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Abstract. The bacterially mediated aerobic methane oxida-

tion (MOx) is a key mechanism in controlling methane (CH4)

emissions from the world’s oceans to the atmosphere. In

this study, we investigated MOx in the Arctic fjord Storfjor-

den (Svalbard) by applying a combination of radio-tracer-

based incubation assays (3H-CH4 and 14C-CH4), stable C-

CH4 isotope measurements, and molecular tools (16S rRNA

gene Denaturing Gradient Gel Electrophoresis (DGGE) fin-

gerprinting, pmoA- and mxaF gene analyses). Storfjorden is

stratified in the summertime with melt water (MW) in the up-

per 60 m of the water column, Arctic water (ArW) between

60 and 100 m, and brine-enriched shelf water (BSW) down to

140 m. CH4 concentrations were supersaturated with respect

to the atmospheric equilibrium (about 3–4 nM) throughout

the water column, increasing from ∼ 20 nM at the surface to

a maximum of 72 nM at 60 m and decreasing below. MOx

rate measurements at near in situ CH4 concentrations (here

measured with 3H-CH4 raising the ambient CH4 pool by

< 2 nM) showed a similar trend: low rates at the sea sur-

face, increasing to a maximum of ∼ 2.3 nM day−1 at 60 m,

followed by a decrease in the deeper ArW/BSW. In contrast,

rate measurements with 14C-CH4 (incubations were spiked

with ∼ 450 nM of 14C-CH4, providing an estimate of the

CH4 oxidation at elevated concentration) showed compara-

bly low turnover rates (< 1 nM day−1) at 60 m, and peak rates

were found in ArW/BSW at ∼ 100 m water depth, concomi-

tant with increasing 13C values in the residual CH4 pool.

Our results indicate that the MOx community in the surface

MW is adapted to relatively low CH4 concentrations. In con-

trast, the activity of the deep-water MOx community is rel-

atively low at the ambient, summertime CH4 concentrations

but has the potential to increase rapidly in response to CH4

availability. A similar distinction between surface and deep-

water MOx is also suggested by our molecular analyses. The

DGGE banding patterns of 16S rRNA gene fragments of the

surface MW and deep water were clearly different. A DGGE

band related to the known type I MOx bacterium Methy-

losphaera was observed in deep BWS, but absent in surface

MW. Furthermore, the Polymerase Chain Reaction (PCR)

amplicons of the deep water with the two functional primers

sets pmoA and mxaF showed, in contrast to those of the sur-

face MW, additional products besides the expected one of

530 base pairs (bp). Apparently, different MOx communities

have developed in the stratified water masses in Storfjorden,

which is possibly related to the spatiotemporal variability in

CH4 supply to the distinct water masses.

1 Introduction

Methane (CH4) is a potent greenhouse gas with a global

warming potential that exceeds carbon dioxide (CO2) 23-

fold over a 100 yr timescale and is, after water vapor and

CO2, the most important greenhouse gas (IPCC, 2007). Sub-

stantial research efforts have consequently been made to

understand its sources and sinks. A large part of oceanic

CH4 is generated under reduced conditions in anoxic ma-

rine sediments, predominantly through microbially mediated
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CO2 reduction and disproportionation of methylated sub-

strates (Whiticar, 1999; Hinrichs and Boetius, 2002; For-

molo, 2010). Sedimentary CH4 is also formed by thermal

breakdown of organic matter and, although of lesser impor-

tance, serpentinization and Fischer–Tropsch reaction, both

occurring at high temperature and pressure. In addition, con-

spicuous CH4 concentration maxima in oxic water layers

provided indications for CH4 production under oxic con-

ditions, possibly mediated by yet unknown microbes using

dimethylsulfoniopropionate (DMSP) (Damm et al., 2010) or

methylphosphonic acid (MPn) (Karl et al., 2008; Metcalf et

al., 2012) as substrate. However, despite the apparent ubiq-

uity of methanogenesis in marine systems and the large area

covered by oceans, comparably little CH4 is liberated from

the oceans into the atmosphere because of microbial con-

sumption (Reeburgh, 2007; IPCC, 2007). About 80% of sed-

imentary CH4 is consumed in reduced sediments as a result

of the anaerobic oxidation of methane (AOM) with sulfate as

the terminal electron acceptor (Barnes and Goldberg, 1976;

Reeburgh, 1976; Martens and Berner, 1977; Reeburgh, 2007;

Knittel and Boetius, 2009). Finally, aerobic CH4-oxidizing

bacteria at the sediment surface and/or in the water column

(belonging to the Alpha- (type II) or Gammaproteobacteria

(type I and type X)) consume CH4 that has bypassed the

anaerobic microbial filter according to the following reaction

(Hanson and Hanson, 1996; Murrell, 2010):

CH4 + 2O2 → CO2 + 2H2O. (R1)

