for XegandneZ

m:‘:—g@tic[ti], n.=m, @CE(O)a n—-:m—@CF(O), p.=m, @g@)cc
subalgebras of §

F=73 Ce +Ce,: the Virasoro algebra

nea

Q=1H*+ EF+FE ¢ U(g): the Casimir element of g
:X(m)Y(n): : the normal ordered product for X(m), Y(n) e gCIz, ¢ -]
X@)=2 Xz "' (ze C* Xeg): acurrent

neZ

T(z)= >, L(m)z=™*: the energy momentum tensor
mez

£: the central charge (we fix £ ¢ Z., throughout the paper)

k=442

V,, VI: the irreducible left and right g-modules of spin j for je 7., re-
spectively

Vy=Hom (V,, C): the dual (right) g-module of V;

H;=H[8), A =2(£): the integrable highest weight left and right §-
modules respectively

>0 VIXV,—C, #x #,—C: the vacuum expectation values

/2 7 o2 . 472
K= H,C A=), =, CHh'=), AL
7=0 i=0 i=o0 7=0
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V= {vz( .j.);j, JJ & iZZO}: the set of vertices

U JoJs 2

Vez{V eV, ji ]zg—g—}

(CO)={v € V; [j\—ho|<J <t ji+i+ie Z}: the set of all CG-
vertices

(CG),={v e (CG); j,+ /a+ < 4}: the set of all ZCG-vertices

2 |
4; —7"FJ . the conformal dimension of vertex operators of spin j

K
4(v)=4;: the conformal dimension of a vertex v
Av)=4,+4; —4,, for a vertex v
7" (v)=Hom, (V],QV,®V,,; C)

¢, € Hom (V,®V;,, V, )= (v): the nonzero element for each v:( J )

JoJi
¢ (CG) fixed in Appendix I
@ (2): the vertex operator of type v whose initial term @, , is ¢, for each

Ve (ij) ¢ (CG), (considered as V,@#,,—#,,)
2J1
O(u; 2)=02)u® )= 3. O, (wz ""?™: the homogeneous decomposition
nezZ
of a vertex operator @(z) of type v
Let W=W,Q.--QW, the tensor product of g-modules ,, then
7, - the g-action on the i-th component of W
4., ==,~+m,: the diagonal action on the 7-th and k-th components of
W
Qe =3r(H)r(H)+ m(E)n (F)+ 7, (F)m(E)
J=(jy, - -+, j1): an N-ple of half-integers with 0<C2j,< ¢
V)=V;Q - -®V,, V" (N=V; Q- -QV;
Vy(I): the space of all g-invariant elements in V"7 (J)
2@ ={p=(px. -2 2); v@=(, % ) e(CO), pa=p,=0}

2N={p=(pw, -+, p1, po) € Z(J); v,(D) € (CG),}
J=(js Js» Jo» J1): @ quadruple of half integers with 0<2j,< ¢

_ 1. s
()= {k ¢ 5 Z; 0SS, Vg(k)—-<j4 k) e (CG),
wto-{) o)
1(J) = {k c .%-Z; 0< 2k < 4, vy(k) & (CG),, vy(k) € (CG)Z}
D)= vy ¥R, i), v € 24I) for k & 1(3), where vi=(, ")

and v,= (jjlo)
1
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A4y =A(v)+ A(v) =4, + 4;,+ 45— 4,

J(0)= {r e _;_ 7 0<2r <4, w(r)= (J’J) ¢ (CG),,

D)= Gk it kit D, el =a@) = @it D) =1, -+, 4)
JI,:JI,(N)::(t, % % . _;.) an (N+ 1)-ple with 0<2r< 4, 2t e Z

ZAN; 1) ={p=(p.~, “+ 05Dy Po); Py=1, =0, p, € lZ, 0<2p, <4,

|Pi—pl = (LI}

, s): an (N-2)-ple with ¢, s ¢ —;— Z., and

NI

M= oo
£
2

t, s

A

1
PN t, S)Z{IDZ(PN, ce oy P DY) Py=1,Py=5,D; € —z‘Zzo’
0<2 <, pi—pial=ry (1IN}

XN::{(ZN’ DY Zl) € CN; Ziizlc (l#k)}

U

MN={(ZN7 EEIEA N ((C*)Na Z; 52y (i§ék)}

.%22{2:(21\,, ) Zl) e CY; IZN1> e >|ZII}CXN

U

Reo={(zn, -+, 2) € CV; [2y[> + - - >[2,|>0}

U

Ii={(zy, --,z)e RY; zy> .- - >z, >0}

&y: the N-th symmetric group

B, : the braid group with N-strings of C

H,(q): the Hecke algebra of type Ay _;

A=[f, +- -, fi]: the Young diagram such that the number of nodes of the
i-throwis f, (fi=->fu)

[vac)=uy(0), {(vac|=ul(0): the Virasoro vacuums

(Bilzy)- - - D(z))={vac|@y(zy)- - -D,(z,)|vac): the N-point function of
vertex operators {@y, - - -, &;}

I'(z): the gamma function

F(a, B,7; 2): the Gauss’ hypergeometric function
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[»1q=-§§1l (g1, » (@=1): a g-integer (v & Z)

! . . . .
( L) = Lt : the multinomial coefficient for m =(my, - - -, m,) with
myl - omy!

§ 1. Affine Lie Algebra of type A"

In this section, we recall facts on the affine Lie algebra § of type 4
(see V.G. Kac’s book [Ka)).

1.1) Lie Algebra of type A, and its finite-dimensional modules
Let g=38[(2, C) the Lie algebra of type 4,, thatis, gis a Lie algebra

spanned by H= ((1) __(1)), E= (8 (1)) and F= <(1) 8) The subspace j=CH

is a Cartan subalgebra of g. Its dual h* is spanned by the element «, de-
fined by a(H)=2. Put g,=CF and g_,=CF, then g has the root space
decomposition

g=08.D5Pg_,.

Let (, ): g Xg—C be the invariant symmetric bilinear form, defined
by (X, Y)=tr XY, where tr means the trace as 2X2-matrices. Then
(H, H)=2,(E, F)=1and (H, E)=(H, F)=0.

The Casimir element 2 of g is defined as

Q:—.%—HZ—{-EF—[—FE e U(g).

Here we summarize the facts on finite dimensional modules of g:

Proposition 1.1. Fix a half integer j € 37..,.

D) i) Thereexists aunique irreducible left g-module V; (called of spin
J) with highest weight jo.

ii) V,is of dimension 2j+1 and has a basis {u(m); m=j,j—1, - - -,
1—j, —j} satisfying the relations

Hu (m)=2mu(m) (—j<m<));
¥y Euj(m)zx/(j—}—m-l-l)(j—m) u(m+1) (—j<m<j);
Fum)=v({G+m)(—m+Dum—1)  (—j<m<)).

i) Eu,(j)=0, Fru,(j)#0 (0<n<2/) and F**'u,(j)=O0.
iv) Q=2(*+)) on V,.
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II) i) There exists a unique irreducible right g-module V} (called of
spin j) with highest weight je.

i) V] is of dimension 2j+1 and has a basis {ul(m); m=j, j—1, - - -,
1—j, —j} satisfying the relations:

ul(m) H =2mu’(m) (—7j<m<j);
D uf(mE=v(j+m(j—m+Dujm—1)  (—j<m<}));
uf(mF=+(j+m+D(j—mujm+1)  (—j<m<j).
i) wj())F=0, uf(HE"+#0 (0<n<2j) and uf(j)E**'=0.
iv) Q=2(j*+j)on V]

II) There exists a unique bilinear form (called vacuum expectation
value)

)2 VixV—C

such that 1y (ualvy={u|av) for any ae g, {u| e V] and (v) e V,, and 2)
{ub(m)\ u(m’)) =20,,,,. Moreover this bilinear form is nondegenerate.

1.2) The affine Lie algebra of type 4"
Let § be the affine Lie algebra of type 4", that is, § is defined by

§=g®CIz, 171D Cc
with the following commutation relations:
[X(m), Y(]=X, YIm+n)+X, Y)md,.,.c (X,Yeg, mneZ),

and

¢ e center of §,

where X (n)=X®t".

The Lie algebra g is included in § by identifying X with X(0). Intro-
duce the subspace g(n)=g®t?" of § for any n e Z, and subalgebras m, =
> 1 G(En), then § is decomposed into

f=m,DgPCcB®m._.

) TAhe subspace h=CH(0)®Cc is a Cartan subalgebra of §. The dual
b* of } is identified with C* 3 (1, ), by the formulae:

@, pe)=2 and (4, p)(H)=2p.

Now we summarize the facts about the integrable highest weight
modules of the Lie algebra §.
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Proposition 1.2.  Irreducible integrable highest weight modules of § are
parametrized by (4, j) € Zio @37, with 2j< 4. Fix such (4, ).

1) There exists a unique irreducible left §-module H# (4) with a nonzero
vector | ¢, j> (called vacuum) such that

M6, 7>=E|4,j>=0, c|4,j>=4]4,j> and H|{,j>=2j]4,7>.

i) There exists a unique irreducible right §-module #°}(£) with a non-
zero vector { j, 4| (called vacuum) such that

Gy b\m_=(j, 6| F=0, {j, b|lc=04j, 4| and {j, 6| H=2(j, £|.

i) The subspaces {|v) e H{(£); m,|v)>=0} of H (L) and {{v|e
HU(8); {vim_=0} of #(&) are g-stable and are isomorphic to the irreduci-
ble g-modules V; and V] respectively.

The vacuums | ¢, jy and {j, £| can be identified with uj) and u}(j), and
H [(£) and H#(8) are generated by V; and V] respectively.

iv) There exists a unique bilinear form (called vacuum expectation
value)

(Lo HYOXA (H—>C

such that 1) {j, ¢|4,j>=1, and 2) {ua|vy="{u|av) for any ac}i,
(ule ALY and|v) e H (L), Moreover this bilinear form is non-degenerate,
and its restriction on VIX V; coincides with the vacuum expectation value as
g-modules (Proposition 1.1).

1.3) Segal-Sugawara form

In this paragraph, we give the actions on 4#,(£) and #1(¢) of another
Lie algebra % called Virasoro Algebra, where £ =3, ., Ce,DCe is the
Lie algebra defined by the relations:

m—m

Brms .00 m, ne Z);
o RIZI ¢ )

[em’ en] == (m ——n)em+n +

[86, em] =0.

Definition 1.3. Define the normal ordered products of elements of
g®Clt, 7] by

X(m)Y (n) (m<wm)
XM Y () = | (XY @)+ Y)X ()} (m=n)
Y (i) X (m) (m>n).
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Definition 1.4.
i) For each X e g, we define the formal Laurent series

X(2)= Z; X(m)z ! (z e C%).

ii) Energy-momentum tensor; Segal-Sugawara form ([Se] and [Su]))
For z ¢ C*, define

1
202+ ){ ‘H@QH(2): 4 E@F(2):+: F(z)E(z)}

=2, Limyz=""%,

meZ

T(z)=

that is,

L(m)= {  H(— ) H(m+ K+ E(— K)F(m 4 k) +

2(2-I— ¢)
+F(—RE@m-+1):}.
Then we get

Proposition 1.5.
. 1) Foranyje 32, with 2j< 4, the operator L(m), m ¢ Z, and L'(0)
=(34/(2+£))id act on A ,(4) and H(4).
iy Foranym,neZ,
m'—m

[L(m), LW)]=(m—m)L{m+n)+———— 080 ,,L'(0).

iil) Foreachme Z and X € g,

[L(m), X(2)] =zm(z% +mt 1)X(z>;

[L(m), X(n)] = —nX(m-+n) neld).

iv)  The modules S [(£) and S#°%(£) have the eigenspace decompositions
with respect to the operator L(0):

H (D=2 H,40) and H(D)= 2, H].0).

where ', ,(6) and A ((£) are the eigenspaces of the eigenvalue 4,-+d, and
A=+ DIE+2). In particular, # ; (6)=V; and K (£)=V]. Moreover
dim 22, ,(£)=dim s} ,(4) <oco.
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V) K (L)1 ;. (6) unless d=d’, and {|) is nondegenerate on
HY, Oy X H y,4(£).
vi) Forany Xeg,meZ and d>0,

X(m)%j,d(g), L(m)%J,d(z)C%j,d—m(Z)
and
Hy(DX(m), A (OLM)CTHY 4, . (8).

In the following of this paper, we fix an integer £>1, put x=4£12,
and omit £ in the notations 5#,(4), ¢, ,(£) etc. (Note that V,=£,(0)=C.)

§2. Vertex Operators (Primary fields)

Throughout this paper we fix the value £ (a positive integer) of the
central element ¢ on the spaces 2 and 5", and use the value x=£--2 for
convenience.

2.1) Field operators

Fix a half integer j with 0<{2j<¢. Introduce the product topology
to the products 52 ;=[] 450 #;,4 and # =[] 4, #" 4, then the vacuum
expectation {|): #} X o ;—C is uniquely extended to continuous bilinear
pairings {|>: #%X #,—C and s X #,~C, and there is a topological
linear isomorphism 22 }=Hom,(+#,; C), where Hom,(s#,; C) is equipped
with the weak topology. The actions of the Lie algebra § on 5, and 5}
can be extended to these completions.

Consider the direct sums of these modules:

42 g2 42 N ez
H=3H,CHh=> Ky A=), A C A= A
=0 =0 =0 =0
Denote by I, be the projection to the j-th component:
I,: H#—H,, R, A, Hl—#),

then I7, o IT,=1I, o Il ; and II; commutes with the action of §.

An operator A on # means a linear mapping 4: ##—> 5, which is
equivalent to give a bilinear map A: X #—C, and also to give a linear
mapping A': #'— " by the condition that for any (v| e #"and |w) ¢ 7,

o] Awd=(v| | wd={(v4 |w).

In order to define compositions of operators, fix dual bases
{ua, s o5 ta,med} Of 30920 1,0 and {vasls -+ -5 CUamal} OF 20720774
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with respect to (| ), where m =3 %2,dim o¢; ,=> %2, dim s} ,.

A sequence {Ay, - - -, 4,} of operators on £ is called composable, if
the series
Mg, M-y
Z L Z <vIAnm‘udm—1yjm—1>
d1,0e0ydm—120| 71=1 Fm—1=1

<udm—lsjm—1‘A’ﬂm—1‘ udm-—zafm»«2> ot <ud1yj1lA7L1‘ W>

is convergent for any ordered subset {n,, ---,n} of {N, ---,2, 1} with
2<m< N and any vectors {v| e #"and [w) e #°. Then the composed oper-
ator Ay- - - A, is defined by the values

My .

@ldy A= 5 PRIV AT

1,000,8N-120 ji1=1 JN—1=

<udzv~1,!1v~1lAN«lludN—z,iN—z> e <ud1yj1‘A1‘w>
for {v]e #* and |w) e H#.

