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Abstract 23 

Lichens are widespread symbioses and play important roles in many terrestrial ecosystems. The 24 

genetic structure of lichens is the result of the association between fungal and algal populations 25 

constituting the lichen thallus. Using eight fungus- and seven alga-specific highly variable 26 

microsatellite markers on within-population spatial genetic data from 62 replicate populations across 27 

Europe, North America, Asia and Africa, we investigated the contributions of vertical and horizontal 28 

transmission of the photobiont to the genetic structure of the epiphytic lichen Lobaria pulmonaria. 29 

Based on pairwise comparisons of multi-locus genotypes defined separately for the mycobiont and 30 

for the photobiont, we inferred the transmission mode of the photobiont and the relative contribution 31 

of somatic mutation and recombination. After constraining the analysis of one symbiont to pairs of 32 

individuals with genetically identical symbiotic partners, we found that 77 % of fungal and 70 % of 33 

algal pairs were represented by clones. Thus, the predominant dispersal mode was by means of 34 

symbiotic vegetative propagules (vertical transmission), which dispersed fungal and algal clones co-35 

dependently over a short distance, thus shaping the spatial genetic structure up to distances of 20 m. 36 

Evidence for somatic mutation generating genetic diversity was found in both symbionts, accounting 37 

for 30 % of pairwise comparisons in the alga and 15 % in the fungus. While the alga did not show 38 

statistically significant evidence of recombination, recombination accounted for 7.7 % of fungal 39 

pairs with identical algae. This implies that, even in a mostly vegetatively reproducing species, 40 

horizontal transmission plays a role in shaping the symbiotic association, as shown in many coral 41 

and other symbioses in nature. 42 

 43 

Introduction 44 
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Lichens are symbiotic organisms composed of a fungal partner (mycobiont) and a population of 45 

algae and/or cyanobacteria (photobiont). Mycobionts express their symbiotic phenotype only in 46 

association with compatible photosynthetic partners, and the tight morphological integration and 47 

physiological dependence of the symbionts result in a distinct lichen body called thallus (Ahmadjian 48 

1993). In lichens, the mechanism for symbiotic contact and thallus formation in nature is only 49 

partially understood. Reproduction and dispersal of lichens is a complex process since both partners 50 

have to be present for the successful development of a new lichen thallus (Honegger 1998, 2008; 51 

Dobson 2003). A vast majority of lichens have a sexual and asexual life cycle. In the sexual life 52 

cycle, fungal spores are released from specialized structures on the thallus (ascomata). Upon 53 

germination, fungal spores must obtain a compatible algal or cyanobacterial partner, which may be 54 

free-living (Etges & Ott 2001; Sanders & Lücking 2002; Sanders 2005; Handa et al. 2007; Hedenås 55 

et al. 2007; Macedo et al. 2009) or obtained through capture from another lichen (Friedl 1987; Ott 56 

1987a,b; Stenroos 1990; Rambold & Triebel 1992; Ott et al. 1995; Gaßmann & Ott 2000; Lücking 57 

& Grube 2002). In the vegetative life cycle, mycobiont and photobiont are simultaneously dispersed 58 

within specialized asexual propagules (e.g., corticated protuberances called isidia or non-corticated 59 

clumps called soredia) or through thallus fragmentation.  60 

The genetic structure of a lichen population will be strongly influenced by the manner in 61 

which photobionts are dispersed and transmitted to the fungus (Hill 2009). Vertical (or co-62 

dependent) transmission occurs when the photobiont disperses as part of the vegetative propagule of 63 

the lichen, thus presumably representing the predominant process in exclusively or nearly 64 

exclusively asexual lichen species (Werth & Sork 2010). The vegetative propagules produce 65 

physically separate but genetically identical thalli, i.e., thalli with fungal and algal components 66 
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genetically identical to the mother thallus (Paulsrud et al. 1998; Doering & Piercey-Normore 2009). 67 

On the other hand, horizontal (or independent) transmission usually occurs when the fungus 68 

reproduces sexually. The sexual life cycle is considered to reshuffle the genetic composition of the 69 

lichen, generating new combinations of fungal and algal genotypes (i.e., genetically different thalli). 70 

Horizontal transmission may also depend on the dispersal ability of the photobiont. The ability of 71 

green-algal photobionts to move is very restricted, as they usually do not disperse (either sexually or 72 

asexually) while embedded in the lichen thallus (Sluiman et al. 1989; Nash 1996). However, many 73 

green-algal photobionts can occur in free-living populations on soil, rocks, or tree stems (Mukhtar et 74 

al. 1994; Beck et al. 1998; Friedl & Büdel 2008), and viable photobiont cells are found in fecal 75 

pellets of lichenivorous snails (Meier et al. 2002; Boch et al. 2011). Moreover, horizontal 76 

transmission of algae has been shown in asexual (e.g., Nelsen & Gargas 2008, 2009) or nearly 77 

asexual (Piercey-Normore 2006; Wornik & Grube 2010) lichen species. 78 

 Studies on the mode of transmission of lichen photobionts in natural populations remain 79 

scarce. In particular, the genetic composition of a lichen thallus (i.e., its individual mycobiont and 80 

photobiont genotypes) and its fine-scale spatial distribution has never been reliably assessed at the 81 

within population scale due to the lack of appropriate genetic markers. Marker resolution becomes in 82 

fact critical when studying highly clonal organisms such as lichens, for which multilocus genotypes 83 

are the only way to identify genetically distinct individuals (Arnaud-Haond et al. 2007). 84 

