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\S 1. Introduction.

Let $M$ be a differentiable manifold of class $C^{\infty}$ and dimension $n$ , and let
$cT(M)$ be the cotangent bundle of $M$ : that is, the bundle of covariant vectors

in $M$. Then $CT(M)$ is also a differentiable manifold of class $C^{\infty}$ ; the dimen-

sion of $cT(M)$ is $2n$ .
In this paper we consider methods by which certain types of tensor fields

in $M$ can be extended to $cT(M)$ so as to give useful information about the
relationships between the structures of the two manifolds. We call extensions
of this kind lifts of the tensor fields in $M$ and consider two main types of
lifts, which we call vertical lifts and complete lifts respectively. Our main

interest focuses on complete lifts of vector fields, tensor fields of type $(1, 1)$

and skew-symmetric tensor fields of type $(1, 2)$ . In each of these cases we
define the complete lift to be a tensor field of the same type as the original.

In general, the vertical lift of a tensor field does not have the same type as
the original; nevertheless the construction is a useful one.

Our methods enable us to examine the structure of $cT(M)$ in relation to

that of $M$. In particular, we show how almost complex and similar structures
on $M$ can be extended to $cT(M)$ . We also examine lifts of affine connections
in $M$, using the idea of a Riemann extension ([4], [5], [6]).

The methods used and the results obtained are to some extent similar to

results previously established for tensor fields in the tangent bundle of a dif-
ferentiable manifold ([1], [3], [7], [8], [9], [12], [13], [14], [15]). However
there are various important differences and it appears that the problem of

extending tensor fields to the cotangent bundle presents difficulties which are
not encountered in the case of the tangent bundle.

Throughout we use the following notations and conventions:
1. $\pi:^{c}T(M)\rightarrow M$ is the projection of $cT(M)$ onto $M$.
2. Suffixes $A,$ $B,$ $C,$ $D$ take the values 1 to $2n$ . Suffixes $a,$ $b,$ $c$ , $\cdot$ .. , $h,$ $i,$ $j$ , $\cdot$ ..

take the values 1 to $n$ and $\overline{i}=i+n$ , etc.. The summation convention for re-
peated indices is used. Whenever notations such as $(\epsilon_{CB}),$ $(\epsilon^{BA}),$ $(F_{B^{4}})$ are used
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for matrices, the suffix on the left indlcates the column and the suffix on
the right indicates the row.

3. $9_{s}^{\gamma}(M)$ denotes the set of tensor fields of class $C^{\infty}$ and type $(r, s)$ in
$M$. Similarly $9_{s}^{\gamma}(^{c}T(M))$ denotes the corresponding set of tensor fields in $cT(M)$ .

4. Vector fields in $M$ are denoted by $X,$ $Y,$ $Z$. The Lie product of $X$ and
$Y$ is denoted by [X, $Y$ ]. The Lie derivative with respect to $X$ is denoted by

$\rightarrow C_{X}$ . Tensor fields of type $(1, 1)$ are denoted by $F,$ $G$ and tensor fields of type
$(1, 2)$ by $S,$ $T$ .

\S 2. The basic l-form in ${}^{c}T(M)$ .

If $A$ is a point in $M$, then $\pi^{-1}(A)$ is the fibre over $A$ . Any point $P\in\pi^{-1}(A)$

is an ordered pair $(A, p_{A})$ , where $p$ is a l-form in $M$ and $p_{A}$ is its value at
$A$ . Suppose that $U$ is a coordinate neighbourhood in $M$ such that $A\in U$.
Then $U$ induces a coordinate neighbourhood $\pi^{-1}(U)$ in $cT(M)$ and $P\in\pi^{-1}(U)$ .
If $A$ has coordinates $(x^{1}, x^{2}, \cdots , x^{n})$ relative to $U$ and $p_{A}$ has components
$(p_{1}, p_{2}, \cdot.. , p_{n})$ , then $P$ has coordinates $(x^{1}, x^{2}, \cdot.. , x^{n}, p_{1}, p_{2}, \cdot.. , p_{n})$ relative to

$\pi^{-1}(U)$ . If $U^{*}$ is another coordinate neighbourhood in $M$ containing $A$ , then
$\pi^{-1}(U^{*})$ contains $P$ and the coordinates of $P$ relative to $\pi^{-1}(U^{*})$ are $(x^{*1},$ $x^{*z}$ ,

... , $x^{*n},$ $p_{1}*,$ $p_{2}*,$ $\cdots$ , $p_{n}^{*}$ ) where

$p_{l}*=p_{J}\frac{\partial x^{j}}{\partial x^{*i}}$ , (2.1)

the derivatives being evaluated at $A$ .
Let $p$ be the l-form in $cT(M)$ whose components relative to $\pi^{-1}(U)$ are

$(p_{1}$ , $\cdot$ .. , $p_{n},$ $0$ , $\cdot$ .. , $0)$ . By (2.1), the components of $p$ relative to $\pi^{-1}(U^{*})$ are
$(p_{1}*, \cdots , p_{n}^{*}, 0, \cdots , 0)$ . In fact we can write

$p=p_{i}dx^{i}=p_{i}^{*}dx^{*i}$

We call $p$ the basic l-form in $cT(M)$ .
The exterior derivative $dp$ of $p$ is the 2-form given by

$dp=dp_{i}\wedge dx^{i}$

in $\pi^{-1}(U)$ . Hence, if $dp=\frac{1}{2}\epsilon_{CB}dx^{C}\wedge dx^{B}$ , (where $dx^{\overline{i}}=dp_{i}$), we have

$(\epsilon_{CB})=\left(\begin{array}{ll}0 & I\\-I & 0\end{array}\right)$ (2.2)

where $I$ is the unit $n\times n$ matrix.

Since the matrix $(\epsilon_{CB})$ in (2.2) is non-singular, it has an inverse. Denoting

this by $(\epsilon^{B}$“$)$ , so that
$\epsilon_{CB}\epsilon^{BA}=\delta_{c}^{A}$ ,
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we have

$(\epsilon^{BA})=\left(\begin{array}{ll}0 & -I\\I & 0\end{array}\right)$ . (2.3)

We shall write $\epsilon^{-1}$ for the tensor field of type $(2, 0)$ whose components in
$\pi^{-1}(U)$ are $\epsilon^{BA}$ . This tensor field is of importance in our construction of com-
plete lifts.

\S 3. The vertical lift of a function.

If $f$ is a function in $\lrcorner lf$, we write $f^{V}$ for the function in $cT(M)$ obtained
by forming the composition of $\pi$ and $f$, so that

$ f^{V}=f\circ\pi$ .
Thus if $(A, p)\in\pi^{-1}(U)$ , then

$f^{V}(A, p)=(f\circ\pi)(A, p)=f(A)$ . (3.1)

Thus the value of $f^{V}$ is constant along each fibre, being equal to the

value of $f$ at the point on the fibre in the base space. We call $f^{V}$ the vertical

lift of the function $f$.

\S 4. The vertical lift of a vector field.

If $X\in\Phi_{0}(M)$ (so that $X$ is a vector field in $M$ ) we write $X^{V}$ for the func-

tion in $cT(M)$ defined by
$X^{V}(A, p)=p(X_{A})$ (4.1)

where $X_{A}$ is the vector obtained by evaluating $X$ at $A$ . Thus if $X^{h}$ are the

components of $X$ in $U$ at the point $A$ , then $X^{V}$ is the mapping $(A, p)\rightarrow p_{i}x^{i}$ .
We call $X^{V}$ the vertical lift of the vector field $X$. We have $X^{\gamma c}\in\Phi_{0}(T(M))$ ,

since $X^{V}$ is by definition a function in $cT(M)$ .
We observe that if $P\in M$, then $X^{V}(P)=0$ .