An operator-valued function A(z): s#— # on a complex manifold M
is called holomorphic with respect to the variable z ¢ M, if the function
{u| A(z)|v) is holomorphic with respect to z e M for any (u|e #" and
[v) e .

Example. Operator-valued functions X(z) (X e g) and T(2): #— A
are single-valued and holomorphic on C*=P"\{0, co}.

Let A4,(z,) be an operator-valued function on ## parametrized by a
complex manifold M, for each i with 1<<i<{N, and assume the sequence
{Ax(zy), « -+, A)(z)} is composable for any (zy, ---,z) e MyX - -+ X M,.
Then the composed operator A ,{(z,)- - - A,(z,) is holomorphic on the com-
plex manifold M, X - - - X M,.

2.2) Vertex operators

Now we give the notion of vertex operators (or primary fields) which
is introduced by V.G. Knizhnik and A.B. Zamolodchikov [KZ].

For a positive half integer j, a multi-valued, holomorphic, operator-
valued function @(z) on the manifold C*(=C\{0}) is called a vertex opera-
tor of spin j, if

D(z); V,QH—> A
satisfies the conditions:

(V2) [X(m), D(u; 2)]=2"P(Xu; 2)
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(V3) ‘ [L(m), D(u; 2)] =z’"{z%-{- m+1D4 ,}@(u; 2)
'z

for Xeg,ueV,,meZ and ze C*, where the number 4,=(j*+/)/« is
called the conformal dimension of the vertex operator @(z) and @(u; z):
H# —# is the operator defined by

O(u; 2)(w) =D(2)(uQ@w) weV, we).

Remark. (V2) is the gauge condition for the field @(z) and (V3)
means the equations of motion,

Introduce sets V and V, defined by

V:{Vz ( .] _);j,jvjz € }—ZZQ} DV1={V= ( ] ) € V;jb J2_<_£}
Jo Ju 2 JeJu 2

An element v of V is called a vertex. For a vertex v= ( j] j) eV, we
2J1

call j, an incoming spin, j, an outgoing spin and j an outer spin, and set
AW)=4; (=(J*+))/x) and A(v)=4;+4,,— 4,

J

< >
< “*

J2 Jr

For a vertex V=< J ) ¢ V,, a vertex operator @(z) of spin j is called

JoJ
of type v, if O(u; z)=1I1,D(u; 2)II;, for any u e V.
Then we get the following (the proof will be given in Section 2.3):

Proposition 2.1,
i) Any vertex operator @ of type v (e V,) has a Laurent series ex-
pansion

O(u; z)=né‘__“z‘ @, (wz- 4w eV,
and @ (u) satisfies
[LO), ,()]=(4;,—4,,—m)D, ()  (neZ),
that is,
O, (W): Hyya—>H jya-ns Hha—>H ) aim (neZ).
ii) Introduce a trilinear form ¢: V], Q@V,®V,—C defined by
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o(v, u, W)=V | DyW)| W)= (v| B(u; 2)|wdzi™|,_, weV},,weV,),
then ¢ is g-invariant:
o(VX, u, W)=V, Xu, W)+o, u, Xw)  (Xeg).

iii) A vertex operator @ of type v is uniquely determined by the form
¢ € Hom, (V],QV,QV;,, C) defined in ii). We call ¢ the initial term of the
vertex operator @ and sometimes denote D=9,

For each vertex v= <ij) eV, introduce the space ¥"(v) defined by

2J1
7 (v)=Hom, (V1,@V,@V,,, C)y=Hom,(V,QV,. V;,).

It is well-known in the sl,-theory that ¥’ (v)=C or 0, and ¥ (v)=C, if
and only if v satisfies the Clebsch-Gordan condition:

h—rl<i<ji+) and ji+j+jeZ.
Call such vertex a CG-vertex and denote by (CG) the set of all CG vertices:

©O={v=(/) e Vilimil<igi+hititie Z}.
The following is the key lemma for the existence theorem of vertex
operators:

Lemma 2.2. For a vertex v= (jj j) e(CGONY,, take a nonzero
2J1
element ¢ € v (v). Then the following conditions are equivalent.
) j+ia+i<l
i) ov, By, u, (/)=0 foranyveVl,andueV,
i) ol (j,), F22u, w)y=0 foranyueV,andweV,.

A vertex v= (jjj) e V, is called an 4CG-vertex, if it satisfies one of

2J1
the conditions (called the ¢-constrained Clebsh-Gordan condition) in Lemma

2.2 denoted by (CG), the set of all £CG-vertices, i.e.
€O)={v=(/,) e €O +i+r<t).

Remark 2.2. i) The inequalities | j,— j,|<j<j,+j, and j+j,+ /2
< ¢ imply the inequalities j,j,, j;<<#/2. In particular, outer spins of
£CG-vertices are not greater than £/2.

if) By the above remark and the proof of Lemma 2.2, one of the
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conditions of Lemma 2.2 is also equivalent to the condition:
o, u(j), E***'w)=0 foranyve V,and we V,,.

Now we get the existence condition for vertex operators (the proof
will be given in the paragraph 2.3):

Theorem 2.3. There exists a nonzero vertex operator @ of type v=
(ij) € V,on 3, if and only if the vertex v is an £CG-vertex.
2J1
Moreover, nonzero vertex operators of a fixed type v e (CQG), are
unique up to a constant multiple.

As a corollary, we get

Proposition 2.4. i) For any j> /2, there are no vertex operators of
spin j.
ii) Let &(2) be a vertex operator of type v= <jjj> € (CQG),. Thenas
2J1
formal Laurent series,

O(u; 2) =z~ 4iQ(u; 1)z~ 2O wevy.

Proof. ii) Let @(u;z) be a vertex operator of spin j. Then the
condition (V3) for m=0 reads as

[L(0), B(u; 2)] = {z_ddzwj}@(u; 2). ge.d.

2.3) Proof of Proposition 2.1 and Theorem 2.3

We define the parabolic subalgebras p, of § as p, =m, B3BCc, and
the Verma module #; as the §-module #,=U{)®,,V; (=Um_)V)),
where the g-module V, is considered as a p,-module by setting m,¥V;=0
and ¢=/id,,. Then the irreducible §-module ', is obtained as the
quotient of the Verma module .#, modulo the maximal proper submodule
Z; (see V.G. Kac [Ka] (10.4.6)).

This §-submodule _#, is also generated by the single vector |J,)=
E(—1*%"y,(j) and #,=U(p )J,>. Moreover m,|J,>=E0)J,>=
FOX-#+3J,5=0, HO)J;>=2({ —j+ 1)|J;>, and U(g)}J;> is g-isomorphic
to ¥,_,.;- Denote by z; the canonical projection z;: A;—37 .

The right g-module % is analogously obtained as #=_#i\ .4},
where .4} is a right §-module #}=V!®,_ U(3) (the g-module V] is con-
sidered as a p_-module by setting ¥Jm_=0and c=¢ idV;), and its maximal
proper §-submodule ¢ is generated by a vector {J,;|=ul(j)F(1)*"¥*
Denote by =l the canonical projection #%: A4§—#71.
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The Verma modules .#, and .#', have also eigenspace decompositions
with respect to the operator L(0):

My= 3 My and M= Mg,
az0 a=0

where the eigenvalue of L(0) on .#, , and /1 , is 4,4d.
In preparation of the proof, we introduce the filtrations in 4, J#,,
MY and AT

V,=F#,=F#,CF,#;C--- and VI=F#'=F 4 CFMC-.-
where F,.#, and F, 4} are space spanned by the sets
{Yi(n)- - Y (n)iw); (wy e V,, 0<qg<p, Yilne) € § (1<k <)},
and
{[X(my)- - - Xi(my); (vl e V], 0<q<p, Xi(m,) € § (1 <k<q)}
respectively, and
F o, =n(F,#,) and F ¥\ =al(F,MA}).

Proof of Proposition 2.1.
i) Expand @(u; z) as a sum of homogeneous components:

O(u; z)= 72_; D, (u; 2), D, (u; 2): Hy, o—>H 5y.0 -n(d >0).

then
[L(0), @, (u; 2)]=(4,,— 4, —n)D,(u; z).

By (V3), we get
288 (u; 2)= —(d(v) +1)D,(u; 2).
dz

ii) The condition (V2) for m=0 implies
[X, §(u, 2)]=D(Xu, z) XegueV)).

iii) Let @ be a vertex operator of type v, and assume that ¢ e
Hom, (V],®V;®V;,, C) defined in ii) vanishes. We want to show @(z)=0.
Now we show by the induction on n=p-¢ that for any u e v,

v|P(u; 2)\wy=0 for (v|ie F o}, and |w)eF#,,.

Assume that the assertion is valid for alln<n,. It is sufficient to show
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(o Xy(my)- - - Xy(m)D(u; 2)Y (—ng)- - - Yi(—m){w)=0

for p4+q=n,+1, my, n,>1, {v|e V], and |w) e V..
We may assume that p>1 (if p=0, we can take g>>1). Then
ulXy(my)- - - Xy(m)P(u; 2)Y (—np)- - - Yi(—n)|w)
=z"{U| Xy(my) - - - X(m)P(Xyu; 2)Y (—np)- - - Yi(—ny)|w)
+<U ] Xp(mp) v A,27(’77?.)¢(l'47 Z)Xl(ml) Yq("—nq) ctt Yl(—nl)‘ W>
=0, g.e.d.

Proof of Theorem 2.3. Proposition 2.1 shows that a vertex operator
@(z) of type v defines a form ¢ € ¥*(v) and is uniquely determined by ¢.
In particular, the existence of a vertex operator implies the Clebsh-Gordan
condition for v.

Let ¢ (0) € " (v)=Hom, (V,QV,®V;,; C). We want to construct
a form &(z) e Hom (A}, ®V,®.#,,; C) such that

(Ml) @(Z)| VTj2®Vj®Vj1 =2z jSD (Z € C*)’

M2) DX (m), u, w; 2)— DV, u, X(m)w; 2)=2"d(v, Xu, w; z)
me”Z,Xeg),
and
(M3) B(L(m), u, w; 2)— Bv, u, L{m)w; z)
=z" {zvdfl——l—(m-l- I)Aj}@(v, u, w; z) (meZ)
'z
for any (v|e M#},, ue V, and |w) ¢ #,,, where ﬁ:ﬁ(v).
(We use the notation &, u, w; 2)=0(u; 2)(v, w)=0(2)(v, u, w).)

Step 0. (M1) defines &(z) on ViQV,QV;, satisfying (M2) for m=0.
Step 1. Define &(z) on V,QV,QF, 4, inductively as

(v, u, X(—mw; z)= —z=™P(v, Xu, w; 2)

form>0,Xeg,veV],,ueV,, weF, ,#,, then we get @(z) on V1.®V,
®.4 , satistying (M1) and (M2) for m<0.
Step 2. Define @(z) on F,.4%,Q@V,Q.4#;, inductively as

SX(m), u, w; 2)=2z"d(v, Xu, w; 2)+ (v, u, X(m)w; z)

form>0, Xeg,ve F, M}, ueV, we 4, then we get d(z) on M Q
VQ.M4,. The well-definedness of @(z) and the condition (M2) can be
verified again by the induction on p.
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Step 3. Verify (M3) for @(z) defined in Step 2. .
Let v@u®w & M}, 0,QV ;@M , 4,, then z7~ 4 “D(v, u, w; z) is proved
to be constant by the construction of @(z). On the other hand,

SWL(0), u, w; 2)— (v, u, LOYW; 2)={4,,+d,— 4, — d}d(v, u, w;z)

= {z_d——i—Aj}@(v, U, w; z).
dz

Thus we get (M3) for m=0.
Recall that L(0)|,,=2/2k|,,=4,id,,, L(0) |ij =4, idyw;, and the expan-

sion of L(m):

L= 33 {2 Hon=D ).+ En—=))FG): + : Fn=DEG).}.
Then on each component 4%, ,,QV,Q.4#,, ,, we can show (M3) for any
m e Z from (M3) for m=0 by case-by-case computations. We give here
its proof in the case m=2n+41>0, d,>d, (other cases are similarly
obtained). In this case, 2sL(m)=2 > ;s _, 2 -1 X (— k)X (m+k), where
X'=2X,=H, X’*=X,=F and X*=X,=F.

Let v@uQw e MY, ., @V, QM ;,.q,» then (M3) for m=0 reads as

2k {Z—;——}—Aj}@(v, u, w; 2)=Q2d,+ ), Qu, w; z)
'z

+2 Z‘j z Zs D, X'u, X,(Kyw; 2)+2 f} z" 23] O, Xtu, X(—kw; 2).
k=1 i=1 k=0 i=1

And
26{®WL(m), u, w; 2)— (v, u, L(m)w; z)}

=2i} Z‘_'i {zr®(v, X' X, w; 2)+2** (v, Xtu, X(—k)w; 2)}

i=lk=—n

+2 73_“, dli]m 2 * (v, X'u, X(m+k)w; z)
i=lk=-n
=2z™ f} {@(v, Qu, w; z)—l-zsj 2°@(v, Xtu, X(—K)w; z)}
k=-n i=1

—{—22”‘}3:I f} 2 ¥, Xtu, X,(k)w; 2).

i=1k=n+1

Hence
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2k [{@(vL(m), u, w; 2)— &, u, L{myw; z)}—zm{z%—l-zl j} D, u, w; z)]
=(2n+ Dz"d(v, Qu, w; 2)
+22"‘§__‘l{ i 2*@(v, X'u, X(—k)w; z)—ijz"‘(ﬁ(v, Xy, X,(K)w; z)}

=mz"(v, 24 M W3 Z),

thus we get (M3).

Step 4. Now we get &(z) ¢ Hom (A1, QV,Q.4,,; C) satisfying (M1)
~(M3). If &(z) factors to @(z) e Hom, (#1,QV,Q#,,; C), then the bi-
linear form @(u; z) (u € V,) on H#, @, defines an operator from £, to
o, satisfying the conditions (V2) and (V3).

We must show that @(z) factors through Hom, (#,QV,@4#,,; C), if
and only if the vertex v is an /CG-vertex.

From the condition (M2), we get by the induction on p for F,.#1,
that @(u; z) factors through 41,7, that is,

é(v, u, Z,)=0 foranyve A%, andue V,,
if and only if
O, u, |J,>)=0 foranyve V],andue V,.

In fact, &, =U(m_)U(Q)\J,;,> and m.|J,>=E|J,>=0.
Since |J,,> = E(—1)*"***u,,(j,), the last condition is equivalent to

o(v, E¥ 'y, u, (7)) =0 foranyve V],andue V,.
Similarly we get that &(u; z) factors through #% ®.#,, if and only if
o, (o), FO2 1, w)=0 foranyue V,andwe V.
Step 5. Apply Lemma 2.2. g.e.d.

