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Abstract: The vertical vibration of a viscoelastic pile immersed in arbitrarily layered soil is investi-
gated by taking the interaction among pile, pile surrounding soil (PSS) and pile end soil (PES) into
account. Firstly, considering both the stratification and stress wave effect of soil, a mathematical model
of the pile–soil system is established based on the fictitious soil pile (FSP) model. Then, utilizing the
impedance function transfer method and Laplace transform technique, the analytical solutions of the
vertical dynamic impedance of pile are derived in the frequency domain. The analytical solutions
are validated by comparing them with other existing solutions. Finally, a parametric study is put
forward to investigate the properties of PES on the vertical dynamic impedance of pile. The results
reveal that the properties of PES have a significant effect on the vertical dynamic impedance of pile,
but there is a critical influence thickness for this effect. For the cases of the PES thickness exceeding
the critical influence thickness, further increase of PES thickness will not affect the dynamic behavior
of the pile–soil system.

Keywords: pile vibration; layered soil; fictitious soil pile model; stress wave effect; vertical
dynamic impedance

1. Introduction

The vibration theory of pile foundation is the theoretical basis for the dynamic design
of the foundations of wind turbines, bridges and other facilities, which has received exten-
sive attention from scholars in the past few decades [1–4]. Throughout the development of
the vibration theory of pile foundation, it can be seen that the pile–soil dynamic interac-
tion models are alwaysthe main line of research regarding the vibration problems of pile
foundation. In the field of the dynamic interaction between pile and PSS, there are three
typical models, namely, the dynamic Winkler model [5–13], plain-strain model [14–22]
and three-dimensional axisymmetric continuum model [23–34]. These models greatly
promote the development of pile foundation dynamics. It can be concluded that the types
of interaction models between pile and PES are very rich and complex, and the various
characteristics of PSS that can be considered are also relatively comprehensive [35].

As it is well known, like the influencing factors of pile bearing capacity, the vibration
behavior of pile is also controlled by the interaction among pile, PSS and PES, and the higher
the end bearing ratio, the greater the effect of PES [36]. Many research results have also
shown that the bearing conditions of PES have an important effect on the dynamic behavior
of the pile–soil system. For example, the support stiffness of PES directly determines
the vertical and torsional resonance frequencies of pile head, which are little affected
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by PSS [37–39]. Therefore, in many engineering cases, PES would be the main control
factor of pile vibration characteristics. Studying and accurately reflecting on itseffect,
the vibration characteristics of pile foundation are very important to the development of
the vibration theory of pile foundation. However, due to the difficulty of establishing a
strict coupling model for the dynamic interaction of pile and its end soil, the research on
the effect of PES on the vibration behavior of pile is still insufficient. Through literature
research, it is found that two typical models are the most widely utilized. The first one
is the rigid model, which assumes the PES to be a fixed boundary [6,14,23,25,26,30,33,35].
The rigid model is only suitable for end-bearing piles. The second one is the elastic model
(simulated by a linear spring) [12,27,37,38] or viscoelastic model (simulated by a Voigt
model) [7,9–11,17–19,21,39]. Although these models are convenient to use in engineering,
the values of model parameters are mostly determined by an empirical formula, which
lacks connection with the PES properties.

In recent years, to overcome the deficiencies of the existing support models of pile
bottom, Wu et al. [40] put forward the FSP model where the soil column between the pile
end and the bedrock (i.e., the soil column within the projection range of the pile cross-
section) is regarded as a ‘soil pile’. The parameters of the ‘soil pile’ take the parameters
of actual soil layers, and its deformation is assumed to conform to the plane section
assumption. In view of the small deformation of the bedrock, the bottom boundary of
FSP can be regarded as a rigid boundary. According to the layered characteristics of the
PES and whether there is sediment or compaction at the pile end, FSP can be divided into
several sections along the vertical direction; that is, the layered characteristics of the PES
can be considered in the FSP model. In recent years, the FSP model was also utilized to
study the torsional vibration and settlement problems of pile foundation [22,29,41–45].
However, to popularize the model in engineering, the FSP model needs to be applied to
more engineering cases to verify its rationality.

In light of this, this paper introduces the FSP model to study the vertical vibration
problem of a viscoelastic pile by taking both the stratification and stress wave effect of
soil into account. Firstly, the vertical vibration model of the pile–soil system is established
by utilizing the FSP model and a simplified dynamic interaction model between adjacent
soil layers [41]. Then, the analytical solutions for the vertical dynamic impedance of pile
are derived in the frequency domain by adopting the Laplace transform technique and
impedance function transfer method. The present solutions are verified by comparing
with some existing simplified answers. Finally, a parametric study is also put forward to
study the effect of the properties of PES on the vertical dynamic impedance of pile. The
research results of this paper can provide theoretical support for the dynamic design of
pile–soil systems considering the strict coupling interaction among pile, PSS and PES. The
present model can also provide reference ideas for other complex vibration problems of the
pile–soil system.

