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I. Introduction 

Let ~ be a collection of n hyperplanes in ~)~4. The vertical decomposition ~/'(~) of 
the arrangement ~r of ,,~ is defined in the following recursive manner. Denote 
the coordinates by x, y, z, and w. For each cell C of ~r and each 2-face g on OC, 
erect a three-dimensional vertical wall from g within C, defined as the union of 
maximal w-vertical line segments that have one endpoint on g and are contained in 
C. The collection of these walls decomposes C into vertical prisms, each bounded 
by two hyperplanes of X, one on its top and one on its bottom (sometimes, when C 
is unbounded, by just one hyperplane), and by some of the vertical walls. In the 
next stage we project each such prism onto the xyz-hyperplane, obtaining a three- 
dimensional convex polyhedron P, which we vertically decompose in an analogous 
manner. That is, we erect vertical walls (in the z-direction) within P from each edge 
h of P, where the wall of an edge h is the union of maximal z-vertical line segments 
that have one endpoint on h and are contained in P. These walls decompose P into 
z-vertical prisms, each bounded by two facets of P on the top and the bottom sides 
(or possibly just one if P is unbounded) and by some z-vertical walls. We next 
project each such prism onto the xy-plane, obtaining a convex polygon Q, which we 
now proceed to decompose vertically in a similar manner, erecting vertical segments 
(in the y-direction) within Q from each vertex of Q until they meet the boundary of 
Q again. We now complete the decomposition of P by erecting z-vertical walls 
within P from each of the y-vertical segments in the decomposition of each of the 
resulting polygons Q. Finally, we complete the decomposition of each cell C of 
sC(,gg) by erecting w-vertical walls from each newly created feature on each prism of 
C. Repeating this procedure over all cells C of .acG~, we obtain the desired vertical 
decomposition ~'(,g'9 of the arrangement. 

We prove the following: 

Theorem 1.1. The number of cells in the vertical decomposition of an arrangement of n 
hyperplanes in four dimensions is O( n 4 log n). 

The notion of vertical decomposition can be extended to higher dimensions in an 
obvious manner. In fact, it can be extended to arrangements of algebraic surfaces in 
~d  of bounded degree, as described in detail in [3]. The output of the decomposition 
are cells with "constant description complexity"--in the case of hyperplanes, each is 
a convex polyhedron with at most 2d facets, with two facets obtained at each 
recursive step. In the case of general algebraic surfaces the structure of cells is 
somewhat more involved, but each cell is still bounded by at most 2d surfaces of 
bounded degree, and thus has also constant description complexity. 

The problem at hand is to obtain sharp bounds on the number of cells in the 
vertical decomposition. It is shown in [3] that, in the general algebraic case, the 
number of cells is O(n2d-3fl(n)), where fl(n) is a slowly growing function of n, 
depending also on d and on the degree of the given surfaces. In three dimensions 
this yields a nearly cubic bound on the size of the vertical decomposition (in the 
general case); for planes, a simpler argument gives a tight bound of O(n3). Thus the 
first interesting case is d = 4, where the above bound is roughly O(n 5) (even for 
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hyperplanes), whereas the complexity of the arrangement, without vertical decompo- 
sition, is only O(n4). 

Theorem 1.1 shows that the size of the vertical decomposition, for hyperplanes in 
4-space, is only O(n 4 log n). This constitutes the first step toward obtaining a similar 
bound for general surfaces, and extending these bounds to higher dimensions. 

The main motivation for studying vertical decompositions in arrangements of 
surfaces is in their applications to range searching, point location, and many related 
problems; see [3] for some of these applications. We note that the exact shape of the 
cells in the decomposition is irrelevant for these applications, as long as each cell has 
constant description complexity. Thus for arrangements of hyperplanes the arrange- 
ment can instead be triangulated into simplices in a standard manner, so that the 
number of simplices is only O(n a) [4]. Thus these applications, in the case of 
hyperplanes, have no real need for vertical decomposition. On the other hand, in the 
general case of algebraic surfaces, vertical decomposition seems to be the only 
known general decomposition scheme, so deriving sharper bounds on its complexity 
is an important problem that merits careful study; our analysis for hyperplanes can 
be seen as a preliminary step in this direction. 