2.4) Normalization of vertex operators and Proof of Lemma 2.2.
The right g-module ¥} can be identified with the dual (right) g-module
V7 =Hom (V,, C) through the vacuum expectation values:

v ={vlu) forve ViandueV,

There exists an isomorphism v: V,— V] defined by v(u,(m))=(—1)""x
ul(—m), then v is an isomorphism over (g, v):

v X|v))=—u(v))X (vyeV, Xeq),
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where y: g—g is the anti-automorphism defined by v(X)=-—X. More-
over v can be extended to the isomorphism y: 3#; —s#7% such that
v X(m)|v))=—v(vNX(—m) (v)eH, Xeg, meZ).

In Appendix I, we fix the element ¢, ¢ 7" (v)=Hom, (V,QV,, V)
(=C) for each CG-vertex V=( J ) This notation will be used through-

2J1

out this paper. And for each /CG-vertex v, denote by @ (z) =, (z) the
vertex operator of type v whose initial term is ¢,.
In a special case, we get

Proposition 2.5,
i) Let j be an half-integer with 0<2j< ¢ and put V:(J.J 0). Then
v € (CG),, 4(v)=0, and o,=idy, € ¥ (v)=Hom (V;, V). Hence

lim @003 u@d=lw> (e V).

ii) Letj be an half-integer with 0<2j< ¢ and put V=(0jj>. Then
v € (CG),, (v)=24,, and ¢, =v e ¥"(v)=Hom (V,, V}). Hence

B{.} 4 0)|P,(v; )= (O e, () =) (e V).

By the symmetry, it is sufficient to show the following for the proof
of Lemma 2.2:

Lemma 2.2, For a vertex v= (j]j) e V,, assume ¥ (v)#0 and take
2.J/1
its nonzero element ¢. Then the following conditions are equivalent:

(0) LAi+ <A,
(1) o, E“ 'y, u, (7)) =0 JoranyveV,anduelV,

Proof. Decompose the tensor product V;,®V, into the sum of the
irreducible components: V,,@V,=>", W,, where W, =V, for k e 7 with
| j—J\<Lk<Lj+j, and k+j+j, € Z. By the assumption on ¢, we may
assume that (W, @V, )0 and o(W,QV,,)=0 for k= j,.

Since V7, is generated by the vector u,(j,) and ¢ is invariant, there
exists a vector w e W, _, such that p(w®u,,(j,))#0 and o(W,, ,Qu,,(j)
=0 for any A> —j,.

Put L,=¢—-2j,+1. Assume that j,+j-+j<4. LetveV,, and
ueV,, Sinceh+h+Li>1—j, o(v, EMu, u,(j))=0. Thus (0) implies
.
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Now express the vector w as w=>,, a,v,Qu,, where a,e C, v, e
Vie-n-s and u, € V, .. Since n_w==0, we get that a,50 for —~j<h<
J.—Ji by the induction on 2. Hence o(v,,_,,, t;,_,,, 1;,(j)) #O0.

Assume that j,++j+j,>> 4. Then we get j,+j-+7,>£-+1and so

jZ_jl—L12j1+j2'—‘g—‘ 1 2 _“]

Hence the vector u=F*wy,,_, does not vanish and u,,_; =bE*u for some
nonzero constant b. Thus (1) implies (0). g.e.d.

2.5) Operator product expansions
The notion of operator product expansions in the 2-dimensional con-
formal field theory is due to A.A. Belavin et al. [BPZ].

Proposition 2.6.

i) Ordered pairs {X(0), Y@}, (X©), T}, (T(©), X(2)} and {T(),
T(z)} of operators are composable for |£|>|z|>0 (X, Yeg), and their
compositions X(£)Y(2), X(O)T(2), T()X(z) and T(T(z) are analytically
continued to single-valued, operator-valued holomorphic functions on M,=
{€, 2) e (C*)?; C=£2).  As operators on S, the following identities hold:

(1) xQ¥@=2%Di 1 x io+r & veq.
C—2F = g-z

1
€—2

_3zid 2T(z) 1 i
dn 10T = 260 —2)* + C—2¢ + {—z bz T(z)Ry.

(I TEXE =

X@)+ O X@+R;  (Xeg).
{—z oz

Here Ry, Ry and Ryy; are regular at { =z ¢ C*.
Moreover

TOT@O=TRHTE), TQOX@=X@TEQ) and XOY@)=Y(@DXEC).

ii) Let @(z) be a vertex operator of spin j and u e V,. Ordered pairs
(X©), 0; 2}, 103 ©), X@Y, {TQ), Bu; 2} and {0(u; 0), T@)} of oper-
ators are composable for |{|>|z|>0(Xeq), and their compositions
X0, z), O(u; )X(2), TQ)D(u; z) and O(u; YT (2) are analytically con-
tinued to multi-valued, operator-valued holomorphic functions on M,. As
operators on A , the following identities hold:

) XQow; Z)=E-1‘-E OXu;2)+ Ry (Xeg).
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4, 1
V) TOPw;z)=——— Ou; )—I———@(u 2)+ Ry.
) C—2) —z
Here Ry and Ry are regular at {=z e C*.
Moreover X(O)O(u; z) and T(O)D(u; z) (X e g) are single-valued and
holomorphic function on { € P"\{0, z, oo} for any fixed z e C*, and

XOP(u; 2)=0(u; )X () and TQP(u; 2)=D(u; 2)T(0).

Proof. All cases are obtained similarly, so we deal here with the
case ii).

Let @(z) be a vertex operator of type v. By Proposition 2.1 1), @(u; z)
has the expansion

Ou; 2)= >,z "D (u) eV,
neZ
where A=A(v)=4,+4,,—4,, Then we get
[X(m)a @n(u)]z[X(O)v @’In+n(u)]:@m+‘ﬂ(Xu) (X eEg, mne Z) '

and
[L(m), O, w)]={m+D4,—m—n—24}D,, . (v) (m,ne?).
Here we show (IV). For |{|>z]>>0,
XQOw, 2= 3 T X )0, )
= B g (L) X,
S M kz( ) 1X 0, 0, @]+ Res
keZ m=0
= Lot 5 (F) 0+ Re
_ ¢ —amk
= 1zt g_;zz D, (X”)+RIV—C—(D(XM 5 2)+ Ryy,
where

Re= D¢z 5 () Xm i+ 5 (£) Oen xem)

is regular at {=z.



Conformal Field Theory on P! 325

For [z|>[{|>0, we get

D(u; 2)X(Q) = Z—l—[@(u; 2), X(O]+ Ry = ;—lc@(X”; 2+ Ry,

—¢

for the same Laurent series R;y. Hence for any <{u| e 5", |v) € o and
fixed ze C*, the holomorphic function (u|X({)®@(u;z)|v) defined on
{€ e C;|Z|>|z]} can be analytically continued to a (single-valued) holo-
morphic function on P"\{0, oo, z} which coincides with the function
(| OGu; DXO]v) on {&;|z>]¢>0}. ge.d.

Proposition 2.6 is generalized as follows:

Proposition 2.7. Let u e V, and @(2)=9 (z) be the vertex operator of

type v:(jjj) € (CG),. Let Ay(zy), - - -, Ai(z,)) be operators of the form
2J1

T(2), X(z) (X e g) or D(u; z), and assume that there is a number i, such that
A, (2,)=P(u; z,) and A(z;) is not a vertex operator for i==1i,.

Then {A(zy), « - -, A(2,)} is composable in the range |zy|> - - - >|z,,
and the composed operator Ay(zy)- - - A(z,) is analytically continued to a
multivalued and holomorphic function on My={(zy, - - -, z,) € (C*"; 2,5z,
(=N} Ifwefix (zy, -, 2, <+ -, ) (j=1y), then this function is single-
valued in z, e P'\{oco, 2y, -+, %, - - -, 21, O}

2.5) Actions of § and % on vertex operators

For an 4CG-vertex v= (].JJ. ), introduce the g-module Z(v) defined

J2J1

by
PV)={@,u;z);ueV,} and XO(u;2z)=9D,(Xu;2z) X eqg).

In this paragraph, we fix v ¢ (CQG), and say @(z) =@ (2).
Now introduce the space @(v) of operators on s# as the C-vector
space spanned by the set

{Wl:"f)—wf o) A= (G =DM

XD 2): Ne Doy X, e gom, e Z (1<i<N), u e Vj},
where the contours C, (1<i< N) are taken as follows: the origin 0 is out-

side Cy, C, is inside C,,, and z is inside C,.
Let A(2) € O(v), X e g and m e Z, then define
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f(m)A(z)=~2ﬂ1—mj0dc<c—z>mX(c>A<z> e O(+)

for some contour C around z such that O is outside C. Then by Propo-
sition 2.6,

Proposition 2.8, Ler v be an (CG-vertex.
i) The assignation X(m)—X(m) and c—4£ id defines the §-module
structure on 0(v).
iiy LetueV,, then
Xm)® (u; z)=0 (m>0,Xeg,uel,);
X©0,w; )=[X(0), ,(u; D)]=0,(Xu;2) (Xeg,ueV).
iii) The assignation V, » uw—Q (u; z) defines the g-isomorphism of V,

onto the space P(v), and it is extended to a surjective §-module mapping
O=0,: M ,—0(v).

Define the action of the Virasoro algebra % on @(v) by

Lm)A(z)=

1 m+1
2ny/ —1 f LAC=)"T(OA)  (meZ)

for some contour C around z such that 0 is outside C. Then by Proposi-
tion 2.6, we get
i) foranyueV;

Lm)d(u; =0 (m=D);
LOYP(u; z) = 4P(u;z) and L(—1D)®(u; z)= ai@(u; z).
z

ii) the well-definedness of this #-action: (4(z) € O(v))

L(m)L(n)A(2)— Ln)L(m) A(2)

= (m—n) Lim+n)A(z) + ’”slgmcam,oA(z)'

iii) the compatibility of §-action and #-action:
L(m) X(n) A(z) — X(0) L(m) A(2) = — nX(m+n) A(2).

iv) this Z-action coincides with the one induced from the Sugawara
form
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Lm) A@) =5 33 { = A~ R (n-+ K+ E(— ) F -

+:ﬁ(——k)E(m+k>:}A<z>.

Theorem 2.9 (Nuclear Democracy®). For each £CG-vertex v=
(J ji ) the §-mapping @ gives the §-isomorphism of 3, onto O(v).
2
Note. The following fact is important for this theorem: The only

one additional relation of #; to the Verma module .#, is the equality
E(—1)u,(j)=0.

Proof of Theorem 2.9. For each v e (CG),, set p=¢, and &(z)=
@.(z). Since the kernel of the projection of .#, onto J#, is generated by
a vector |J,» e 4, over U(@), it is sufficient to show that @(J,»; z)=0.

Step 1. Recall that |J,> = E(—1)"%*"u,(j), m,|J;>=0, and
U@Q)J,> = D347+ CF(0)"J,), hence m, U(g)J,>=0. Since @ is §-
linear,

X(m)¥(2)=0

for any m>0, X e g and ¥(z) U(g)Q)([Jj); z).
Step 2. Let U'(z) € O(v) such that X(m)¥(z)=0 for any X(m) e m,,
then

[X(0), T@)]=X©O)(z) and [X(m), T(2)]=2"[X(0), T(2)] (meZ).
In fact, by Proposition 2.6, we get X(Q¥(2)=¥(2)X (), so

LX), T @)= e j AL X Q¥ (2)

for some contour C around z such that 0 is outside C, and by the assump-
tion we get

XQO¥ (@)= —X(O)W(Z)+ZX( k—1D)¥(2) €—2)".

Step 3. Since v e (CG),, we get by Remark 2.2/ii),

SD(U, uj(j)’ El_z‘iﬂw):() (U eV Ja’ we Vil)'

By the induction on n, we get that for any ve V], and we V,,

* We owe the naming of Nuclear Democracy to Prof. T. Eguchi.
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@IEQ)- - ECIOw(:Dlwy=[] &'z g0, 1,0), E™w),
SO
0=CUIE(=1)"0(u,(7); 2wy =C0|0(7,Y; DIw),
hence by Steps 1 and 2.
T wy=0

for any ¥'(z) e U(@)D(J;); 2).
Since o1, =V U(m,) and o, =U(m_)V,,, we get

(¥ (@) H#,>=0
for any ¥'(z) e U(g)P(J,>; z), hence U(g)D(J,>; z)=0. g.e.d.
Here we summarize the relations satisfied by vertex operators:

Fundamental relations for vertex operators
Let O(z) be a vertex operator of spin j. Then

Y(m)d)(u;z)zo m>1,Xeguely;
X(0)0(u; 2)=[X(0), D(u; 2)]=D(Xu;z) (Xeg,ueV);
Lm)®d(u; 2)=0 m>=l,ueV,);
LOYD(u; 2)=4,8(u; 2) (uev);

L= 1)0(u; =2 0(u:2) (e V);

and
E(—=1)"¥"0(uy()); 2)=0.

§ 3. Differential Equations of /NV-point Functions and Composability of
Vertex Operators
In this section, we will give the system of differential equations of N-

point functions and show the composability of vertex operators.

3.1) N-point functions and their differential equations

The vacuums u,(0) and u}(0) of 5#, and 5} are of special importance
(and are called Virasoro vacuums): denote |vac)=u,(0) and (vac|=u}(0),
then

p.vac)=0 and L(m)|vac)=0 (m>—1);
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{vaclp_=0 and (vac|L(m)=0 (m<1).
For an operator 4 on 2, define its vacuum expectation value by
{Ay={(vac|A4|vac).
Introduce the g-module # =3 v¢ wm, #(v), defined by the g-action
XO0)0(u; 2)=0(Xu;z)  (Xeg).

Denote by 4,, (1<i, k<<N) the g-diagonal action on the i-th and k-th
components of the N-th tensor product #®¥, that is, 4,, =+, where
=, is the g-action on the i-th component of #®¥, Introduce the operator
Q,, on #2¥ defined by

Q= %m(H)nk(HH 7 EYro(F) 4 (F)m(E)
and denote 2,=02,, ==,(2), then

Qik-:%{dm(g)—ﬁi—gk}

and
[‘Qik’ Azk(X)]:[ﬂQma ﬂj(X)]:() (i:#k’ Xe g)j#ia k)

For any half-integer j (0<<2j<{), denote by V7 the dual g-module
of V,. For any N-ple J=(jy, ---,j) of half-integers with 0<2j,<¢,
let ¥’ (N)=V;,® ---®V,, and let V()=(V;,&- - -QV;)¢ the space of
all g-invariant elements in 7"(J). Then the operators £,, act similarly on
V() and on V(D).

Let @ ,(z,) be a vertex operator of spin j, (1<<i<N), then the vacuum
expectation value of the composed operator

{Di(zy)- - - Di(z))
is considered as a V' (J)-valued, formal Laurent series on (zy, - - -, z,) and

is called an N-point function: If @,(z,) is of type v, (1<i<N),

N N
<QN(ZN)' : -@1(21)>= 11]1 Zi_A(Vi) Z e Z e ZO CmN---mlzITme’ sezr™,

myz0 mg€Z mr<

where

Coeooms = VA Dy (Pt iy ()+ Do (D1 (D] vac) e V(D).
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The aim of this section is to show that N-point functions are conver-
gent in some region and analytically continued to a multivalued holo-
morphic function on M.