2. Mathematical Model Construction
2.1. Geometry of Pile–Soil System

In this paper, the vertical vibration behavior of a viscoelastic pile immersed in arbitrary
layered soil is studied based on the FSP model. The stress wave effect of soil in the vertical
direction is considered, and the viscoelastic pile is rigorous coupled with its surround-
ing soil and end soil. The geometry of the pile–soil interaction model is illustrated in
Figure 1. Considering the layered characteristics of soil and the variation of the properties
(i.e., modulus or sectional area) of pile, the pile–soil system is decomposed into a total of m
segments (layers), which are marked by 1, 2, . . . , j, . . . , m from the FSP bottom to pile head.
lj and hj denote the thickness and top surface depth of the jth (1 ≤ j ≤ m) pile–soil segment,
respectively. The properties of the pile and soil layer are assumed to be homogeneous
within each segment or layer, respectively, but may vary from segment to segment or layer
to layer [40]. The radius of the jth pile segment (including FSP) is defined as rp

j . Hp and
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Hs represent the length of pile shaft and the thickness of PES, respectively. The vertical
harmonic force acting on the pile head can be expressed as q(t).
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The main assumptions of this paper are given as follows:
(1) The soil surrounding and the underlying pile is viscoelastic, infinite in the radial

direction and arbitrarily layered in the vertical direction. The viscous damping coefficient
of the jth soil layer is represented by ηs

j which is in direct proportion to velocity.
(2) There are no normal or shear stresses at the top surface of the soil. The bottom of

the PES is the bedrock which can be regarded as a rigid boundary.
(3) The dynamic interaction between adjacent soil layers can be simulated as a dis-

tributed Voigt model [41]. The spring constant and damping coefficient of the distributed
Voigt model between the jth soil layer and its upper adjacent soil layer can be defined as ks

j
and δs

j , and the corresponding parameters between the jth soil layer and its lower adjacent
soil layer can be denoted by ks

j−1 and δs
j−1, respectively.

(4) The stress wave effect of PSS in the vertical direction is considered, and the radial
displacement of PSS can be ignored during the vibration of the pile–soil system.

(5) The pile (including FSP) is vertical, viscoelastic and circular in cross-section. During
vibration, the pile and PSS, pile and PES are in continuous contact, which results in the
stress and displacement at the interface of pile and soil being continuous.

(6) During vibration, the deformations and strains of the whole pile–soil system are
relatively small.

2.2. Dynamic Equilibrium Equations of the Pile–Soil System

The vertical displacement of the jth soil layer at any point corresponding to time
t is denoted as wj = wj(r, z, t). Based on the viscoelastic dynamic theory, the dynamic
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equilibrium equations of the jth soil layer undergoing vertical axisymmetric excitation
about the z-axis of a cylindrical polar coordinate system can be derived as:

(λs
j + 2Gs

j )
∂2wj
∂z2 + Gs

j (
1
r

∂wj
∂r +

∂2wj
∂r2 ) + ηs

j
∂
∂t (

∂2wj
∂z2 )+

ηs
j

∂
∂t (

1
r

∂wj
∂r +

∂2wj
∂r2 ) = ρs

j
∂2wj
∂t2

(1)

where λs
j and Gs

j are the Lame’s constants of the jth soil layer and satisfy λs
j = Es

j µs
j /[(1 + µs

j )

(1− 2µs
j )] and Gs

j = ρs
j (V

s
j )

2, respectively; Es
j , ρs

j , Vs
j and µs

j are the elastic modulus, density,
shear wave velocity and Poisson’s ratio of the jth soil layer, respectively. For the viscoelastic
soil, the vertical shear stress amplitude at an arbitrary point in the jth soil layer can be
expressed as:

τs
rzj = Gs

j
∂wj

∂r
+ ηs

j
∂2wj

∂t∂r
(2)

Introducing the Euler–Bernoulli theory, the dynamic equilibrium equations of the jth
pile (including FSP) segment can be founded as:

Ep
j Ap

j
∂2uj

∂z2 + Ap
j η

p
j

∂3uj

∂t∂z2 −mp
j

∂2uj

∂t2 − 2πrp
j τs

rzj(r
p
j , z, t) = 0 (3)

where uj = uj(z, t) represents the vertical displacement of the jth pile (including FSP)
segment. τs

rzj(r
p
j , z, t) denotes the per unit area shear stress of the jth soil layer acting on

the pile shaft at the interface of the pile–soil system. Ep
j , η

p
j , mp

j and Ap
j denote the elastic

modulus, viscous damping coefficient, unit mass and cross-section area of the jth pile
(including FSP) segment.

2.3. Boundary Conditions (BCs) and Initial Conditions (ICs)

Based on the basic assumptions, the BCs and ICs of the pile-soil system can be obtained
in the global coordinate system.

(1) BCs for the jth soil layer can be given as:
At the top surface of the jth soil layer:

Es
j

∂wj

∂z

∣∣∣∣
z=hj

= (ks
j wj + δs

j
∂wj

∂t
)

∣∣∣∣
z=hj

(4)

At the bottom surface of the jth soil layer:

Es
j

∂wj

∂z

∣∣∣∣
z=hj+lj

= − (ks
j−1wj + δs

j−1
∂wj

∂t
)

∣∣∣∣
z=hj+lj

(5)

As r → ∞ , the shear stress and bounded displacement of the jth soil layer can be
written as:

σj(∞, z) = 0; wj(∞, z) = 0 (6)

(2) BCs for the jth pile (including FSP) segment can be given as:
At the top surface of the jth pile segment:

∂uj

∂z

∣∣∣∣
z=hj

= −
Zj(s)uj

Ep
j Ap

j

∣∣∣∣∣
z=hj

(7)

At the bottom surface of the jth pile segment:

∂uj

∂z

∣∣∣∣
z=hj+lj

= −
Zj−1(s)uj

Ep
j Ap

j

∣∣∣∣∣
z=hj+lj

(8)
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where Zj−1(s) and Zj(s) represent the vertical dynamic impedance at the bottom and top
surface of the jth pile segment, respectively.