\S 5. The determination of vector fields in ${}^{C}T(M)$ .
Suppose that $\tilde{X}\in\Phi_{0}(cT(M))$ . Then $\tilde{X}$ is completely determined by its ac-

tion on functions of class $C^{\infty}$ in $cT(M)$ . In \S 4 we introduced a special type

of function in $cT(M)$ , namely the vertical lift of a vector field in $M$ . We
now show that any element $\tilde{X}$ of $9_{0}^{\vee}1(cT(M))$ is completely determined by its

action on functions of this type.

PROPOSITION 1. Let $\tilde{X}$ and $\tilde{Y}$ be vector fields in $cT(M)$ such that

$\tilde{X}Z^{V}=\tilde{Y}Z^{V}$

for all $Z\in\Phi_{0}(M)$ . Then $\tilde{X}=\tilde{Y}$.
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PROOF. It is sufficient to show that if $\tilde{X}Z^{V}=0$ for all $Z\in\sigma_{0}^{1}(M)$ , then $\tilde{X}$

is zero.
If $Z$ is the vector field with components $Z^{h}$ in $U$, then

$\tilde{X}Z^{V}=\tilde{X}^{i}\partial_{i}(p_{a}Z^{a})+\tilde{X}^{\overline{i}}\partial_{\overline{i}}(p_{a}Z^{a})$ ,

where $\tilde{X}^{A}$ are the components of $\tilde{X}$. Hence, if $\tilde{X}Z^{V}=0$ for all $Z\in 9_{0}(M)$ , we
have

$p_{a}\tilde{X}^{i}\partial_{i}Z^{a}+\tilde{X}^{\overline{i}}Z^{i}=0$ (5.1)

for all $Z$.
Choose $Z$ to be the vector field given in $U$ by $Z^{i}=\delta_{j}^{i}$ . Then from (5.1)

we get

$\tilde{X}^{\overline{j}}=0$ . (5.2)

Hence (5.1) becomes
$p_{a}\tilde{X}^{i}\partial_{i}Z^{a}=0$ (5.3)

for all Z.

Let $i,$ $j$ be fixed integers such that $1\leqq i\leqq n$ and $1\leqq j\leqq n$ . Choose $Z$ to

be the vector field given in $U$ by

$Z^{j}=x^{i},$ $Z^{a}=0(a\neq j)$ .
Then from (5.3) we get

$p_{j}\tilde{x}^{i}=0$ .
It follows that we have

$\tilde{X}^{i}=0$

at all points of $cT(M)$ except possibly those at which all the components
$p_{1},$ $\cdots$ , $p_{n}$ are zero: that is, at points of the base space. However, the com-
ponents of $\tilde{X}$ are continuous (since they are of class $C^{\infty}$) and so $\tilde{X}^{i}$ is also

zero at points of the base space.
Hence $\tilde{X}^{i}=0$ for all points of $\pi^{-1}(U)$ . This holds for each $i$ satisfying

$1\leqq i\leqq n$ . Therefore, using (5.2), $\tilde{X}$ is the zero vector in $\pi^{-1}(U)$ . From this

it quickly follows that $\tilde{X}=0$ in $cT(M)$ .

\S 6. Vertical vectors.

Let $\tilde{X}\in 9^{\tau_{0}}(cT(M))$ be such that $\tilde{X}f^{V}=0$ for all $f\in Z_{0}^{0}(M)$ . Then we say
that $\tilde{X}$ is a vertical vector field. It is easily shown that $\tilde{X}$ is vertical if and
only if its components in $\pi^{-1}(U)$ satisfy

$\tilde{X}^{i}=0$ $(i=1,2, n)$ .

In \S 7 and \S 8 we introduce two types of vertical vector fields in $CT(M)$ ,

constructed respectively from l-forms and from tensor fields of type $(1, 1)$

in $M$ .



Vertical and complete lifts 95

\S 7. The vertical lift of a 1-form.

Suppose that $\omega\in\varphi_{1}(M)$ , so that $\omega$ is a l-form in $M$ . Let $A$ be a point

of $M$ and let $U,$ $U^{*}$ be coordinate neighbourhoods containing $A$ . If ru has

components $\omega_{i}$ and $\omega_{i}^{*}$ relative to $U$ and $U^{*}$ respectively, then

$\omega_{i}^{*}=\omega_{j}\frac{\partial x^{j}}{\partial x^{*i}}$ , (7.1)

where the derivatives are evaluated at $A$ .
Equations (2.1) and (7.1) show that the vector which has components

$(0$, $\cdot$ .. , $0,$
$t0_{1}$ , $\cdot$ .. , $\omega_{n})$ relative to $\pi^{-1}(U)$ at a point $(A, p)$ on the fibre over $A$ has

components $(0, \cdots , 0, \omega_{1}^{*}, \cdots , \omega_{n}^{*})$ relative to $\pi^{-1}(U^{*})$ . We call the vector field
determined by the vectors which have these components the vertical lift $\omega^{V}$

of $\omega$ . Thus $\omega^{V}\in 9_{0}^{\triangleleft c}(T(M))$ .
Clearly

$\omega^{V}(f^{V})=0$ (7.2)

so that $\omega^{V}$ is a vertical vector.
By Proposition 1, $\omega^{V}$ is completely determined by its action on functions

in $cT(M)$ of the form $Z^{V}$ . Since

$\omega_{i}\frac{\partial}{\partial p_{i}}(p_{j}Z^{j})=\omega_{j}Z^{j}$ ,

we have
$\omega^{V}(Z^{V})=\{\omega(Z)\}^{V}$ . (7.3)

If $\omega,$
$\tau\in\varphi_{1}(M)$ and $f\in X_{0}^{0}(M)$ , it is easily proved that

$(\omega+\tau)^{V}=\omega^{V}+\tau^{V}$ , (7.4)

$(f\omega)^{V}=f^{V}\omega^{V}$ . (7.5)

\S 8. The vertical lift of a tensor field of type $(1, 1)$ .
Suppose now that $F\in x_{1}^{1}(M)$ . If $F$ has components $F_{i^{h}}$ and $F_{i}^{*h}$ relative

to $U$ and $U^{*}$ respectively, then

$p_{a}^{*}F_{i}^{*a}=p_{b}F_{j}^{b}\frac{\partial x^{j}}{\partial x^{*i}}$ . (8.1)

Hence, using (2.1) and (8.1), the vector which has components ($0,$ $\cdots$ , $0,$ $p_{a}F_{1}$’,

... , $p_{a}F_{n^{a}}$) relative to $\pi^{-1}(U)$ has components $(0, \cdot.. , 0, p_{a}^{*}F_{1}^{*a}, \cdot.. , p_{a}^{*}F_{n}^{*a})$ rela-

tive to $\pi^{-1}(U^{*})$ . We call the vector field determined by the vectors which

have these components the vertical lift $F^{V}$ of $F$.
The vector field $F^{V}$ is unlike the vertical lift $\omega^{V}$ of a l-form in that the

components of $F^{V}$ are not the same at all points of the same fibre. In fact
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$F^{V}$ is zero at points on the base space $M$. Clearly

$F^{V}(f^{V})=0$ , (8.2)

so that $F^{V}$ is vertical.
By Proposition 1, $F^{V}$ is completely determined by its action on functions

in $cT(M)$ of the form $Z^{V}$ . We have

$F^{V}(Z^{V})=(F(Z))^{V}$ . (8.3)

If $F,$ $G\in 9^{4_{1}}(M)$ , then

$(F+G)^{V}=F^{V}+G^{V}$ (8.4)

and if $f\in \mathfrak{U}_{0}(M)$ , then

$(fF)^{V}=f^{V}F^{V}$ . (8.5)

\S 9. The complete lift of a vector field.