 This work aims to assess the relative contribution of vertical vs. horizontal transmission to 85 

the intra-population genetic structure of the mycobiont and of the photobiont of a mainly vegetative 86 

lichen species. The model species is the epiphytic lichen L. pulmonaria, which is widespread in the 87 

Northern Hemisphere (Yoshimura 1971). Recently, microsatellite markers have been developed for 88 
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its haploid eukaryotic symbionts (mycobiont: Walser et al. 2003; Widmer et al. 2010; this study; 89 

green algal photobiont: Dal Grande et al. 2010). The high mutation rate of microsatellite loci gives 90 

them a far greater resolving power than previous, sequence-based studies performed on lichen 91 

populations (e.g., Beck et al. 2002; Lohtander et al. 2003; Printzen et al. 2003; Printzen & Ekman 92 

2003; Yahr et al. 2004; Lindblom & Ekman 2005, 2007; Selkoe & Toonen 2006; Doering & 93 

Piercey-Normore 2009; Lättmann et al. 2009; Werth & Sork 2010). Lobaria pulmonaria is highly 94 

selective towards its green algal photobiont, i.e., it is associated with the coccoid green alga 95 

Dictyochloropsis reticulata (Tschermak-Woess ) Tschermak-Woess throughout its entire 96 

distribution range (Dal Grande 2011). 97 

 Earlier studies suggested that the predominant dispersal mode in L. pulmonaria is by means 98 

of vegetative propagules (Zoller et al. 1999; Walser 2004; Wagner et al. 2005, 2006; Werth et al. 99 

2006a,b, 2007), and showed its mycobiont populations to be highly clonal, suggesting a 100 

predominance of vertical transmission of the photobiont. However, the mycobiont of L. pulmonaria 101 

can undertake sexual reproduction, hence the photobiont also needs to be transmitted horizontally. 102 

While no evidence of free-living photobiont populations has been found to date (Tschermak-Woess 103 

1978; Dal Grande 2011), the presence of zoospores (motile flagellate asexual cells) indicates that the 104 

photobiont has the potential to move locally (i.e., on the same tree) once released from the thallus 105 

(Richardson 1999; Friedl & Büdel 2008). 106 

 The availability of symbionts may impose limits on the distribution of the other partner, 107 

particularly in cases where the association is obligate (Andras et al. 2011). Werth et al. (2007) 108 

demonstrated for the mycobiont of L. pulmonaria that gene flow is spatially restricted, resulting in 109 

spatial aggregation of fungal clones. Based on the notion that spatial processes, such as reproduction 110 
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followed by dispersal, leave a characteristic spatial signature (Seabloom et al. 2005; Wagner & 111 

Fortin 2005), analysis of spatial genetic structure may be used to identify the underlying processes. 112 

In particular, vertical transmission of the photobiont is expected to result in short-distance spatial 113 

aggregation of fungal and algal clones, while horizontal transmission due to mycobiont sexual 114 

reproduction will decouple photobiont-mycobiont pairs at larger distances (Werth & Sork 2010).  115 

 This paper addresses the following questions: (a) what is the relative contribution of vertical 116 

vs. horizontal transmission of the photobiont to the genetic structure of the lichen populations? (b) 117 

What is the relative contribution of the micro-evolutionary processes of mutation and recombination 118 

to the current fungal and algal intra-population genetic diversity?  (c) Are there differences in the 119 

within-population spatial genetic structure between mycobiont and photobiont?   120 

 To address these questions, we introduce an approach that takes advantage of the 121 

microsatellite markers for both the fungal and algal partners. This method allows for the reliable 122 

identification of clonal thalli (i.e., thalli with identical multilocus genotypes for the fungus and the 123 

alga, respectively). Under the assumption that pairs of thalli with identical multilocus genotypes 124 

both for the fungus (MLGF) and for the alga (MLGA) within a population result from the vegetative 125 

co-dispersal of fungal and algal clones, we can infer within-population evolutionary processes (such 126 

as mutation and recombination) by restricting analysis for one symbiont to pairs of thalli with 127 

identical MLG in the other symbiont. While statistical inference of (spatial) genetic structure within 128 

populations is often limited by a lack of independent replicate populations, we illustrate our 129 

approach with a data set of 62 range-wide populations that allows robust statistical analysis.  130 

 This research assesses the way photobionts are transmitted in a predominantly asexual taxon 131 

and provides insights into the contribution of the micro-evolutionary processes of mutation and 132 
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recombination to the genetic structure of lichen populations. 133 

 134 

Materials and Methods 135 

Sample collection and molecular genetic analysis 136 

The goal of our design was to detect the intra-population genetic structure of the fungal and algal 137 

symbionts of L. pulmonaria among adjacent trees. This design would not detect either the extent of 138 

the overall genetic clustering on the same tree or the extent of gene flow among populations. In total, 139 

