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ABSTRACT
Collaboration between healthcare institutions can significantly
lessen the imbalance inmedical resources across various geographic
areas. However, directly sharing diagnostic information between
institutions is typically not permitted due to the protection of pa-
tients’ highly sensitive privacy. As a novel privacy-preserving ma-
chine learning paradigm, federated learning (FL) makes it possible
to maximize the data utility among multiple medical institutions.
These feature-enrichment FL techniques are referred to as vertical
FL (VFL). Traditional VFL can only benefit multi-parties’ shared
samples, which strongly restricts its application scope. In order
to improve the information-sharing capability and innovation of
various healthcare-related institutions, and then to establish a next-
generation open medical collaboration network, we propose a uni-
fied framework for vertical federated knowledge transfer mecha-
nism (VFedTrans) based on a novel cross-hospital representation
distillation component. Specifically, our framework includes three
steps. First, shared samples’ federated representations are extracted
by collaboratively modeling multi-parties’ joint features with cur-
rent efficient vertical federated representation learning methods.
Second, for each hospital, we learn a local-representation-distilled
module, which can transfer the knowledge from shared samples’
federated representations to enrich local samples’ representations.
Finally, each hospital can leverage local samples’ representations en-
riched by the distillation module to boost arbitrary downstreamma-
chine learning tasks. The experiments on real-life medical datasets
verify the knowledge transfer effectiveness of our framework.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; •Applied computing→Health care informa-
tion systems.
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1 INTRODUCTION
Currently, the disparity in healthcare resources [43] continues to be
a significant challenge for both developed and developing countries.
For a myriad of reasons, there are huge differences in the healthcare
resources accessible to distinct areas, classes, and ethnicities even
within the same country [2, 39]. After Covid-19 officially became a
pandemic, it overwhelmed healthcare facilities in less developed
areas due to the severity of clinical symptoms and the unpredictabil-
ity of post-recovery sequelae [34]. The supply-demand conflict of
unbalanced healthcare resources is thus rapidly increasing, which
will affect the sustainability of the healthcare system [10] and the
viability of health policy reform [11]. In order to promote social
equality and social justice, it is crucial from a strategic perspective
to address the disparity in healthcare resources [24, 55]. In this pa-
per, we will focus on the secure utilization of adequate medical data
from developed regions to make up for inadequate and incomplete
hospital data from lagging regions.

Unlike other fields, medical data contains many of the most pri-
vate details of patients’ personal lives, psychological conditions,
social relationships, and financial situations, making it particularly
sensitive to privacy [1, 26, 32, 35]. The disclosure of such identifiable
privacy about individuals can greatly damage the level of public
trust in healthcare institutions. Therefore, no institution will be per-
mitted to provide patient information to another institution directly.
With the enactment of the EU General Data Protection Regulation
(GDPR)1 and US Health Insurance Portability and Accountability
Act (HIPAA)2, access to and use of private data has been further
restricted. How to conduct machine learning and data mining in
a privacy-preserving and law-regulated way has attracted much
interest in both academia and industry. Federated learning (FL) [36]
1https://gdpr-info.eu/
2https://www.hhs.gov/hipaa/for-professionals/privacy/index.html
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has thus become a promising solution [28, 54]. In general, FL does
not need different parties to exchange their raw data; instead, every
party runs local computation and training on their own data and
then uploads the intermediate results (e.g., gradients) to a server.
By integrating these intermediate results from all the parties, a
federated global model can be learned. Especially, such a federated
model can achieve similar prediction performance as a centralized
model directly trained on all the parties’ data [51].

In general, there are two main types of FL algorithms, horizontal
and vertical. The first FL algorithm proposed by Google is horizontal
[36]; the setting is that different parties (often devices) hold different
samples with the same features or data formats. A representative
application of horizontal FL is the mobile phone keyboard next-
word prediction, where a global next-word prediction model can
be learned without collecting users’ raw keyboard inputs [53]. In
contrast, vertical FL’s (VFL) setting is that different parties (often
organizations) hold different features of the same set of samples.
This work focuses on the vertical setting.

The successful adoption of current VFL methods is highly de-
pendent on how many overlapped samples exist between parties.
Hence, most VFL collaborations are conducted by involving at least
one giant data holder with abundant data. For instance, FDN (fed-
erated data network) [29] includes anonymous data from one of
the largest social network service providers in China and thus can
cover most user samples from other data holders (e.g., customers
of banks). However, this makes giant data holders occupy a dom-
inant position over other small data holders in VFL, which could
lead to unfair trades and data monopoly in the digital economy.3
Collaborative healthcare network [45] is composed of hospitals
with multiple locations and different medical resources. In this sce-
nario, the characteristics and attributes of smaller hospitals’ own
data are often overlooked when larger hospitals with more data
dominate the collaboration. The capacity of the hospitals receiving
assistance to use the local data’s specificity to give patients more
individualized treatment is severely hampered by this. For patients,
they may go to different hospitals for the same disease. Differences
in the level of care at the hospital will affect the analysis and di-
agnosis of the disease. High level hospitals tend to detect more
hidden symptoms, i.e., have richer sample features. However, these
medical records can only be kept in multiple locations. This leads
to the fact that in the traditional VFL, patients can only get better
joint services if they have been to multiple hospitals. Patients who
are limited to a few or even one hospital due to region, race, etc.
do not have access to equitable medical resources. Attention and
protection for this group are crucial and necessary. To alleviate this
pitfall and expand application scenarios, a VFL-based collaborative
framework that can benefit various ordinary hospitals and vulnerable
populations is urgently needed.