Several techniques have been used to quantify aerobic

methane oxidation (MOx) rates (Reeburgh, 2007). A com-

mon method is to incubate water column or sediment sam-

ples with radio-labeled tracers such as 14C-CH4 or 3H-CH4

(Reeburgh et al., 1991; Valentine et al., 2001; Niemann et al.,

2006; Mau et al., 2012), which has proven to be highly sensi-

tive. During the incubation, 14C-CH4 or 3H-CH4 is converted

at the same rate as the natural, non-labeled CH4 to 14CO2

and 14C-biomass or 3H2O. Despite the importance of water

column MOx controlling oceanic CH4 emission to the atmo-

sphere, only a small number of water column MOx rate mea-

surements exist, which is particularly true for high-latitude

environments (Ward and Kilpatrick, 1990; Griffiths et al.,

1982). The available data show a large scatter of rates over

several orders of magnitude (Fig. 1), but factors controlling

MOx activity such as temporal variations in CH4 availability

(e.g., Mau et al., 2007a, b; Damm et al., 2007) and the ac-

tivity of the present MOx community during time periods

with elevated CH4 availability are not well constrained. Our

aims were to investigate MOx rates at ambient and at ele-

vated CH4 concentrations as well as to determine differences

between MOx communities thriving at different CH4 concen-

trations in a natural marine environment. As a model system,

we chose the fjord Storfjorden (Svalbard), which is charac-

terized by seasonal stratification, separating distinct water

masses with different CH4 sources during summer time.
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Fig. 1. Range of methane oxidation rates measured at different lo-

cations in the ocean water column derived from tracer incubations

using 3H-CH4 (Reeburgh et al., 1991; Valentine et al., 2001, 2010;

Heintz et al., 2012, Mau et al., 2012) or 14C-CH4 (all others). Pack

et al. (2011) compared incubations with 3H-CH4 (*1) and incuba-

tions with low-level 14C-CH4 (*2) that were measured with acceler-

ator mass spectrometry. In this study we compared incubations with
3H-CH4 (*3) and incubations with 14C-CH4 (*4).

2 Material and methods

2.1 Study site

Storfjorden is located in the Svalbard Archipelago between

the islands Spitsbergen, Barentsøya, and Edgeøya (Fig. 2).

CH4 concentrations in the fjord water exceed atmospheric

equilibrium concentration throughout the water column by

a factor of 2–16, although surface water CH4 is of a dif-

ferent origin compared to the CH4 in subsurface waters

(Damm et al., 2008). Surface waters contain recently pro-

duced, 13C-depleted CH4, which was proposed to result

from a summer phytoplankton bloom producing methy-

lated compounds such as DMSP, which is a potential sub-

strate for methylotrophic methanogenesis. Other potential

methanogenic substrates such as methylphosphonates were

not investigated in the study area. A CH4 production–

removal cycle appears to be established in the surface wa-

ter as reflected by varying CH4 concentrations and 13C-CH4

values (Damm et al., 2008). In contrast, deeper water con-

tains CH4 that is mixed into the bottom water as a result

of brine-enriched shelf water (BSW) formation during win-

tertime causing enhanced turbulence and repeatedly occur-

ring resuspension of sediments releasing CH4 (Damm et al.,

2007). The winter-released CH4 is then trapped by increas-

ing water stratification during warmer seasons, and ongoing

CH4 consumption leads to a 13C-enriched isotopic signature
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Fig. 2. Locations of the stations in Storfjorden. Stations are marked

by white dots and station numbers. The coastal current is indi-

cated by a dashed blue arrow. Contours are drawn every 100 m until

1000 m water depth

of the residual CH4. During summertime, the water column

is stratified, with surface melt water (MW) and intermedi-

ate Arctic water (ArW) constituting the upper water column,

while denser BSW is restricted to deep basins (Loeng, 1991).

The residence time of the high-salinity water in deeper lay-

ers (90–246 days) is longer than the fjord’s surface waters

(51–141 days) (Geyer et al., 2009).

2.2 Sampling

Water samples were collected from nine stations in Stor-

fjorden and at one open-ocean station (70◦35.913′ N,

10◦51.591′ E) during a cruise with RV Heincke in August

2010 (Fig. 2, Table 1). The Storfjorden stations were aligned

along the cyclonic coastal current flowing into Storfjorden

along Edgeøya and out along Spitsbergen (Loeng, 1991;

Skogseth et al., 2005) (Fig. 2). We intended to sample and

compare the fjord’s upper and lower water column because

of the different CH4 sources and water residence times. We

sampled vertical profiles throughout the water column, thus

recovering samples from MW, ArW, and BSW. All water

masses were subsampled for chemical/biogeochemical anal-

yses (method 2.3 and 2.4), but we focused on the MW and

BSW for molecular analyses (method 2.5). Specific water

depths were sampled with a CTD/rosette sampler equipped

with twelve 5 L Niskin bottles, a Sea-Bird SBE 911 plus

CTD and an SBE 43 oxygen sensor for online monitoring

of salinity, temperature, pressure, and dissolved oxygen.