(3) BCs at the interface of the pile–soil system can be expressed as:

w(rp
j , z, t) = uj(z, t) (9)

(4) ICs of the pile–soil system can be built as:
The ICs of the jth soil layer:

wj
∣∣
t=0 = 0;

∂wj

∂t

∣∣∣∣
t=0

= 0;
∂2wj

∂t2

∣∣∣∣∣
t=0

= 0 (10)

The ICs of the jth pile segment:

uj
∣∣
t=0 = 0;

∂uj

∂t

∣∣∣∣
t=0

= 0 (11)

3. Solutions of Pile Surrounding Soil

Denoting Wj(r, z, s) =
∫ +∞

0 wj(r, z, t)e−stdt as the Laplace transform of wj(r, z, t) with
respect to time and combining with the ICs (Equation (10)), applying the Laplace transform
(two-sided) to Equation (1) yields:

(λs
j + 2Gs

j + ηs
j · s)

∂2Wj

∂z2 + (Gs
j + ηs

j · s)(
1
r

∂Wj

∂r
+

∂2Wj

∂r2 ) = ρs
j s

2Wj (12)

where s denotes the Laplace constant.
Applying the separation of variables technique, substituting the single-variable func-

tion Wj(r, z, s) = Rj(r)Zj(z) into Equation (12) gives:

(λs
j + 2Gs

j + ηs
j · s)

1
Zj(z)

∂2Zj(z)
∂z2 +

(Gs
j + ηs

j · s)
1

Rj(r)
( 1

r
∂Rj(r)

∂r +
∂2Rj(r)

∂r2 ) = ρs
j s

2
(13)

Then, Equation (13) can be divided into the following equations:

d2Rj(r)
dr2 +

1
r

dRj(r)
dr

− ξ2
j Rj(r) = 0 (14)

d2Zj(z)
dz2 + β2

j Zj(z) = 0 (15)

where ξ j and β j are eigenvalues whose relationship is given as:

− (λs
j + 2Gs

j + ηs
j · s)β2

j + (Gs
j + ηs

j · s)ξ
2
j = ρs

j s
2 (16)

Equation (16) can be further rewritten as:

ξ2
j =

(λs
j + 2Gs

j + ηs
j · s)β2

j + ρs
j s

2

Gs
j + ηs

j · s
(17)

The general solutions of Equations (14) and (15) can be derived as:

Rj(r) = AjK0(ξ jr) + BjI0(ξ jr) (18)

Zj(z) = Cj sin(β jz) + Dj cos(β jz) (19)
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where I0(·) and K0(·) are the modified Bessel functions of order zero of the first and second
kinds, respectively. Aj, Bj, Cj and Dj are undetermined constants that can be obtained by
utilizing boundary conditions.

Combining Equations (18) and (19), the general solution of Equation (13) can be
derived as:

Wj(r, z, s) = [AjK0(ξ jr) + BjI0(ξ jr)][Cj sin(β jz) + Dj cos(β jz)] (20)

The local coordinate system is established for mathematical convenience. To realise
that, the global coordinate is transferred into m local coordinates, the origins of which are
set at the top surface of each pile segment, and the z-axis of the local coordinate system
coincides with that of the global coordinate system. Then, z = hj and z = hj + lj in the global
system are transferred to z′ = 0 and z′ = lj in the local coordinate system, respectively. Taking
the Laplace transform of boundary conditions (Equations (4) and (5)) yields:

[
(ks

j + δs
j · s)

Es
j

Wj(r, z′, s)−
∂Wj(r, z′, s)

∂z′
]

∣∣∣∣∣
z′=0

= 0 (21)

[
(ks

j−1 + δs
j−1 · s)

Es
j

Wj(r, z′, s) +
∂Wj(r, z′, s)

∂z′
]

∣∣∣∣∣
z′=lj

= 0 (22)

σj(∞, z′) = 0; Wj(∞, z′) = 0 (23)

Based on the particular characters of Bessel function as r → ∞ , In(·)→ ∞ , Kn(·)→ 0
with boundary condition (Equation (23)), the value of Bj can be obtained as: Bj = 0.
Combining Equations (21) and (22) yields:

tan(β jlj) =
(

ks
j+δs

j ·s
Es

j
lj +

ks
j−1+δs

j−1·s
Es

j
lj)β jlj

(β jlj)
2 − (

ks
j+δs

j ·s
Es

j
lj)(

ks
j−1+δs

j−1·s
Es

j
lj)

=
(K j + K j

′)β jlj

(β jlj)
2 − K jK j

′
(24)

where K j =
ks

j+δs
j ·s

Es
j

lj and K j
′ =

ks
j−1+δs

j−1·s
Es

j
lj represent the dimensionless complex stiffness at

the top and bottom surface of the jth soil layer, respectively. Substituting s = iω into the
transcendental Equation (24), the eigenvalue β jn can be obtained by means of the bisection
method in the frequency domain, where i =

√
−1 is the imaginary unit and ω = 2π f

is the circular frequency, in which f is the general frequency. Then, substituting β jn into
Equation (17), the corresponding eigenvalue ξ jn can be derived.

Then, the general solution of Equation (13) can be written as:

Wj(r, z′, s) =
∞

∑
n=1

AjnK0(ξ jnr) sin(β jnz′ + φjn) (25)

where φjn = arctan(β jnlj/K j), Ajn is the undetermined coeffcients which can be derived
from the boundary conditions.