As a pioneering attempt in this direction, this paper proposed a
novel vertical-federated-knowledge-transfer (VFedTrans) unified
framework that can transfer the medical knowledge from (a limited
number of) collaborative healthcare networks’ shared samples to
each hospital’s local (non-shared) samples. The key challenge is
how to fill the gap between hospital’s local samples (with only this

3https://www.theguardian.com/technology/2015/apr/19/google-dominates-search-
real-problem-monopoly-data

hospital’s features) and cross-hospital shared samples (with multiple
hospitals’ features). To address this issue, we propose a novel local-
representation-distilled module that can distill the knowledge from
shared samples’ federated representations to enrich local samples’
representations. More specifically, shared samples’ federated repre-
sentations are first learned by some federated latent representation
extraction methods (e.g., federated singular vector decomposition
[3]); then, the small hospital can leverage shared samples’ federated
representation as the guidance to enrich its local samples’ feature
representation via a knowledge distilling strategy [18]. Especially,
our knowledge transfer mechanism has the following characteris-
tics.
• Knowledge transfer to local samples. Different from most VFL
algorithms focusing on shared samples, our mechanism aims
to improve the learning performance on different parties’
local samples via vertical knowledge transfer. In this way, a
set of hospitals with only a limited number of shared samples
can still benefit from our VFL process.
• Task-independent transfer. Our knowledge transfer process is
task-independent. That is, each hospital can leverage its en-
riched local samples’ representations for an arbitrary (new)
medical task.
• Scalable to multiple hospitals. The complexity of our mech-
anism is linearly proportional to the number of involved
hospitals. More importantly, our mechanism can be learned
in an online manner. That is, when a new hospital comes,
existing hospitals can efficiently update their local sample
representations by just learning with the new hospitals.

In summary, this work makes the following contributions:
(1) To the best of our knowledge, this work is the first one

to explore how to enable vertical knowledge transfer from
shared samples to each hospital’s local samples in a task-
independent manner.

(2) We propose a novel federated-representation-distilled frame-
work, VFedTrans, to transfer medical knowledge from shared
samples to local samples. VFedTrans includes the follow-
ing steps. First, a federated representation learning method
is applied to extract shared samples’ representations. Sec-
ond, each hospital can enrich its local feature representation-
distilled module by knowledge distilling on the shared sam-
ples’ federated representations. The module can then be
leveraged to enrich local samples’ feature representations.

(3) Experiments on four real-life medical datasets have verified
the effectiveness of our mechanism for knowledge transfer
and the generalizability of our enriched feature representa-
tions of local samples. This demonstrates that VFedTrans
enables hospitals with scarce medical resources to provide
better medical services through VFL collaboration.

The source code for this work is available at: https://doi.org/10.
5281/zenodo.7623519.

2 PROBLEM FORMULATION
In this section, we clarify the definitions of key concepts used in this
paper. Afterward, we formulate our research problem. Appendix
A.1 lists the notations used throughout this paper.

https://www.theguardian.com/technology/2015/apr/19/google-dominates-search-real-problem-monopoly-data
https://www.theguardian.com/technology/2015/apr/19/google-dominates-search-real-problem-monopoly-data
https://doi.org/10.5281/zenodo.7623519
https://doi.org/10.5281/zenodo.7623519
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2.1 Concepts
Our approach enables all hospitals to benefit from the collaboration.
Without loss of generality, we classify them into two types of roles:
the task hospital and the data hospital.

Task Hospital. A task hospital 𝑡 has a set of samples with features
𝑋𝑡 and a task label 𝑌𝑡 to predict. The sample IDs of the task hospital
are denoted as 𝐼𝑡 .

Data Hospital. A data hospital𝑑 has a set of samples with features
𝑋𝑑 . The data hospital’s sample IDs are denoted as 𝐼𝑑 .

Remark. A hospital may play both task and data roles simulta-
neously in a VFL campaign (i.e., a hospital contributes its features
to other hospitals and also benefits from other hospitals’ features).
Our mechanism can be efficiently applied to this case.

2.2 Research Problem
Local-Sample Vertical Federated Knowledge Transfer Problem. Given
a task hospital 𝑡 and 𝑛 data hospitals 𝑑𝑖 (𝑖 = 1, 2, ..., 𝑛), 𝑡 has certain
shared samples with any data hospital 𝑑𝑖 (𝐼𝑡 ∩ 𝐼𝑑𝑖 ≠ 𝜙), the objective
is to design a federated knowledge transfer algorithm to predict
the task label 𝑌𝑡 of 𝑡 ’s (non-shared) local samples as accurately as
possible.