2.3 CH4 concentrations and stable isotope composition

Aliquots of seawater were immediately subsampled from the

Niskin bottles using 1 L glass bottles for measurements of

in situ CH4 concentrations. CH4 was extracted from the wa-

ter by vacuum-ultrasonic treatment within a few hours af-

Table 1. Locations of stations and performed analyses.

Station Latitude Longitude Analysis

1 77◦05.64′ N 18◦52.67′ E [CH4], MOx-rates, δ13C-CH4

2 77◦05.23′ N 19◦29.69′ E [CH4], MOx-rates time series,

DGGE, pmoA, mxaF

5 77◦04.54′ N 21◦52.25′ E [CH4], MOx-rates, δ13C-CH4,

DGGE, pmoA, mxaF

8 77◦22.80′ N 21◦35.43′ E [CH4], MOx-rates, δ13C-CH4

12 77◦41.91′ N 19◦14.49′ E [CH4], MOx-rates, δ13C-CH4,

DGGE, pmoA, mxaF

15 77◦41.45′ N 19◦00.16′ E [CH4], MOx-rates, δ13C-CH4

18 78◦15.29′ N 19◦29.07′ E [CH4], MOx-rates, MOx-rates

time series, 13CH4, DGGE,

pmoA, mxaF

19 78◦15.41′ N 20◦20.14′ E DGGE, pmoA, mxaF

28 76◦34.95′ N 19◦02.41′ E DGGE, pmoA, mxaF

RS 70◦35.91′ N 10◦51.59′ E [CH4], MOx-rates time series

ter sampling (Schmitt et al., 1991). Hydrocarbon concentra-

tions were measured with a Chrompack 9003 gas chromato-

graph (GC) equipped with a flame ionization detector (FID).

Duplicate measurements indicate an error of 5–10 % (Lam-

mers and Suess, 1994). After GC analyses, an aliquot of the

extracted CH4 gas was transferred into pre-evacuated glass

containers for stable carbon isotope analysis performed with

an isotope ratio mass spectrometer (IRMS; Finnigan Delta

XP plus) in our onshore laboratories. The extracted gas was

purged and trapped with the PreCon equipment (Finnigan) to

preconcentrate the sample. All isotopic ratios have an analyt-

ical error < 1 ‰ and are presented in the δ notation against

the Vienna Pee Dee Belemnite (VPDB) standard.

2.4 Methane oxidation rates

MOx rates were determined from ex situ incubations of water

samples in 100 mL serum vials. The vials were filled bubble-

free from Niskin bottles and crimped with rubber stoppers

(halogenated butyl elastomer). One set of samples was then

incubated with 50 µL of 3H-labeled CH4 (160–210 kBq) in

N2, and a second set was incubated with 10 µL of 14C-

labeled CH4 (12–15 kBq). 3H-CH4 tracer addition raised am-

bient CH4 concentrations by 1–2 nM and 14C-CH4 addition

by 440–540 nM. The samples were subsequently shaken for

∼ 10 min on an orbital shaker to facilitate tracer dissolution

and then incubated in the dark at 2 ◦C. CH4 oxidation rates

(rox) were calculated assuming first-order kinetics (Reeburgh

et al., 1991; Valentine et al., 2001):

rox = k′
[CH4], (1)

where k′ is the effective first-order rate constant calculated

as the fraction of labeled CH4 oxidized per unit time, and

[CH4] is the in situ CH4 concentration. In order to determine

a suitable incubation time period, we performed parallel time

series incubations with samples collected from the fjord (sta-

tions 2 and 18) and from an open-water station (reference

www.biogeosciences.net/10/6267/2013/ Biogeosciences, 10, 6267–6278, 2013
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station – RS). During each incubation series, tracer consump-

tion was measured in duplicates after a time period of 0.5, 1,

2, 3, 4 and 5 days. In the CH4-rich waters of the fjord, our

results showed a linear tracer consumption of about 5–15 %

over the first three days of incubation (Fig. 3). A potential

bias due to substrate limitation and/or variations in reaction

velocity thus seems negligible, at least over a time period of

3 days, which we chose for our ex situ incubations. Just as

the time series incubations, vertical distribution of MOx was

determined in duplicates.

Incubations with 3H-CH4 and measurements of 3H-CH4

and 3H-H2O were carried out according to Valentine et

al. (2001) and Mau et al. (2012). Briefly, total activity (3H-

CH4 + 3H-H2O) was measured in 1 mL of sample aliquot by

wet scintillation counting, and activity of 3H-H2O was mea-

sured after sparging the sample for > 30 min with N2 to re-

move remaining 3H-CH4.