Combined with Equation (25), the per unit area shear stress of the jth soil layer acting
on the pile shaft can be further expressed as:

τs
rzj(r

p
j , z′, s) = (Gs

j + ηs
j · s)

∞

∑
n=1

Ajnξ jnK1(ξ jnrp
j ) sin(β jnz′ + φjn) (26)
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4. Solutions of Pile and Fictitious Soil Pile
4.1. Solutions for the First FSP Segment

Applying the Laplace transform to Equation (3) on both sides and converting the
global coordinates to the local coordinates yields:

(Vp
1 )

2
(1 + η

p
1

Ep
1
· s) ∂2U1

∂z′2 − s2U1−
2πrp

1
ρ

p
1 Ap

1
(Gs

1 + ηs
1 · s)

∞
∑

n=1
A1nξ1nK1(ξ1nrp

1 ) sin(β1nz′ + φ1n) = 0
(27)

where U1(z, s) is the Laplace transform of u1(z, t) with respect to time, Vp
1 =

√
Ep

1 /ρ
p
1

denotes the one-dimensional elastic longitudinal wave velocity of the first FSP segment.
The general solution of homogeneous equation Equation (27) can be obtained as:

U#
1 = M1 cos(λ1z′/l1) + N1 sin(λ1z′/l1) (28)

where λ1 is the dimensionless eigenvalue, which can be obtained as:

λ1 =

√√√√√− s2t2
1

1 + η
p
1

Ep
1
· s

(29)

where t1 = l1/Vp
1 is the propagation time of elastic longitudinal wave propagating in the

first FSP segment.
Based on the theory of partial differential equations, the particular solution of Equation (27)

can be assumed as:

U∗1 =
∞

∑
n=1

γ1n sin(β1nz′ + φ1n) (30)

where,

γ1n = −
2πrp

1 (G
s
1 + ηs

1 · s)A1nξ1nK1(ξ1nrp
1 )

ρ
p
1 Ap

1 [(β1nVp
1 )

2
(1 + η

p
1

Ep
1
· s) + s2]

(31)

Combining Equations (28) and (39), the vertical displacement U1 of the first FSP
segment can be obtained as:

U1 = U#
1 + U∗1 = M1 cos(λ1z′/l1) + N1 sin(λ1z′/l1) +

∞

∑
n=1

γ1n sin(β1nz′ + φ1n) (32)

Applying the Laplace transform (two-sided) to Equation (9) and combining the dis-
placement continuity condition (Equation (9)) with Equations (25) and (32) yields:

M1 cos(λ1z′/l1) + N1 sin(λ1z′/l1) +
∞
∑

n=1
γ1n sin(β1nz′ + φ1n) =

∞
∑

n=1
A1nK0(ξ1nrp

1 ) sin(β1nz′ + φ1n)
(33)

Merging the similar terms, Equation (33) can be reduced as:

M1 cos(λ1z′/l1) + N1 sin(λ1z′/l1) =
∞

∑
n=1

A1n ϕ1n sin(β1nz′ + φ1n) (34)

where,

ϕ1n = K0(ξ1nrp
1 ) +

2πrp
1 (G

s
1 + ηs

1 · s)ξ1nK1(ξ1nrp
1 )

ρ
p
1 Ap

1 [(β1nVp
1 )

2
(1 + η

p
1

Ep
1
· s) + s2]

(35)
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The systems of eigenfunctions sin(β1nz′ + φ1n) are orthogonal over the interval
z = [0, l1] and satisfy the following relationship:{ ∫ l1

0 sin(β1nz′ + φ1n) sin(β1mz′ + φ1m)dz′ = 0, m 6= n∫ l1
0 sin(β1nz′ + φ1n) sin(β1mz′ + φ1m)dz′ 6= 0, m = n

(36)

Multiplying sin(β1kz′ + φ1k) on Equation (34) (two-sided) and integrating over range
z = [0, li] yields:

−M1
2 [

cos[(β1n+
λ1
l1
)l1+φ1n ]−cos φ1n

β1n+
λ1
l1

+
cos[(β1n−

λ1
l1
)l1+φ1n ]−cos φ1n

β1n−
λ1
l1

]

−N1
2 [

sin[(β1n+
λ1
l1
)l1+φ1n ]−sin φ1n

β1n+
λ1
l1

−
sin[(β1n−

λ1
l1
)l1+φ1n ]−sin φ1n

β1n−
λ1
l1

]

= A1n ϕ1n
∫ l1

0 sin2(β1nz′ + φ1n)dz′

(37)

To obtain the vertical displacement amplitude of the first FSP segment, substituting
Equation (37) into Equation (32) gives:

U1 = M1[cos(λ1z′/l1) +
∞
∑

n=1
χ′1n sin(β1nz′ + φ1n) ]+

N1[sin(λ1z′/l1) +
∞
∑

n=1
χ
′′
1n sin(β1nz′ + φ1n) ]

(38)

where,

χ′1n = χ1n[
cos(β1n + λ1 + φ1n)− cos φ1n

β1n + λ1
+

cos(β1n − λ1 + φ1n)− cos φ1n

β1n − λ1
] (39)

χ
′′
1n = χ1n[

sin(β1n + λ1 + φ1n)− sin φ1n

β1n + λ1
− sin(β1n − λ1 + φ1n)− sin φ1n

β1n − λ1
] (40)

χ1n =
(Gs

1 + ηs
1 · s)ξ1nK1(ξ1nrp

1 )t
2
1

ρ
p
1 l1rp

1 [β
2
1n(1 +

η
p
1

Ep
1
· s) + s2t2

1]ϕ1nL1n

(41)

ϕ1n = K0(ξ1nrp
1 ) +

2(Gs
1 + ηs

1 · s)ξ1nK1(ξ1nrp
1 )t

2
1

ρ
p
1 l2

1rp
1 [β

2
1n(1 +

η
p
1

Ep
1
· s) + s2t2

1]
(42)

L1n =
∫ l1

0
sin2(β1nz′ + φ1n)dz′ (43)

where β1n = β1nl1, ξ1n = ξ1nl1 and rp
1 = rp

1 /l1 are dimensionless parameters.
The undetermined constants M1 and N1 can be obtained by the BCs for the top and

bottom surface of the first FSP segment. Applying the Laplace transform (two-sided) to BCs
(Equations (7) and (8)) and converting Equations (7) and (8) from the global coordinates to
the local coordinates yields:

∂U1

∂z′

∣∣∣∣
z′=0

= −
Z1(s)U1

Ep
1 Ap

1

∣∣∣∣∣
z′=0

(44)

∂U1

∂z′

∣∣∣∣
z′=l1

= −
Z0(s)U1

Ep
1 Ap

1

∣∣∣∣∣
z′=l1

(45)
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For the first FSP segment, the bottom can be regarded as a rigid boundary, that is,
Z0(s) = ∞. Substituting Z0(s) = ∞ and Equation (38) into Equation (45) yields:

M1

N1
= −

sin λ1 +
∞
∑

n=1
χ
′′
1n sin(β1n + φ1n)

cos λ1 +
∞
∑

n=1
χ′1n sin(β1n + φ1n)

(46)

Then, substituting Equation (38) into Equation (44) yields:

Z1(s) =
−Ep

1 Ap
1

∂U1
∂z′

∣∣∣
z′=0

U1|z′=0

= − Ep
1 Ap

1
l1

M1
N1

∞
∑

n=1
χ′1n β1n cos φ1n+λ1+

∞
∑

n=1
χ
′′
1n β1n cos φ1n

M1
N1

[1+
∞
∑

n=1
χ′1n sin φ1n ]+

∞
∑

n=1
χ
′′
1n sin φ1n

(47)

Substituting Equation (46) into Equation (47), the analytical solution for the displace-
ment impedance at the top surface of the first FSP segment can be gained.

4.2. Solutions for the Viscoelastic Pile in Arbitrarily Layered Soil

The function of displacement impedance of the jth pile segment head during vibra-
tion can be derived by utilizing a similar method for the first FSP segment. Then, the
displacement of the jth pile segment head is derived as:

Uj = Mj[cos(λjz′/lj) +
∞
∑

n=1
χ′jn sin(β jnz′ + φjn) ]+

Nj[sin(λjz′/lj) +
∞
∑

n=1
χ
′′
jn sin(β jnz′ + φjn) ]

(48)

where,

χ′jn = χjn[
cos(βjn + λj + φjn)− cos φjn

βjn + λj
+

cos(βjn − λj + φjn)− cos φjn

βjn − λj
] (49)

χ
′′
jn = χjn[

sin(βjn + λj + φjn)− sin φjn

βjn + λj
−

sin(βjn − λj + φjn)− sin φjn

βjn − λj
] (50)

χjn =
(Gs

j + ηs
j · s)ξ jnK1(ξ jnrp

j )t
2
j

ρ
p
j ljr

p
j [β

2
jn(1 +

η
p
j

Ep
j
· s) + s2t2

j ]ϕjnLjn

(51)

ϕjn = K0(ξ jnrp
j ) +

2(Gs
j + ηs

j · s)ξ jnK1(ξ jnrp
j )t

2
j

ρ
p
j l2

j rp
j [β

2
jn(1 +

η
p
j

Ep
j
· s) + s2t2

j ]

(52)

Ljn =
∫ lj

0
sin2(β jnz′ + φjn)dz′ (53)

where λj =

√√√√√− s2t2
j

1+
η

p
j

E
p
j
·s

, βjn = β jnlj, ξ jn = ξ jnlj and rp
j = rp

j /lj are dimensionless parame-

ters. tj = lj/Vp
j denotes the propagation time of elastic longitudinal wave propagating in

the jth pile segment.
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Based on the BCs (Equations (7) and (8)), the function of displacement impedance of
the jth pile segment head can be expressed in the local coordinate system as:

Zj(s) =
−Ep

j Ap
j

∂Uj
∂z′

∣∣∣∣
z′=0

Uj|z′=0

= −
Ep

j Ap
j

lj

Mj
Nj

∞
∑

n=1
χ′jn βjn cos φjn+λj+

∞
∑

n=1
χ
′′
jn βjn cos φjn

Mj
Nj

(1+
∞
∑

n=1
χ′jn sin φjn)+

∞
∑

n=1
χ
′′
jn sin φjn

(54)

where,

Mj

Nj
= −

∞
∑

n=1
χ
′′
jnβjn cos(βjn + φjn) + λj cos λj+

Zj−1(s)lj

Ep
j Ap

j
[sin λj +

∞
∑

n=1
χ
′′
jn sin(βjn + φjn)]

∞
∑

n=1
χ′jnβjn cos(βjn + φjn)− λj sin λj+

Zj−1(s)lj

Ep
j Ap

j
[cos λj +

∞
∑

n=1
χ′jn sin(βjn + φjn)]

(55)

Through the transfer function technique [10], the function of displacement impedance
of pile head (i.e., the mth pile segment) is derived in the local coordinate system as:

Zm(s) =
−Ep

m Ap
m

∂Um
∂z′

∣∣∣
z′=0

Um|z′=0
= −Ep

m Ap
m

lm
Z′m(s) (56)

where Z′m(s) is the dimensionless function of displacement impedance of pile head which
can be obtained as:

Z′m(s) =

Mm
Nm

∞
∑

n=1
χ′mnβmn cos φmn + λm +

∞
∑

n=1
χ
′′
mnβmn cos φmn

Mm
Nm

(1 +
∞
∑

n=1
χ′mn sin φmn) +

∞
∑

n=1
χ
′′
mn sin φmn

(57)

where,

Mm

Nm
= −

∞
∑

n=1
χ
′′
mnβmn cos(βmn + φmn) + λm cos λm+

Zm−1(s)lm
Ep

m Ap
m

[sin λm +
∞
∑

n=1
χ
′′
mn sin(βmn + φmn)]