Remark. Traditional VFL problems often require that 𝐼𝑡 = 𝐼𝑑𝑖 .
However, our vertical federated knowledge transfer setting only
needs that 𝐼𝑡 ∩ 𝐼𝑑𝑖 ≠ 𝜙 . Without loss of generality, we solely vali-
date the impact of knowledge transfer on a task hospital to check
that VFedTrans has strong service support for healthcare-related
institutions with limited knowledge. Briefly, the objective of our
proposed VFedTrans is to improve the task performance of 𝑡 ’s local
samples (𝐼𝑡 \ 𝐼𝑑𝑖 ) by transferring the knowledge from shared sam-
ples (𝐼𝑡 ∩ 𝐼𝑑𝑖 ). This expands the practical application range of FL by
complementing traditional VFL.

3 FRAMEWORK DESIGN
3.1 Overview
We demonstrate the overall process of VFedTrans (Fig. 1). Note
that before our mechanism runs, we suppose that shared samples
between the task hospital 𝑡 and any data hospital 𝑑𝑖 are known,
which can be learned by PSI (private set intersection) methods [22].
Our framework can be simplified into three main steps (Fig. 2).

• Step 1. Federated Representation Learning (FRL). First,
the task hospital and data hospital collaboratively learn fed-
erated latent representations for shared samples using secure
VFL techniques. In brief, these federated latent representa-
tions would incorporate the hidden knowledge among mul-
tiple parties while not leaking these parties’ raw features.
• Step 2. Local RepresentationDistillation (LRD). Second,
the task hospital trains a federated-representation-distilled
module that can distill the knowledge from shared samples’
federated latent representations to enrich local samples’ rep-
resentations.
• Step 3. Learning on Enriched Representations. After
Step 2, the FRD module is distilled and ready for local fea-
ture enrichment. Then, given an arbitrary label 𝑦𝑡 to predict,

the task hospital can use local samples’ enriched representa-
tions (i.e., task hospital’s local features + enriched representa-
tions) to conduct training and inference with state-of-the-art
(SOTA) machine learning algorithms.

Step 3 generally follows traditional supervised learning methods
to train a task-specific medical prediction model, where various
machine learning algorithms can be applied, such as random forest
and neural networks. Next, we illustrate more details about Step
1 and 2. For brevity, we first assume that only one data hospital
𝑑 exists. At the end of Sec. 3.3, we will discuss how to deal with
multiple data hospitals {𝑑1, 𝑑2, ..., 𝑑𝑛}.

3.2 Federated Representation Learning
The purpose of Step 1 is to extract latent representations of shared
samples by considering both task and data hospitals’ features. In
general, we can adopt various vertical federated representation
learning methods for this step. In this work, we adopt a matrix
decomposition-based federated representation method, as literature
has shown that matrix decomposition is effective for extracting
meaningful latent representations for machine learning tasks [25].
Here, we introduce how to leverage two state-of-the-art federated
matrix decomposition methods, i.e., FedSVD [3] and VFedPCA [8],
to learn shared samples’ federated representations by considering
both task and data hospitals’ features.

3.2.1 FedSVD. In FedSVD [3], all hospitals use two random or-
thogonal matrices to transform the local samples into local masked
samples. This maintains the invariance of the decomposition re-
sults despite the masking transformation of the local samples. The
masked samples are then uploaded to a third-party server, which
applies the SVD algorithm to the samples from all hospitals. Finally,
the task hospital can reconstruct the federated latent representation
based on the decomposition results.

Suppose the task hospital holds the shared samples’ feature
matrix 𝑆𝑡 ∈ R |𝐼𝑠 |× |𝑋𝑡 | , and the data hospital 𝑑 holds the shared
samples’ feature matrix 𝑆𝑑 ∈ R |𝐼𝑠 |× |𝑋𝑑 | (𝐼𝑠 = 𝐼𝑡 ∩ 𝐼𝑑 is the shared
sample ID set). Denote 𝑆 = [𝑆𝑡 |𝑆𝑑 ] (combination of both task and
data hospitals’ feature matrices), we want to leverage 𝑆 = 𝑈 Σ𝑉𝑇

(SVD) to learn the latent representations 𝑈 , Inspired by FedSVD
[3], we use a randomized masking method to learn𝑈 as,

(1) A trusted key generator generates two randomized orthog-
onal matrices 𝐴 ∈ R |𝐼𝑠 |× |𝐼𝑠 | and 𝐵 ∈ R |𝑋𝑡𝑑 |× |𝑋𝑡𝑑 | (|𝑋𝑡𝑑 | =
|𝑋𝑡 |+|𝑋𝑑 |).𝐵 is further partitioned to two parts𝐵𝑡 ∈ R |𝑋𝑡 |× |𝑋𝑡𝑑 |
and 𝐵𝑑 ∈ R |𝑋𝑑 |× |𝑋𝑡𝑑 | , i.e., 𝐵𝑇 = [𝐵𝑇𝑡 |𝐵𝑇𝑑 ].