A main portion of the proof is based on an analysis of the overlay of convex 
subdivisions in three-dimensional space. We establish properties of such superim- 
posed subdivisions, which may be of independent interest. We also prove some other 
properties of such subdivisions, which are not needed for the vertical decomposition 
result. 

2. A Reduction to a Three-Dimensional Problem 

Let .~  be a collection of n hyperplanes in 4-space, which we assume to be in general 
position. This involves no real loss of generality, because the given hyperplanes can 
always be perturbed slightly so as to put them in general position, without decreasing 
the number of cells in the decomposition. 

The heart of the proof of Theorem 1.1 is the following lemma: 

Lemma 2.1. Let C be a cell of the arrangement ~ ( ~ )  with a total of N c faces (of all 
dimensions). Then the complexity of the vertical decomposition of C is O(Nc2). 

Assuming this lemma, Theorem 1.1 follows from a result of [1] on the sum of 
squares of cell complexities in arrangements of hyperplanes, which states that, in 
four dimensions, one has 

~_,N 2 = O(n 4 log n), 
c 

where the sum extends over all cells of .~r 
To prove the lemma, let C be a cell of the arrangement .~r(,~, and assume, for 

the sake of clarity of exposition, that C is bounded (for unbounded cells the analysis 
is quite similar). Let us divide the boundary of C into the upper and lower portions, 
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and let oq' (resp. ~ )  denote the projection of the upper (resp. lower) portion into the 
xyz-hyperplane. We can regard ~ '  and ~ as convex subdivisions in 3-space which we 
refer to as the red and blue subdivisions, respectively. 1 

Since ,~ is in general position, ~ and ~ '  are simple decompositions. Let us 
remark that all subdivisions of 3-space cannot be obtained in this manner; as shown 
in [2], ~ and ~ must be power diagrams in 3-space. 

We note that each feature (cell, face, edge, or vertex) of ap stands in a 1-1 
correspondence with some feature (facet, 2-face, edge, or vertex) of the top part of 
0C, and similarly for ~ and the bottom part of aC. Let Nm, N m denote the total 
number of features of ~ ,  ~ ' ,  respectively. Thus N~ + N~ < 2N c, where N c is the 
total number of faces bounding C (the factor 2 comes from the fact that features on 
the silhouette of C appear both in the top part and in the bottom part of c~C). 

The first step of the vertical decomposition of C is equivalent to overlaying 
and ~ to form one convex subdivision 3 - o f  3-space. Each new feature of the 
decomposition J-corresponds to some intersection between a vertical wall erected 
upward from the bottom part of 0C and another wall erected downward from 
the top part of aC. The remaining steps in the vertical decomposition of the (four- 
dimensional) cell C correspond to vertically decomposing each cell in the three- 
dimensional subdivision ~.. 

Hence it suffices to establish the following lemma, whose proof is postponed to 
the following section: 

Lemma 2.2. Let ~q~, 5~ be simple convex subdivisions of 3-space with Nm, N m faces, 
respectively. Then the complexity of the vertical decomposition of the subdivision 27- 
obtained by overlaying ~ and ~ is O((N m + N~)2). 

Lemma 2.2 clearly implies Lemma 2.1, and thus completes the proof of Theorem 
1.1. 

3. Properties of  Convex Subdivisions in 3-Space 

We begin with the proof of Lemma 2.2: 
Let P be one of the cells in the overlayed decomposition J.. The vertical 

decomposition of P can be obtained by projecting the top part and the bottom part 
of OP (relative to the z-direction) onto the xy-plane, and by overlaying these two 
convex subdivisions--every new vertex in the superimposed map, .d', corresponds to 
an intersection between two vertical walls, one coming upward from an edge on the 
bottom part of OP, and one coming downward from an edge on the top part of aP. 
This observation, together with Euler's formula for planar maps, imply that the 

1 Actually these are not convex subdivisions of the whole 3-space, but rather of the projection of 
C. However, the complement of the projection of C can be partitioned into convex cells whose total 
complexity does not exceed that of C, and thus ~ and oq~ can be completed to convex subdivisions 
of the whole space. Alternatively, it can be checked that the restriction to the projection of C does 
not make a difference in the following analysis. 
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complexity of the vertical decomposition of P is proportional to the number of faces 
of ~ (here and in the remainder of this proof, "face" means "two-dimensional 
face"). Note that we can ignore the last vertical decomposition step, namely, that of 
planar vertical decomposition of each face of .~tr, because this step increases the 
overall complexity of  the decomposition only by a constant factor. 