First we get a system of differential equations of N-point functions:

Theorem 3.1. Let @,(z,) be a vertex operator of spin j, (1<i<N),
then the N-point function (@ ,(z,)- - - O,(z))) satisfies the following equations:
(1) (projective invariance) For m=—1,0 and 1,

N
St (2 2 )4, (B2 - 02Dy =0,
r= 1

(II) (gauge invariance) Forany X e g,

R0 )+ 0,(2))=0.

(IIl) For eachi=1, ---, N,

(sl =5 2 Nt D=0,

k=1 Z, -—
0z, =1 z,—7,

where k=4£+2.
(IV) Foreachi=1, ---, N,

<@N(”N§ Zg): (E(_ l)Z—WiH@i(uji(ji); z,))- - - D(uy; Z1)>=0
Jor any u, e V, (k=1i).

Proof. These equations are obtained from the fundamental relations
of vertex operators, the Sugawara form of L() and the properties of the
Virasoro vacuums. Here we give a brief proof of (III). First, note the
identity:

1
z—z,

N
(X@Py(zy)- - - Plz)) =2, 1, (XX Oy(zy)- - - Plz)y (X eg).
Let X'=2X,=H, X’=X,=FE and X®= X,=F, then the Casimir
operator p is expressed as £=> % , X*X,. By Proposition 2.6 and the
relation L(— 1)D(2)==(0/0z)D(z), we get

k(s z) =1

m{fj X0, (Xt 2) — — ) @i(Qui;zi)}
0z,

i
Nzi (k=1 zZ—2Z;
(1<i<N).
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Hence for each i with 1<{i<N,

,{i (XD Dy(zy) - (XD )z - - Di(z,))

P ID WL 76 £ e AICNCR R IEA
k=17=1Z—Z;

o e O ML M I NCR IR YENS
z—z, #tZ—2;

Thus we get the equation (III) by taking the limit 2\ z,.

Remark 3.2,
1) The equations (I) ~(II]) are obtained by V.G. Knizhnik and A.B.

Zamolodchikov [KZ].

ii) The equations (II) mean that {@,(zy) - -D,(z))> € V(D).

iii) The equations (II) and (IIT) imply the equations (I). (Key is the
property of the operators 2,,: >.¥ ; 2,,=0 on V;(J).)

iv) The system (III) of differential equations is completely integrable.
This complete integrability of (III) is reduced to the infinitesimal pure braid
relations of Q,,:

[2,0:20]=0 (if 7, k, m, n are mutually disjoint);
and :

(2 2ix 4 24n]=0 (if 7, k, m are mutually disjoint).
These infinitesimal pure braid relations were originally noted by K. Aomoto
(see [A1] and [A2]). Moreover these pure braid relations are equivalent to
the classical Yang-Baxter equations for 3, obtained by C.N. Yang [Y]

and A.A. Belavin-V.G. Drinfel’d [BD].
v) N-point functions are translation invariant (Corollary of (I)):

{Dy(zy+2) - - Dz, +2)) ={Dy(zy)- - - D(z)).
vi) The equations (IV) are equivalent to the algebraic equations:

for each i (1<i<N) and any u, e V,, (k=i), put L;=46—2j,+1.

() I Gz O3 20) -0, (703 20+ OUEw32))

W) gzi

=0,

" ~ L\ .
where m,=(my, « -+, Hy, -+, my) € (Lo)¥ 1, |my |=> ., my;, and (mi) is

the multinomial coefficient.
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3.2) Solutions of fundamental equation

Consider the systems E(J) of differential equations and B(J) of
algebraic equations for V' (J)-valued functions @(zy, - - -, z;) on the mani-
fold Xy={(zy, - - -, z) € C¥; z,%2z, (i7=k)} DM,

ED: (el =5 2 )0y - m)=0 (i<
0z, k=1z,—2z,

and for each i (1<i<N) and any u, € V,, (k+i),
B(])' Z (éﬂz) H (Zk_zi)_mk¢(2N9 M "Zl)(EWLNuNb Tt uj¢(j1:)5 DR meu)
Imgl="Lg i/ k#i
=0,
where m; =My, ++, #y, oo, 1) € (L)%, |my = ppe iy and L, ={—
2j+1.
By Remark 3.2, the system E(J) is completely integrable.
Introduce the set 2(J) defined by

9(])={p=(pm---,pl,po);vi(p)=( Js )e(CG),pN=po=0}-

P Pis
‘VN V.V-l ........ Vi .......... VZ Vl
D: V‘v }jN-l s l]i T }]2 +J1
py=0 DPrna Pu-g " Dy 'pi‘—l R /) § 20 O0=p,

For each p e #(J), define the vector ¢, of ¥V5(J) from the (fixed)
elements ¢, ¢ Hom, (V].QV, QV,,_; O=(V;QHom (V,,_,, V, )¢ (1<i
< N), as the trace of ¢,,®- - -Q,,: for each 4,® - - -Qu, e V(J),

o(Uys - s u1)=<VaCISDvN(uN) ° SUvN_l(uN-l) o - op, () vac).

Then the set {p,; p € #(J)} gives a basis of the space Vi (J).
Introduce the operators £2,,=> . ,.;<n $;; on V7(J) for m 2<m
< N), then

A

m
~
‘Qm‘:*Qm—. : Q”,
=

where 0, is the diagonal action of 2 on V},®---®V}, and by the pure
braid relations (Remark 3.2 iv), we get that [Q,., 2.]=0.
In the basis {p,; p € #(J)}, these operators are diagonal:
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Dio=26ti®lps  (p=(ows - pupdiv=(, %)),
i1 -1
where

L@ =4, ~ 3 4=~ 2 4v)  @<m<N)

In fact, for each i=2, .-, N,
‘Qisop:z'fAmfop and  0y,0,=2xd;0,.
Now introduce the subset Z,(J) of #(J) defined by

2D ={p=(pw - pop) e Wi vi=v@)=(, % ) e(Car,

then for each p e Z,(J), the N-point function
Dz, -+ > 2)=XD, (zn) - - D.,(2)))

of type p is a formal Laurent series solution of the system E(J) and B(J)
by Theorem 3.1, where its Laurent series expansion is given as

N N
@p(ZN’ M) Zl)=.1—! Z%TA(W) Z' ' 'Z' : Z CmN---mle'MN' sezp™
==

my=0 Mmi€EZ ML

— ﬁ ZZ_—A“<Z]{;(O) @Vw(l)(ﬁ)um@w_l(l)- 3 (—Z—I)L(O) @“(I)ZI_L(O)>
=1 Zy z

2
where
szv"'mxz<Vacl@"zv,m1v(')@"zv—l,mN—l(‘)' : '¢Vz,mz(')@vx,ml(')lvac> € Vv(])-

Moreover

Theorem 3.3, Consider the region Z, in the manifold X, defined by

R,={z=(2y, -, 2) € CV; [z5[>- - DIz}

Then
i) for any p e #(J), the Laurent series @, (zy, - - -, z,) is absolutely

convergent in the region X,, and is analytically continued to a multivalued

holomorphic function on X,.
i) {@(zy, -+, 2); De PLI) is linearly independent and gives a
basis of the solution space of the joint system E(J) and B(J).

Proof. The system E(J) of differential equations is equivalent to the
Pfaffian system:
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P(): LOEDY ig—i_——ziﬁgik@(z)=0.
Now we change coordinates z to w by
Wy=2Zy; W;=2,/2,,, 1<i<N—-1).
Then the region Z, transforms bijectively onto the region
Ry o={W=Wy, - -, w) e C¥; wy#0, 1>>|w,|>02<i<N—1), 1>|w]},
where the inverse transformation is given as
z,=wy---w, (1<<Ii<N).
And introduce the region Z,={w e C¥; 1 >|w,| 1 <I<KN—D}D X, ,-

The system P(J) is written in the coordinates w as

P ¥ 1 Wi Am"wk 3
) /cz wdwi——Z_ S Dub— Zdw > r_—__ﬁgmq),
2

et W,  <iEm w<m<i 1—w,_y- - W,

where @(w)=D(z).
Hence by using the operators £2;,, the system E(J) turns to be

£QD): {2,; az —Q_;—I-Am(w)}@(w).—_o Q<m<N),

{2/:

)} =0

where

Agwy= 3 it e We g 0<m<N-1),

k<m<i. l—w,_ i+ W,

Qm—l-Z————LQﬂ and A ,(w)=0.

A =
1(W) — ST, w,

Since A,,(w)’s are holomorphic in the region %, the system E(J) is
with regular singularities along the divisors D,={w,=0} for i=2, - - -, N.
The basis {p,; p € Z(J)} of V;(J) diagonalizes the principal parts of the
system E(J) with the exponents {4;(p); 1 <i< N} corresponding to ¢,.

The formal Laurent series solution @D(WN, e, w)=0.(2y, -, Zy),
p & Z,J), of the system E(J) is written as

N

Qp(wNa ) wl)‘: n ngv (D)Sp(WNa Tt wl),
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where
Sp(wNa MR wl)

= ﬁ wi 2 {wi 00, (Hwx90,, (1) --0,,MwfOd, (1))
i=1

is a formal power series in w, since wj®=w;?i**id on H#, ,.

By the theory of partial differential equations with regular singular
points (see e.g. [CL] Chap. 3 and [Kn] Appendix B), the function @p(w) is
a solution of the system E(J) of differential equation in the region %, ,
for each p e #(J). Hence the formal power series S,(w) gives a holo-
morphic function in #,, and so the function @D(WN, <+« +,w,) is holo-
morphic in the region %,,,. Thus the N-point function @, (zy, - - -, z) is
holomorphic in #, for any p ¢ Z,(J).

ii) By the remark before the statement of the theorem, for each p ¢
Z4J)

Sp(ob Y 0)= <VaC|@VN,0(' )@VN_l,O( ') et @vzgﬂ(.)@vuO(‘)l Va'c>
= <VaC |SD"NSDVN—1 T ¢Vz§0v1| VaC> = <VaC ! 909[ VaC> S VS/(J)
This implies the linear independence of {@,(zy, - - -, z): P € ZLD)}.
Finally we want to show that the dimensicn of the solution space of
the joint system E(J) and B(J) is not greater than #2(J), where B(J) is
the system B(J) written in the coordinates w: for each i with 1<i<{N, let
L=4-2j+1,

Im*| =K

X@(WND ttts wl)(EmNuN: M) uj,;(ji)’ Tt Emlul):()a

where m’=(my, -+ -, M) € (L))" ', m"=(m,_,, - - -, m) € (Z,)""" and
O(w) is a convergent power series in #,, and O(0)=0.
For each p ¢ Z(J), take a solution

N v
qu(WN: Y wl)zljg ng ® Tp(WN’ Tt Wl) (]D € *@(J))
of the system E(J), where T,(w) is a convergent power series in %, with

the constant term 7,(0)=¢,. Apply B,(J) to ¥ (w) for i>2, then its
leading term must vanish, and the term is obtained by taking K= L, since

N N
kZ_:'(K-l—m“,—}— coedmy)=(N—i+ 1)K+k§1(k—i)mk
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and

N
K+ > m,=L.

k=141

Hence

L ,
0=l Z£:=L(lﬂﬂl'/)T"(O)(uN’ ey Uy Uy (s E™ Uy gy - E™M)

=90p(”1v, ety Uiy uji(ji)’ Efu,_ Q- - - Qu)).

By Remark 2.2’ ii), we get that £>j,+p,+p,.., that is, v, e (CG), for
i>2. Hence p ¢ #,J), since v, e (CG), automatically.
Introduce a partial order < in the set #(J) defined by

p<p, I (de(@)—4u(D), - -, 4(D)— (D)) & (Z2)" "

Let ¥'(w) be a solution of the systems E(J) and B(J), and express it
as T(W)=2 oy ¥ (W), Where Zy={p e #(J); c,#0}. Apply B,(J)
to ¥'(w), then by the linear independence of solutions of E(J) with different
exponents modulo ZY, the leading term for ¥ (w) must vanish for any
minimal p in &#,. Hence any minimal p ¢ #, belongs to #,(J). Since

D (w) satisfies B(J) for any p e #(J), ¥(w) must belong to the space
spanned by {@,(w); p e Z,(I)}. g.e.d.

3.3) Composability of vertex operators
As a corollary of Theorem 3.3, we get the following

Theorem 3.4. Let Oz,) be a vertex operator of spin j, and u, eV,
(1<i<N). Then the sequence {@Qy(uy; zy), -+ -, O(uy; 2))} is composable
in the region &, ,={(zy, - - -, z) € C¥; |z4|>- - - >|2,|>0} and the com-
posed operator @, (uy; zy) - - - O(u,; z)) is analytically continued to a multi-
valued holomorphic function on M.

Proof. We may assume that @,(u;; z,)=9,, (u;; z,) for some vertex
vV :<pszj'—1> e (CG),. Put I=(py, jy, - - .71 Do), then p=(0, py, - - -,
D15 Dos 0) € gé(‘]]-)

For the vertices vy,,=vy.(D)= (Op Z N) and v,=v{p)= (pf “0), we
get by Proposition 2.5,

lim @, (v; Dvacy=|w)  (weV,);

and
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lim 27w {vac|@.,. ,(v; 2)= (V)| (e Vo)
2/

The (N+2)-point function {(D.,,,(Wy; Zy.1) Do (Uy; zx) - - - Do, (uy; 2))
@,,(w; 2))> s holomorphic in ¥ **={(Zy.s, - -+, 2) € C¥*% |z, |> - -
>|z,[}, so it is an absolutely convergent Laurent series in the region #5*2,
Hence ~

)| @vN(uN; zy)- - Dy (u; )| w)

=1ir\r; lin; 2220 By (U3 Zy )Pt 2) - - Do (s 2)D (W5 20))
20 EN+1/

is absolutely convergent at any point (zy, -, z) e &, foranyve V,

eV, (1<i<N)andweV,.

For general ve 5}, ., and w e o,

N+12

we may put

v=<”(vo)| Yq(mq)' < Yim) and w=X{(—n)-- 'Xr("”r)l Wop

for some v, € Vi, Wo € Vo, Yy, X € g, my, 1, 0.
Then it is sufficient for the convergence of the function {v|@,(uy; zy)
<+« @(uy; z,)|w) to note

lim £, (—n)- - - X (—n)0,(w,; 2)|vac)=|w),
2\0
and
lim z¥zx (vac|(¥ (m,) - - - ¥ (m)D.,, (ve; 2))=(v]. g.e.d.
2/'

Remark 3.5. If we take the value £ of the central element ¢ of § as
£ ¢ Q, then we can construct an analogous theory without the ¢-constraint
condition. In this case, the Verma module .#, (defined as in the top of
Section 2.3) is irreducible for any nonnegative half integer j, and the space
S is taken as =), M, where jruns over 3Z.,. Then there exists a

vertex operator on S of type v e V, if and only if v= (jjj) e (CG). In
' 2J1

this case, O(v)= ., so the last equation E(—1)*"¥*'@(u,(j);z2)=0 is
eliminated among the the fundamental equations for vertex operators.