∞
∑

n=1
χ′mnβmn cos(βmn + φmn)− λm sin λm+

Zm−1(s)lm
Ep

m Ap
m

[cos λm +
∞
∑

n=1
χ′mn sin(βmn + φmn)]

(58)

χ′mn = χmn[
cos(βmn + λm + φmn)− cos φmn

βmn + λm
+

cos(βmn − λm + φmn)− cos φmn

βmn − λm
] (59)

χ
′′
mn = χmn[

sin(βmn + λm + φmn)− sin φmn

βmn + λm
−

sin(βmn − λm + φmn)− sin φmn

βmn − λm
] (60)

χmn =
(Gs

m + ηs
m · s)ξmnK1(ξmnrp

m)t2
m

ρ
p
mlmrp

m[β
2
mn(1 +

η
p
m

Ep
m
· s) + s2t2

m]ϕmnLmn

(61)

ϕmn = K0(ξmnrp
m) +

2(Gs
m + ηs

m · s)ξmnK1(ξmnrp
m)t2

m

ρ
p
ml2

mrp
m[β

2
mn(1 +

η
p
m

Ep
m
· s) + s2t2

m]
(62)
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Lmn =
∫ lm

0
sin2(βmnz′ + φmn)dz′ (63)

where λm =
√
− s2t2

m

1+ η
p
m

E
p
m
·s

, βmn = βmnlm, ξmn = ξmnlm and rp
m = rp

m/lm are dimensionless

parameters. tm = lm/Vp
m is the propagation time of elastic longitudinal wave propagating in

the mth pile segment. φmn and βmn are parameters determined by the following equations:

φmn = arctan(βmnlm/Km) (64)

tan(βmlm) =
(Km + Km

′)βmlm
(βmlm)

2 − KmKm ′
(65)

where Km = ks
m+δs

m ·s
Es

m
lm and Km

′ =
ks

m−1+δs
m−1·s

Es
m

lm denote the dimensionless complex stiffness
at the top and bottom surface of the mth soil layer, respectively. lm is the thickness of the
mth soil layer.

The dimensionless displacement impedance of the pile head is further expressed as:

Kd = Z′m(iω) = K + iC (66)

where the real part K indicates the dynamic stiffness, which reflects the resistance capacity
to deformation, and the imaginary part C denotes the dynamic damping reflecting energy
consumption.

5. Rationality Analysis of the Present Solutions

Through literature research, it is found that the support models of PES to pile are sum-
marized into four categories: 1© rigid support, 2© free support, 3© viscoelastic support or
elastic support and 4© semi-infinite space support. These support models can be generally
expressed in the form of complex stiffness Zb, that is:

Zb = kb + δb · iω (67)

where δb and kb denote the damping coefficient and stiffness constant of the support
model of pile end, respectively. In the existing literature, many scholars studied the
calculation methods of these two parameters. For example, Lysmer and Richart proposed
the simulation formula method [46], Novak and Beredugo presented the constant value
method [47], Meyerholf obtained the theoretical method of ultimate bearing capacity [48],
and Liang and Husein provided the curve equation method [49]. These methods can not
consider the thickness and layered properties of PES, which are very empirical. Since the
FSP model can consider the thickness and layered properties of PES, it has good application
potential in the analysis of dynamic interaction between the pile and its end soil. Next,
the FSP model is compared with the existing support models of PES. The calculation
parameters are set as: the length, elastic longitudinal wave velocity, density and radius
of the pile are 15 m, 3800 m/s, 2500 kg/m3 and 0.5 m, respectively. The PES thickness is
two times that of the pile diameter. In Figure 2, the different values of kb and δb reflect
the other models of the dynamic interaction between pile and PES, namely, kb = ∞ and
δb = ∞ represent rigid support, kb = 0 and δb = 0 represent free support, and the other
values are viscoelastic support.
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Figure 2. Comparison of FSP model with other models. (a) Dynamic stiffness curves; (b) Dynamic
damping curves.

Figure 2 illustrate the FSP model with other models. For the viscoelastic support
model, the phase difference of resonance frequency between rigid support and free support
is 180◦, while the resonance frequency obtained by the FSP model is between the calculated
results of rigid support and free support. It was also found that the dynamic stiffness and
dynamic damping obtained by selecting appropriate material parameters for the FSP model
according to the PES properties fall among the calculated values determined by the other
existing support models. The result means that the FSP model is reasonable and can be
simulated in other models by selecting appropriate parameters of the soil underlying pile
end. Furthermore, the FSP model can take the stratification and construction disturbance
effect of PES into account, and the parameters of the FSP model can directly take the
material parameters of PES without empirical formula calculation. Therefore, the FSP
model is more rigorous in theory, for it can more accurately reflect the support effect of PES
on pile.

6. Parametric Study

The effect of the PES properties on the vertical dynamic impedance of pile is systemi-
cally investigated in this section. Unless otherwise stated, the parameters of the pile–soil
system are set as: the length, radius, density and elastic longitudinal wave velocity of the
pile are 15 m, 0.5 m, 2500 kg/m3 and 3800 m/s, respectively; the density, shear wave veloc-
ity, Poisson’s ratio and viscoelastic damping coefficient of PSS are 1800 kg/m3, 180 m/s,
0.4 and 1000 N ·m−3 · s, respectively. The stiffness constant of the Voigt model between
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the adjacent soil layers is set as the elastic modulus of the lower soil, and the damping
coefficient is set to 10,000 N ·m−3 · s [41].