(2) 𝐴 and 𝐵𝑡 are sent to the task hospital; 𝐴 and 𝐵𝑑 are sent to
the data hospital. Each hospital does a local computation by
masking its own feature matrices with the received matrices:

𝑆𝑘 = 𝐴𝑆𝑘𝐵𝑘 ,∀𝑘 ∈ {𝑡, 𝑑} (1)

(3) Both task and data hospitals send 𝑆𝑡 and 𝑆𝑑 to a third-party
server4 and the third-party server runs SVD on the combined
data matrix 𝑆 = 𝑈 Σ𝑉𝑇 , where 𝑆 = [𝑆𝑡 |𝑆𝑑 ].𝑈 is then sent to
the task hospital.

4The third-party server needs to be semi-honest. Note that in FL, such a security con-
figuration (i.e., the information aggregation server is semi-honest) is widely accepted
[51].
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Figure 1: Flowchart of VFedTrans for two hospitals. Each hospital can be either the task or data party. For task𝐴1, ..., 𝐴𝑘 ,Hospital A is the task party andHospital B
is the data party; for task 𝐵1, ..., 𝐵𝑘 , Hospital B is the task party and Hospital A is the data party. In Step 1, we use the VFL techniques for federated representation
learning on non-directly usable shared samples to get a federated latent representation 𝑥

𝑓 𝑒𝑑
𝑠 . In Step 2, both hospitals are able to train a local-representation-

distilled module for knowledge transfer on their own. For the shared samples, the loss function in knowledge distillation not only contains the reconstruction
loss but also adds a new extra distillation loss term that we designed. Then we align the learned representations with the original data to obtain new local enriched
representations. In Step 3, both hospitals are able to use the learned enriched representations to complete their respective downstreamhealthcare-relatedmachine-
learning tasks.

Figure 2: Overview of VFedTrans.

(4) The task hospital can recover the federated latent represen-
tation of shared samples, denoted as x𝑓 𝑒𝑑𝑠 , by

x
𝑓 𝑒𝑑
𝑠 = 𝑈 = 𝐴𝑇𝑈 (2)

Compared to the original FedSVD which aims to recover both𝑈
and 𝑉 [3], we only need to recover𝑈 . Hence, in VFedTrans, only
𝑈 is transmitted to the task hospital to reduce the communication
cost. The correctness of the above process depends on the fact that
𝑆 and 𝑆 (multiplying 𝑆 by two orthogonal matrices) must hold the
same singular value Σ [3].

3.2.2 VFedPCA. To enhance the generality of VFedTrans, we also
use vertical federated principal component analysis (VFedPCA) [8]
to extract latent representations. Under VFedPCA’s setting, each
hospital makes its own federated eigenvector 𝑢 converge to global
eigenvector 𝑢𝐺 without needing to know the mutual data of all
hospitals. Each hospital is able to train the local eigenvector using
local power iteration [42]. Then the eigenvectors from each hospital
are merged into the federated eigenvector 𝑢. Finally, task hospital
can use 𝑢 to reconstruct the original data to obtain the federated
latent representation.

Suppose the task hospital holds the shared samples’ feature
matrix 𝑆𝑡 ∈ R |𝐼𝑠 |× |𝑋𝑡 | , and the data hospital holds the shared

samples’ feature matrix 𝑆𝑑 ∈ R |𝐼𝑠 |× |𝑋𝑑 | . Denote 𝑆 = [𝑆𝑡 |𝑆𝑑 ], 𝑆 ∈
R |𝐼𝑠 |× |𝑋𝑡+𝑋𝑑 | .

(1) For each hospital 𝑖 ∈ {𝑡, 𝑑}, we calculate the largest eigen-
value 𝐴𝑖 = 1

|𝑋𝑖 |𝑆
𝑇
𝑖
𝑆𝑖 and a non-zero vector 𝑎𝑖 corresponding

to the eigenvector 𝛼𝑖 (𝐴𝑖𝑎𝑖 = 𝛼𝑖𝑎𝑖 ). The number of local
iterations is 𝐿, each hospital will compute locally until con-
vergence as follows:

𝑎𝑙𝑖 =
𝐴𝑖𝑎

𝑙−1
𝑖

| |𝐴𝑖𝑎𝑙−1𝑖
| |
, 𝛼𝑙𝑖 =

𝐴𝑖 (𝑎𝑙𝑖 )
𝑇
𝑎𝑙
𝑖

(𝑎𝑙
𝑖
)𝑇𝑎𝑙

𝑖

(3)

where 𝑙 = 1, 2, · · · , 𝐿.
(2) Then each hospital upload the eigenvector 𝑎𝐿

𝑖
and the eigen-

value 𝛼𝐿
𝑖
to third-party server. The server aggregates the

results and generates the federated eigenvalue:

𝑢 = 𝑤𝑡𝑎
𝐿
𝑡 +𝑤𝑑𝑎

𝐿
𝑑
, 𝑤𝑖 =

𝛼𝐿
𝑖∑

𝑖∈{𝑡,𝑑 } 𝛼
𝐿
𝑖

(4)