Incubations with 14C-CH4 were terminated by injecting

0.5 mL of 10 M NaOH and adding a 5 mL headspace so

that the remaining 14C-CH4 accumulated in the headspace

and the produced 14C-CO2 and 14C biomass was trapped in

the aqueous NaOH solution. Separation and activity mea-

surement of 14C-CH4 and 14C-CO2 were carried out anal-

ogously to previous measurements of CH4 turnover in sedi-

ments (Treude et al., 2003; Niemann et al., 2005). In short,
14C-CH4 in the headspace was combusted to 14C-CO2, while
14C-CO2−

3 was converted to 14CO2 through acidification

with HCI. In either case, 14C-CO2 was trapped in a solution

of methoxyethanol and phenylethylamine, and the radioac-

tivity was measured by wet scintillation counting. We also

measured remaining radioactivity in the sample after 14C-

CH4 and 14CO2−
3 removal (probably 14C incorporated into

biomass), which ranged between 4 and 84 % (average 35 %)

of the total product.

2.5 Diversity of MOx community

The diversity of the natural bacterioplankton assemblages

was examined by denaturing gradient gel electrophoresis

(DGGE) based on the 16S rRNA gene. Immediately after

sampling, bacterial cells were concentrated on Nuclepore fil-

ters (0.2 µm pore size) and the filters were stored frozen at

−20 ◦C until DNA extraction. Total community DNA was

extracted using the UltraClean Soil DNA Kit (MoBio Labo-

ratories, USA). One to five microliters of DNA extract was

applied as the template in the 16S rRNA gene specific PCR,

with GM5 plus GC-clamp as the forward primer and 907RM

as the reverse primer (Muyzer et al., 1993). PCR conditions

were as described by Gerdes et al. (2005). PCR products

(ca. 500 bp) were analyzed by DGGE based on the protocol

of Muyzer et al. (1993) using a gradient chamber. Clearly

visible bands of the DGGE pattern were excised from the gel

and reamplified by PCR (Gerdes et al., 2005) and sequenced.

The 16S rRNA gene sequences were then assigned to the

new higher-order taxonomy proposed in Bergey’s taxonomic
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Fig. 3. Time series incubation of water samples collected at (A)

station 2 (77◦5.226′ N and 19◦29.694′ E) at 135 m water depth, at

(B) station 18 (78◦15.288′ N and 19◦29.070′ E) at 50 m water depth,

and at (C) a reference station (RS, 70◦35.91′ N and 10◦51.59′ E)

at 101 m water depth. 14C-CH4 and 3H-CH4 results are shown as

black and gray circles, respectively.

outline of the “Prokaryotes” by the “Ribosomal Database

Project (RDP) Classifier” (Wang et al., 2007). The sequences

were further compared with those deposited in GenBank us-

ing the BLAST algorithm.

The presence of CH4-oxidizing bacteria in the com-

munities was screened by the two functional primer sets

“pmoA” and “mxaF”, targeting the genes encoding subunits

of the particulate methane monooxygenase (pMMO) and

the methanol dehydrogenase (MDH), respectively. Both en-

zymes are key enzymes for methanotrophs (e.g., McDonald

et al., 2008). However, the mxaF gene is also present in al-

most all other methylotrophic bacteria. The primer sets and

amplification conditions employed in the gene-specific PCR

reaction are described in Holmes et al. (1995) and McDonald

and Murrell (1997), respectively.
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3 Results

3.1 Water column biogeochemistry

According to Skogseth et al. (2005), we could identify three

distinct water masses: melt water, MW (T : > 0.0 ◦C, S:

< 34.2); Arctic water, ArW (T : < 0.0 ◦C, S: 34.3–34.8); and

brine-enriched shelf water, BSW (T : < −1.5 ◦C, S: > 4.8)

(Fig. 4d).

The MW extended from the surface to ∼ 60 m water depth;

this is the depth range where the thermocline is located

and temperature decreased by ∼ 4 ◦C (Fig. 4a). In the MW,

CH4 concentrations increased from ∼ 20 nM at the surface

to 72.3 nM at 60 m water depth (Fig. 5a). All concentrations

were high and oversaturated with respect to the atmospheric

equilibrium concentration of 3.3–3.9 nM (at the relevant T/S

conditions, Wiesenburg and Guinasso, 1979). Similar to con-

centrations, microbial oxidation rates determined with 3H-

and 14C tracer increased with depth to 2.3 nM day−1 and

0.77 nM day−1, respectively, at 60 m (Fig. 5b and c). In the

MW, rates measured with 14C tracer (440–540 nM 14C-CH4

added) were consistently lower than those determined with
3H tracer (1–2 nM 3H-CH4 added). δ13C-CH4 values in this

water mass ranged between −43.5 and −53.6 ‰ (Fig. 5d).

In the ArW, (60 to ∼ 100 m water depth) oxygen concen-

trations decreased with depth from 350 to 320 µM (Fig. 4c)

and CH4 concentrations from 42 to 6.5 nM (Fig. 5a). Both

MOx rates determined with 3H and 14C tracer showed a max-

imum at ∼ 80 m in this water mass (Fig. 5b and c). The stable

carbon isotopic signature of CH4 showed a strong shift from

−46 to about −32 ‰ at ∼ 80 m (Fig. 5d).