§4. Commutation Relations of Vertex Operators

4.1) Formulation of the preblem

For a quadruple J={(j,, /s /s, i) of half integers with 0<2j, </,
introduce the set I,(J) of intermediate edges, defined by



338 A. Tsuchiya and Y. Kanie
1D={ke 2Z; 0<2k< 0, vio=( F ) e (€O,
2 J k

Vil = (kaj 1) c (CG)g}.

For each ke I(T), put p(k)=(vs, vy(k), v,(K), vo) € 2,(J), where v,=

() and vo=(fg)- And put 4Q@)=devi+ A=, + 4,44,
4 1

—4,, (independent of k).

Js Tz

p(k):

A

A k Ji

‘ V2 Vi
Assume I,(J)+# @, then we get two vertex operators @,,,,(w) and
., :(2). By Theorem 3.4, they are composable in the region %,={(w, z)
e C*; |w|>|z|> 0} and the composed operator @,(w, z)=0,, (W), (2) is
analytically continued to a multi-valued holomorphic and operator-

valued function on M,={(w, z) € (C*)*; wsz}. Introduce a V' (J)-valued
holomorphic function ¥ (w, z) on M, defined by

U (w, 2)(u,Qu,Qu,Quy) = ((u,) | D, (us ; w)D, (uy; 2) | u,» W, e V,).
In the region %,, this function has a convergent Laurent expansion:
T (w, 2)(1,QuQu,Qu,)
a0 5 (2T ) 0, 0 ),

n=0
with the initial term {v(u,)|e.,(u)p,,(u;)|u, ) for any u, e V..
By Propositions 2.1, 5 and Theorems 2.3, 3.3, we get

Proposition 4.1. Assume I(J)==@. Then for each k e I(J),
i) the operator @, (w, 2) on H# is uniquely |[determined by the Vi (I)-
valued function ¥ (w, 2).
i) The function ¥ (w, z) satisfies the joint system E'(J) and B'(J) of
equations:

E/(]): {,C_a__g_‘i_._‘Q?L}Wk(w’ Z):{Kg____%g_ 24 }gf‘k(w, z)=0.

ow W w—z
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and

B'(]):

L

=

I~

1>w—mzm— I yk(w’ Z)(u4a Emus’ ELl_muz, ujl(jl))=03

(
.
(

L .
5 (50 )Ean D), Bty B, B =0,

3
i

B~
5

~

2>(w__z)—m(__z)m—szk(W’ Z)(u4: Emus’ ujz(j2): Eerul):O:

3
]

Iy
I~ =

)(Z__W)—m(__w)m~st‘k(w, z)(u,, ujg(j.'i)’ E™u,, ELs_m”l)—:O’

3
I
=

| m

where L= £—2j,+1 (1<i<4) and m=(m,, my, m,) € (Z5,)".
iii) The family {U.(w, 2); k € I(J)} gives a basis of the solution space
of the systems E’(J) and B'(J).

Now assign a new quadruple J=(j,, j, j», ;) to the quadruple J=
(Ju J3s Jo» Jo) Of half integers with 0<{25, < ¢, then we get the g-isomorphism
T: VY(3)—V(J) defined by

(Tp)(ut, S, Quy Q) = (4, Sty Qui; Qs )

for ¢ € V(J) and u,Qu,Q@u,Qu, e V(J). Since T(Vy (1)) =V7(J), we get
dim Vy(J)=dim V3 (J). Note 4,3)=4,JT) and £1,(T)=#I1,JT).
For an intermediate edge k ¢ I,(J), similarly define the vertices v,(k)

= (j4j ZIE)’ v,(k)= ( Ej 3]1) ¢ (CG),, the composed operator @z(w, z) of the

vertex operators @, z(w) and @, ;(z), and the V' (J)-valued holomorphic
function ¥z(w, z) on M,. In the region %,, this function & ;(w, z) also has
a convergent Laurent expansion:

TE(W, Z)(u4®uz®u3®ul)
z \n=4)
= 74D Z (___) <p(u4)|@vZ(E>’n(M2)@v1(E), —n(“3)lu1>7
w

nz0

with the initial term {v(U,}| @, U)@e (s} |4,y for any u, e V.

e o Js
} ple): l 1

Js
p(k): l
j4 k jl j4 E jl

Va2 V1 Vs Vi

Now introduce the path b(¢)=(y(¢), {(¢)) from a point (w, z) in the
set ,={(w, z) ¢ R?*; w>z>>0} to the point (z, w) in the set [,={(z, w) e R*;
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w>z>>0} on the manifold M,, defined by

W)= e UL ()= MEE e L (eqo, 1),
—s z -
40

Denote by ¥.(z, w) the analytic continuation of the convergent
Laurent series ¥'(w, z) in the region %, along the path b(z) and consider
¥.(z, w) near I,, then the V;(J)-valued function TU(z, w) satisfies the
equations E’(J) and B’(J), so it is expressed as a linear combination:

Tw'k(zy W) =1?6;(I) ?,}(W, Z)CIE(JL

where C(I)=(CYINer,.5er,a) 1S @ square matrix.
Hence by Proposition 4.1,

Proposition 4.2. i) Let J=(j,, js, jo js) with I(J)£ @. Then for
each intermediate edge k ¢ I(J) and (w, z) e I,

T0,,0)(2)D,, 0y (W)= _;L—:m Do, (W) D, (D) CED),
k€l

where the operator in the left hand side is considered as the analytic continu-
ation of the composition of the vertex operators @, (w) and @, (z) along the
path b(t) in the manifold X .

i) Let T=(t,Js, jo ji1» §), then the braid relation holds:

C(j3’j27j17 S)C(tvjaajl)jz)c(j19j3,j25 S)
= C(t, Js Jo» JOC (s Jos Ji» $)C s Jo» J15 Jo)-

6o 1 2 3 4 0 1 2

I3

IUL'
s
.

T, e T, —

=
n | o =

() ®) ) ®
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Now our fundamental problem is:

Fundamental Problem. Determine the matrix C(J)=(C¥J)) for any
quadruple J with I(D)+# 3.

4.2) Reduced Equation

Take an intermediate edge k e I,(J) and introduce a variable £=z/w,
then the V'(J)-valued function z#W¥ (w, {w) is independent of w, since
by Theorem 3.1, 1,

a 0 _
{w%— + z—a—z— — A4(J)}Tk(w, 2)=0.

So we abbreviate z4OT (w, {w) to T,(L), then the ¥V (J)-valued
function ¥,({) (called reduced 4-point function) has a convergent Laurent

expansion

T (O, QuusQuiy Q) = £~ devatn T;o WU D, (U)D,,,, (1) |1 YE"

in ¢ e C* with the initial term {v(u)|o,, (e, (4:)|u,) for u, e V,,. Then
by Proposition 4.1,

Proposition 4.3 (Reduced equation). The V' (I)-valued function ¥ ()
satisfies the joint system RE(J) and RB(I) of equations:

REQ): (s~ LetfE) B =0
and
RBA): 3% (1) Ful@), Bty Bt (1)) =0,
5 () (655) 70 B (. By =0,

m

3o <L3 ) ( ) (O (uy, u/s(ja)-, E™u,, ELs=™y,) =0,

= L. (L4) WE(C)(uj‘(j4)’ E™sy,, E™u,, E™u)=0,

| m

where L,=£—2j,+1 (1<i <4) and m=(m,, my, m,)) e (Z,)".

Proof. The system E’(J) of equations turns to a single differential
equation RE(]), since 0,4+ 21+ Ppa= — £4,(J). q.e.d.

In the following, we want to solve the fundamental problem for the
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case where j,=1% in J. For this aim, we investigate first the reduced
equation RE (J) in detail for each quadruple J=(,, %, f,, j,) with V5 (J)=£0
and thereafter take the equation RB(J) into account. For the investiga-
tion of the reduced equation RE(J), introduce the set 7(J) defined by

1J)= {k ¢ %ZZO; (k)= ( _fsk) € (CG), v,(k)= (kuj 1) = (CG)}.

Js

First note that $1(J)=dim V;(J)<2. And dim V;(J)=2 if and
only if

(D2) | =l < J— % It %gh +j, and ji4j+ —2-+J4 eZ.

In this case, I(J)=1{k.=j,+3}
The case (D2) is divided into three cases (D2), such that $7,(J)=1i
(=0, 1, 2). Introduce the number ey(J)=(j, +/,+/.+$)/x, then

D2), &<l thenjl,fz,ﬂg%i and Ie(]):{ki:]}i -;—}
D2), e=1; Ie(J)={k-=f4—%}, ©2), &>1; IM=p.

1 Je

< < <
[ ] < g [} < <+ .

A k. Ji

Moreover dim Vi (J)=1, if and only if either of the following condi-
tions (D1) holds:

®1), J;=J;+%+jz; D1), j2=j4+%+jl; D), j=-

= —2— +Jet+ji

And I(J)={j,+3%} for the case (DI),, and I(J)={j,—%} for the case
(D1),. Note that one of the conditions (D1), implies #/,(J)=1.
Denote by (D0) the case where ¥, (J)=0, i.e. [(J)=¢.

Now consider the equation

) d Q.,+£d(T) Qs
RE(I): e — _
)] <lr it : 1 )T(C) 0
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for Vi (J)-valued functions ¥ () on £ e C*. The coordinate change {—
n=1/¢ makes the equation RE(J) into :

RE(T)..: (,ci _ B _sz_)gp(i) —0.
dg 95 -1 ]

Case (D2). First we get three bases (U}, (UL} and {US} of V5 (T)
such that they diagonalize the operators 2,,, £,, and Q,, respectively (see
Appendix I):

QU0 =r(r® —ATNUY, QUP=OUL, QUL =V,
and

U(ﬂ(:))(uu Us, Uy, u1)= <V(u4)190vz(k i)(u3)¢v1(ki)(u2)!u1>

1
V2j+1
for u,@u,Qu,Ru, ¢ V(J), where

7(0)= 2j4+3 , Tg))z 2j4_1 s Til)=jz-, rg):jz‘i’l ,
¥ 2k —2k K —kK

ro=L, pooitl
K —K

Introduce the differences ¥ =7% —7® (i=0, 1, o), then 0<y® <1, in
particular, they are not integers:

7O — 2j,+1 , TW= 2j+1 and 7= 2ji+1 (k=£42).
K K K
The transformation matrices S®® between the bases {U®} and
{UP} are given as
(UP, UP)=(U?, UH)S,

where

, A1 gy
Swﬂ):s“m:(g _5), s<°’w>=s<w,°>=< 4 ﬁ,,)eO(Z)\SO(Z),

Is
s s~ (4 ~5) < sow

and the constants 4 ~ B’ are given as

1/2 12 172
. €964 / A = &1&g / A = €&y /
A= 2 '}, = > = >
T(I)T(O) y(w)r(i) T(w)r(o)
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1 S\2
B— 08y /2’ B/ —{__E& 1/2, BV —[__&* ’ ,
T(I)T(O) T(w);’(l) 77 ©®
where

e=c(J) and ei=-i—{jl+jz+j4+—;-—zji} (i=1,2, 4.

and

Now we get the fundamental solutions of the linear differential equa-
tion RE (J) with regular singular points at =0, 1 and co by means of the
Gauss’ hypergeometric function F(e, B, 7; ) (see Appendix II for the
proof):

Proposition 4.4. Introduce the constants a=e¢,, f=¢,, f*=¢, and let
TP be the fundamental solutions of the equation RE (J) normalized at
L=i(i=0,1, o0):

@O 7=, v (7 £ 00

Then
(1) p0.0= AP F 7 s
PP Q=T A =V F(a+1, f+1, 24795 0);
POO=cOT (1~ PO F(—at1, —f+1, 2—19; D)3
POQ= T F(—a, —p, —1; 0.
(i) pRO= TPU—LPF@ 13 1-0);
PP O=cPTP (A= P Fla+1, 41, 24795 1-0);
¢9L(C)=c9>cr‘—°’(1—c>‘+f‘f’F(4a+1, — 1,279 1-0);
PO O= U= F(—a, —f, —T; 1-0),
@)oo=t (1=) Fa 5o, 7o )
p10=e0r (1= )T Pk 041, 2475 1);

so‘-“ﬁ(t:)=c<_w>g~1_,<.m(l_ "2‘ ),g,

><F<—oz+1, — B 1, 27 —2—),

(T C—r‘:"’(l—_lc_)rg)F(—a, — B, =71, %),
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where

o _ Veees
P = (1% 70) (;_0, I, o0).

Note. The reduced 4-point function llf,cif‘g") is the solution of RE(J)
with exponent ¥® at {=0, so by the normalization of U, V.. =

V2 +172(0).

Case (D1). Since dim V;(J)=1, the choice of basis vectors of | 24Q))
is not of importance. But from the compatibility with the case (D2), we
choose basis vectors {U®; i=0, 1, oo} of ¥;(J) such that

UO=UD=U for (D1),,; U®=UD=—U for (D1),

The exponents 7@, 7" and 7 of the équation RE(J)at £=0,1, o aré
given as

(D), 7O = 3+_2j4, 7O _Jé_’ ) — i1 ,
2IC K K
(D1), ro=3%U g1tk e d
ZIC K P
(D1)3 7O = l__;z;].i, 7O = _.i_2_’ 7 = L'
2k £ K
Then we get

Proposition 4.4'.  The fundamental solution T®(0)=UDp®() of the
equation RE(J) normalized at {=i (i=0, 1, o) is given as
D), Q) =0YQ)=0 A=, Q=g (),
and

(D1), POQ)=pVQ)=0"(1=L", e )=q""" (),

where the exponents ') are corresponding ones and q=exp 2nv — 1/k).

4.3) Connection matrices for J=(j,, 3, /i, j))

The path b(¢) from a point (w, z) € I, to (z, w) ¢ I, on M, introduced
in Section 4.1 corresponds a path from the point {=z/w in the set J,=
{LeR; 1>£>0} to the point 1/¢ in the set J;={¢ e R; {>1} on the
manifold C*. If z tends to zero, then the corresponding path tends to the
path b(¢) from O to the infinity figured below:
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0 1

T R oo

Now take an intermediate edge & for a quadruple J =(j,, 1, /., j,) with
I+ @. We want to know the analytic continuation of the reduced
4-point function ¥ () along the path 5(z).

For the case (DI1), we get easily the connection matrix (scalar) K(J)
of the fundamental solution ¥F®(¢) at =0 to ') at {=co of the
equation RE (J): $@ =) =¢ =Y (E)K(J) as follows:

(D1),; KA)=g"*; (D), KJ)=—g ¢+m" <q=exp<ﬂi:1))_

Now we deal with the case (D2). By the formulae for connection
matrices of the hypergeometric functions, we get the connection matrix
K(J):(gé g;) of the fundamental solutions (¥, ¥®) at { =0 to

; KC
T, e at L= oo of the equation RE (J):
K+ K*
@, o=@, vo)(KE K7,
K; Kz
that is,
N o>(90$”+(C) A (C)) (sa‘fl(C) 90(-"‘2(C))<Ki Ki)_
Q@) 20 20 o=/ \KT Kz
(see Appendix II for more details):

Proposition 4.5.