(3) Task hospital 𝑡 can use the federated eigenvalue 𝑢 to reach
the federated latent representation:

x
𝑓 𝑒𝑑
𝑠 = 𝑆𝑡

𝑀𝑀𝑇

| |𝑀𝑀𝑇 | |
, 𝑀 = 𝑆𝑇𝑡 𝑢 (5)

3.3 Local Representation Distillation
After obtaining x

𝑓 𝑒𝑑
𝑠 for shared samples, Step 2 aims to enrich

the task hospital’s local sample representations. We thus design
a novel local feature extracting strategy, which is combined with
knowledge distilling from shared samples’ x𝑓 𝑒𝑑𝑠 . Specifically, for
a certain unsupervised local representation learner, we enhance
it by adding a new loss function, i.e., making the shared samples
𝐼𝑠 ’s learned representations be close to x

𝑓 𝑒𝑑
𝑠 , thus enabling the

knowledge distillation effect.
In our mechanism implementation, we consider several rep-

resentative unsupervised representation extraction methods, i.e.,
auto-encoder (AE) [17], beta-VAE [16], and GAN [14]. Especially, if
the input features are from a shared sample, we add a knowledge
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Figure 3: The structure of distillation module in Sec. 3.3. In VFedTrans, the
generator of the GAN-like module uses the encoder-decoder structure [38,
44].
distillation loss function by comparing the encoder’s output to the
shared sample’s federated representation (learned from Step 1),

L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 (x𝑡𝑠 ) = |𝐸𝑛𝑐 (x𝑡𝑠 ) − x
𝑓 𝑒𝑑
𝑠 | (6)

where x𝑡𝑠 is the shared samples’ local features in the task hospi-
tal. Fig. 3 shows the structure of distillation module for various
representation extraction methods.

Hence, the complete loss function of the distilled module is,

𝑙𝑜𝑠𝑠 =

{
L𝑟𝑒𝑐𝑜𝑛𝑠 (x𝑡𝑖 ) + 𝜃L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 (x

𝑡
𝑖
) 𝑖 ∈ 𝐼𝑠

L𝑟𝑒𝑐𝑜𝑛𝑠 (x𝑡𝑖 ) 𝑖 ∈ 𝐼𝑡 \ 𝐼𝑠
(7)

That is, for the task hospital’s (non-shared) local samples, the loss
function is the same as the original distillation module. For the
shared samples, a new knowledge distillation loss is added to the
original reconstruction loss; 𝜃 is the weight parameter to balance
two loss function parts.

After training the federated-representation-distilled module un-
til convergence, the distillation module’s output can be a feature
enrichment function for the task hospital’s local samples. That is,
for 𝑖 ∈ 𝐼𝑡 \ 𝐼𝑠 , 𝐸𝑛𝑐 (x𝑡𝑖 ) can be used to enrich the original local
feature x𝑡

𝑖
. In other words, the enriched local samples’ representa-

tions x∗
𝑖
= ⟨x𝑡

𝑖
, 𝐸𝑛𝑐 (x𝑡

𝑖
)⟩ are given to Step 3 for training a machine

learning model for a medical task.
Extension to multiple data hospitals. When there are 𝑛 data

hospitals, the task hospital can repeat the aforementioned Step 1
and 2 with each data hospital. Specifically, for each data hospital
𝑑𝑖 , the task hospital can learn a local feature enrichment function
𝐸𝑛𝑐𝑖 . Then, by aggregating 𝑛 local feature enrichment functions
learned from 𝑛 data hospitals, the local samples’ final enriched
representations become,

x∗𝑖 = ⟨x𝑡𝑖 , 𝐸𝑛𝑐1 (x
𝑡
𝑖 ), 𝐸𝑛𝑐2 (x

𝑡
𝑖 ), ..., 𝐸𝑛𝑐𝑛 (x

𝑡
𝑖 )⟩ (8)

Appendix A.2 summarizes the pseudo-code of VFedTrans.

3.4 Security and Privacy
Security and privacy are key factors to consider in FL mechanism
design. While VFedTrans is a knowledge transfer framework that

incorporates existing VFL algorithms, the security and privacy pro-
tection levels are mainly dependent on the included VFL algorithm.
In particular, the FRL module (Sec. 3.2) is the key part to determine
the overall security and privacy levels of VFedTrans, as cross-party
communications and computations are only conducted in this step.
Currently, we implement the FRL module with SOTA VFL repre-
sentation learning methods including, FedSVD [3] and VFedPCA
[8].FedSVD uses two random orthogonal matrices to mask the orig-
inal data. The third-party server can only use the masked data of
each party to obtain SVD result. The third-party server of VFedPCA
only needs to use the eigenvectors and eigenvalues of each party’s
data for weighted summation. All of these methods protect privacy
by preventing direct use of data by non-holders. Due to the page
limitation, readers may refer to the original papers [3, 8] for specific
security and privacy analysis.

3.5 Updating
In general, VFedTrans is efficient to update without the need to
completely re-running three steps for all the hospitals.