The BSW (> 100 m water depth) was characterized by

oxygen concentrations below 320 µM (Fig. 4c). CH4 con-

centrations decreased slightly with depth, but were stable

below 120 m (8–9 nM, Fig. 5a). MOx rates determined with
3H-labeled CH4 showed a similar trend to the CH4 concen-

trations. However, while 3H-MOx rates (approximately in

situ rates) were low, rates determined with 14C-labeled CH4

(rates determined at elevated CH4 concentrations) were com-

parably high, with a maximum of 1.9 nM day−1 at ∼ 100 m

water depth (Fig. 5b and c). The carbon isotopic signature of

the CH4 decreased steadily from its maximum of −30 ‰ at

100 m to −39 ‰ in the lowermost sample (136 m, Fig. 5d).

3.2 Microbial communities

3.2.1 DGGE of 16S rDNA

Similar to the biogeochemical results, the MW and BSW at

the studied stations (stations. 2, 5, 12, 18, 19) showed dis-

tinct DGGE banding patterns (Fig. 6, Table 2) indicating that

surface MW and deep waters were populated by different mi-

crobial communities.

The MW samples showed strong DGGE bands that we

could assign to eukaryotic-chloroplast DNA (#3, #4) and to

Fig. 4. Depth profiles of temperature (A), salinity (B), and oxy-

gen concentrations (C), as well as a temperature–salinity graph with

temperature–salinity ranges of the dominant water masses in Stor-

fjorden (D). Stations 5 and 8 are less than 20 m deep and appear as

dots in the temperature–salinity graph.

Alphaproteobacteria of the genera Phaeobacter and Sulfito-

bacter (#7, #8). The affiliation to the genus Phaeobacter was,

however, relatively weak (0.51 confidence value, Table 2), in-

dicating a possibly yet-undescribed bacteria type. Additional

bands (#5, #9, and #11) could be assigned to the genera Flu-

viicola within the phylum Bacteroidetes, Haliea within the

phylum Proteobacteria, and llumatobacter within the phy-

lum Actinobacteria. Although we could measure CH4 oxida-

tion in the surface waters, the DGGE based on the 16S rRNA

gene did not reveal known methanotrophs.

In contrast to the diverse MW community, all deep-water

samples (station 12, 127 m; station 2, 138 m; station 18,

136 m) showed a quite low diversity with only two strong (#

6 and #7) and one weaker DGGE band (#10) (Fig. 6). Band

#7 was also common in the upper water masses, while band

#6 was only found in the BSW samples. This band could

be affiliated with Methylosphaera, which is a known type I

MOx bacterium (Bowman et al., 1997). However, the confi-

dence value of 0.38 was relatively low (Table 2). The deep-

water-specific band #10 could be assigned to the sulphate

reducer Desulfobacca, also with a relatively low confidence

level (0.19, Table 2).

3.2.2 Molecular marker genes of methanotrophs

The pmoA gene that encodes the alpha subunit of the partic-

ulate methane monooxygenase is a molecular marker gene

www.biogeosciences.net/10/6267/2013/ Biogeosciences, 10, 6267–6278, 2013
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Table 2. Classification of partial 16S rRNA sequences to bacterial

taxa performed with the RDP Classifier (Wang et al., 2007). The

confidence value (0–1) for assignment at the level of class and genus

is given in parentheses.

No. Class Genus

1 Alphaproteobacteria (1) Cand. Pelagibacter (1)

2 Flavobacteria (1) Polaribacter (1)

3 Cyanobacteria (1) Chlorophyta (0.98)

4 Cyanobacteria (1) Chlorophyta (1)

5 Flavobacteria (1) Fluviicola (0.81)

6 Gammaproteobacteria (1) Methylosphaera (0.38)

7 Alphaproteobacteria (1) Phaeobacter (0.51)

8 Alphaproteobacteria (1) Sulfitobacter (0.97)

9 Gammaproteobacteria (1) Haliea (1)

10 Deltaproteobacteria (0.27) Desulfobacca (0.19)

11 Actinobacteria (1) Ilumatobacter (1)

of methanotrophs (McDonald et al., 2008). In contrast to the

16S rRNA-based survey, the pmoA-based PCR yielded am-

plicons within all surface- and deep-water samples (Fig. 7)

attesting to the ubiquitous presence of MOx communities in

waters of Storfjorden. However, besides the expected product

of 530 bp, all deep-water samples showed a further, longer

amplicon. Nevertheless, none of the > 530 bp amplicons

could be affiliated with known pmoA genes, which suggests

either novel pmoA types or unspecific PCR products. A sim-

ilar distinction of the water masses was also apparent from

the distribution of the mxaF gene (Fig. 7) that encodes the

enzyme methanol dehydrogenase, which catalyzes the sec-

ond step in CH4 oxidation. The mxaF gene was also found

in all samples, but deep-water samples showed several addi-

tional, weak, and shorter mxaF bands.