Ki=—q" (fl+14+3/2)/2( rore )1/2 raoHr=r=y)
t=

€184 I'(e)(—ey)

Kt= guii- 1/2>/2< (O)T(w))m (=1 (=1
B ] I'(—e)I'(—e)

Ko quosemn(T712) TEOTG)
€2 I'(e)I(er)

T(O)T(w) )1/2 [”( T(O))F(T(w))
€184 I'(—e)I'(ed)

3

2

b

b

K-= q(J1+J4+1/2)/2(

where we denote g=exp 2mv/ — 1/k).

The conditions (D2), (i=2, 1,0) and (D1) for J are equivalént to
(D2), and (D1) for J respectively. Intermediate edges for J must be k=
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Ji£=3 under the condition (D2),, and the intermediate edge for J must be

D2),, (D), E:,;_%; (1), , E=j1+-;—.

From the three bases {UY =UP(J); i=0, 1, oo} of V(J), put
UP=U9D)=TU> (i=0,00) and TP =+TUD,
then they are three bases of V5 (J) such that
2,UQ=5TQUP, 02, UP=,TQUP, Q,U =67 —4INTE,
PO =70, FO =70, 7O =10,
and

Ug‘:))(ub Uy, Uy, Uy) = <”(u4)lSDvg(Tci)(u‘z)SDvl(Ei)(us)l u1>

V2j+1
for u,Qu,Qu,Qu, ¢ V(J).

By Proposition 4.1, the composition @,(w, z) of vertex operators is
determined by the Vy(J)-valued function ¥, (w, z) which is written as
T (w, 2)=z"49U (z/w) by the reduced 4-point function ¥,(¢). And the
composed operator @y(z, w) is also determined by the V' (J)-valued func-
tion Ty(z, w)=w 40T (w/z).

The functions ¥ (&) and ¥ ;(y) satisfy the differential equations RE (J)
and RE (J) with the initial conditions:

Cﬁ(mk))w‘k@)(uv Uy, thyy ) |e o= V(UM 0o (Us)po, (1) | 111>
and
PR ®T (), thy, 115, 1) lp=o== V()| @y (U)o, (115) | 14, >
By the relations among the exponents {7} and {7} of the equations
RE (J) and RE (), we get
TW&”(C)=C“”W7S°’(—2-) and TZF&’"’(C):CAMJ’TQ)(%),

where ¥'P(y) denotes the fundamental solutions of the equation RE (J)
similarly obtained as in Proposition 4.4.
By the note after Proposition 4.4, we get

V.=V, +179©@) and T; (=v2,+1T2().
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Hence by Propositions 4.1, 5, we get
Proposition 4.6. Let J=(j,, L, /,,J) with I(3)-£@. Then

D) c=C¥NH=K(T), wherek e I(J) and k ¢ I(J).

(D2), CA)=Ci-(N)=K-=(J), where k_=j,— % and k= j,— .;_

D, CO=(CEMrcriosers=KQ) as 2X 2-matrices.

Remark. In the case (D2),, all entries of the matrix C(J)=K(J) do
not vanish. In the case (D2),, ¢,=1 implies K*(J)=0, hence the matrix

K(J) is of the form (: 2)

4.4. Case J=(j, %, %.7)

As a special case, we take j,=j,=1, then the conditions (D2) and (D1)
read as

L. . ..
(D2), —2—>Jx=J4>0; (D2), —§—=Jl =J;

and
D), ji=ji+1; DY), ji=j=0; D), ji=j+1.

Under the assumption (D2), the constants 7, ¢, and the matrix K(J)
turns to be the following (here j=j,=j,):

r$>=—ﬁzf'2+3, o211 o_ 3
K

—2 2 —2
T(+°°>=_J;’ 7e) — J+1 SO = 2j+1 T‘1)=—2-'
K —K £ K
2j4+2
0= ¥ ’ 51_54=l‘> 52—‘—2—.1“3
£ K K
r 2]+1)F<2J+1)
Ki=—Qj+ Dy N
()7
K K
2]‘—1—1)2
r(*e
2j+4+1 —K

=g 1 F(M)F(EL) ’

—K —K
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['<2j+1)2
o 2j+1 i K
K=2vigTn ¢ F<2j+2>r(g)’
K K
and
r 2j+1>F(2j-|—1)
K-=(Qj+ 1)g' TN
r(H)r(=h)
. K K

Now recall the notion of g-integers for g e C*: for each integer v ¢ Z,
introduce the g-integer [v] =[], defined by

{"”‘1 (g#1)
q

y (g=1.

Then

Lemma 4.7.
i) [0l,=0, [1],=1 and [2],=1+4.
H) ['—p]qz —q'”[v]q and [”]llqzq{—v[v]q (U € Z)

iiiy [v],=0, if and only if q*=1. ([/c]q=0 z'fq-_—exp(

=)

iv) lim,.,[],=v foranyveZ.

Then in the case (D2),, the matrix X(J) can be symmetrized by means
of g-integers:

Proposition 4.8.  For j ¢ 17 with 0<{2j <4,

o101 .
K(.], "5:_2_9 J)
—1 Vq12/12j+2]
_ (T3 [2/+1] [2j+1] r.
7 ( r:l) Val27l2j+2] g+ ( T-)
[2j+1] 2i+1 J
where
2j+1
F( +kK )

2y — 1) and =[],
K

ey

-tk a7
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We can get the connection matrix (=scalar) K(J) in the cases (D2),
and (D1):

Proposition 4.8', » Let g=exp Crv =1 /K).
i) K(_é, l, _1_, f_) =g [0+ 1]q= —g

2°2° 272
1 1
i (0’ =, =, 0) =34
) K 3% q
. 11 ) ( 1 1 ) s
K 1, —, =, jy=Klj—1, =, =, j)=q"4
iii) (J+ 55 J 75 I )=

Remark. These values are also obtained from the calculations in the
case (D2),, K3(0,4,%,00=0 and K*(0,%, %, 0)=—¢g ¥. For J,=
(=14 3,0, Ki(J)=Kz(J.)=0and KX(J )=K:(J)=g""

§5. Monodromy Representations of Braid Groups

In this section, we construct representations of braid groups on the
spaces of multi-correlation functions, and show that they give the same
representations of Hecke algebras constructred by H. Wenzl.

5.1) Braid groups and Hecke algebras

Recall our Xy is a complex manifold defined by
XN:{(ZN’ Zy-1s """ zl) € CN:» zZ; izj (l:z&.])}

The N-th symmetric group &, acts on the manifold Xy as (zy, - - -, z)o=
(Znyes = > Zaye) (0 € By), then we get a covering space my: Xy—Xy=
X,/®. Let #y: Xy—Xy be a universal covering manifold of Xy, then
zy=7yoxy: Xy—Xy is also a universal covering of Xy.

Now recall the braid groups according to J. S. Birman [Bi]. The
fundamental group ,(Xy, px) of the manifold X, is called the braid group
with N strings of the manifold C, that is, the classical braid group of Artin,
and is denoted by By, where we take the base point as jy=n,(py). The
composition of 7, and 7, in the group By is figured as

1 2 3 <+« N-2N-1 N

== ==

T, fb—‘::———:jJ rL_':‘_Jl__1
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1 2 3 .-+« NZ2 N—1 N
L—-\ * o 0 . L-ﬂ -
ST, [ =
. — | —

The fundamental group =, (Xy, py) of the manifold X, is called the
pure braid group with N strings of the manifold C, and is denoted by Py,
where py is a base point of Xy, e. g. py=(N, N—1, ---,1). Then the
group Py is the kernel of the natural homomorphism p of B, onto ©,.

It is well-known that the group B, has a system {5,; 1 <i<N—1} of
generators with the fundamental relations

(BR) bb,=bb, (i—j|>2) and b, =biuibibr (I I<N=2).

where b, is figured as a geometric braid by

1 2 i+1 oo N1 N

1

[_ —
The subgroup P, has a system {ai 53 1<i<j< N} of generators, defined
by

ay=b; sb;_5- - by b7 - b3
Introduce a subset I, of the manifold X, defined by
INZ{(ZNa ttt Zl) € ]RN; ZN>ZN-1> e >Zl>0}-

Specify a base pomt pN of the manifold X, such that #,(5,)=py, then
there is a subset [, of X, such that §, e Iy and I, is homeomorphlc to I,.

For a finite dimensional &,-module W, denote by 0(X,; W) the
space of all W-valued holomorphlc functions on X,. The values of ¢ ¢
O(Xy; W) on the whole X, are determined by the values of ¢ in [y, which
we call the principal branch of the multi-valued function ¢ on X. Fora
point (zy, « -+, z)) € I,, sometimes we write ¢(zy, - - -, 2)=o(f), where
B eI, such that 7 (F)=(zy, - - > 2y).

The action of the braid group B, on the space O(Xy; W) is defined
as follows: Let r e By=r,(X,). For each ¢ of O(Xy; W) and pe X,,
put
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() (P)=p(2)-p(F7)  (PeXy),

where the group Bj, acts on each fiber z5'(z,(#)) as the covering transfor-
mation of Xy—Xy.

We will give more explicitly the principal branch of z¢ for a generator
r=b, 1<i<N—1). Foreach jel,,let p=r(p)elyand (zy, - -, )
=7x(P) € I,

GupX(P)=G, i+1)-o(5-b)

where (i, i+1) denotes the transposition, and ¢(j-b,) is nothing but the
analytic continuation of the principal branch ¢(zy, - - -, z,) along the path
Cx(®), -+ -, L)) in Xy (2 [0, 1]): Cu(0) =2, (k+i, i+ 1),
z,+z; =i 21— 24 z;+z = Z;41—2
()= i i+l _ prta/-1 441 1,; e )= 21 i+1 enh/ 14441 4
C.() ‘_2 € Ty Cina(®) 5 + ——“‘——2

C'l + l(t)

L) T
oo Zi Z541 Z;.0 e ZN

C(t)

Related to braid groups, the notion of Hecke algebras is important
(see e.g. D. Kazhdan-G. Lusztig [KL] and V. H. R. Jones [Jo]).

Let N>2 and g e C*. Then the Hecke algebra H,(q) of type Ay _,
is defined as the associative complex algebra with generators 1, T, - - -,
Ty _, with the defining relations:

H) T1,T,,.T,=T,,T,T,, fori=1,2,...,N-2.
H2)y T1,7,=T,T, forl|i—j|=2.
(H3) (T,—gXT;+1)=0, that is, T;=(¢— DT, +g.

Note that (H1) and (H2) are nothing but the braid relations (BR),
hence there is a natural epimorphism of the group algebra C[B,] onto
H,(q). For g=1, the Hecke algebra H,(1) is isomorphic to the group
algebra CS,, of the N-th symmetric group &,, by sending T} to the trans-
position (7, i+1). If ¢ is not a root of unity, it is known by H. Wenzl [W]
that there exists an isomorphisms of H(N) with the group ring C[S,] as
algebras.

Assume that [2],#0, that is, g5=—1. Then we can give another
system {1, e, - - -, ey_,} of generators of H,(g) consisting of idempotents:
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e, = q— T, %
(2],
Then the defining relations (H1) ~ (H3) translate to

, ie T,=q—[2e, (@i=1,---,N—1).

HY ee,,.e,— fori=1,2, ..., N—-2.

9 ,_ q

P e1—et+1eie¢+1—*|§i2;“ei+x
(H2Y ee;=eje; for|i—j|=>2.

(H3)' e§=e4 fori=1,2,.-., N—1.

T

5.2) Monodromy representations

Let N>2, ke={¢+2, g=exp (2zv — 1/r) and fix a half integer ¢ with
0<L2t < ¢ which we call a target edge. Introduce an (N4-1)-ple J,=
(¢, %, - -+, %), and consider the systems E(N; ¢) and B(N; ) of equations
for V3 (J,)-valued functions on the manifold X, :

E(N; 1) (,c_ 5 )qr(zﬂ, e 2)=0 (1<i<N)
0z, Z,

=1 z,—
k=i

and for any u, € V,, (jy.,=t, j;=% (1 Li<N)),

Ba;n: 3 fm) 1T G—z) ™

mj

k#i

X?F(Z)(ul\/\vb EmNuN’ Tty u(]i)’ ‘ Emlu1)=0

for 1<<i<N, and

Z (LN+I)W(Z)(UJN+1(].N+1)’ EmNuN’ Tt Eml"ﬁ):‘o

my+1 \IMy 41

where m,=(my, - - -, #;, -+ -, m) € (L) (1_<_i£N)'and My, = (My,
<o, my) € (Zsy)” with |my|=L,=¢—2j,+1 (1 <i<N+1).

Let W(N; t) be the solution space of the joint system E(N; t) and
B(N; t). Then by Theorem 3.3, the space W(N; ¢) has a basis {¥' (zy, - - -,
z); p € Z,(N; t)} defined as follows: Let

1
gé(N’ t):{p:(pzv’ " '5p17p0); Prn=1, pp= 0, D; € E—Z’ Oézl’zéﬂ,
1 ,
|pi—pial= > @ SISN)}

For each p ¢ ZN; t), define the V' (J,)-valued, multi-valued holomorphic
function ¥ (zy, - - -, z,) on X by
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Tlzys ==+ 20, Uy, -+ -, 1) ={(V) l@vﬂ(uNQ zy)+ - - D, (w5 z))| vac)
forve V, and u, e V,, (1<i < N), where the vertex v,=v,(p) is defined

1
7= Z 1 ] N .
s Vs (pip'l—l)( =i<N)

The braid group By acts on this space W(N;¢) as monodromies.

The commutation relations of vertex operators give a factorization of this
monodromy representation (xy,,, W(N; t)). The &y-module structure of
the space Vy(J) is defined by

(0'90)(111\7, R} ul):‘so(u(N)o" RS u(l)v) . (SD € V;/(]—)a g e @N)a

and the B,-modaule structure on the space of Vy(J)-valued functions on
Xy is defined in Section 5.1. By Propositions 4.8, 4.8’ and 5.1, we will
give this representation z=rn, , explicitly. ‘
For each i (1<i<N—1), the action =(b,) of the generator b, of the
group B, on the space W(N; t) is given as follows.
At first, divide the set Z(N;¢) into the four parts: Let p=(py,

Diis * s Pos =+ > D1 Do) € PN t), py=t, py=0.

D e PUN; t)«<—>p;,1=p;..=0.
D € ZUN; )| P,y —Pia|=1.

P e ZYUN; t)<——+—§—>pi+1=p¢-1>0~

A
D e PUN; D<—>p =Dy = '5

Then the operation #(b,) is given on the basis vectors {¥,; p'e Z,(N; 1)} as:
a,d) IfpePYN;t)orpePUN; 1), (b)), = —q~ 7.

b) Ifpe PUN;1), b))l ,= q'"7..