Local Incremental Learning - New task hospital samples. Note
that the representation distillation is conducted locally at the task
hospital. Then, if the task hospital 𝑡 has a number of new local
samples, 𝑡 can locally re-conduct the representation distillation
to learn an updated local feature enrichment function. The task
hospital 𝑡 does not need to communicate with any data hospitals
for this updating, which is very efficient and convenient.5

Task Independence - New tasks. Similar to new samples, if the
task hospital 𝑡 has a new task label to predict, 𝑡 also does not need
to communicate with other hospitals. 𝑡 only needs to repeat Step 3
with the new task label.

Knowledge Extensibility - New data hospitals. The task hospital
can learn a new local feature enrichment function𝐸𝑛𝑐 ′ from the new
data hospital (repeat Steps 1 and 2 with the new data hospital), and
then enrich the local feature representation as x∗

𝑖
= ⟨x∗

𝑖
, 𝐸𝑛𝑐 ′(x𝑡

𝑖
)⟩.

4 EVALUATION
In this section, we empirically verify the effectiveness of our mech-
anism with four real-life medical datasets. Our experiments were
performed on the workstation using NVIDIA RTX 3090, Intel(R)
Xeon(R) Gold 6330 CPU @ 2.00GHz, 160GB RAM, PyTorch 1.10.0,
Python 3.8 and CUDA 11.3.

4.1 Datasets
We evaluate our mechanism on the four medical-related datasets:
MIMIC-III [20], RNA-Seq [46], HAPT [41], and Breast [21]. Appen-
dix A.3 details these four datasets and shows the default data split
to different hospitals in the experiments. We suppose that there
exists one task hospital and one data hospital by default. Due to
the page limitation, for most experiments, we show the results on
MIMIC-III and HAPT datasets.

4.2 Baselines
To verify the effectiveness of our mechanism, we compare it with
four baselines:
5In practice, for new samples, the existing local feature enrichment function (without
updating) can still be used. Our evaluation would test this setting (Sec. 4.7).
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• LOCAL: This baseline leverages only the task hospital’s local
features for training the task-specific model.
• FTL [30]: FTL is an end-to-end FL method for transferring
knowledge to local samples. Specifically, based on shared
samples, FTL maps different parties’ raw features to a com-
mon feature space to achieve knowledge transfer.
• IAVFL [40]: IAVFL first learns a federated model on shared
samples and then learns a local model (for local samples)
by considering both ground-truth labels and soft labels pro-
duced by the federated model.
• FedSimLoc: FedSim [49] is originally designed for fuzzy link-
ing of samples between VFL parties when samples’ exact
identifies are unavailable. We modify it to our scenario, de-
noted as FedSimLoc, by linking a task party’s local (non-
shared) sample with the top-𝐾 similar shared samples. Then,
this local sample can be predicted considering its similar
shared samples’ federated features from other data parties.

While FTL, IAVFL, and FedSimLoc can be used to assist local
samples’ learning in VFL, they do not hold some key characteris-
tics of VFedTrans, such as task-independence (Sec. 3.5). Moreover,
these baselines are all designed purely using deep learning mod-
els (i.e., neural networks), whereas VFedTrans can do prediction
tasks using any machine learning model (e.g., random forest and
XGBoost). Note that in many medical tasks, traditional machine
learning models still perform very efficiently and effectively [37]
(we also run a set of experiments on our datasets to verify this in
Sec. 4.6); VFedTrans is thus more suitable for such medical tasks.

4.3 Training Configurations
In our experiments, we use the random forest (RF) as the default
machine learning algorithm, FedSVD as the default FRL method,
and AE as the default LRDmethod. Details of the remaining training
configurations are in Appendix A.4.

4.4 Main Results
We first report the results when there is one data hospital. Fig. 4
depicts the prediction performance on MIMIC-III and HAPT by
varying the number of features in the task hospital. Results show
that our framework can consistently outperform LOCAL and FL
baselines. The former means that VFedTrans can effectively im-
prove the diagnosis accuracy when the task hospital’s features
are insufficient; the latter shows that our knowledge distillation
mechanism can achieve better performance compared to other FL
knowledge transfer mechanisms.

Fig. 5 shows the prediction performance onMIMIC-III and HAPT
by varying the number of features in the data hospital. The accuracy
of VFedTrans gradually goes up as the number of features in the
data hospital increases. More interestingly, the accuracy increasing
speed of VFedTrans is more significant than baselines. This indi-
cates that VFedTrans can transfer knowledge from rich features of
the data hospital much more efficiently than baselines.