4 Discussion

4.1 Water column stratification and methane sources

Storfjorden water column mixing regimes were the subject

of several previous publications (e.g., Haarpaintner et al.,

2001; Skogseth et al., 2005; Fer, 2006). The fjord is a deep

semi-enclosed basin in the Svalbard Archipelago character-

ized by brine formation as a result of ice formation in latent

heat polynyas during wintertime (Haarpaintner et al., 2001).

Descending brines induce strong vertical mixing (Jardon et

al., 2011) and turbulence at the sediment–water interface.

However, accumulation of brine in bottom waters also leads

to a stabilization of the water column, which is further en-

hanced through a ∼ 60 m thick surface layer of relatively salt-

depleted MW in summertime (Fig. 4). The residence time of

the deep BSW is 90–246 days, relatively long compared to

the 51–141 days of the surface water (Geyer et al., 2009), so

that ongoing oxygen consumption leads to the comparably

low oxygen levels that were detected previously (Anderson

et al., 1988) and in this study.

CH4 concentrations in Storfjorden are generally high, at

6–72 nM. These elevated concentrations originate from mi-

crobial methanogenesis in the sediments and enhanced trans-

port from sediments into the water column as a result of

the descending brines inducing turbulence at the sediment–

water interface (Damm et al., 2007). However, CH4 concen-

trations indicate a second CH4 source at 40–60 m water depth

(Fig. 5a). Here O2 concentrations were high as well (Fig. 4c),
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Fig. 6. DGGE profile of 16S rRNA gene fragments of MW and

BSW samples from different stations in Storfjorden. Numbers on

the left-hand side of the lanes indicate excised and successfully se-

quenced DGGE bands, whose phylogenetic assignment is listed in

Table 2. MW and BSW samples are framed by a light-blue and

dark-blue rectangle, respectively. Dendrogram derived from UP-

GMA cluster analysis with the similarity coefficient of Jaccard.

possibly indicating a maximum of phytoplankton. The sec-

ond CH4 source could thus be related to water column in situ

production by yet unidentified microorganisms utilizing the

phytoplankton metabolite DMSP as a carbon source (Damm

et al., 2008) or microbially produced MPn as a potential

phosphorus source (Karl et al., 2008; Metcalf et al., 2012).

However, further investigations are required to determine the

role of these compounds as potential CH4 precursors at Stor-

fjorden.

While a significant fraction of the CH4 is consumed (see

Sect. 4.2), Storfjorden is apparently a CH4 source to the at-

mosphere (Damm et al., 2007), as indicated by CH4 con-

centrations of up to 30 nM in the well-mixed surface layer.

These concentrations are highly supersaturated with respect

to the atmospheric equilibrium (3.3–3.9 nM, Wiesenburg and

Guinasso, 1979).
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Fig. 7. Agarose-electrophoresis gels of PCR products of the pmoA

and mxaF genes obtained from surface MW and deep BSW water

samples of different stations in Storfjorden. MW and BSW samples

are framed by a light-blue and dark-blue rectangle, respectively.

4.2 Vertical distribution of methane oxidation

Maximum MOx rates in the water column of Storfjorden

were ∼ 2 nM day−1, and are thus very similar to MOx rates

measured in the Santa Barbara Basin (Pack et al., 2011; Mau

et al., 2012) and the Black Sea (Reeburgh et al., 1991), which

are both well-known areas of large methane input (Fig. 1).

However, our rates are 3 orders of magnitude lower com-

pared to the measurements conducted after the Deep Wa-

ter Horizon accident in the Gulf of Mexico, during which

catastrophic amounts of hydrocarbons were released into the

water column, triggering a rapid response in MOx activity

(Valentine et al., 2010; Kessler et al., 2011). Other MOx rate

measurements were conducted in Bristol Bay and the south-

east Bering Sea (Griffith et al., 1982), the Cariaco Basin

(Ward et al., 1987), Saanich Inlet (Ward, 1989 and Ward and

Kilpatrick, 1990), in Southern California Bight (Ward, 1992;

Pack et al, 2011; Heintz et al., 2012; Ward and Kilpatrick,

1993), in the Eel River basin (Valentine et al., 2001), the Gulf

of Mexico (Kelley, 2003), and at hydrothermal vents at Juan

de Fuca Ridge (de Angelis et al., 1991, 1993). It appears that

most of these MOx rates fall into the range between 0.001

and 10 nM day−1 and that MOx activity is elevated in ocean

environments with high CH4 concentrations. However, MOx

activity in the surface- (Ward, 1992; Kelley, 2003, this study)

and open ocean (Sauter et al., 2006) seems to be rather low.