6.1. Effect of Single Homogeneous PES Layer on the Vertical Dynamic Impedance of Pile

In order to more clearly study the effect of PES properties on the vertical dynamic
impedance of pile, the cases of a single homogeneous PES layer are analyzed first. In
other words, the soil is divided into two layers, i.e., PSS and PES, of which the PES is
regarded as homogeneous single media. The density, shear wave velocity, Poisson’s ratio
and viscous damping coefficient of PES are 2000 kg/m3, 220 m/s, 0.35 and 1000 N ·m−3 · s,
respectively. d is denoted as the diameter of pile, and the PES thickness can be written as
l1 = 0.5d, 1d, 3d, 5d, 10d when discussing the effect of PES thickness on the vertical dynamic
impedance of pile, respectively.

From Figure 3, it can be found that the dynamic stiffness curves and dynamic damping
curves trend to convergent with the increase of PES thickness. The result indicates that
there is a critical influence depth of PES adjoining to the pile bottom, which has an obvious
effect on the vertical dynamic impedance of pile. If the PES thickness exceeds the critical
influence thickness, further increase of PES thickness can barely affect the vertical dynamic
impedance of pile. Obviously, the vertical dynamic impedance curves of pile should be
different for different PES layers. Nevertheless, repeated trial calculation indicates that
there is a limited zone of PES which has an effect on the vertical dynamic impedance of pile.
In other words, one just needs to focus on the effect of soil properties in a certain range
underlying the pile end on the vertical dynamic response of pile.
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Figure 3. Effect of PES thickness on the vertical dynamic impedance of pile. (a) Dynamic stiffness
curves; (b) Dynamic damping curves.
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When discussing the effect of PES shear wave velocity on the vertical dynamic
impedance of pile, the density, Poisson’s ratio, viscous damping coefficient, thickness
and shear wave velocity of PES are set to 2000 kg/m3, 0.35, 1000 N ·m−3 · s, 3d and
Vs

1 = 140 m/s, 160 m/s, 220 m/s, 250 m/s, 300 m/s, respectively.
Figure 4 display the effect of PES shear wave velocity on the vertical dynamic impedance

of pile. It is noted that the formant amplitude in dynamic stiffness curves and dynamic
damping curves increases with the decrease of PES shear wave velocity, while the resonant
frequency remains basically unchanged. In the low-frequency range which is of interest
for dynamic foundation design, the dynamic stiffness of pile gradually increases, and the
dynamic damping of pile gradually decreases with the increase of PES shear wave velocity.
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Figure 4. Effect of PES shear wave velocity on the vertical dynamic impedance of pile. (a) Dynamic
stiffness curves; (b) Dynamic damping curves.

When analyzing the effect of PES density on the vertical dynamic impedance of pile,
the thickness, shear wave velocity, Poisson’s ratio, viscous damping coefficient and density
of PES are 3d, 220 m/s, 0.35, 1000 N ·m−3 · s, and ρs

1 = 1600 kg/m3, 1800 kg/m3, 2000 kg/m3,
2200 kg/m3, 2400kg/m3, respectively.

Figure 5 indicate the effect of PES density on the vertical dynamic impedance of pile.
It is shown that the formant amplitude in dynamic stiffness curves and dynamic damping
curves decreases within a small range as the PES density increases. The resonant frequency
is hardly affected by the change of PES density. In the low-frequency range which is of
interest for dynamic foundation design, the dynamic stiffness of pile gradually increases,
and the dynamic damping of pile gradually decreases with the increase of PES density, but
the change range is small.
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Figure 5. Effect of PES density on the vertical dynamic impedance of pile. (a) Dynamic stiffness
curves; (b) Dynamic damping curves.

6.2. Effect of Two PES Layers on the Vertical Dynamic Impedance of Pile

In the design of pile foundation, the pile end is usually required to have a certain
thickness of bearing stratum, which can ensure that the bearing characteristics of the pile
are not affected by the properties of the soil layers below the bearing stratum. In light of
this, the effect of soft subsoil below bearing stratum on the vertical dynamic impedance
of pile is investigated. The soil is divided into three layers, namely PSS, bearing stratum
and soft subsoil from top to bottom. The thickness, density, shear wave velocity, Poisson’s
ratio and viscous damping coefficient of bearing stratum are 3 m, 2000 kg/m3, 220 m/s,
0.35 and 1000 N ·m−3 · s, respectively. The density, shear wave velocity, Poisson’s ratio,
viscous damping coefficient and thickness of soft subsoil are 1700 kg/m3, 100 m/s, 0.4,
1000 N ·m−3 · s and l1 = 0d, 1d, 3d, 5d, 10d, respectively.

Figure 6 display the effect of thickness of soft subsoil on the vertical dynamic impedance
of pile. It is evident that when the bearing stratum is deep enough, the variation of thickness
of soft subsoil has little effect on the vertical dynamic impedance of pile. The effects of
shear wave velocity and density of soft subsoil on the vertical dynamic impedance of pile
are also analyzed in detail, and it is also found that these two parameters basically do not
affect the vertical dynamic impedance of pile if the thickness of the bearing stratum is large
enough. The figures of the two parameters analysis are not given here because they are
basically consistent with Figure 6.
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Figure 6. Effect of thickness of soft subsoil on the vertical dynamic impedance of pile. (a) Dynamic
stiffness curves; (b) Dynamic damping curves.