In \S 7 and \S 8 we constructed vector fields in $cT(M)$ from l-forms and

tensors of type $(1, 1)$ , in $M$. Constructions such as these can be carried out

for other types of tensor field in $M$, but they have the disadvantage of chang-

ing the type of the tensor fields under consideration in going from $M$ to

$CT(M)$ . Thus there seems to be no obvious way in which such a construction
lifts a vector field in $M$ to a vector field in $cT(M)$ . However, we now des-

cribe a different process by which we can lift vector fields. Subsequently

we shall apply similar methods to tensor fields of type $(1, 1)$ and skew-sym-

metric tensor fields of type $(1, 2)$ , in each case obtaining tensor fields of the

same type. In our construction we use the tensor $\epsilon^{-1}$ introduced in \S 2.
Suppose that XE $\Phi_{0}(M)$ . Let $A$ be a point of $M$ and let $U$ be a coordi-

nate neighbourhood containing $A$ . We have already defined the vertical lift
$X^{V}$ of $X$ to be a function in $cT(M)$ . The exterior derivative $dX^{V}$ is the 1-
form in $cT(M)$ given in $\pi^{-1}(U)$ by

$dX^{V}=p_{a}\frac{\partial X^{a}}{\partial x^{b}}dx^{b}+X^{a}dp_{a}$ .

We define a vector field $X^{C}$ in $cT(M)$ by $X^{c}=(dX^{V})\epsilon^{-1}$ . In $\pi^{-1}(U)$ , the com-
ponents of $X^{c}$ are

( $X^{1},$ $X^{2},$ $X^{n},$ $-p_{a}\frac{\partial X^{a}}{\partial x^{1}}$ , $\cdot$ .. , $-p_{a}\frac{\partial X^{a}}{\partial x^{n}}$).

We call $X^{C}$ the complete lift of the vector field $X$. We have

$X^{c}f^{V}=(Xf)^{V}$ (9.1)

and

$X^{c}Z^{V}=[X, Z]^{V}$ . (9.2)
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By Proposition 1, $X^{c}$ is completely determined by (9.2). If $X$ and $Y\in Z_{0}^{1}(M)$ ,

then
$(X+Y)^{C}=X^{c}+Y^{c}$ . (9.3)

\S 10. Projectable vectors.

The vector field $X^{c}$ is completely determined by its first $n$ components

and in particular $X^{c}$ is zero if these components are zero. An alternative
way of expressing this is to say that $X^{c}$ is zero if it is vertical.

If $\tilde{X}\in\sigma_{0}^{1}(cT(M))$ and if there exists $X\in g_{0}1(M)$ such that $\tilde{X}-X^{c}$ is vertical
then we shall say that $\tilde{X}$ is projectable, with projection $X$. A necessary and

sufficient condition for $\tilde{X}$ to be projectable with projection $X$ is that the com-
ponents $\tilde{X}^{A}$ of $\tilde{X}$ at a point $(A, p)$ in $\pi^{-1}(U)$ are related to the components
$X^{h}$ of $X$ at $A$ by

$\tilde{X}^{h}=X^{h}$ $(h=1, n)$ .

Thus the components $\tilde{X}^{h}$ are constant along any fibre.

We observe that the complete lift $X^{C}$ of any $X\in 9^{1_{0}}(M)$ is projectable

with projection $X$, for $X^{c}-X^{G}$ is trivially vertical.

\S 11. The tangent space of ${}^{c}T(M)$ .
If $\Phi$ denotes the algebra of functions of class $C^{\infty}$ in $CT(M)$ and $X$ denotes

the $\Phi$ -module of vector fields in $cT(M)$ , then a tensor field in $cT(M)$ of type
$(0, r)$ (respectively (1, $r)$), where $r$ is a positive integer, can be regarded as an
r-linear mapping of $X^{r}$ into $\Phi$ (respectively $X$), where $X^{r}$ is the Cartesian
product of $r$ copies of $x$ . (See [2], p. 26.)

The following result, which should be compared with Proposition 1, is
used frequently in the sequel.

PROPOSITION 2. Let $\hat{S},\tilde{T}$ be tensor fields in $cT(M)$ of type $(0, r)$ or (1, r)

such that
$\hat{S}(\tilde{X}_{(1)}, \tilde{X}_{(\gamma)})=\tilde{T}(\tilde{X}_{(1)}, \tilde{X}_{(r)})$

for all vector fields $\tilde{X}_{(s)}$ ($s=1,$ $\cdots$ , r) which are complete lifts of vector fields in

M. Then
$\tilde{S}=\tilde{T}$ .

PROOF. We shall consider the case of tensor fields of type $(1, 2)$ . It is
easily seen that the argument extends without difficulty to the other cases.
Moreover (in the general case) it is suMcient to show that if

$\tilde{S}(\tilde{X}_{(1)}, \tilde{X}_{(r)})=0$

for all vector fields $\tilde{X}_{\iota s)}$ ($s=1,$ $\cdots$ , r) which are complete lifts of vector fields
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in $M$, then $\hat{S}=0$ .
Let $U$ be a coordinate neighbourhood in $M$ and let $\pi^{-1}(U)$ be the induced

neighbourhood in $cT(M)$ . Let $\hat{S}\in\Phi_{2}(cT(M))$ be such that

$\tilde{S}(X^{C}, Y^{c})=0$

for all $X,$ $Y\in 9^{n_{0}}(M)$ . Suppose that $X,$ $Y$ have components $X^{h},$ $Y^{h}$ respectively

in $U$. Then the components of $\hat{S}$ satisfy

$\hat{S}_{ih^{A}}X^{i}Y^{h}-\hat{S}_{\overline{i}h^{A}}(p_{a}\partial_{i}X^{a})Y^{h}-\tilde{S}_{i\overline{h}^{A}}X^{i}(p_{a}\partial_{h}Y^{a})$

$+\hat{S}_{\overline{ih}^{A}}(p_{a}\partial_{i}X^{a})(p_{b}\partial_{h}Y^{b})=0$ . (11.1)

Choose $X,$ $Y$ to be the vector fields given in $U$ by $X^{i}=\delta_{k}^{i}$ and $Y^{h}=\delta_{j}^{h}$ .
Then from (11.1) we get

$\hat{S}_{kj^{A}}=0$ . (11.2)

Next choose $X,$ $Y$ to be given by

$X^{i}=\delta_{b}^{?}x^{k}$, $Y^{h}=\delta_{j}^{h}$ ,

where $b,$ $k$ are fixed. Then, from (11.1) and (11.2) we get

$\hat{s}_{\overline{k}j^{A}}p_{b}=0$ .
Hence

$|\hat{S}_{\overline{k}j^{A}}=0$ (11.3)

at all points of $cT(M)$ except possibly those at which all the components
$p_{1},$ $p_{n}$ are zero: that is, at points of the base space. However the com-
ponents of $\hat{S}$ are continuous; hence we have equations (11.3) at all points of

$cT(M)$ .
Similarly we can show that

$\tilde{S}_{kj^{-A}}=0$ . (11.4)

Finally, by choosing $X,$ $Y$ to be given by

$X^{i}=\delta_{b}^{i}x^{k}$, $Y^{h}=\delta_{a}^{h}x^{j}$

and using (11.1) in conjunction with (11.2), (11.3) and (11.4), we can show by

a similar argument that
$\tilde{S}_{\overline{kj}^{A}}=0$ . (11.5)

From (11.2), (11.3), (11.4) and (11.5) it follows that $\hat{S}$ is zero in $\pi^{-1}(U)$ .
Hence $\hat{S}$ is the zero tensor field.

\S 12. The vertical lift of a tensor field of type $(1, 2)$ .
Suppose that SE $9^{1_{2}}(M)$ and that $S$ has components $S_{ji}^{h}$ at a point $A$ in

a coordinate neigbourhood $U$. At the point $(A, p)$ in $\pi^{-1}(U)$ , we can define a
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tensor $\tilde{P}$ of type $(0,2)$ with components given by

$\tilde{P}_{ji}=p_{a}S_{ji^{a}},\tilde{P}_{\overline{j}i}=0$ ,

$\tilde{P}_{j\overline{i}}=0$ , $\tilde{P}_{j\overline{i}}=0$ .