¢) If pe &YUN; 1), there is only one p’ € #4N; t) such that p, =p;, for
any k==i and | p,—p;]=1. We define the action =(b;) for which C¥,+
C¥,. is invariant. We modify the notations as p.=(, Py_1> ** *» Piess
D> Pi-ss + - +» Py), Where py =max (p,, p}) and p; =min (p,, p;). Then the
action n(b;) on C¥,, +C¥,_ is given as z(b,) = K(p, %, 4, p), where
0<p=p;s1=p; 1 <L[2:

(b)) Icw,_,_a,curp_

[ —1 v p12pl2p+ 2]

=¢m(f ) [2p+1] 2p+1] (n )
T [ v q2p]2p +2] g+ 7.

Rp+1] 2p+1]
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where

F( 2p+1 )
+x
()
. +x
In each case, {g, —1} are only possible eigenvalues 6f the operators

q**z(b,). Thus the actions ¢**z(b,) on the space W(N; t) satisfy the rela-
tion (H3) of the Hecke algebra Hy(q).

Theorem 5.2. The monodromy representation q**ny, of the braid
group By on the space W(N; t) gives a representation of the Hecke algebra
H,(q), where g=exp 2ay/ — 1/k).

Remark. It is remarkable that our representations are obtained for
the Hecke algebra Hy(g) with a root ¢ of unity, since the algebra H,(q) is
not semi-simple for a root ¢ of unity (cf. V. F. R. Jones [Jo])..

5.3) Wenzl’s representations of Hecke algebra ,

H. Wenzl [W] constructed irreducible representatlons (7:1, V) of Hecke
algebras Hy(q) for any g not being roots of unity, parametrized by the
set Ay of all Young diagrams on N nodes. If g=exp (2zv/— 1/x) with
k(=£44+2)>4 (i.e. £>2), he also constructed irreducible representations
=z, V#9) of Hy(g) parametrized by the set A% of all (k, x)-diagrams
on N nodes. Note that the representations z{** are unitarizable as repre-
sentations of the group Bj.

In this paragraph, we show that our representation (zy,,, W(N; 1)) of
the Hecke algebra H,(q) (g=exp Qav —1 //c)) is equivalent to the repre-
sentation (z{*%, V{»9).

Let A3 be the set of all Young diagrams 2 on N nodes with depth (%)
<2. For each 2 e 4%, d(2) denotes the difference of the number of the
first row of 4 and the one of the second. Introduce the set 43" of all
(2, x)-diagrams on N nodes, defined by AP?={1e A}; dD)<e—2 (=)}
Any 2 e A$® is written as [Nj2+¢, N/2—1t] for some half-integer ¢ >0.

We shall write <2, if the Young diagram p can be obtained by
taking away appropriate nodes of 2. For each 1 ¢ 4%?, let

PA={p=QAuwy ‘> Aw); Aq € A, Ay <Agans Z(N)zl}.

H. Wenzl defines an irreducible representation (z&9, V»9) of the
algebra H,(q) for each 1 e A§”, where V" has the form @, ¢ z,,CUp-
This gives a unitary representation of the group Bj.

Note that for each N, the number d(1) determines the Young diagram
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2 e A% uniquely. For each p=(A(y,, -+, Aqy) € PA(A) with 2 e AF?, let
K@p)=(,3dAx_y), - - - 3d(Ayy), 0) e #, (N; t) with t=%d(2). Then the
mapping K gives a bijection of &,(1) with Z,(N; +d(2)).

For each p=(A(yy, - - -, Aqy) € ZA2), introduce the numbers 7,(») (1<
i<<N—1) defined by

T'L(P)::l’ ifd(z(i—rl)):d(l(i—l))zo or |d('z(i+1))—d(2(i—l))|=2’

()

Tdp)= ( F( d+2 )F(i)>l/2 , if dzd('z(i—1))=d('z(i+1))=d(2(i))—1:
K K
and
F( d+1 )
Tdp)= AW if d=d(A-p) =dQ@us0) =dA,)+ 1.

2’
(r(=H)r(=5))
—K K
Define the mapping K: V&?—-W(N; 1d(2)) by
N-1
K(i})p)= il;ll 70 x(») for p € Z(2).
(note 7.(p)=1 for any p &€ Z(2).)

Then the mapping K intertwines Wenzl’s representations (z3?, V' {#9)
and our (zy,,, W(N; 1)):

Proposition 5.3. For each 2 e A$?, set t=4%4d(1). Then
Kr,=q"*ny, K.

Note 1. 1If we construct the theory for £ ¢ QQ as in Remark 3.5, we
get the monodromy representations of the Hecke algebra H,(g), q=
exp (2ry/ — 1/(£+2)), which are isomorphic to the representations (r;, V)
parametrized by 1 e A9,

Note 2. By means of A{P-modules, we obtained here the repre-
sentations (x>, V) of the algebra Hy(g) parametrized by the (2, k)-
diagrams. For general k>2, Wenzl’s representations (z{**, V{**) are
obtained by means of integrable highest weight modules of affine Lie
algebras of type 45" (n>>1). We will discuss them in our succeeding paper.

5.4) Fusion rule
For a quadruple J=(,, ji, J», J1), introduce the set J(J) defined by
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Je(JI)-_—{re—;—Z; 0<2r <, W(r)———(_r_)e(CG),,

Jih
w() =( rfj) ¢ (CO).

and consider the fusion of vertex operators @,,.,,(w) and @, .,(z) for
ke I(J) to @,,(2) (the first term of the short range expansion of the

product @, ,,(WD, 1,(2):

2 )
fa jz Y
j3 r
N e — — & —:
Js w k z i A z i
vy(k) v(k) w(r)

Now we restrict ourselves to the case j;==4. Assume that Vy(J)+ &,
then in cases listed in Section 4.2. we get

©.  IO={e=izr}h  I@O={r.=rxl],
o, 1@={i-5}. 10 ={i-
®n LD={it+5} VORSFEESE
o 1O={ir5}, 1@ ={i=5}
oy 1O={i-} W ={i+1+}.

Here we discuss the case (D2), since other cases are much simpler.
In this case, fix notations

1 1
vlk)=| 2} v =(1 ). weo=("%). weo=(2
ik, = J1 Ji J1 A
and note the relations:

19 = Aok )= 4D — A(vi(k.,)) and 70 =4,0)—A(w(r.).
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Then

Proposition 5.4. For a quadruple 3 =(j,, %, j»» J1) in the case (D2), and
for each k e I(J),

1 —a (1)
ﬁ o, (W—‘Z) 17D ths s WD, 50 (thy 5 2)dW |
=F§(])d)w(ri)(90w(ri)(us, uy); z) (us E‘Vma lu2‘ eV,

where C, is a contour around z such that 0 is outside C,, and the coefficients
Fi=F}, are given in Proposition A. 2. :

S w

C,o>w

Proof. The composition @ (w, z) of vertex operators D,,,(w) and
@,,(2) is determined by the V5'(J)-valued function ¥(w, z) on M, defined
in Section 4.1 for each k e I,(J). By Propositions 4.3 and 4.4, we get
the expansion of ¥7',(w, 2) near w=z as

T (w, )= (w— 2y P W2 F T FEUD + O(w—2)}
4+ W =2y W2+ 1 F; UY + O(w—2)}

where O(w—z) is holomorphic near w=z and vanishes on {w=z}.
Now introduce the operator Hj(u,, uy; z) of o, to # 5, defined by
the integral

- 1 e '
B, ”Z;Z)ZW——TL (9= 2)TL7D 15 WD, it 2)c.

And define an operator Zi(2) (v)=2Z7 (v; 2): H#,,—#,, parametrized by
V,. as follows: For any vector v e V,, is written as a linear combination
V=1, CPwr, (Ui, u) for some w@uie V, ®V,. Then put F;(v;z)
=3, ¢, Ji(ui, ul; z), then F{(z) is independent of the expression of v, and
is a vertex operator of type w(r.), that is, of spin r, (note —4, =79 —
4,,—4,). Infact, for Xegand me Z,

[X(m), 5 (s, uy; 2)]=2"[5 5 (Xuty, ty; 2)+ 5 (they X, 2)]
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and
[L(m), &5 (us, uy, 2)]

1 f -7t 1{ m+1 0 m+1 0
T W-—2) "= w — T2 _
2r/ —1J e, ( ) ow + 0z

+(m+ 1)(Aj,w’"+A,-,Z"”)}@vsm(uz; WID e tt5 2)dw
_ zm{zi 1+ DA+ 4, E s 13 2)

2m/—-— .[ c: ow —{w—2)7E W™D (s s WDy (U3 Z)aAW

Zm+1 a

- 27W —1 CZE
= 2{z- Lt Dy 2, D 520 1 )

{(Ww=2)7"2 9D, (113 WD, 05 (113 Z)dw

TO+1 m+1 m+1 —r(l)—2@ . - Ad
+ e/ =1 C,(w —Z"*N(w—2)""= vs(k)(uth WD, (Uys Z)dw

_zm{z%+(m+1)4,i}5,f(ua, s} 2).
z

Thus Hi#(z) is a vertex operator of type w(r.), so it is a constant
multiple of ,,,.,(2).

Hence we get the proposition, by computing the initial term of
@w(ri)(</>w(ri)(u3’ Up); 2):

<V(u4)‘¢w(ri)(¢w(rt)(u3a ), u)y=+2j,-+1 UL (uy, s, ty, uy). q.e.d.

Let N>2. Fix an N-ple J=(%, -, 4) and half integers ¢ (target
edge) and s (source edge) with 0<21, 2s< ¢, and put J, ,=(t, %, - - -, 3, 9).

Consider the systems E, ,(J) and B, (J) of equations for V5(J,,,)-
valued functions ¥(z) on the manifold M:

E, ,(J): (:c—aw—f %~ﬁ)W(z)=o (1<i<N)

k=1 —_—
0z; =1z,—2, 2z

and forany u, e V;, (jy=tj,=% (1<KI<N-1),j,=3s),

N
B..(): % (an) [1 2e™ T @) E™ "ty 1y E™ty, - -+, E™thy, 1(5))=0,

mo

Z(mi) HI(Z,,—-Zt)_m"W(Z)(uNH, Emmiyy, ..., uj;(ji)’ « ooy E™yg) =0

k=



360 A. Tsuchiya and Y. Kanie
for 1<i<N (z,=0), and

Z <mLmN+1)W(Z)(”J'N+1(jN+1)’ E™uy, -, E™ug)=0,

my+1 N+1

where m,=(my, « -, My, -+, M) € (L))" (0<i<N) and my,,=(my,
oo, mg) € (Zog)H with |m,|=L,=£—2j,+1 (0<i<N+1).

Let W(NV; t, 5) be the solution space of the joint system E, (J) and
B, (J). Then Theorem 3.3 implies that the space W(N; ¢, s5) has a basis
(T (zy, -+, 2)); D€ PAN; t, 5)} defined as follows: Let

1
PN t, S)={P=(PN: ce e Py D) Py=1, D=5, P; € EZZO, 2p, <4,

1 ,
Ipi_Pi~1l =7 (lél_éN)}

For each p e Z,(N; ¢, 5), define the Vi (J,,,)-valued, multi-valued holo-
morphic function ¥ (z, - - -, z;) on My by

GONT 2y, + -+ 2wy - - 5 w)| W)= Q) Dy (s Zy) - - - Doty 2| W)

1
for veV, u, e Vy,,(1<i<N) and we V,, where Vi(]p)z( “ )(1_<_i

PiPiy
<N).
ol
)
—1—.-—-’—-—-
% 9.
:The diagram of crossing symmetry: 0 o
l —1— 1 1 1 -1
2 |z 7 |z 1.
& 2 qy
t Py-y Py-2 - P.z p.l s ; ;
Vy Vy-1r  nrreee Vg ! w(p, @

Now introduce the set 2,(N) defined by

QJ(N)={QI=(QN’ ce, )5 g, € -;’Zzo» %Z%a 2g,< 4,
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l%'—qi—xl=%‘ (zéiSN)}

Foreach p e Z,(N;1,5),q e 2(N)and i Q<i< N), define the quadruples

Q.p, D=(p;ss %, 91> 5), these quadruples Q,(p, q) satisfy one of the con-
ditions (D2),,, (D1),,; and (D0). Moreover, define numbers 7,(p, q)

and F, (p, q) as follows: if Q,(p, q) satisfies the condition (D1), let

70, @=T"Q,», @) and F(p, P=1.
If Q,(p, @) satisfies the condition (D2),, let

7.0, D=72Q,p, @) and F(p, )=F(Q,p, Q).

Assume that Q/p, @) satisfies the condition (D2),. If p, ,—p,=+1,
then put k= +, and if ¢, —¢,_,= £1, then put k=+. Let

7.0, D=7"Q,(p, @) and F(p, Q)=FLQ,(p, Q).

If Q(p, q) satisfies the condition (D0), let F,(p, q)=0.
Then we get

Proposition 5.5. For each p e P(N; t,5) and q e 2N;f) such that
V(Q:(p, @) #0, i.e. Qup, @) € (D2),,U(D1),,,5,

Qv — 1)1-Nf . i(z._z)’Ti(Qi(D,Q))‘l
Cn Cai=2 ¢
@vN(m(VN; Zy) Dyt 2)dzy - - - dz,
N
=11 F(Qup, Do (po(ti, « -+, 1y )5 2)
Sfor each u, € V,,, where C.’s are contours around C,_, (3<i<N) such that

0 is outside Cy and C, is around z. The vertices w and w, 2<i<N) are
defined as

1
w=wm d=(" ). r=an wi=wi(qo=( 7 )
qi qi—l
and goq(uNﬁ s, Uy, ul) € Vf iS deﬁ)”led by

$0q(uN, sy Uy, ul)ZSDWN(uN’ ?wN-;(uN—l, LRI SDWZ(uz, u): - )).

Appendix 1. Bases of Tensor Products of 3{-modules

Here we use notation on the Lie algebra g=38[(2, C) and its modules
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given in Section 1.

Since the vacuum expectation value on V] X ¥, is nondegenerate, we
can identify the dual right g-module V7 of ¥, with V]. The basis {p,(m);
m=j,j—1,---, —j} of V} dual to the basis {u,(m)} is identified with
{ul(m)} by @ ,(m)u,(m)) = )14 (7)) = 8, -

The isomorphism y: V,—V] is defined by u(u,(/))=ul(—j) and
v X|v))=—v(v)X (lv) eV, Xeg). Then

w(u(m)=(— 1" uj(—m)=(—1y ""p,(—m).

Introduce the C-bilinear forms (, ) on V,, ¥} and ¥} for which the
bases {u,(m)}, {ul(m)} and {¢(m)} are orthonormal, then E and F are
mutually adjoint with each other and H is self-adjoint in all cases.