Fig. 6 shows how our mechanism performs by changing the
number of shared samples between the task hospital and the data
hospital. We observe that the performance gets better as there
are more shared samples. This also validates the effectiveness of

Method HAPT RNA-Seq MIMIC-III Breast

VFedTrans (ADA) .9002 ± .0048 .9556 ± .0034 .6848 ± .0049 .9233 ± .0054
LOCAL (ADA) .8825 ± .0068 .9333 ± .0052 .6769 ± .0048 .9067 ± .0048
VFedTrans (NN) .9530 ± .0089 .9600 ± .0190 .7687 ± .0119 .8436 ± .0035
LOCAL (NN) .9502 ± .0125 .9583 ± .0172 .7643 ± .0080 .8250 ± .0038
VFedTrans (KNN) .9203 ± .0079 .9578 ± .0158 .6839 ± .0141 .8583 ± .0049
LOCAL (KNN) .9122 ± .0070 .9512 ± .0102 .6761 ± .0167 .8300 ± .0058
VFedTrans (XGB) .9519 ± .0066 .9625 ± .0140 .8042 ± .0107 .9233 ± .0043
LOCAL (XGB) .9495 ± .0057 .9548 ± .0089 .7940 ± .0072 .9116 ± .0087
VFedTrans (RF) .9341 ± .0054 .9635 ± .0036 .7910 ± .0040 .9253 ± .0068
LOCAL (RF) .9267 ± .0062 .9524 ± .0042 .7715 ± .0084 .9100 ± .0042
FTL .9288 ± .0046 .9413 ± .0075 .7810 ± .0087 .8628 ± .0133
IAVFL .9295 ± .0083 .9512 ± .0065 .7735 ± .0086 .9085 ± .0066
FedSimLoc .9301 ± .0065 .9468 ± .0082 .7805 ± .0079 .8786 ± .0084

Table 1: Prediction accuracy on four datasets under different downstream
classification models (ADA: AdaBoost, NN: neural networks, KNN: K nearest
neighbours, XGB: XGBoost, RF: random forest).

Method FRL LRD Accuracy
MIMIC-III HAPT

VFedTrans

FedSVD AE .7910 ± .0040 .9341 ± .0054
FedSVD beta-VAE .7895 ± .0078 .9345 ± .0039
FedSVD GAN .7889 ± .0058 .9325 ± .0058
VFedPCA AE .7886 ± .0045 .9330 ± .0068
VFedPCA beta-VAE .7875 ± .0061 .9321 ± .0034
VFedPCA GAN .7868 ± .0088 .9332 ± .0077

LOCAL - - .7715 ± .0084 .9267 ± .0062
FTL - - .7810 ± .0087 .9288 ± .0046
IAVFL - - .7735 ± .0086 .9295 ± .0083
FedSimLoc - - .7805 ± .0079 .9301 ± .0065
Table 2: Prediction accuracy by changing FRL and LRD modules.

VFedTrans: with more knowledge sources (i.e., shared samples),
our transfer can always be better.

4.5 Few-shot Results
Real-world data holders mostly keep unlabeled data and have access
to only few samples of labeled data.We thus consider a test situation
where the task hospital does not have enough labeled samples
available. We reduce the samples used for training the downstream
model in Step 3 to 10% of the original size and keep the test part
the same. Fig. 7 explores our mechanism’s performance under this
few-shot setting. When the number of data hospitals is 1 (the same
setting as in Sec. 4.4), our mechanism can still outperform baselines;
meanwhile, all the methods have some degree of performance loss
due to the limited number of training samples.

Additionally, building a VFL mechanism by involving multiple
data parties is realistically advantageous, particularly for few-shot
cases. To validate the effectiveness of VFedTrans under this scenario,
we increase the number of data hospitals involved in collaboration.
Note that the baselines FTL and IAVFL do not consider multiple
data parties in their original design. For these two methods, we
run the two-party collaboration between the task hospital and
every data hospital, and finally output the ensemble prediction with
averaging. With the increase in data hospitals, the performance of
VFedTrans grows obviously and outperforms baselines consistently.
This means that, with VFedTrans, the task hospital can obtain
effective information from multiple data hospitals to compensate
for the insufficiency of local data volume and features.
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Figure 4: Prediction accuracy by varying the task
hospital’s feature number.
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Figure 5: Prediction accuracy by varying the data
hospital’s feature number.

100 1500 3000 5000
0.70

0.73

0.76

0.79

0.82

0.85

A
c
c
u
r
a
c
y

MIMIC-Ⅲ

VFedTrans(our)

LOCAL

FTL

IAVFL

FedSimLoc

100 1500 3000 5000
0.895

0.905

0.915

0.925

0.935

0.945

0.955

Number of shared samples between hospitals

HAPT

VFedTrans(our)

LOCAL

FTL

IAVFL

FedSimLoc

Figure 6: Prediction accuracy by varying thenumber
of shared samples.
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Figure 7: Prediction accuracy by varying thenumber
of data hospitals.
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Figure 8: Prediction accuracy of new samples.
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Figure 9: Computation time by varying the number
of data parties and the number of shared samples.

4.6 Robustness Check
Previous experiments were conducted with the default configura-
tions of VFedTrans and two datasets, MIMIC-III and HAPT. Here,
we check the robustness of VFedTrans by modifying its configura-
tions (classification, FRL, and LRD modules) on more datasets.

Table 1 shows the results whenVFedTrans uses differentmachine
learning models for training the task classifier on four datasets. Our
VFedTrans consistently outperforms LOCAL and other baselines,
verifying the generalized effectiveness of our knowledge transfer
method in various datasets and classifier models. We also find that
no single classification model dominates across all the datasets.
Then, the flexibility of VFedTrans to incorporate any classification
model turns out to be a significant benefit in reality, as we can
customize the classifier according to the target dataset.