The tensor $\epsilon^{-1}$ introduced in \S 2 is of type $(2, 0)$ ; hence we can define a tensor

of type (1, l) by transvecting with $\epsilon^{-1}$ . We write $S^{V}$ for the tensor field

whose components $\tilde{S}_{B^{A}}$ in $\pi^{-1}(U)$ are given by

$\hat{S}_{B^{A}}=\tilde{P}_{BC}\epsilon^{CA}$ .

Thus

$(\hat{S}_{B^{A}})=\left(\begin{array}{ll}0 & 0\\Q & 0\end{array}\right)$ , (12.1)

where $Q$ is the matrix $(p_{a}S_{ji^{a}})$ .
We call $S^{V}$ the vertical lift of the tensor field $S$ . If $\omega\in\emptyset_{\iota}(M)$ , then

$S^{V}(\omega^{V})=0$ ( $ 12.2\rangle$

and if $Z\in\Phi_{0}(M)$ , then
$S^{V}(Z^{C})=(S_{Z})^{V}$ , (12.3)

where $S_{Z}$ is the tensor field of type $(1\backslash ’ 1)$ in $M$ defined by

$S_{Z}(X)=S(Z, X)$ .

By Proposition 2, $S^{V}$ is completely determined by (12.3). Since any verticaI

vector at any point is linearly dependent on vectors of the form $\omega^{V}$ , it fol-

lows from (12.2) that
$S^{V}(\tilde{Y})=0$ (12.4)

for all vertical vector fields $\tilde{Y}$.

\S 13. Identities involving vertical and complete lifts.

In this section we establish various identities concerning vertical and

complete lifts, particularly involving Lie products. These are required for
subsequent calculations.

PROPOSITION 3. If $\tilde{X},\tilde{Y}$ are vertical vectors in $CT(M)$ , then their Lie pro-
duct [X, $\tilde{Y}$] is also vertical.

PROOF. If $f\in\Phi_{0}(M)$ , then
$\tilde{X}f^{V}=0=\tilde{Y}f^{V}$ .

Hence $[\tilde{X},\tilde{Y}]f^{V}=\tilde{X}(\tilde{Y}(f^{V}))-\tilde{Y}(\tilde{X}(f^{V}))=0$ .
PROPOSITION 4. If $\psi,$ $\omega\in\Phi_{1}(M)$ , then

$[\psi^{V}, \omega^{V}]=0$ .

PROOF. If $Z\in 9^{1_{0}}(M)$ , then
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$[\psi^{V}, \omega^{V}]Z^{V}=\psi^{V}(\omega^{V}(Z^{V}))-\omega^{V}(\psi^{V}(Z^{v}))$

$=\psi^{V}(\omega(Z))^{V}-\omega^{V}(\psi(Z))^{V}$

by (7.3). Since $\omega(Z),$ $\psi(Z)\in f_{0}^{0}(M)$ and $\psi^{V},$
$\omega^{V}$ are vertical, we get

$[\psi^{V}, \omega^{V}]Z^{V}=0$ .
Hence, by Proposition 1, $[\psi^{V}, \omega^{V}]=0$ .

PROPOSINION 5. If $\omega\in g_{1}^{0}(M)$ and $F\in\Phi_{1}(M)$ , then

$[\omega^{V}, F^{V}]=\{\omega F\}^{V}$

where $\omega F$ is the l-form defined by $(\omega F)(X)=\omega(FX)$ .
PROOF. If $Z\in\Phi_{0}(M)$ , then

$[\omega^{V}, F^{V}]Z^{V}=\omega^{V}(F^{V}(Z^{V}))-F^{V}(\omega^{V}(Z^{V}))$

$=\omega^{V}(F(Z))^{V}=\{\omega(F(Z))\}^{V}$

by (8.3), (7.3) and (8.2). But also

$\{\omega F\}^{V}Z^{V}=\{(\omega F)Z\}^{V}=\{\omega(F(Z))\}^{V}$

so that the actions of $[\omega^{V}, F^{V}]$ and $\{\omega F\}^{V}$ on $Z^{V}$ coincide. Thus, from Pro-

position 1, we have
$[\omega^{V}, F^{V}]=\{\omega F\}^{V}$ .

PROPOSITION 6. If $F,$ $G\in 9^{\triangleleft_{1}}(M)_{f}$ then

$[F^{V}, G^{V}]=(FG-GF)^{V}$ .

PROOF. If $Z\in\sigma_{0}^{1}(M)$ , then, by (8.3) and (8.4),

$[F^{V}, G^{V}]Z^{V}=F^{V}(G^{V}(Z^{V}))-G^{V}(F^{V}(Z^{V}))$

$=F^{V}(G(Z))^{V}-G^{V}(F(Z))^{V}$

$=\{F(G(Z))-G(F(Z))\}^{V}$

$=(FG-GF)^{V}Z^{V}$ .
The required result now follows from Proposition 1.

PROPOSITION 7. If $\omega=9_{1}^{\phi}(M)$ and XE $X_{0}^{1}(M)$ , then

$[X^{c}, \omega^{V}]=(J_{X}\omega)^{V}$ .

PROOF. If $Z\in g_{0}^{n}(M)$ , then, by (7.3), (9.2), (7.2) and (9.1)

$[X^{c}, \omega^{V}]Z^{V}=X^{C}(\omega^{V}(Z^{V}))-\omega^{V}(X^{C}(Z^{V}))$

$=X^{c}(\omega(Z))^{V}-\omega^{V}[X, Z]^{V}$

$=(X(\omega(Z)))^{V}-(\omega([X, Z]))^{V}$

$=\{(X_{X}\omega)(Z)\}^{V}$
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(see [2], p. 32). Hence
$[X^{c}, \omega^{V}]Z^{V}=(X_{X}\omega)^{V}Z^{V}$

so that, by Proposition 1, $[X^{C}, \omega^{V}]=(X_{X}\omega)^{V}$ .
PROPOSITION 8. If XE $9^{q_{0}}(M)$ and $F\in 9^{\triangleleft_{1}}(M)$ , then

[X $cF^{V}$] $=(X_{X}F)^{V}$ .

PROOF. If $Z\in\Phi_{0}(M)$ , then

$[X^{c}, F^{V}]Z^{V}=X^{C}(F(Z))^{V}-F^{V}[X, Z]^{V}$

$=[X, F(Z)]^{V}-\{F[X, Z]\}^{V}$

$=((X_{X}F)Z)^{V}$

$=(X_{X}F)^{V}Z^{V}$

(see [2], p. 32).

PROPOSITION 9. If $X,$ $Y\in Z_{0}^{1}(M)$ , then

$[X^{C}, Y^{C}]=[X, Y]^{C}$ .

PROOF. If $Z\in 9^{\triangleleft_{0}}(M)$ , then, by (9.2),

$[X^{C}, Y^{C}]Z^{V}=X^{C}[Y, Z]^{V}-Y^{C}[X, Z]^{V}$

$=[X, [Y, Z]]^{V}-[Y, [X, Z]]^{V}$

$=[[X, Y],$ $Z]^{V}$

by the Jacobi identity. Hence

$[X^{c}, Y^{C}]Z^{V}=[X, Y]^{C}Z^{V}$ .

PROPOSITION 10. If $S$ , TE $Z_{2}^{1}(M)$ and $F\in 9_{1}^{\triangleleft}(M)$ , then

S $VT^{V}=0$

$S^{V}F^{V}=0$ .

PROOF. By definition, $S^{V},$ $T^{V}\in 9^{\triangleleft_{1}c}(T(M))$ . Hence $S^{V}T^{V}$ is also a tensor

of type $(1, 1)$ . If $Z\in 9_{0}^{q}(M)$ , then, by (12.3) and (12.4),

$S^{V}T^{V}(Z^{C})=S^{V}(T^{V}(Z^{C}))=S^{V}(T_{Z})^{V}=0$ .
Hence, by Proposition 2, $S^{V}T^{V}=0$ .

Also $F^{V}$ is a vertical vector field in $cT(M)$ and so, by (12.4), $S^{V}F^{V}=0$ .