In addition to these larger-scale trends, our results

from Storfjorden indicate distinct and vertically separated

regimes of CH4 oxidation. This distinction is apparent when
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comparing MOx rates in deep BSW (> 100 m) with surface

MW (< 60 m). The ArW (60–100 m) appears to be an inter-

mediate between the two regimes (Fig. 5b and c). We incu-

bated parallel samples with 3H- and 14C-labeled CH4. While

absolute rate measurements with 3H-CH4 were moderate in

ArW and BSW, rates with 14C-CH4 were elevated in these

water masses. We suggest that this is related to the differ-

ent amounts of CH4 that were added as a result of 3H-CH4

compared to 14C-CH4 application. While in incubations with
3H-CH4, the final CH4 concentrations were only raised by

< 2 nM, 14C-CH4 amendments lead to a CH4 increase of

∼ 450 nM. It is therefore reasonable to assume that the ac-

tivity of the deep-water MOx community was stimulated as

a result of elevated CH4 concentrations (Pack et al., 2011).

This is most likely related to enzyme kinetics (Ward and Kil-

patrick, 1990; Bender and Conrad, 1993; Smith et al., 1997),

which can be described with the Michaelis–Menten model

(Button, 1985; Johnson and Goody, 2011, translation of the

1913 Michaelis–Menten paper). The Michaelis–Menten re-

lation shows that enzyme activity, expressed by the reac-

tion rate, increases hyperbolically with substrate concentra-

tion but levels off once the enzymatic machinery involved

in the metabolic pathway is saturated with substrate. Simi-

lar relations were found between cell- or community-specific

rates and substrate concentrations (Button, 2010, and refer-

ences therein). For a stable community, a maximum rate thus

exists, which may only increase as a result of elevated en-

zyme concentrations (e.g., population growth) and/or opti-

mization of cytoarchitectural components relevant for sub-

strate metabolism (e.g., transporter system). We could show

that substrate turnover rates were linear over the incubation

time period of three days (Fig. 3). At least for our incubation

experiments, it thus seems unlikely that the CH4 amendments

induced an increase in enzyme concentration or optimization

of other parameters relevant for substrate metabolism.

The derivative of the Michaelis-Menton function for low

substrate concentrations (CH4 concentrations lower than half

saturation constant, km) yields the first-order rate constant

(k′), which, multiplied with the substrate concentration, de-

fines the actual rate (rox; see Eq. 1). Consequently, under

substrate-limiting conditions, k′ values are high but decrease

if substrate concentrations approach enzyme saturation level.

This relationship is depicted in Fig. 8. In MW (the fjord’s sur-

face layers), k′ values were high during 3H-CH4 incubations,

i.e., without substantial CH4 amendments, but the addition

of CH4 in the 14C-CH4 incubations led to a substantial de-

crease (5–10 fold) in k′, which suggests enzyme saturation.

On the other hand, the deep-water community in ArW and

particularly in BSW appeared to operate at CH4 concentra-

tions below saturation because the addition of CH4 through
14C-CH4 tracer application led to an increase in k′ compared

to parallel incubations with 3H-CH4.

It should be noted that rate measurements with two dif-

ferent substrate concentrations (we added 2 nM and 450 nM)

are not useful for a kinetic study yielding km and/or the max-
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14C-CH4 k' (1/d)

0.0001

0.001

0.01

0.1

1
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H
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H

4
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Fig. 8. Comparison of rate constants (k′) determined with 3H-CH4-

and 14C-CH4 tracers. Straight line shows the 1:1 fit; that is, if k′

derived from both tracers were equal. Samples from surface melt

water fall above this line (k′ determined by 3H-CH4 is higher than

k′ derived by 14C-CH4) and samples from the deep brine-enriched

shelf water mainly fall below this line (k′ determined by 14C-CH4

is higher than k′ derived by 3H-CH4).

imum reaction velocity (vmax). Nevertheless, adaptation to

different substrate concentrations, as indicated by our results,

can (at least in parts) be explained by the Michaelis–Menten

concept. The MOx community inhabiting the deeper water

masses, which are periodically exposed to high CH4 concen-

trations, seems to be adapted to high CH4 substrate levels. In

contrast, the community inhabiting surface waters with gen-

erally low CH4 concentrations seems not to be adapted to

metabolize additional CH4, which could be related to a low

enzymatic km. Low km values, which were found to range

between 10 nM and 10 µM (e.g., Bender and Conrad, 1993,

Baani and Liesack, 2008), could indeed explain this phe-

nomenon. However, the available km values from the liter-

ature were determined from organisms found in terrestrial

or freshwater environments or from cultured bacteria, which

most likely do not represent the rather unknown marine com-

munities. Furthermore, the enzymatic km may not be the

same as the apparent cell/community-based km (see discus-

sion by Button, 2010).