Here we refer to the famous textbook [LL] of L.D. Landau and E.M.
Lifshitz,

Now for each vertex v= (JJJ) ¢ (CG), we choose and fix the element
1

2

@, of Hom, (V,®QV,, V,)=(V,QV;QV;) as

Ov= Z C#;Tnz ujg(mz>®§oj(m)®@j,(m1)’

my-+Mm=Mmg

where the Clebsch-Gordan coefficients C1:™ are real numbers and expressed

mamsg

by the well-known Wigner’s 3j-symbols (’11; ’{12 j3>as

1 My M

Jams __(__1\ii-de+ms, /07 1 1 jl jz js
szmz_ 1) '\/2]3+ l(n,l1 mz _ms)-

Wigner’s 3 j-symbols are defined for half integers j,>0 with j,+j,+/, € Z,
V=< 0 < Ja+ Jis J;—m; € Z, and satisfy the following:

: ; ; N A AN
iy If|j,|<m, for some i, or m,+m,+m,+0, then (m1 m, ma)_O.
ii) (jz Ji js)___(]] Js jz>=( oo B s >
m, m, m, m, m, m, —my —m, —m
—f jt+dz+7s jl j2 js
_"( 1)] 7 (n,l1 m2 m3>5
j i 0 i m(ny -
i) (], %, 0)=(—1rm@i+D
In particular, if j, =0, then j,=j and

SD(jjo) = m;]_:j cim uj(m)®50j(m) Ry (0)= mgj;juj(m) ®§Dj(m) =id, g

If j,=0, then j,=j and
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0y =35, Co- S0y (—m)@p,m)= 3 (—1/~"p,(~m)Bg(m)

- ==

is identified with the isomorphism »: ¥,— V7 which is given by v(u,(m))=
(— 1) (—m).

For a quadruple J=(J,, jis, f2 ji) of half integers j, >0, there are
three orthonomal bases {U[; ji. € I(D)}, {USS; fos € I(jis jis Jos J)} and
(U5 Jis € 1(jss Jos Jus J1)} Of V5 (J) defined by

U(O)__ 1 Z (_ 1)]4-—m4 C]'UM ijmm

jm—'\/ﬁ MizMmg "~ MMy
m1+mg=m1g
‘]4+ ms+mig=1rt4

?1(—m)®9 (Mg 1, (M) Q¢ ;. (my),
1y — 1 Z (__ 1)14—7114 Cg;tnm C]'zsmzs

j”_\/f'—l— 1Mag ~ Mmams
ma+mg=m
Jut 1 masmamas

03.(—m) Qg (M), (M) R, (my),
and

1
(e0)
Fas '\/2]4+ 1 ml+§=mm

My +Mirg="M4

@1, (—m)®p ; (M) Qo ,; (M) ;,(my),

then the operator £,=2[4,,(2)— Q,,— 2,,] is diagonalized by this basis
(Ui jne I(D)} as

(__ 1)14-m4 CJ'UM C]'lsmla

migmsg mims

QU =6(4y,— 43, — 4,)Us3s.

The operators £2,, and £,; are also diagonalized by these bases {US.} and

{U{} respectively as

QuUR=u(d,—4,,—4,)US) and  Q,URD) =w(d,,,—4,,—4,)US7.

Moreover the basis vectors U, are expressed by the fixed ¢,’s as

12

1
Uy, g, thy, 1) = m(”(lﬁ)lSﬂvz(m>(”s)50v1<m>(”2)l Uy
4

forany u, e ¥,
The transformation matrices S®9=(57%), S=0=(S/y), V=
(S719) between three bases of ¥ (J) defined by

Jas

©) __. 1) §'J 0) — (e0) ¢'7 (1) e () Q'
Ujm'—Z UhsSJ'::’ U]'xz_Z UJ'ls Sii:’ UjZS—_Z Ujla Sj;:
Ja2s J1s Jis
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are real orthogonal matrices and are given as

S (= D QR DT D {1021,

Sis= __1)211 erdsrdia=t1a/(25. £ 1) 2/ s+ 1) {52..;1;12}

and

Sfam(— Dyttt QR E N7+ D) {J270),

where {Jl]zj"‘} is the 6j-symbol or Racah coefficient which is defined by 3j/-

4J3J¢
symbols as

{J:1]:z]:s}____z(_l)zi(ji—m)( PR S )(]1 Js Js )
JaJsJe = —my —m, —HmJ\mM;, —M; N,
)( i RN B )

m, my, —m,J\—m, m;, —n;)’

In the case (D2) for a quadruple J=(j,, 3, /2, j1), then I(D)={j,+3},
I(jujbjb %)z{jzi%} and I(j49j25 %3j1)={j1i%} DenOte

0) _. 770 H_rra o ®
U.Et)_U,lg4)i1/2) U(i)—U]gZZtl/Z and U= U_71:t:1/23

then we get easily the formulae in Section 4.2, by using some values of
6/-symbols (see [LL] Section 108):

e =060 = Terrnam

Let s=a-+b-+c+3, then

{c 3 c+%}:{% ¢ c+%}=(_1)s( (s—2b)(s—2c¢) )"2
b ab+il \abbti b+ 1)(2b+2)2c+1)(2c+2)
c g e+ _[bF b3 _, 1\ s+ D(s—2a) e
{b 2 b—;}_{c Z c+;}—( D <2b(2b+1)(2c+1)(2c+2)) ’

= —(—1)* (S——Zb)(s—zc) 1/2
}_ D (217(2b+1)2c(2c+1)> '
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Appendix II. Connection Matrices of Reduced Equation

A.IL1) Solutions of reduced equation

For a quadruple J=(j,, 4, /,, /) of half integers, we will give funda-
mental solution of the reduced equation

. d _le+ﬁd4(]) _ 24 (7 ==
RE(T): ("?lf : C_I)M:) 0

for V5(J)-valued functions #({) on e C*. The coordinate change {7
=1/¢ makes the equation RE(J) into

RE(J)..: (;:%-%—%)w(%) —0.

In this section we deal only with the case (D2) and prove Proposition
4.4, since the case (D1) is much simpler.
Write a solution Z'(¢) as

Q=L VO IQO=ue, (4 ) =01

=(U, UNT(EC)=(UL, US) (9”((*: Egg)
()N

where {U®; i=0, 1, oo} are three bases {U¥; i==0, 1, oo} of V7 (J) such
that

QuUP =10~ 4DV, QUO=PUL, QUL =SV,

and the exponents 7 are given in Section 4.2. The differences ¥© =7%¥
—T® of exponents are given as

yo Htl o pa 2h+l Gy g 2Rl g0
K kK K

Since the transformation matrices S%* between the bases {U Y} and
{U®} are given in Section 4.2, we get the matrix forms of the equations
RE(J) and RE(])..:

RE(): -4 0Q=4@ro=(10 “0Oweo =01

and
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REQ).: 0 =46 0=((50 S50,

where the coefficient matrices A* are given as

(0 @ __ 0
“0="rr BT A= 7o
© o 0 © __ o1 €8]
@ ="+ ao=T0 CT_jl,
b rO4a, 1O
a1+—(C)=a1—+(C)=—‘, al——(C)z +—
¢ g —1
() Q) _ = b=
ai+(n)=IL+ o as_(p=az . ()= ,
Ui n—1 7—1
(o) 1) e
az_p="2"+ =1L,
p—1
and
0= &€y , o= €€y , o= = €€y ,
T(O) 7(1) T(w)
R

Now look at the function ¢®(£). The equation RE(J), turns into
the equation for ¢ ({):

TO+TO | TO4r® 1\ d
o@=(THT 4 T ) Lo
? 3 -1 gt
_{TOUTD) 1AL A A DTG =) | 1T L
e -0 e
which is a second-order equation of Fuchsian type.

Now recall that a second-order equation of Fuchsian type is of the
form

dCz

o (AT =1 | ptp/—1\dp
o= (At %0

A M =y
e e

where 2, 25 p, ¢/; v, v/ are exponents at {=0; 1; co respectively. The
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solution space of this equation is denoted by the Riemann P-function

0 1 o
P2 p v zZj
2/ /l, l)/

The equations RE(J), for other functions are also reduced to
Fuchsian equations of similar forms. Then we get

Proposition A.1.
0 1 o) 0 1 o
PPQEPL TR TP T Ty 0@ Pl TO 1P 1 g
1470 70 76 1470 70 7
0 1 o : 0 1 1%
eP@ e PP TP ¢ L, 0P e PTY 7® 7Y Lo,
O 14r® 7= [ Y A d
and
0 1 0 0 1 0
e PTY TP e oy o) e PSTO W e g0,
[ S By A5 e 147

Before we give the proof of Proposition 4.4 we recall the facts on the
hypergeometric function F(a, 5, 7; £) (see e.g. [E]):

I i I'ae+n)[(f+n) &

Fla, 8,7 =1+ 3 T4

b4

=T T@I®4=  TG+n
where
g =alat1)-- -(a+n—1>=£§%ﬂ.

i) If7¢Ze, Fla, B, 7; £) is a solution of the Gaussian equation:

LA -0 Q) +{r —(a+ B+ D' (O) — afp(D) =0,
that is,

0 1 0
Fla,B,7;8)ePq O 0 a (.
1—7 7—a—p B
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i) Fle, 8,7;0) and (' "Fla—7+1, f—7+1,2-7; ) give a basis of
0 1 oo
the solution space P{ 0 0 a C} of the Gaussian equation.
1—-7 7T—a—8 B
i) Fle, B, 7; =1 *FI—a,7—B,7; ).
iv) (ddOF(a, B, 7; O)=(af/NF(a+1, p+1,7+1; 0).
V) Fla, 8, 7;0)=(01-0F(@+1, +1,7+1;0)

(‘X"T)(.B“‘T) F 2: 0.
+_T(T+1) CFla+1, p+1,74+2;0)

VI) (T+1)F(a" ﬂ, 7, C)
={0+D—(a+p+1—(@f/N}Fla+1, p+1,742;0)

@4+DE+D e ;
+ s CA—OF(a+2, f+2,7+3;0).

Vi) (1—OF(a, B,7;0)
=Fla—1, f—1, T;C)-i-i%CF(a, B T+1;0).
L p B ]
viii)  F(a, B, 7+1; C)—m(l OF (e +1, ‘B‘f‘l, r+10)

T(T'—Of—ﬂ) F < 6.
Ta—n=n PO

. a(r—p) .
ix) W) Fla+1,8,7+1;0)

_ o Ta—p) |
F(a, B+1L74+1; 0+ ‘3(7—0{) F(a, B,7;0).

X) F(a,ﬁ+1,T+l§C)
= Fla+1, b, 7+1 e:)+‘fT‘ch(1+a, 148, 2473 0).
xi) Fla, 5,7;0)

— F(T)F(“+.B-T) (1—
r@re -

Iranrg—a—p 3 L
+F(T—a)['(7’_ﬁ)F(a"B’“+.@ 741;1=0).

xi) F(e, 8,7;0)

ITNIrE—a) - _ _
O Ol a=T 41, a=p+1, 1)

+“]]:€3)£‘%—_—%)(—C)'ﬁ(l — /o)yt
XF(1—a,7—a, B—a+1;1/0).

Oy PF(—a, T—B, T—a—f+1;1-0)
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Proof of Proposition 4.4. Similarly as Theorem 3.3, we get the func-
tions p{L(¢) in a neighbourhood of =0 such that

rOQ=U?, U<°>)(“’;,; Eg) roQ=U?, U<°>)(“’w; Eg)

such that ¢ () bave the expansion with respect to { as

PRO=CT+-) PR O=CT(CL+ ),
and

Q=02+ 1), eOO=0"U+-- ),

where ¢ and d are some constants.
Then by Proposition A.1,

0 1 oo
P00, 000 P T TR T g
14+7r@ y® gy

and
0 1 oo
o0, Qe Py TO TP T L)
I4+7Q r® e
Hence
0 1 o
(D) e V(A -LYYP] O 0 « Cp,
1—7 T—a—B P
0 1 o)
PP e ITPA-F Py 0 0  a+l ¢},
—1—7T—a—p p+1
0 1 o
() e &AL Py 0 0 l—a &b,
7—1a+p8—71—8
and
0 1 )
e () e VU= Py O 0 —a

14+7 at-p—7 —8



370 A. Tsuchiya and Y. Kanie

where ¢, § and =7 are given in the proposition. Then by the formulae
iv) ~vi) above, we get the statement (i) of Proposition 4.4. Other state-
ments of Proposition 4.4 are similarly obtained.

A.IL2) Connection matrices of reduced equation

We must prove Proposition 4.5 on the connection matrix of the
fundamental solutions of the reduced equation RE(J) along the path from
0 to oo figured in Section 4.3. Fortunately the formula xii) of the hyper-
geometric function gives its connection matrix along the same path. And
we may take (— ) =exp (—Amv/ — 1)¢* by the choice of the path. Then
it is sufficient for the proof of Proposition 4.5 to note the following rela-
tions among constants in Section 4.2:

N . R B A"
_c(i'b)r(l)(l iT(”):»\/ e :ﬁﬁ(w) =0((T(°°)——‘5(°°)) -
A" B

A B

*f (r—p)a )A

for i=0, 1, co.

Similarly we get the connection matrix of the fundamental solutions
of the reduced equation RE(J) along the path from O to 1 figured below.
The formula xi) of the hypergeometric function also gives its connection
matrix along the same path.

1 - i

0 1

Then by relations above, we get in the case (D2):

Proposition A.2. Denote by F(J)= (;:’: ;;) the connection matrix of
Y

the fundamental solutions (TP, T at =0 to (TP, TDY) at {=1 of the
equation RE(]):

Fi Pt
ro, v0)=@p, ro)(Fz 1)
( )=( )F; -

that is,

Son (so‘fL(C) soﬂ(f;’)) _ <</>(+”+(C) SDQL(C)) (F IF i)

020 02 \e®(0) o®()/\F; Fz/-

Then
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>

(T(O) 7’(1) 1/2 ]"(7’(0))["(__7(1))
I (52)F (—54)

)
(T(O) T(1)>1/2 F( — T(O))I’( — 7’(1))
)

&8,

H

I'(—e)'(—e)
F+ (7/(0) 7o 172 I"(T(O))I’(rU))

&o&q

b

€61 I'(e)I(ey)
F-— ( (0) T(U)l/" I"( ‘)’(0))]"(7’(1))
B E9€y I'(—e)I'(e) ’

Remark. Since ¢,=1 in the case (D2),, FZ(J)=0 and F(I=F=(J)
=[2/,4+ De—1—25)/2j,+ D(&—1—27)]”2 By Proposition 4.4/, it is
obvious that F(J)=1 in the case (D1). In the case (D1), the matrix F(J)

in the proposition A.2 is written as F(J)= ((1) ?) in the case (D1), and F(I)

(01
=\1 0

[A1]

[A2]
[Ba]
[BD]

[BPZ]

[Bi]
IcL]
[DF]

[E]
[J]
[Jol

[Ka]

) in the case (D1), .
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