\S 14. The complete lift of a tensor field of type $(1, 1)$ .
Suppose now that $F\in\Phi_{1}(M)$ and that $F$ has components $F_{i^{h}}$ at a point $A$

in a coordinate neighbourhood $U$. At the point $(A, p)$ in $\pi^{-1}(U)$ , we can de-
fine a l-form $\sigma$ by
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$\sigma_{i}=p_{a}F_{t^{a}}$ , $\sigma_{\overline{i}}=0$ .
Thus

$\sigma=p_{a}F_{b}^{a}dx^{b}$ .

The exterior derivative of $\sigma$ is given by

$d\sigma=p_{a}\frac{\partial F_{b}^{a}}{\partial x^{c}}dx^{c}\wedge dx^{b}+F_{b}^{a}dp_{a}\wedge dx^{b}$

so that if we write

$d\sigma=\frac{1}{2}\tau_{CB}dx^{c}\wedge dx^{B}$ ,

where $\tau$ is skew-symmetric, (as before $x^{\overline{i}}$ means $p_{i}$) we have

$\tau_{ji}=p_{a}(\frac{\partial F_{i}^{a}\partial F_{j}^{a}}{\partial x^{j}\partial x^{i}})$ ,

$\tau_{\overline{j}i}=F_{t^{f}}$ ,

$\tau_{j\overline{i}}=-F_{j^{i}}$ ,

$\tau_{\overline{ji}}=0$ .

We write $F^{c}$ for the tensor field of type $(1, 1)$ in $cT(M)$ whose components
$\tilde{F}_{B^{A}}$ in $\pi^{-1}(U)$ are given by

$F_{B^{A}}=\tau_{BC}\epsilon^{CA}$ .
Thus

$\tilde{F}_{i}^{h}=F_{i}^{h}$, $\tilde{F}_{i}^{-h}=0$

$\tilde{F}_{i^{\overline{h}}}=p_{a}(\frac{\partial F_{h}^{a}}{\partial x^{i}}-\frac{\partial F_{i}^{a}}{\partial x^{h}}),\tilde{F}_{\overline{i}}^{\overline{h}}=F_{h}^{i}$ . (14.1)

We call $F^{c}$ the complete lift of the tensor field $F$ . If $\omega\in g_{1}^{0}(M)$ , we have

$F^{c}(\omega^{V})=(\omega F)^{V}$ . (14.2)

If $Z\in 9_{0}^{4}(M)$ , we have
$F^{C}(Z^{C})=(FZ)^{C}+(\rightarrow C_{Z}F)^{V}$ . (14.3)

By Proposition 2, $F^{c}$ is completely determined by (14.3).

The action of $F^{c}$ on vertical vectors is completely determined by (14.2).

If $G\in g_{1}^{1}(M)$ , then $G^{V}$ is a vertical vector in $cT(M)$ and

$F^{C}(G^{V})=(GF)^{V}$ . (14.4)

If $\tilde{H}\in\sigma_{1}^{1}(cT(M))$ and
$\tilde{H}(\omega^{V})=(\omega F)^{V}$

for all $\omega\in P_{1}(M)$ and some $F\in\Phi_{1}(M)$ , we shall say that $\tilde{H}$ is projectable with
projection $F$ . In particular, $F^{c}$ is projectable with projection $F$ .

PROPOSITION 11. If $F\in X_{1}^{1}(M)$ and $S\in\Phi_{2}(\lrcorner lI)$ , then



Vertical and complete lifts 103

$F^{c}S^{V}=(SF)^{V}$ ,

where $SF\in\Phi_{2}(M)$ is defined by

$(SF)(X, Y)=S(X, FY)$ .

PROOF. If $Z\in g_{0}1(M)$ , then, by (12.3) and (14.4),

$(F^{C}S^{V})Z^{C}=F^{C}(S^{V}Z^{c})$

$=F^{c}(S_{Z})^{V}$

$=(S_{z}F)^{V}$ .
But

$(SF)^{V}Z^{C}=\{(SF)_{Z}\}^{V}$

and, since

$\{(SF)_{Z}\}(Y)=(SF)(Z, Y)=S(Z, FY)=(S_{Z}F)(Y)$

for all YE $q_{0}1(M)$ , it follows that

$\{(SF)_{Z}\}^{V}=(S_{Z}F)^{V}$ .

The required result now follows from Proposition 2.
PROPOSITION 12. If $F\in 9^{n_{1}}(M)$ and $S\in 9^{1_{2}}(M)$ , then

$S^{V}F^{C}=(SF)^{V}$

if and only if
$S(Z, FY)=S(FZ, Y)$

for all $Z,$ $Y\in\Phi_{0}(M)$ .
PROOF. Suppose that $Z\in Z_{0}^{1}(M)$ . Then, by (14.3), Proposition 10 and

(12.3),

$(S^{V}F^{c})Z^{c}=S^{V}\{(FZ)^{C}+(t_{z}F)^{V}\}$

$=S^{V}(FZ)^{C}$

$=(S_{FZ})^{V}$ .
But, by (12.3),

$(SF)^{V}Z^{c}=\{(SF)_{Z}\}^{V}$ .

Now $S_{FZ}=(SF)_{Z}$ if and only if for all $Y\in\sigma_{0}^{1}(M)$ we have

$S_{FZ}Y=(SF)_{Z}Y$ :

that is, if and only if

$S(FZ, Y)=S(Z, FY)$ .

Since $(S_{FZ})^{V}=(SF)_{Z}^{V}$ if and only if $S_{FZ}=(SF)_{Z}$ , the required result follows at

once.
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\S 15. The complete lift of a skew-symmetric tensor field of type $(1, 2)$ .
Suppose now that $S$ is a skew-symmetric tensor of type $(1, 2)$ in $M$ and

that $S$ has components $S_{ji}^{h}$ at a point $A$ in a coordinate neighbourhood $U$.
At the point $(A, p)$ in $\pi^{-1}(U)$ , we can define a 2-form $\sigma$ by

$\sigma_{ji}=p_{a}S_{ji^{a}}$, $\sigma_{j^{-}i}=0$ ,

$\sigma_{j\dot{\tau}}-=0$ , $\sigma_{ji}-=0$ .
Thus

$\sigma=_{2}^{1}--p_{a}S_{ji^{a}}dx^{j}\Lambda dx^{i}$ .

The exterior derivative $ d\sigma$ of $\sigma$ is a 3-form given by

$d\sigma=\frac{1}{2}p_{a}\frac{\partial S_{Jt^{a}}}{\partial x^{k}}dx^{k}\wedge dx^{j}\wedge dx^{i}+\frac{1}{2}S_{ji^{a}}dp_{a}\wedge dx^{j}\wedge dx^{i}$ .

Hence, if we write

$d\sigma=\frac{1}{6}\tau_{DCB}dx^{D}\wedge dx^{C}\wedge dx^{B}$

where $\tau$ is skew-symmetric in all pairs of suffixes and $x^{i^{-}}$ means $p_{i}$ , we have

$\tau_{jih}=p_{a}(\frac{\partial S_{ih}^{a}}{\partial x^{j}}+\frac{\partial S_{h}}{\partial x}t\underline{J^{a}}+\frac{\partial S_{ji}^{a}}{\partial x^{h}})$ ,

$\tau_{\overline{j}ih}=S_{ih^{j}}$ , $\tau_{j\overline{i}h}=S_{hj}^{i}$ , $\tau_{ji\overline{h}}=S_{ji}^{h}$ ,

$\tau_{\overline{j}\overline{i}B}=0=\tau_{\overline{j}B\overline{h}}=\tau_{Bi^{-}\overline{h}}$ .