The question remains as to why the MOx communities in

deep and surface waters were apparently adapted to high and

low CH4 concentrations, respectively. Relatively low CH4

concentrations in deeper water layers seem to be a regular

feature of Storfjorden, at least during summertime (Damm

et al., 2008). However, during wintertime, CH4 export from

the sediments is enhanced, leading to elevated CH4 concen-

tration of up to ∼ 60 nM with a δ13C-signature of −40 to
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−50 ‰ in deeper water layers of Storfjorden (Damm et al.,

2007). It thus appears reasonable to assume that the deep-

water community is adapted to comparably high wintertime

CH4 concentrations. In summertime, ongoing CH4 oxidation

leads to decreasing CH4 concentrations and an increase in
13C in the residual CH4 (Fig. 5). In contrast, surface CH4

seems only to increase strongly during summer (to ∼ 50 nM),

potentially as a result of CH4 production in the oxic wa-

ter column. However, we cannot explain why surface-water

methanotrophs appear not to have adapted to the high sum-

mertime CH4 concentrations or possibly lack the ability to

adapt.

4.3 Microbial community

Similar to the MOx regimes, the diversity of the bacterial

assemblage was different when comparing surface MW to

the deep BSW. Our DGGE analyses indicate a higher micro-

bial diversity in surface- compared to the deep water (Fig. 6,

Table 2). Nevertheless, we only found one band in the sur-

face water (#9) and one band in the deep water (#6) that

might be related to CH4 oxidizers. Band #9 could be af-

filiated to the genus Haliea of which novel isolates were

found to oxidize ethylene and to possess genes similar to

those encoding pMMO (Suzuki et al., 2012). Band #6 could

be assigned to a known aerobic methanotroph of the genus

Methylosphaera (yet with a relatively low confidence value

of 0.38). Species of the order Methylosphaera were previ-

ously found in Antarctic marine salinity, meromictic lakes

(Bowman et al., 1997). The different patterns of MOx-related

bands in surface- and deep water thus indicate the presence

of different MOx communities in these water masses.

Similar to the 16S gene rRNA-based survey, the pmoA and

mxaF gene analyses indicated differences between surface-

and deep-water masses (Fig. 7). All samples analyzed gen-

erated amplicons with both primer sets; the deep-water sam-

ples, however, showed an additional, longer pmoA band and

several weak, shorter mxaF bands suggesting the presence of

different, and possibly novel, pmoA- and mxaF-related gene

sequences or unspecific PCR products. Similar suggestions

(novel sequences or unspecific PCR products) were given in

other studies using the pmoA primers, which we used, re-

sulting in a limited coverage of the methanotrophic diversity

and yielding PCR products that could also not be assigned

to known pmoA types (Bourne et al., 2001; Henckel et al.,

2000, Tavormina et al., 2008). Nevertheless, in addition to

the 16S banding pattern and MOx rates at elevated CH4 con-

centrations, this further indicates that surface- and deep wa-

ters comprise different MOx communities.

The question remains as to what are the driving mecha-

nisms for the development of the MOx communities in the

different water masses. Here, we suggest that resuspension of

sediments as a result of turbulent mixing during wintertime

could have inoculated the deeper water masses with sediment

microbes including benthic MOx communities. These are of-

ten distinct from planktonic communities (Bowman et al.,

1997; He et al., 2012; Tavormina et al., 2008), and probably

adapted to higher CH4 concentrations. This scenario would

also explain the presence of the sulfate reducer Desulfobacca

in the oxic deep waters. Sulfate-reducing bacteria are usually

adapted to an anoxic environment (e.g., sediments), and may

tolerate only low O2 levels, yet resting cells of sulfate re-

ducers were also found in fully oxygenated waters (Hastings

and Emerson, 1988; Teske et al., 1996). In contrast to the

deep waters, the comparably short residence time of surface

waters and the rather rapid exchange with the Barents Sea

argues for a planktonic source of MOx communities in this

water mass.

5 Conclusions

Incubation experiments with different substrate levels (here

we used different tracers) are useful to identify distinct

methanotrophic responses in different water masses. With

respect to the natural CH4 concentrations of our study site

(< 80 nM, Fig. 5), we used 3H-CH4 amendments, which al-

tered absolute CH4 concentrations by 1–2 nM. The 14C-CH4

amendments, in contrast, increased CH4 concentrations by

440–540 nM. The 3H-CH4 ex situ tracer incubations thus

yield rates that may be similar to in situ rates. 14C-CH4 ex

situ rates were within the same order of magnitude as those

determined with 3H-CH4. Yet, because of the high CH4 con-

centration increase during our incubations with 14C-CH4,

these ex situ rates rather provide an indication for the rate po-

tential of the MOx community. Rate measurements typically

provide a temporal snapshot, which is difficult to upscale,

particularly in environments with spatiotemporally varying

CH4 fluxes. Knowledge on the MOx rate at elevated CH4

concentrations, on the other hand, provides a means to es-

timate the response in MOx activity in relation to changing

CH4 fluxes.
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