For clarity of  exposition, assume that P is a bounded polytope (which follows 
from our assumption that the cell C is bounded). Note that each face f of A is the 
intersection of the xy-projections of a face f+ on the top part of  c~P and of a face 
f -  on the bottom part of OP. Since P is a cell in J ,  each of f+, f -  is either a 
portion of a red face o f ' ~ '  or a portion of a blue face of ~ ' .  Our goal is to charge 
each face f of .Jr (or each vertically visible pair (f+, f - )  of faces of  P, which is 
equivalent) to a pair of  features, each being a feature of either ~ '  or ~ ' ,  so that each 
such pair will be charged only a constant number of times over the entire collection 
of cells P. This will clearly imply Lemma 2.2. 

Suppose first that jr + is a portion of a red face r and f -  is a portion of a blue 
face b (the b lue-red  case is symmetric). There is a unique red cell R such that r lies 
on the top part of its boundary, and a unique blue cell B such that b lies on the 
bottom part of its boundary. Then both f+ and f -  lie in the intersection R n B, 
which is thus the cell P. In other words, we can charge the pair (f+, f - )  to the pair 
(r, b) of faces, and the above argument shows that this charge is unique. Thus the 
number of pairs of this kind is O(NmNw).  

Next consider the case where both j r+ and f -  are portions of two respective red 
faces r +, r - ,  necessarily appearing along the top and bottom parts of  the boundary 
of some red cell R (the case of blue faces is fully symmetric). In this case we cannot 
charge (jr +, f - )  to (r § r - )  as above, because R may be split into several subcells by 
blue cells, and many of them might contain vertically visible pairs of appropriate 
portions of r + and r - ,  so the charge need not necessarily be unique; see Fig. 1 for 
an illustration. 

Let r be the intersection of the xy-projections of r § and of r- .  Let B be the blue 
cell whose intersection with R is P. If P = R, then we can charge (f+, f - )  to the 
pair (r § r - )  as above in a unique manner (there will be O ( N  2 )  such charges 
overall), so suppose that P is a proper subcell of  R. Note that f + =  r + n  B, 

c 

Fig. 1. The red cell abcd is a thin tetrahedron so that the red faces acd and bcd have roughly the 
same intersection pattern with the blue subdivision, denoted by dotted lines; thus the red faces acd 
and bcd are visible from one another inside several blue cells. 
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f -  = r -  n B. Let q be the intersection of the xy-projection of B with r. If  q contains 
the projection of some vertex v of B, then we charge the pair (f+, f - )  to the pair (v, 
R), say, and observe that this pair is charged only a constant number of  times, 
because, given v and R, there is a unique pair of red faces of R that the vertical line 
through v intersects, and (v, R) will be charged only by this pair interacting with the 
few blue cells incident to v. Similarly, if q is intersected by the projection of  an edge 
/3 of the cell B, then either this edge has an endpoint that also projects into q, 
which is the case we have just discussed (namely, q contains the projection of this 
endpoint), or else /3 must cross some edge of r, which is the projection of either an 
edge of r § or of an edge of r - .  Suppose, with no loss of generality, that 13 crosses 
the projection of an edge p of  r +. Then we charge (f+, f - )  to the pair (/3, p), and 
again observe that such a pair will be charged only a constant number of  times, 
because, given /3 and p, there is a unique vertical line passing through both /3 and 
p, and this line uniquely determines the other red face r- .  Thus charges to (/3, p) 
can be made only by pairs (r § r - )  and cells B such that r § is incident to p and /3 is 
incident to B, and there is clearly only a constant number of such possible charges. 
Allowing for symmetric cases as well, we conclude that the total number of pairs 
(f+, f - )  accounted for so tar is O((N~ + Nw)2). 