We write $S^{c}$ for the tensor field of type $(1, 2)$ in $cT(M)$ whose components
$\hat{S}_{CB^{A}}$ in $\pi^{-1}(U)$ are given by

$\hat{S}_{CB^{A}}=-\tau_{CBB}\epsilon^{BA}$ .
Thus

$\hat{S}_{ji}^{h}=S_{jt^{h}}$ , $\hat{S}_{j\overline{i}^{\hslash}}=\hat{S}_{\overline{j}i}^{h}=\tilde{S}_{\overline{j}\overline{i}}^{h}=0$ ,

$\hat{S}_{ji}^{\overline{h}}=-p_{a}(\frac{\partial S_{ih}^{a}}{\partial x^{j}}+\frac{\partial S_{hJ^{a}}}{\partial x^{i}}+\frac{\partial S_{ji^{a}}}{\partial x^{h}})$ ,

$\tilde{S}_{j_{\dot{b}}^{-\overline{h}}}=S_{jh}^{i}$, $\tilde{S}_{ji^{\overline{h}}}=S_{hi^{j}}$ , $S_{\overline{J}^{f^{-}}}^{\overline{h}}=0$ .

We call $S^{\sigma}$ the complete lift of the tensor field $S$ . If $\psi,$ $\omega\in R_{1}(M)$ and
$Y,$ $Z\in\sigma_{0}^{1}(M)$ , we have

$S^{c}(\psi^{V}, \omega^{V})=0$ , (15.1)

$S^{C}(\omega^{V}, Z^{c})=-(\omega S_{Z})^{V}$ , (15.2)

$S^{C}(Y^{C}, Z^{c})=(S(Y, Z))^{C}+\{(X_{Z}S)_{Y}-(X_{Y}S)_{Z}-S_{[Y.Z]}\}^{V}$ (15.3)

where $(X_{Z}S)_{Y}\in g_{1}1(M)$ is given by
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$(X_{Z}S)_{Y}(X)=(X_{Z}S)(Y, X)$

and $S_{[Y.Z]}\in\Phi_{1}(M)$ is given by

$S_{[YZ]}(X)=S([Y, Z], X)$ .
From Proposition 2 it follows that $S^{c}$ is completely determined by (15.3).

\S 16. Theorems on structures in the cotangent bundle.

We now apply our constructions of lifts of tensor fields to obtain theo-
rems concerning the existence of certain types of structure in $cT(M)$ . In our
arguments, the torsion of two tensors of type $(1, 1)$ plays an important part.

If $F,$ $G\in\Phi_{1}(M)$ , the torsion $N_{FG}$ of $F,$ $G$ is the tensor field of type $(1, 2)$ de-

fined by

$2N_{F.G}(X, Y)=[FX, GY]+[GX, FY]+FG[X, Y]+GF[X, Y]$

$-F[X, GY]-F[GX, Y]-G[X, FY]-G[FX, Y]$ (16.1)

where $X,$ $Y\in\Phi_{0}(M)$ . (See [2], p. 37; we have introduced a factor $\frac{1}{2}$ for

convenience.) It is easily seen that

$N_{F.\theta}=N_{\theta F}$

and that $N_{F.G}$ is skew-symmetric. If we put $F=G$, we obtain the Nijenhuis

tensor of $F$, given by

$N_{F.F}(X, Y)=[FX, FY]+F^{2}[X, Y]-F[X, FY]-F[FX, Y]$ . (16.2)

We shall abbreviate $N_{F.G}$ to $N$ whenever it is clear which tensor fields
$F,$ $G$ are involved.

If $F\in 9^{1_{1}}(M)$ and $F^{2}=-I$, where $I$ is the Kronecker tensor field (that is,

the tensor field with components $\delta_{i}^{h}$), then $F$ is an almost complex structure

on $M$. It is well-known that $F$ is integrable (that is, $F$ is obtainable from a
complex structure on $M$) if and only if $N_{F.F}=0$ .

If FE $9^{4_{1}}(M)$ and $F^{s}+F=0$, then $F$ is called an f-structure on M. (See [10],

[11].)

PROPOSITION 13. If $F$ is an almost complex structure on $M$ and $N=N_{F.F}$,

then
$N^{V}F^{C}=(NF)^{V}$ ,

$(NF)^{V}F^{C}=-N^{V}$ .
PROOF. By Proposition $1\backslash 2$ , it is sufficient to show that

$N(Z, FY)=N(FZ, Y)$

and
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$-N(Z, Y)=N(FZ, FY)$

for all $Z,$ $Y\in f_{0}^{1}(M)$ . This is a matter of direct verification, using $F^{2}=-I$.
Our next result establishes a connection between the complete lifts of two

tensor fields $F,$ $G\in 9^{t_{1}}(M)$ and the torsion of $F$ and $G$ .
PROPOSITION 14. If $F,$ $G\in 9_{1}^{n}(M)$ , then

$F^{C}G^{C}+G^{C}F^{C}=(FG+GF)^{C}+(2N)^{V}$

where $N=N_{F,G}$ .
PROOF. Suppose that $X\in 9^{\triangleleft_{0}}(M)$ . By (14.3) and (14.4)

$F^{C}G^{C}X^{C}=F^{C}((GX)^{C}+(X_{X}G)^{V})$

$=(FGX)^{C}+(X_{GX}F)^{V}+\{(.C_{X}G)F\}^{V}$

$=(FG)^{C}X^{C}-\{t_{X}(FG)\}^{V}+(X_{GX}F)^{V}+\{(t_{X}G)F\}^{V}$ . (16.3)

Hence
$(F^{C}G^{C}+G^{C}F^{C})X^{C}=(FG+GF)^{C}X^{C}+Q^{V}$ (16.4)

where $Q\in 9_{1}^{q}(M)$ is given by

$Q=X_{GX}F+(X_{X}G)F-X_{X}(FG)+1i_{FX}G+(X_{X}F)G-.C_{X}(GF)$ .

By a well-known formula for Lie derivatives ([2], p. 32) we have

$QY=[GX, FY]-F[GX, Y]+[X, GFY]-G[X, FY]$

$-[X, FGY]+FG[X, Y]+[FX, GY]-G[FX, Y]$

$+^{\ulcorner}\llcorner X,$ $FGY$ ]$-F[X, GY]-[X, GFY]+GF[X, Y]$

for any $Y\in\sigma_{0}^{1}(M)$ , from which it follows that

$QY=2N(X, Y)$ .
By (12.3),

N $VX^{c}=(N_{X})^{V}$ .
But

$2N_{X}(Y)=2N(X, Y)=QY$

so that

2$N_{X}=Q$ .
Hence

$Q^{V}=2N^{V}X^{c}$

so that, by (16.4), the actions of $F^{C}G^{c}+G^{c}F^{C}$ and $(FG+GF)^{C}+2N^{V}$ on $X^{c}$ are
the same.

The required result now follows from Proposition 2.
PROPOSITION 15. If $F\in 9_{I}^{4}(M)$ , then

$(F^{c})^{2}=(F^{2})^{C}+(N_{F,F})^{V}$ . (16.5)
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This is an immediate corollary of Proposition 14.
PROPOSITION 16. If $F\in 9^{q_{1}}(M)$ , then

$(F^{C})^{3}=(F^{3})^{C}+(2T-FN)^{V}$ (16.6)

where $T$ is the torsion of $F$ and $F^{2}$ , and $N$ is the Nijenhuis tensor of $F$ .

PROOF. By Propositions 15 and 11,

$(F^{c})^{3}=F^{c}(F^{2})^{C}+F^{C}N^{v}$

$=F^{C}(F^{2})^{C}+(NF)^{V}$ . (16.7)

By (16.3),

$F^{c}(F^{2})^{C}X^{c}=(F^{3})^{C}X^{c}+\{(X_{X}F^{2})F+(X_{F^{2}X}F)--C_{X}F^{3}\}^{V}$

so that, using (16.7) and (12.3)

$(F^{C})^{3}X^{C}=(F^{3})^{C}X^{C}+R^{V}$ (16.8)

where
$R=(t_{X}F^{2})F+\rightarrow C_{F2X}F-t_{X}F^{3}+(NF)_{X}$ .