6.3. Effect of Sediment on the Vertical Dynamic Impedance of Rock-Socketed Pile

The rock-socketed pile is the end bearing pile in most cases, and the requirements
for the control of sediment at pile end are very high. According to the most commonly
related quality acceptance criteria for rock-socketed pile, the thickness of sediment is
required to be less than or equal to 50 mm [50]. Therefore, the effect of sediment on
the vertical dynamic impedance of rock-socketed pile is discussed for two different en-
gineering conditions. In the first case, the construction quality satisfies acceptance qual-
ity, the thickness of sediment is set to: ls = 0 mm, 5 mm, 10 mm, 30 mm, 50 mm, respec-
tively. In the second case, the thickness of sediment is set to an unusual seen value:
ls = 0 mm, 100 mm, 200 mm, 500 mm, 1000 mm, respectively, which does not satisfy qual-
ity acceptance criteria due to poor construction condition or construction quality. Addition-
ally, the density, shear wave velocity, Poisson’s ratio and viscous damping coefficient of
sediment are 1700 kg/m3, 130 m/s, 0.4 and 1000 N ·m−3 · s, respectively.

The effect of thickness of sediment on the vertical dynamic impedance of rock-socketed
pile in case 1 is shown in Figure 7. It can be seen that the thickness of sediment has a re-
markable effect on the vertical dynamic impedance of rock-socketed pile. As the thickness
of sediment increases, the formant amplitudes of dynamic stiffness curves and damping
curves gradually decrease, and the corresponding resonant frequency also gradually be-
comes smaller, which is a result of the decrease of support stiffness of pile end due to the
increase of sediment. In the low frequency, which is of interest in dynamic foundation
design, as the sediment thickness increases, the dynamic stiffness of rock-socketed pile
decreases, and the dynamic damping of rock-socketed pile increases.
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Figure 7. Effect of thickness of sediment on the vertical dynamic impedance of rock-socketed pile in
case 1. (a) Dynamic stiffness curves; (b) Dynamic damping curves.

Figure 8 display the effect of thickness of sediment on the vertical dynamic impedance
of rock-socketed pile in case 2. It can be seen that the formant amplitude of dynamic stiffness
curves and dynamic damping curves decrease within a small scope, and the corresponding
resonant frequency has a certain degree of decrease. In the low-frequency range which is of
interest in dynamic foundation design, as the sediment thickness increases, the dynamic
stiffness of pile head decreases, but the dynamic damping increases. Meanwhile, if the
thickness of sediment is more than a threshold, further increase of thickness can hardly
give rise to an evident change of the vertical dynamic impedance of rock-socketed pile.

In addition, the effect of the shear wave velocity of sediment on the vertical dynamic
impedance of rock-socketed pile is also investigated. The thickness, density, Poisson’s ratio,
viscous damping coefficient and shear wave velocity of sediment are 50 mm, 1700 kg/m3,
0.4, 1000 N ·m−3 · s and Vs = 110 m/s, 120 m/s, 130 m/s, 140 m/s, 150 m/s, respectively.

Figure 9 show the effect of the shear wave velocity of sediment on the vertical dynamic
impedance of rock-socketed pile. The formant amplitude of dynamic stiffness and damping
barely vary with the increase of shear wave velocity of sediment, but the resonant frequency
gradually increases. The results indicate that for the same thickness of sediment, with
the increase of shear wave velocity of sediment, the stiffness coefficient of the sediment
has a corresponding increase which leads to an increase in the resonant frequency of pile
head and the support stiffness of pile toe increases as well. In the low-frequency range
which is of interest in dynamic foundation design, with the shear wave velocity of sediment
increases, the dynamic stiffness of rock-socketed pile increases, and the dynamic damping
of rock-socketed pile decreases.
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Figure 8. Effect of thickness of sediment on the vertical dynamic impedance of rock-socketed pile in
case 2. (a) Dynamic stiffness curves; (b) Dynamic damping curves.
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Figure 9. Effect of shear wave velocity of sediment on the vertical dynamic impedance of rock-
socketed pile. (a) Dynamic stiffness curves; (b) Dynamic damping curves.

7. Conclusions

In this paper, the soil adjacent to the pile bottom is simulated by the FSP model,
which is perfectly contacted with the pile end. Based on the simplified dynamic interaction
between adjacent soil layers, the analytical solutions for the vertical dynamic impedance of
pile embedded in arbitrarily layered soil are derived in the frequency domain by means
of the Laplace transform technique and impedance function transfer method. Based
on the present solutions, a parametric study is conducted to investigate the effect of
PES properties on the vertical dynamic impedance of pile. The main conclusions are
summarized as follows:

(1) There is a critical influence thickness for the effect of PES thickness on the vertical
dynamic impedance of pile. Within the range of critical influence thickness, the variation
of the PES thickness has a great effect on the vertical dynamic impedance of pile.

(2) With the improvement of PES, the formant amplitude of the dynamic stiffness
curves and dynamic damping curves of pile decreases, but the resonance frequency remains
basically unchanged.

(3) In the low-frequency range which is of interest in dynamic foundation design, with
the increase of the shear wave velocity and density of PES, the dynamic stiffness of pile
gradually increases, and the dynamic damping of pile decreases.

(4) The sediment below the pile end has a remarkable effect on the vertical dynamic
impedance of rock-socketed pile. When the thickness of sediment is less than 50 mm, as
the thickness of sediment increases, the formant amplitudes of dynamic stiffness curves
and damping curves gradually decrease, and the corresponding resonant frequency also
gradually becomes smaller.

(5) In the low frequency which is of interest in dynamic foundation design, as the
sediment thickness increases, the dynamic stiffness of rock-socketed pile decreases, but the
dynamic damping of rock-socketed pile increases.

From the above, it is found that the FSP model is a more rigorous model and has
application prospects in engineering practices. In the future, the group of authors will
apply the FSP model to investigate the dynamic interaction of pile-soil systems in saturated
and unsaturated soils.
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