The remaining case is thus when q does not contain the projection of any vertex 
or edge of B. In this case, assuming B is bounded, r is fully contained in the 
projection of  one top face and of one bottom face of B; let us denote these faces by 
b § b- ,  respectively. Let D denote the vertical cylinder whose xy-projection is r and 
which is bounded by r § on its top side and by r -  on its bottom side. The face b § 
intersects D in a convex polygon whose xy-projection, s § is bounded by some 
portion of  ar  and by at most two straight segments cutting across r (these are the 
projections of  the segments b §  r + and b + n  r - ;  we assume that either at least one 
such segment exists, or that s + is empty, for otherwise s += r, in which case b § 
makes f+ and f -  vertically invisible within P, contrary to assumption). Similarly, 
b -  intersects D in another convex polygon whose projection, s - ,  is also bounded by 
some portion of Or and by at most two other straight segments cutting across r 
(namely, the projections of  the segments b -  n r § and b -  n r truncated to within r; 
again at least one such segment must exist unless s -  is empty). The face f must be 
disjoint from both s + and s - ,  and adjacent to at least one of them if they are not 
both empty. It follows from the discussion so far that, in all possible cases, f must 
extend all the way to the boundary of r. See Fig. 2 for an illustration of (one possible 
case of) this configuration. 

Let k be a point on Of o Or which lies on the projection of one of  these crossing 
segments ( b + n  r +, b + n  r - ,  b - n  r +, or b - n  r - )  that appears along the boundary of 
f ,  say the projection of b + n  r § Then k is also the projection of some point lying on 
an edge p of  either r + or r - .  If  p is an edge of r +, then p and b § intersect (at a 
point projecting to k), and we can charge (f+, f - )  to the pair (p ,  b+), arguing as 
above that such a pair can be charged only a constant number of times (this is the 
situation illustrated in Fig. 2). If p is an edge of r - ,  and v is the point on p 
projecting to k, then, as we walk along p in the superimposed subdivision J,, the 
face directly above us (in the z-direction) changes at v from r § to b+; see Fig. 3. (If 
there are no crossing segments, that is if both s § and s -  are empty, take k to be a 
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Fig. 2. The final case of charging for a pair of vertically visible red faces. 

vertex of r which is either the projection of a vertex v + of r +, or the projection of a 
vertex v - of r - ,  or the intersection of the projections of an edge p+ of r + and an 

edge p of r - .  We leave it to the reader to verify that we can charge (f+, f - )  in 
each of these three cases respectively to v +, to v- ,  or to ( p+, p-) . )  

Let o- be the z-vertical two-dimensional semi-infinite slab having p as its bottom 
edge, namely, o- is the union of rays parallel to the z-axis whose endpoints lie on p 

and which extend in the positive z-direction. Given a collection S of line segments 
on o-, the lower envelope of S (with respect to p) is defined in the following manner:  

Fig. 3. 

: 7"+ i 

P 

The face above v changes from r + to b +. 
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Fig. 4. 

[ 
r 

P 

The lower envelope (dotted) of a set of segments on or. 

for every point p on p we extend a ray in the positive z-direction until it hits a 
segment of S at the point ~b(p), or otherwise it extends to infinity. The lower 
envelope is defined whenever the ray hits S and it is the union of the points 0(p);  
see Fig. 4. Note that if a segment in S has an endpoint on p, then this point belongs 
to the lower envelope. 