We have

R $Y=[X, F^{3}Y]-F^{2}[X, FY]+[F^{2}X, FY]-F[F^{2}X, Y]$

$-[X, F^{3}Y]+F^{3}[X, Y]+[FX, F^{2}Y]+F^{2}[X, FY]$

$-F[X, F^{2}Y]-F[FX, FY]$

$=[FX, F^{2}Y]+[F^{2}X, FY]+2F^{3}[X, Y]$

$-F[X, F^{2}Y]-F[F^{2}X, Y]-F^{2}[X, FY]-F^{2}[FX, Y]$

$-F[FX, FY]-F^{3}[X, Y]+F^{2}[X, FY]+F^{2}[FX, Y]$

$=2T(X, Y)-FN(X, Y)$

$=2T_{X}(Y)-(FN)_{X}(Y)$ for any $Y\in 9_{0}^{\triangleleft}(M)$ .

Hence, by (16.8) and (12.3)

$(F^{C})^{3}X^{c}=(F^{3})^{C}X^{C}+(2T_{X}-(FN)_{X})^{V}$

$=(F^{3})^{C}X^{C}+(2T-FN)^{V}X^{c}$ .

This proves Proposition 16.
PROPOSITION 17. If $F,$ $G\in\Phi_{1}(M)$ and $\tilde{N}$ is the torsion of $F^{c}$ and $G^{c}$, then

$\tilde{N}=N^{c}$

where $N$ is the torsion of $F$ and $G$ .
This result can be proved (using Proposition 2) by means of a straight-

forward but somewhat lengthy computation.

We come now to our main theorems.
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THEOREM 1. Let $F$ be an almost complex structure on M. Then the com-
plete lift $F^{c}$ is an almost complex structure on $cT(M)$ if and only if $F$ is inte-
grable.

PROOF. Since $F$ is an almost complex structure, we have $F^{2}=-I$. Hence,

by Proposition 15,

$(F^{C})^{2}=(-I)^{C}+N^{V}$

where $N$ is the Nijenhuis tensor of $F$ . Since the complete lift of $I$ in $M$ is

the Kronecker tensor field $ I\sim$ in $cT(M)$ , we have $(F^{c})^{2}=-I\sim$ if and only if

$N^{V}=0$ . Since $N^{V}=0$ is equivalent to $N=0$ it follows that $F^{C}$ is an almost

complex structure in $cT(M)$ if and only if $N=0$ .
THEOREM 2. If $F$ is an integrable almost complex structure on $M$, then

the complete lift $F^{c}$ is an integrable almost complex structure on $CT(M)$ .
PROOF. By Theorem 1, $F^{C}$ is an almost complex structure. Since $F$ is

integrable, the Nijenhuis tensor of $F$ is zero. Hence, by Proposition 17, the

Nijenhuis tensor of $F^{c}$ is also zero.
THEOREM 3. Let $F$ be an almost complex structure on $M$, with $N$ the

Nijenhuis tensor of F. Then

$F^{C}+\frac{1}{2}(NF)^{V}$

is an almost complex structure on $CT(M)$ .
This theorem is due to Sat\^o [8].

PROOF. Using Proposition 10, we have

$\{F^{c}+\frac{1}{2}(NF)^{V}\}^{2}=(F^{C})^{2}+\frac{1}{2}F^{C}(NF)^{V}+\frac{1}{2}(NF)^{V}F^{C}$

$=(F^{c})^{2}+\frac{1}{2}(NF^{2})^{V}+\frac{1}{2}(NF^{2})^{V}$

by Propositions 11 and 13. Since $F^{2}=-I$, we get, using Proposition 15,

$\{F^{c}+\frac{1}{2}(NF)^{V}\}^{2}=(F^{C})^{2}-N^{V}=(F^{2})^{C}=-I\sim$ .

THEOREM 4. The almost complex structure $F^{C}+\frac{1}{2}(NF)^{V}$ on $cT(M)$ (see

Theorem 3) is integrable if and only if $F$ is integrable.

PROOF. If $F$ is integrable, then $N=0$ and so $F^{c}+\frac{1}{2}(NF)^{V}=F^{C}$ ; by

Theorem 2, $F^{c}$ is also integrable.

Suppose conversely that $F^{c}+\frac{1}{2}(NF)^{V}$ is integrable. Then the Nijenhuis

tensor of $F^{c}+\frac{1}{2}(NF)^{V}$ in $cT(M)$ is zero. By a direct if somewhat lengthy

computation (which makes use of the propositions proved in \S 13) we can
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show that the Nijenhuis tensor $\tilde{N}$ of $F^{C}+\frac{1}{2}(NF)^{V}$ satisfies

$\tilde{N}(X^{\sigma}, Y^{c})=\{N(X, Y)\}^{C}+P^{V}$

where $P$ is the tensor field of type $(1, 1)$ in $M$ given by

$2P(Z)=N(Y, [X, Z])-N(X, [Y, Z])+N(X, F[FY, Z])$

$-N(Y, F[FX, Z])+N([FY, X], FZ)-N([FX, Y], FZ)$

$+[Y, N(X, Z)]-[X, N(Y, Z)]+F[FY, N(X, Z)]$

$-F[FX, N(Y, Z)]+\frac{1}{2}N(Y, N(X, Z))-\frac{1}{2}N(X, N(Y, Z))$ .

Since $\tilde{N}$ is zero, we get

$\{N(X, Y)\}^{C}+P^{V}=0$ .

But this shows that the vector $\{N(X, Y)\}^{C}$ is vertical; since the complete lift

of a non-zero vector cannot be vertical, it follows that $N(X, Y)=0$ . This

holds for all $X,$ $Y\in\Phi_{0}(M)$ and so $N=0$ . Hence $F$ is integrable.

It is of some interest to note that the expression for $2P(Z)$ is not linear

in $X$ and $Y$. If we write $Q(X, Y, Z)$ for $P(Z)$ , we find that

$Q(fX, gY, Z)=fgQ(X, Y, Z)+(f(Zg)+g(Zf))N(X, Y)$ .

THEOREM 5. Let $F$ be an f-structure on M. Let $N$ be the Nijenhuis tensor

of $F$ and let $T$ be the torsion of $F$ and $F^{2}$ . Then $F^{c}$ is an f-structure on $M$

if and only if
$2T=FN$ ,

or, equivalently,

$N(X, FY)+N(FX, Y)+FN(X, Y)=0$ (16.9)

for all $X,$ $Y\in 9^{1_{0}}(M)$ .
PROOF. Since $F^{3}+F=0$ , it follows from Proposition 16 that

$(F^{C})^{8}+F^{C}=(F^{3})^{C}+F^{C}+(2T-FN)^{V}=(2T-FN)^{V}$ .

Hence $F^{c}$ is an $f$-structure if and only if $(2T-FN)^{V}=0$ , which is equivalent

to $2T=FN$ .
To prove the last part, we simply verify that

$N(X, FY)+N(FX, Y)+FN(X, Y)=(2T-FN)(X, Y)$

for all $X$ and $Y$.
THEOREM 6. Let $F$ be an f-structure on $M$, let $N$ be the Nijenhuis tensor

of $F$ and let $T$ be the torsion of $F$ and $F^{2}$ . Then

$F^{C}+\{(FN-2T)(I+\frac{3}{2}F^{2})\}^{V}$
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is an f-structure on $cT(M)$ .
PROOF. Write

$P=(FN-2T)(I+\frac{3}{2}F^{2})$ . (16.10)

If $X\in 9_{0}^{\eta}(M)$ , then

$(F^{C}+P^{V})X^{C}=(FX)^{C}+(\rightarrow C_{X}F)^{V}+(P_{X})^{V}$

by (12.3) and (14.3). Hence, by Proposition 10

$(F^{C}+P^{V})^{2}X^{C}=(F^{C})^{2}X^{C}+F^{C}P_{X^{V}}+P^{V}(FX)^{C}$

$=(F^{C})^{2}X^{c}+(P_{X}F)^{V}+(P_{FX})^{V}$

and similarly

$(F^{c}+P^{V})^{3}X^{C}=(F^{C})^{3}X^{C}+(P_{X}F^{2})^{V}+(P_{FX}F)^{V}+(P_{F^{2}X})^{V}$ .