2229 thalli of L. pulmonaria were sampled from 62 populations across Europe, North America, Asia 140 

and Africa (Table S1, Supporting Information). The median distance between a population and the 141 

nearest neighbor sampled population was 115 km, and all but nine populations were at least 25 km 142 

from their nearest neighbor population. For the purpose of our analyses, a population was defined as 143 

a stand of trees colonized by L. pulmonaria. Across each population, 1 – 3 thalli were randomly 144 

taken from an average of 23 nearest neighbor trees (i.e., proceeding from a sampled tree to its 145 

nearest unsampled neighbor tree). The maximum distance among the sampled trees within each 146 

population typically was < 1500 m except for three populations, with a median maximum distance 147 

of 274 m and a minimum of 16 m. Thalli collected on a single tree were separated by about 50 cm 148 

and positioned on different sides of the trunk. This sampling design allows for the investigation of 149 

microsatellite variation within a population of L. pulmonaria (Walser et al. 2003; Wagner et al. 150 

2005). On average 31 thalli were collected per population, which has been found to be an 151 

appropriate number to resolve within-population mycobiont and photobiont genetic structure (Werth 152 

2010).  153 

 Eight fungus-specific (LPu03, LPu09, LPu15, LPu23, LPu24, LPu25, LPu28, Walser et al. 154 
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2003; Widmer et al. 2010; MS4, this study) and seven alga-specific microsatellite markers (LPh1 to 155 

LPh7; Dal Grande et al. 2010) were amplified from total lichen DNA. For primer sequences, 156 

including redesigned primers for LPu25, labeling and PCR conditions see Table S2 (Supporting 157 

Information). Fragment lengths were determined on a 3730 DNA Analyzer (Applied Biosystems, 158 

Foster City, CA), and electropherograms were analyzed with GENEMAPPER 3.7 (Applied 159 

Biosystems, Foster City, CA) using LIZ-500 as internal size standard. Multilocus genotypes were 160 

defined separately for the fungus (MLGF, based on eight loci) and for the alga (MLGA, based on 161 

seven loci).  162 

  163 

Statistical analyses 164 

Data sets 165 

 Recurrent MLGs could either be the result of vegetative reproduction or chance products of 166 

sexual reproduction (Arnaud-Haond et al. 2007). Therefore, recurrent MLGs were only interpreted 167 

as clones if they were unlikely to result from sexual reproduction given the observe allele 168 

frequencies in a population. We calculated for each population the probability of observing two 169 

sexually produced fungal or algal individuals identical at all eight or seven microsatellite loci, 170 

respectively. This method, implemented in the software GENCLONE v2.0 (Arnaud-Haond & 171 

Belkhir 2006), is based on the round-robin method proposed by Parks & Werth (1993), which allows 172 

for each MLG an estimate of the probability of obtaining the observed number of recurrent MLGs in 173 

the data set by sexual reproduction under random mating (Psex). The method thus takes into account 174 

relative levels of polymorphism (Supplementary Material, Table S4). We used the Psex to assess the 175 

likelihood that identical MLGs were of sexual origin. The significance of Psex was tested at α = 0.05 176 
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with 1000 simulations. When significant (i.e., Psex<0.05), we considered recurrent MLGs as true 177 

clones. Recurrent MLGs with Psex ≥ 0.05 were excluded from analyses (Arnaud-Haond et al. 2007). 178 

To analyze the genetic diversity of the fungal and algal symbionts, each pair of thalli of L. 179 

pulmonaria was analyzed for the number of microsatellite loci at which they differed in the fungal 180 

genotype MLGF (“deltaF”) and in the algal genotype MLGA (“deltaA”) (see Fig. 1 for a graphic 181 

representation). All analyses were restricted to pairwise comparisons of thalli within populations. 182 

Three subsets A, B and C of the data were used for analysis as defined in Table 1.  183 

Pairwise comparisons within populations are not independent, hence statistical tests cannot 184 

rely on parametric tests and true replication requires independent data from multiple study sites. To 185 

allow for robust statistical estimation, we pooled data over all 62 populations and derived bootstrap 186 

estimates of standard errors in R (R Development Core Team 2008) by leaving out one population at 187 

a time. 188 

 189 

Relative contribution of vertical vs. horizontal photobiont transmission 190 

Pairs of thalli were scored as resulting from co-dependent dispersal of the symbionts (vertical 191 

photobiont transmission) if they had identical MLGs of both the fungus and the alga, i.e., 192 

deltaA=deltaF=0. We assessed the relative contribution of vertical photobiont transmission to 193 

population genetic structure by the proportion of pairs of thalli with identical MLGs for both 194 

symbionts among the pairs of thalli in data set B.  We derived a bootstrap estimate of this proportion 195 

by omitting one population at a time. 196 

 Since the sexual life cycle is considered to be the main factor responsible for the independent 197 

dispersal of the symbionts (horizontal photobiont transmission), creating new genotypic 198 
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combinations of fungi and algae, we further analyzed pairs of thalli with different MLGs for the 199 

fungus and/or the alga. We modeled the contribution of somatic mutation and recombination to the 200 

observed differences at the microsatellite loci as follows (see Fig. 2): 201 

  (i) Empirical null-model of recombination (Fig. 2, top). Recombination may result in pairs of 202 

thalli with any number of differing loci. We derived an empirical null model of the distribution of 203 

the expected number of loci difference (deltaA or deltaF) based on observed allele frequencies 204 

within each population. We permuted repeat lengths for each microsatellite marker among the thalli 205 

sampled from the same population (data set A), separately for the alga and for the fungus. We thus 206 

simulated thalli with new MLGs based on the observed allele frequencies within each population 207 

under the assumption of random mating within populations, taking into account observed levels of 208 

marker polymorphism and clonality in each population. We repeated the simulation 100 times and 209 

evaluated for each run the frequency distribution of number of loci differing between each pair of 210 

simulated thalli from the same population (deltaA, deltaF). We pooled the simulated frequencies 211 

across the 62 populations for each simulation run and then averaged over all 100 simulation runs. 212 