Let F denote the union of all the faces of Y.. Let 0 denote the lower envelope of 
the restricted two-dimensional arrangement of segments F n or. The analysis in the 
preceding paragraph suggests that we charge (f+, f - )  to the "breakpoint" of 
directly above v. Indeed, this breakpoint, defined by the three features p, r +, b § 
identifies the blue cell B and the two red faces r § r - ,  up to a constant number of 
possibilities. Note that ~/, is the pointwise minimum of the two subenvelopes ~b~, ~ ,  
defined as the lower envelopes of the two respective arrangements ~ n ~r, ~ n o-. 
It easily follows that the number of breakpoints along qJ is proportional to the sum 
of the number of breakpoints along ~ ,  and along ~b~--if the lists of breakpoints of 
these subenvelopes, sorted in their order along p, are merged, then there can be at 
most one new breakpoint of ~ between each pair of adjacent breakpoints in the 
merged list. The numbers of breakpoints of ~,~, ~ are clearly bounded by Nm, N~, 
respectively. Applying this argument to all symmetric cases (obtained by interchang- 
ing top and bottom sides, red and blue, etc.), we conclude that the total number of 
vertically visible face pairs (f+, f - )  of the last kind, and thus also the overall number 
of vertically visible face pairs in J,, is O((N~ + N~,)2). This finishes the proof of 
Lemma 2.2 and thus also of Lemma 2.1 and Theorem 1.1. [] 

Recall that the first step of the vertical decomposition of a four-dimensional 
arrangement cell corresponds to overlaying two convex subdivisions in 3-space. The 
complexity of the overlayed subdivision (before the second decomposition step) can 
be trivially estimated by N ~ N j ,  where N~, Nm are the total numbers of faces in the 
subdivisions. It tufias out that a somewhat refined bound can be derived: 

T h e o r e m  3.1. Let ~0~ and ~ be two simple convex subdivisions of 3-space, so that ~0~ 
has nse cells and a total of  Nse faces, and ~ has n ~ cells and a total of N~u faces. Then 
the total number of faces in the superimposed decomposition is N~ + N~ + O(n ~n ~). 
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Fig. 5. A cone with v as the apex at the intersection of b, Q, and r 2. 

Proof. If a face of  u~ lies fully within a cell of ~ ' ,  then it contr ibutes just  one to 
the final face count, and similarly for faces of ~ ' .  Suppose r is a red face that  
intersects a blue cell  B but  does not  lie completely inside it. Then r and c~B 
intersect,  so ei ther  an edge of r crosses a face of aB, or  an edge of aB crosses r. In 
ei ther  case we charge the pair  (r, B) to the resulting vertex. Clearly, no vertex is 
charged more  than a constant  number  of times, so it suffices to bound the number  of 
vertices of these types. Consider,  for example,  the case of  a vertex c formed by 
intersecting an edge p of r with a face b of 0B. Since .94 is simple, p is incident to 
just three faces of ~ (one of which is r). These faces intersect b in a triple of 
segments incident  to v. By slightly rotat ing the coordinate  axes, as necessary, we can 
assume that nei ther  p nor any of these segments is horizontal,  and we thus may 
assume, with no loss of  generality, that  two of these segments increase in z as we 
traverse them away from v. Let  r 1 and r 2 be the two red faces that form these 
"ascending" segments. See Fig. 5 for an illustration. Then r 1 and r 2 form a convex 
wedge and b slices across it producing two tr ihedral  angles, or cones, in the 
neighborhood of  v, with v as the apex. It is easily verified that  v is the lowest point  
in one of  these cones. In other  words, in the super imposed decomposit ion,  which is 
of course convex, v is the lowest vertex of some cell. Hence the number  of vertices 
under  considerat ion is propor t ional  to the number  of cells in the super imposed 
decomposit ion,  which is at most  n~n~ .  This argument  implies the assertion of the 
theorem.  []  

Corol lary  3.2. I f  ~ and ~ have (at most) n cells each, then the complexity of their 
superposition is O( n2). 

Proof. This follows immediate ly  from Theorem 3.1 and from the observation that 
the complexity of  each subdivision is O(n2). []  

Remark.  The preceding corollary can be appl ied to solve problems that  involve two 
distinct Voronoi  diagrams in 3-space. Fo r  example,  given two sets of point  sites 
S 1 , S 2 , each of size n, one might want  to find a point  that satisfies some relat ionship 
involving its nearest  neighbor in S 1 and its nearest  neighbor in S 2. To find such a 
point,  all the cells of the subdivision obta ined by superimposing the two Voronoi  
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diagrams of S 1 and of S 2 may have to be traversed, and the corollary implies that 
such a traversal can be done in quadratic time. 
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