Hence, by Proposition 16,

$(F^{C}+P^{V})^{3}X^{C}=(F^{3})^{C}X^{c}+(2T-FN)_{X^{V}}+(P_{X}F^{2})^{V}+(P_{FX}F)^{V}+(P_{F^{2}X})^{V}$ .

Since $F^{3}=-F$ . it follows that

$(F^{C}+P^{V})^{3}X^{C}=-(F^{C}+P^{V})X^{c}$

for all $X$ if and only if

$P_{X}+P_{X}F^{2}+P_{FX}F+P_{F^{2}X}=(FN-2T)_{X}$

for all $X$ . This condition is equivalent to

$P(X, Y)+P(X, F^{2}Y)+P(FX, FY)+P(F^{2}X, Y)$

$=FN(X, Y)-2T(X, Y)$ (16.11)

for all $X,$ $Y\in\Phi_{0}(M)$ . With $P$ defined by (16.10), a straightforward verification
can be used to prove that (16.11) is satisfied. Hence $(F^{C}+P^{V})^{3}X^{C}+(F^{C}+P^{\gamma})X^{C}$

$=0$ , so that (using Proposition 2 once more) we have

$(F^{c}+P^{V})^{3}+(F^{c}+P^{V})=0$ .

\S 17. The Riemann extension and the complete lift of a symmetric affine

connection in $M$.
Let $\nabla$ be a symmetric affine connection in $M$. Let $A$ be a point of $M$ and

let $U,$ $U^{*}$ be coordinate neighbourhoods containing $A$ . We write $\Gamma_{ji}^{h}$ and $\Gamma_{jl}^{*h}$

for the components of $\nabla$ relative to $U$ and $U^{*}$ respectively. Then the tensor
field of type $(0,2)$ in $cT(M)$ whose components $\tilde{g}_{CB}$ in $\pi^{-1}(U)$ are given by

$\tilde{g}_{ji}=-2p_{a}\Gamma_{ji\prime}^{a}$

$\tilde{g}_{\overline{j}i}=\delta_{i}^{j}=\tilde{g}_{t\overline{j}}$ , (17.1)

$\tilde{g}_{\overline{j}\overline{i}}=0$
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has components $\tilde{g}_{CB}^{*}$ in $\pi^{-1}(U^{*})$ given by

$\tilde{g}_{ji}^{*}=-2p_{a}^{*}\Gamma_{ji}^{*a}$ ,

$\tilde{g}_{\overline{j}i}^{*}=\delta_{i}^{j}=\tilde{g}_{ij}^{*_{-}}$ ,

$\tilde{g}_{\overline{j}i}^{*}-=0$ .

We call this tensor field the Riemann extension of the connection $\nabla$ and

denote it by $\nabla^{R}$ (see [4], [5], [6]). We have

$\nabla^{R}(\psi^{V}, \omega^{V})=0$

$\nabla^{R}(X^{c}, \omega^{V})=(\omega(X))^{V}$

$\nabla^{R}(X^{c}, Y^{c})=-(\nabla_{X}Y+\nabla_{Y}X)^{V}$ .

By Proposition 2, the tensor field $\nabla^{R}$ is completely determined by the last

of these three conditions.

Let $\nabla^{c}$ be the Levi-Civita connection determined by $\nabla^{R}$ . We call $\nabla^{G}$ the

complete lift of $\nabla$ . The components $\tilde{\Gamma}_{CB}^{A}$ of $\nabla^{c}$ in $\pi^{-1}(U)$ are given by

$\tilde{\Gamma}_{ji}^{h}=\Gamma_{ji}^{h}$ , $\tilde{\Gamma}_{j\overline{i}}^{h}=0=\tilde{\Gamma}_{i}\frac{h}{j}=\tilde{\Gamma}_{\overline{j}^{-}}^{h_{\dot{t}}}$ ,

$\tilde{\Gamma}_{ji}^{\overline{h}}=p_{a}(\partial_{h}\Gamma_{ji}^{a}-\partial_{j}\Gamma_{ih}^{a}-\partial_{i}\Gamma_{jh}^{a}+2\Gamma_{hb}^{a}\Gamma_{ji}^{b})$ , (17.3)

$\tilde{\Gamma}_{j\overline{i}}^{\overline{h}}=-\Gamma_{jh}^{i}$ , $\tilde{\Gamma}_{i}\overline{\frac{h}{j}}=-\Gamma_{h}^{j_{i}}$ , $\tilde{\Gamma}_{\overline{j}i}^{\overline{h}}-=0$ .

PROPOSITION 18. Covariant differentiation with respect to the connection
$\nabla^{c}$ in $cT(M)$ satisfies the following properties:

$\nabla_{\psi}^{c_{V\omega^{V}=0}}$ , $\nabla_{X}^{c}c\omega^{V}=(\nabla_{X}\omega)^{V}$ ,

$\nabla_{\psi}^{c_{rF^{V}}}=(\psi F)^{V}$, $\nabla_{X}^{c_{cF^{V}}}=(\nabla x^{F-(\nabla^{X})F)^{V}}$
’

$\nabla_{\psi}^{c_{V}}Y^{G}=-(\psi(\nabla Y))^{V}$ ,

$\nabla_{X^{1}}^{(}cY^{O}=(\nabla_{X}Y)^{C}+\{(\nabla^{X})(\nabla^{Y)+(\nabla^{Y)(\nabla^{X)-K_{X}Y-K_{Y}X}}}\}^{V}$

where $\psi,$ $\omega\in \mathfrak{U}_{1}(M),$ $X,$ $Y\in 9^{q_{0}}(M),$ $F\in 9^{\triangleleft_{1}}(M),$ $K$ is the curvature tensor of $\nabla$

and $K_{X}\in\sigma_{2}^{1}(M)$ is given by

$(K_{X}Y)(Z)=K(X, Z)Y$ .

PROOF. These formulae can be obtained directly from formulae (17.3).

An alternative expression for $\nabla^{c}XcY^{c}$ is

$(\nabla_{X}^{Y)^{C}+\{\nabla(\nabla_{X}^{Y+\nabla_{Y}^{X)-(\nabla_{X}\nabla^{Y+\nabla_{Y}\nabla^{X)\}^{V}}}}}}$ .

This can be proved from Proposition 18 by using the identity

$\nabla\nabla_{X}]^{\gamma}-\nabla_{X}\nabla^{Y=(\nabla^{Y)(\nabla X)-K_{X}Y}}$ .

PROPOSITION 19. Let $K$ be the curvature tensor of $\nabla^{c}$. Then if $\phi,$ $\varphi^{f},$ $\omega$
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$\in \mathfrak{U}_{1}(M)$ and $X,$ $Y,$ $Z\in ff_{0}^{1}(M)$ , we have

$K(\phi^{V}, \psi^{\gamma})\omega^{V}=0$ , $K(\phi^{V}, \psi^{V})Z^{C}=0$ ,

$K(X^{C}, \psi^{V})\omega^{V}=0$ , $K(X^{c}, \psi^{V})Z^{c}=+(\psi K_{Z}X)^{V}$

$K(X^{c}, Y^{C})\omega^{V}=-(\omega(K(X, Y)))^{V}$

$K(X^{c}, Y^{c})Z^{c}=(K(X, Y)Z)^{C}$

$+\{\nabla(K(X, Y)z)-(\nabla^{K)_{(X,2)}Y+(\nabla^{K)_{(YZ)}X+(\nabla^{Z})K(X}}., Y)\}^{V}$

where

$(\nabla^{K})_{(X.Z)}(U)=(\nabla^{K})(U, X, Z)$ .

These formulae follow from the formulae for $\nabla^{c}$ given in Proposition 18.
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