All calculations were performed in R (R Development Core Team 2008). Simulated probabilities for 213 

obtaining identical MLGs by recombination were 3.4 * 10-4 for deltaF=0 and 6.4 * 10-4  for 214 

deltaA=0 (not shown in Fig. 2). 215 

 (ii) Negative exponential distribution model accounting for somatic mutation (Fig. 2, center). 216 

Mutations are assumed to occur independently for each locus and for each symbiont. Hence, over 217 

many generations and in an otherwise only vegetatively reproducing population, mutation will first 218 

lead to difference in a single locus, a subsequent mutation to difference in one additional locus, and 219 

so on, following a negative exponential model defined by parameter lambda.  220 
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 (iii) Model fitting to the fungal and algal data (Fig. 2, bottom). To assess to what degree the 221 

observed non-clonal pattern in a symbiont was the result of mutation versus recombination, the 222 

parameter lambda of an exponential function was fitted to data set C using the function ‘nls’ in R (R 223 

Development Core Team 2008) and accounting for the null model of recombination. This resulted in 224 

estimates for lambda of 0.55 for the fungus and 0.77 for the alga. We then performed a linear 225 

regression of the frequency distribution of the number of differing loci as a function of the 226 

exponential model (representing mutation) with the fitted parameter lambda and the null model of 227 

recombination, with no intercept, and assessed model fit, statistical significance of regression 228 

coefficients, and the relative contribution of the exponential model and the empirical null model of 229 

recombination to the frequency of pairs per number of differing loci. For each level of deltaA or 230 

deltaF, we assessed the proportional contribution by each component model to the fitted value (e.g., 231 

if 100 pairs were predicted, 37 may be predicted by the exponential model and 63 by the empirical 232 

null model of recombination). We multiplied these proportions by the observed frequency of each 233 

level of deltaA or deltaF in data set C to estimate the ratio of mutation vs. recombination among the 234 

non-clonal component. Bootstrap mean and standard error of this ratio were determined by leaving 235 

out one population at a time. 236 

 Assuming an average microsatellite mutation rate of 10-3, the expected probability of 237 

observing at least one mutation in the alga (with 7 independent loci) is 0.0068, the expected 238 

probability of observing at least one mutation in the fungus (with 8 independent loci) is 0.0077. The 239 

expected probability of mutation occurring in both symbionts independently at the same time is (6.8 240 

* 10-3) * (7.7 * 10-3) = 5.2 * 10-5. The probability that both symbionts show a somatic mutation was 241 

thus expected to be less than 1% of the probability for somatic mutation in either symbiont and 242 
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considered negligible. 243 

   244 

Spatial genetic structure 245 

To assess spatial genetic structure within populations, we determined for data set A the probability 246 

of sampling a pair of thalli from the same population belonging to one of the following categories as 247 

a function of their distance in space: (i) clonal thalli (deltaF=deltaA=0), (ii) fungal clones associated 248 

with different algal MLGs (deltaF=0 and deltaA>0), (iii) algal clones associated with different 249 

fungal MLGs (deltaF>0 and deltaA=0) and (iv) different fungal MLGs associated with different 250 

algal MLGs (deltaF>0 and deltaA>0). The first distance class contained pairs of thalli sampled from 251 

the same tree. Distance class boundaries were defined on a logarithmic scale, with the last distance 252 

class containing all pairwise comparisons at distances >500 m.  253 

 254 

Results 255 

After exclusion of recurrent MLGs that were not assessed as true clones (Psex values >0.05, 209 256 

thalli), had incomplete genotype assessment (55 thalli) or missing spatial coordinates (5 thalli), the 257 

data set consisted of 1960 thalli. We found 1051 MLGs for the haploid fungus and 1025 MLGs for 258 

the haploid alga, with a total of 1256 MLGs based on all 15 markers from both symbionts (Table S1, 259 

Supporting Information: numbers of different MLGs per population; Table S4, Supporting 260 

Information: allele frequency distribution per population at eight fungal and seven algal loci). 261 

Multiple fungal or algal genotypes within the same thallus were not found in any of the populations. 262 

 Our analyses were based on 36,218 pairwise comparisons within populations pooled over 62 263 

populations (Table 1). The relative frequency distribution of the number of loci differences (deltaA, 264 
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deltaF; calculated over all pairs within populations (data set A) was similar for both symbionts, with 265 

the highest frequency of thalli differing by four loci each for the fungus and for the alga (Fig. 3A). In 266 

both symbionts, we found a high frequency of identical pairs of thalli (2977 pairs with deltaA=0; 267 

3285 pairs with deltaF=0; Fig. 3A).  268 

 269 

Vertical transmission of the photobiont 270 

2294 pairs had identical MLGs both for the alga and the fungus (deltaA=deltaF=0). When the 271 

analysis was restricted per symbiont to those pairs of thalli displaying an identical MLG in the other 272 

symbiont (data set B), both the alga and the fungus displayed a high degree of clonality, with 273 

deltaA=0 and deltaF=0 as the predominant classes (Fig. 3B). The proportion of clonal comparisons 274 

was higher for the fungus (77.06 % ±0.72 %) than for the alga (69.85 % ±0.60 %).   275 

 276 

Identifying micro-evolutionary processes of mutation and recombination  277 

After the exclusion of recurrent genotypes within each population and constraining by clonality in 278 

the other symbiont (deltaF=0 for algal MLGs and vice versa, data set C), we found 215 algal and 279 

269 fungal pairs of MLGs that differed from each other in at least one locus (Table 1, Fig. 3C). For 280 

both symbionts, the largest proportion of these pairs differed at only one locus (deltaA or deltaF=1). 281 

The alga showed a strongly skewed distribution of the number of loci differences as expected under 282 

a negative exponential model resulting from mutation (Fig. 3C, left). In the fungus, the distribution 283 

was bimodal, suggesting the presence of an additional process (Fig. 3C, right).  284 

 In fungal sexual reproduction, each ascoma (i.e., reproductive structure of the fungus) may 285 

either form meiotic fungal spores with the same MLGs or spores with different MLGs. Both spore 286 
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types may form new associations with either the same or a different algal MLG. The empirical null 287 

models of recombination based on the observed allele frequencies estimated that under random 288 

mating within each population, 0.033 percent of fungal recombinations and 0.065 percent of algal 289 

recombinations would result in the same MLG as the mother thallus. The secondary peak in the 290 

distribution of deltaF given deltaA=0 was proportional to the frequency distribution expected from 291 

the empirical null-model of recombination (Fig. 3C, right). The combination of an exponential 292 

model representing mutation and the empirical null model of recombination explained the 293 

distribution of the number of loci differences for each pair of fungi with identical algae well, 294 

explaining a total of 96.5% of the variation for the fungus, whereas for the alga, the exponential 295 

model alone explained 98.5 % of the variation (Table S3, Supporting Information). Taking into 296 

account the above estimate of 77.06 % (±0.72 %) clonality in the fungus, the fitted models resulted 297 

in an overall estimate of 15.21 % (±0.25 %) of pairwise comparisons of fungal MLG being affected 298 

by mutation and 7.73 % (±0.25 %) being affected by recombination. For the alga with 69.85 % 299 

clonality (±0.60 %), mutation thus accounted for 30.15 % . 300 

 301 

Spatial genetic structure 302 

Clonality depended strongly on distance (Fig. 4). There was a marked decrease in the frequency of 303 

pairs of thalli with identical fungal and algal MLGs (vertically transmitted photobionts, 304 

deltaF=deltaA=0) within the first 20 m, compensated by an increase in the frequency of pairs that 305 

differed both in the alga and in the fungus (deltaF>0 and deltaA>0). 306 

 The relative frequency of distance classes for each type of pairs showed significant 307 

differences between the two symbionts (Fig. 5). For the alga, pairs with differences at 1 or more loci 308 
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(deltaA>0, deltaF=0) decreased in number over short distances, similarly to the distribution of clonal 309 

thalli. Fungal MLG pairs differing at least at one locus (deltaF>0, deltaA=0) showed a different 310 

spatial pattern similar to that of pairs differing in both symbionts (deltaF>0, deltaA>0).  311 

 312 

Discussion 313 

Prevalence of vertical transmission of the photobiont 314 

Based on previous evidence that the fungus reproduces mainly clonally (Walser 2004; Wagner et al. 315 

2005; Werth et al. 2006b, 2007), we expected the photobiont of L. pulmonaria to disperse primarily 316 

vertically within vegetative propagules. Vegetative reproduction will recreate the MLG of the 317 

mother thallus unless there is mutation in at least one symbiont. This should result in a dominating 318 

component of pairs of thalli displaying identical MLGs for both symbionts. Indeed, when the 319 

analysis was restricted per symbiont to those pairs of thalli displaying an identical MLG in the other 320 

symbiont (data set B), we found that the predominant class of MLG comparisons was composed of 321 

pairs of thalli having identical MLGs for both symbionts. The probability of creating identical 322 

MLGs through sexual reproduction was small enough to be neglected (as tested here with Psex for 323 

each MLG, and further supported by the empirical null model of recombination, which estimated the 324 

overall probability, combined for all MLGs within a population, at less than 0.1 % for either 325 

symbiont), therefore we interpreted recurring MLGs as clones, i.e., resulting from vegetative 326 

reproduction. Thus, based on microsatellite fingerprinting of both lichen symbionts, we 327 

demonstrated that the photobiont of L. pulmonaria is mostly vertically transmitted. 328 

 Vegetative dispersal with symbiotic propagules ensures the continuity of a successful 329 

combination of MLGs of the two partners across generations (Margulis 1993; Yahr et al. 2004, 330 
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2006; Reeve & Hölldobler 2007; Zilber-Rosenberg & Rosenberg 2008). It has been suggested that 331 

vegetative dispersal in lichens has the advantage of producing large numbers of locally adapted 332 

propagules that can readily exploit and colonize the local environment (Ott 1987b; Sanders & 333 

Lücking 2002; Walser 2004). A predominance of vertical transmission of photobionts has also been 334 

confirmed in other multicellular symbiotic systems for which genetic uniformity is favored by 335 

selection for cooperative traits (Gilbert et al. 2009). For instance, in some symbiotic systems, such 336 

as maternally inherited endosymbionts (Saffo 1992; Moran & Baumann 1994; Huigens et al. 2000), 337 

grass endophytes (Clay 1990; Saikkonen et al. 2002), corals (Coates & Jackson 1987) or sea 338 

anemones (Geller & Walton 2001), strong population structure and shared phylogenetic history of 339 

symbionts are expected because of the vertical transmission of symbionts (Brem & Leuchtmann 340 

2003). 341 

 342 

Contribution of mutation and recombination to within-population genetic structure of lichen 343 

symbionts 344 

The high variability of the microsatellite markers used in this study, combined with the approach 345 

constraining the analyses of one symbiont to pairs of individuals with genetically identical symbiotic 346 

partners and the availability of data from 62 replicate populations, provided robust evidence for 347 

patterns of mutation and recombination in L. pulmonaria symbionts. The alga showed a clear signal 348 

of mutation as indicated by the exponential distribution of the number of loci differences (Fig. 3C, 349 

left). Considering that no statistically significant signal of recombination was found, our results 350 

indicate that the photobiont D. reticulata may reproduce strictly asexually. In lichen photobionts, the 351 

production of zoospores (motile, flagellate spores) is considered a means to escape from the thallus, 352 

Page 16 of 42Molecular Ecology



For R
eview

 O
nly

  

 
17 

close to which they can form colonies (Slocum et al. 1980; Scheidegger 1985). The occurrence of 353 

free-living colonies is known for the green-algal genus Trebouxia (Tschermak- Woess 1978; 354 

Bubrick et al. 1985; Mukhtar et al. 1994), and their zoospores are known to frequently undergo 355 

sexual fusion in fresh cultures (Ahmadjian 1959). Despite extensive investigation, the production of 356 

zoospores was never observed in the photobiont of L. pulmonaria (Skaloud 2008). 357 

 It is remarkable that the alga, with one marker less than the fungus, exhibited a comparable 358 

level of genetic diversity within populations to the fungus (Fig. 3A). With no evidence for 359 

recombination and having shown that the alga is mostly co-transmitted vertically with the 360 

mycobiont, this may be the result of faster mutation rates in the algal microsatellites combined with 361 

a greater number of generations in the photobiont. An alternative explanation involves the 362 

introduction of new alleles into the populations through the horizontal transmission (symbiont 363 

capture) from other photobiont populations found in lichen species associated with D. reticulata 364 

(genera Lobaria and Sticta; Dal Grande 2011). The evidence of mutation obtained in our study 365 

concurs with the hypothesis that mutation is the key process creating genetic diversity in clonal 366 

organisms (Higgs & Woodcock 1995; Tomiuk et al. 1998; Butlin 2002; Vogler et al. 2006; Ally et 367 

al. 2008; Mock et al. 2008). 368 

 The sporadic presence of fruiting bodies in L. pulmonaria indicates that the mycobiont can 369 

undertake sexual reproduction by forming ascospores. Sexual reproduction involves the process of 370 

relichenization, i.e., the formation of a new thallus once fungal spores found a suitable alga 371 

(horizontal transmission). Our results show that recombination significantly contributes to the fungal 372 

genetic structure (7.73 %, ±0.25 % of pairwise comparisons of fungal MLG; Table S3). Hence, 373 

despite the predominance of vertical transmission, horizontal transmission plays a non-negligible 374 
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role in shaping the genetic composition of the lichen population.  375 

 Our approach, however, does not allow to distinguish the effect of horizontal transmission of 376 

the photobiont related to fungal sexual reproduction from the process of horizontal movement of 377 

photobiont from nearby vegetative propagules, which may affect the interpretation of our results 378 

through reshuffling of the genetic composition of lichen thalli independently from fungal sexual 379 

reproduction. Previous studies have shown that, even where both partners are co-dispersed in 380 

specialized propagules, de-differentiation (separation of algal and fungal partners) allows vertically 381 

transmitted algae to be replaced by others available in the environment, or even to be captured from 382 

other nearby lichen species (Friedl 1987; Ott et al. 1995; Ohmura et al. 2006; Wornik & Grube 383 

2010; Dal Grande 2011). The frequency of such algal substitutions in nature is unknown (Piercey-384 

Normore & DePriest 2001), but this strategy may provide a mechanism for optimizing symbiotic 385 

composition in a local environment (Friedl 1987; Ott 1987b; Ohmura et al. 2006; Yahr et al. 2006).  386 

 The way horizontal algal movement and relichenization take place remains elusive, and these 387 

processes deserve further attention. They may well be key evolutionary processes in lichen 388 

communities, allowing the formation of photobiont-mediated guilds among unrelated lichen-forming 389 

fungi (Beck et al. 2002; Rikkinen et al. 2002; Rikkinen 2003). In other symbioses, evidence for 390 

horizontal symbiont transmission has been reported, for instance in certain corals and their 391 

symbiotic dinoflagellates (Rowan 1998; Loh et al. 2001), in insects and their endosymbiotic bacteria 392 

(Huigens et al. 2000; Sirviö & Pamilo 2010), or in fungus-gardening ants or termites and fungal 393 

cultivars (Aanen et al. 2002; Mikheyev et al. 2007). Our results showed that the lichen symbiosis is 394 

formed by a strictly asexual partner (alga) and by a fungal partner that conserved the sexual pathway 395 

together with the formation of asexual diaspores co-dispersing both partners. Sexual propagules are 396 
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considered important for long-distance dispersal of the mycobiont (Walser 2004; Seymour et al. 397 

2005; Cassie & Piercey-Normore 2008; Scheidegger & Werth 2009) and increase the number of 398 

genotypes in local populations, thus potentially enhancing adaptation (Maynard Smith 1986; Samadi 399 

et al. 1999; Rice & Chippindale 2001; Blaha et al. 2006; Foucaud et al. 2006). 400 

 The symbiotic relationship is obligatory for the fungal partner in L. pulmonaria to complete 401 

its life-cycle (Ott 1987b; Ingold & Hudson 1993; Honegger 2001). Yet, little is known about how 402 

often and under what conditions sexual reproduction and relichenization occur in natural habitats. So 403 

far, no corresponding estimates from molecular data were available (Honegger 2001; Dobson 2003). 404 

Our study suggests that independent dispersal of the symbionts does occur in natural populations of 405 

L. pulmonaria and that it has a considerable impact on the genetic diversity of lichen populations.  406 

 407 

Spatial genetic structure 408 

We analyzed the spatial genetic structure of lichen populations to infer about dispersal processes 409 

related to horizontal and vertical transmission of the photobiont. While statistical analysis of spatial 410 

patterns is often limited by the lack of replicate study areas, the availability of comparable spatial 411 

genetic data from 62 replicate populations allowed robust statistical analysis based on bootstrap 412 

estimates.    413 

 Here we showed that the fungal and algal clonal components had a large impact on the small-414 

scale spatial genetic structure of the lichen association, and the signal of clonality markedly 415 

decreased within a distance of about 20 m (Fig. 4). Our results indicate that vegetative propagules 416 

play a dominant role to disperse genetically identical symbionts of L. pulmonaria over short spatial 417 

distances within populations. They are thus a means of rapid lichen spread at the local scale 418 
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(Hawksworth & Hill 1984; Heinken 1999; Dettki et al. 2000; Sillett et al. 2000). The restricted 419 

dispersal can be explained by these propagules’ larger size compared to fungal ascospores, since the 420 

larger the propagule the shorter the distance they can be carried by wind, water or animals (Heinken 421 

1999; Walser 2004; Werth et al. 2006b; Scheidegger & Werth 2009). 422 

 The differences in the reproductive modes between the two symbionts of L. pulmonaria 423 

described above were clearly reflected in their spatial genetic structure. We expected that the 424 

symbionts mainly spread within the vegetative propagules of the lichen, and thus would present 425 

similar spatial structures. The alga, which only showed a signal of mutation, confirmed this 426 

assumption by displaying almost an identical spatial pattern as the clones (with deltaA=deltaF=0; 427 

Fig. 5). The fungus, which showed signals of both mutation and recombination, exhibited a different 428 

spatial genetic structure suggesting dispersal over larger distances. 429 

 430 

Conclusions  431 

This paper presents a novel approach to analyze relatively recent, within population micro-432 

evolutionary processes from the population genetic structure of the lichen L. pulmonaria. We 433 

provided robust evidence for the predominance of vertical transmission of the photobiont at the 434 

intra-population level in a mainly vegetative species.  435 

As a caveat, we recall some key assumptions to our analysis. First, we assume that long-436 

distance migration leads to the introduction of new genotypes, i.e., that it is unlikely that the same 437 

MLG would originate independently in two populations and migrate from one to the other, thus 438 

reflecting larger-scale processes within our data set B. Based on observed allele frequencies within 439 

populations, we estimated the probability of independent origin of clones as <0.1 % each for the 440 
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fungus and the alga. The probability of independent origin in different populations and subsequent 441 

immigration is expected to be much lower still. Second, we assume that each mutation leads to a 442 

new allele, such as expected under an infinite-alleles mutation model. Multiple identical but 443 

independent mutations within the same population, as might be expected under a step-wise mutation 444 

model, would lead to underestimation of the relative contribution of mutation due to the exclusion of 445 

recurrent MLGs in data set C. Third, we assumed independent mutation in both symbionts at the 446 

same time to be negligible, and we estimated its probability as <1% of the probability of mutation in 447 

either symbiont. Concurrent mutation in both symbionts would reduce the relative size of data set B 448 

but should not otherwise bias results. 449 

We inferred the different processes shaping the genetic structure of the symbionts, 450 

highlighting that, even in a species with rare sexual reproduction such as L. pulmonaria, fungal 451 

recombination is a process shaping the genetic structure between the two lichen symbionts. The 452 

possibility of sexual reproduction is important to population genetics. Considering the low 453 

germination rate in some lichen species, it may seem unlikely that their ascospores would ever 454 

develop into a lichen thallus. However, even if only a few out of the thousands of ascospores 455 

produced in one ascoma find the proper photobiont to reconstitute the symbiosis, as long as the new 456 

thallus multiplies and disperses through vegetative propagules, this may suffice to alter lichen 457 

population genetic structure (Honegger & Zippler 2007). 458 
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 718 

Figure legends 719 

Fig. 1 Graphic representation of the pairwise analysis used in this study to infer the mode of 720 

photobiont transmission and to analyze within-population micro-evolutionary processes of the 721 

fungal and algal symbionts of L. pulmonaria. Each circle represents a single thallus of L. 722 

pulmonaria. Each slice of the circle represents a microsatellite locus (eight for the fungal symbiont, 723 

seven for the algal symbiont). Black (for fungal loci) or dark grey (for algal loci) slices represent 724 

differences at the given microsatellite locus between Lichen A and Lichen B (top) or C (bottom). 725 

The number of loci differing between a pair of thalli is defined for each symbiont as deltaA (alga) or 726 

Page 33 of 42 Molecular Ecology



For R
eview

 O
nly

  

 
34 

deltaF (fungus). 727 

 728 

Fig. 2 Models used to analyze the contribution of mutation and recombination to within-population 729 

genetic structure of lichen symbionts in L. pulmonaria. Each barplot shows the relative frequency of 730 

pairs of thalli differing in deltaA (alga, left) or deltaF (fungus, right) loci, as expected for each 731 

symbiont under the empirical null model of recombination (top) or an exponential model of somatic 732 

mutation (center). The bottom barplots show the observed relative frequency of pairs in data set C. 733 

Empty circles indicate for each level of deltaA or deltaF the relative frequency predicted by the 734 

fitted model combining the empirical null model of recombination and the exponential model of 735 

mutation.  736 

 737 

Fig. 3 Barplot of the relative frequency (± bootstrap standard errors) of pairs of thalli (within 738 

populations pooled over all populations) differing by 0-7 loci for the alga (deltaA) and 0-8 loci for 739 

the fungus (deltaF) for all pairwise comparisons within each population and pooled over all 740 

populations (data set A, top) and for pairwise comparisons in one symbiont constrained to identical 741 

pairs of multilocus genotypes for the other symbiont (data set B, bottom).  742 

 743 

Fig. 4 Spatial distribution of the following categories of thalli: vegetative propagules 744 

(deltaF=deltaA=0; black bars, "00"), fungal clones associated with different algal multilocus 745 

genotypes (deltaF=0 and deltaA>0; white bars, "01"), algal clones associated with different fungal 746 

multilocus genotypes (deltaF>0 and deltaA=0; dark grey, "10"), and different fungal multilocus 747 

genotypes associated with different algal multilocus genotypes (deltaF>0 and deltaA>0; light grey, 748 
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"11"). The first distance class contained pairs of thalli sampled from the same tree. The last distance 749 

class contained all sample comparisons at distances >500 m. 750 

 751 

Fig. 5 Relative frequency of distance classes for each group of multilocus genotype pairs defined in 752 

Fig. 2. Distance classes: 0-10m (first bar from bottom; darkest bars); 10-20m (second bar from 753 

bottom); 20-50m (third bar from bottom); 50-100m (fourth bar from bottom); 100-200m (fifth bar 754 

from bottom), >500m (last bar from bottom; faintest bars). The first distance class of pairs of thalli 755 

sampled from the same tree was not included in the analysis. The total number of multilocus 756 

genotype pairs per group is given on top of the corresponding bar. 757 

 758 

Supporting Information 759 

Table S1 Information on sampled populations of Lobaria pulmonaria. 760 

Table S2 Microsatellite analysis: (a) primer sequences (Walser et al. 2003, 2004; this study; Dal 761 

Grande et al. 2010), labeling, primer concentrations and (b, c) PCR conditions for genetic analyses 762 

of Lobaria pulmonaria. 763 

Table S3 Model fitting and residuals of observed frequencies of deltaF vs. fitted frequencies 764 

(combined exponential and binomial fitting). 765 

Table S4  Allele frequency distribution at eight fungal (LPu03, LPu09, LPu15, LPu23, LPu24, 766 

LPu25, LPu28, Walser et al. 2003; Widmer et al. 2010; MS4, this study) and seven algal (LPh1 to 767 

LPh7; Dal Grande et al. 2010) loci per population. Each line is one repeat length (allele) and each 768 

number represents the absolute frequency of that allele in the particular population. 769 

 770 
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Table 1 Data sets used in this study. 

	
  

	
  

Data set Definition Number of Pairs Analysis 

A All pairs from within the 

same population (same 
for both symbionts) 

All: 36,218 pairs  

from 62 populations 

Quantification of intra-population genetic diversity and spatial 

genetic structure. 

B Fungus: all pairs of  

data set A with deltaA=0 

Alga: all pairs of  

data set A with deltaF=0 

Fungus: 2977 pairs 

from 62 populations 

Alga: 3285 pairs  

from 62 populations 

Restriction for each symbiont to pairs with identical MLG in the 

other symbiont to partial out larger-scale evolutionary processes 

when assessing the relative contribution of vertical transmission to 
population genetic structure. 

C Data set B without 

recurrent MLGs within  

the same population 

Fungus: 269 pairs  

from 38 populations 

Alga: 215 pairs  

from 50 populations 

Exclusion of recurrent MLGs within populations to identify signals 

of within-population mutation and recombination and to assess the 

relative contribution of horizontal transmission.  

This avoids potential underestimation of horizontal transmission in 
genetically uniform or depauperate populations.  
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