Besides, we change the methods in FRL and LRD of VFedTrans.
Table 2 illustrates the prediction accuracy when we modify the
modules in VFedTrans. We can see that the resultant accuracy is
robust to such modifications.

4.7 Inductive Learning Results
Moreover, we check how VFedTrans can facilitate inductive learn-
ing for new samples of the task hospital (i.e., not used in training
the federated-representation-distilled module in Sec. 3.3). In reality,
new samples may have a different feature or label distribution from
old samples since many factors may change with time, leading to
a non-IID case. We thus run inductive learning on both IID and
non-IID cases.6

Fig. 8 demonstrates that VFedTrans can achieve better perfor-
mance than other baselines for both IID and non-IID new sam-
ples. This reveals the good generalizability of our mechanism’s
enriched representations. Specifically, while the prediction accu-
racy decreases for all methods when the experiment setting changes
from IID to non-IID, the loss of accuracy is much smaller for our
method. For hospitals, the non-IID sample is a completely differ-
ent case from the original local sample. Models using only local

6For the non-IID case, the label distribution of new samples is different from training
samples. Details are in Appendix A.5.

knowledge cannot fit well with a large number of new non-IID
samples. Our framework enables these local hospitals to benefit
from collaborative federated medical knowledge learning and to
maintain a more solid and trustworthy medical diagnosis in the
face of unknown cases and more complicated clinical situations.

4.8 Analysis on L𝑑𝑖𝑠𝑡𝑖𝑙𝑙

To further verify the effectiveness of VFedTrans on knowledge
transfer, we compare the changes in prediction accuracy before
and after using our proposed knowledge distillation loss function
L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 = |𝐸𝑛𝑐 (x𝑡𝑠 ) − x

𝑓 𝑒𝑑
𝑠 | (Sec. 3.3). As shown in Fig. 10, the pre-

diction accuracy is significantly improved with the use of the novel
loss component for knowledge transfer. Similarly, when the fea-
tures of the task hospital change, our mechanism always performs
better than the mechanism without knowledge transfer. It is worth
noting that our proposed loss function can bring higher accuracy
improvement when the task hospital has fewer features. This indi-
cates that VFedTrans enables hospitals with insufficient features to
significantly benefit from cross-institution collaboration.

Overall, the results show that the proposed loss is effective for
carrying out knowledge transfer. That is, adding |𝐸𝑛𝑐 (x𝑡𝑠 ) − x

𝑓 𝑒𝑑
𝑠 |

into the loss function of representation learning can achieve sen-
sible knowledge transfer. x𝑓 𝑒𝑑𝑠 can be regarded as the teacher and
𝐸𝑛𝑐 (x𝑡𝑠 ) as the student. Students use both their own data and the
teacher’s shared x

𝑓 𝑒𝑑
𝑠 to conduct knowledge distillation. The gen-

erated representations thus benefit from the teacher’s knowledge.

4.9 Computation Time
The computation efficiency of VFedTrans generally depends on the
FRL module, as only this step requires collaboration between data
and task hospitals. It is worth noting that our implemented FRL
algorithm, such as FedSVD, is highly efficient and can be applied
to a billion-scale feature matrix [3]. This fundamentally supports
the high computation efficiency of VFedTrans.

Besides, we vary the problem scale to check how computation
time changes. Fig. 9 records the computation time of VFedTrans
by varying the number of data hospitals and the number of shared
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Figure 10: Prediction accuracy by varying the task hospital’s feature number with or without the knowledge distillation loss L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 .

samples, respectively. In general, the computation time of our mech-
anism is linearly proportional to the number of data hospitals and
the number of shared samples. This linear relationship further indi-
cates the good scalability of our mechanism.

5 RELATEDWORK
In this section, we introduce the related work from two perspectives,
VFL methods and FL in healthcare.

5.1 Vertical Federated Learning
VFL focuses on cross-organizational collaborative learning. The
common setting [51] is that different organizations hold different
features of the same set of samples. Researchers have proposed di-
verse mechanisms, such as tree-based models [5, 7, 48] and neural
networks [12, 19, 23] for VFL collaborations. Compared to these
VFL algorithms, the key difference of our mechanism is the ap-
plication scope. Existing VFL algorithms focus on improving the
prediction performance on shared samples. In contrast, our mecha-
nism aims to improve the prediction performance of each party’s
local (non-shared) samples by transferring the knowledge from
shared samples. This study validates the effectiveness of our frame-
work for collaborative healthcare learning. We believe that our
proposed VFedTrans can be a good complement to existing VFL
algorithms, thus boosting the practicability of FL in reality.

A prior study close to our research is the FTL (federated transfer
learning) framework [30]. FTL first trains a specific neural net-
work model according to the task, and maps the heterogeneous
feature space of both parties to a common latent subspace by aligned
samples[31]. The task hospital then trains the local network model
in this subspace. However, our knowledge transfer process is task-
independent, which means that the distilled representation of the
task hospital’s samples (i.e., learned from the distilled encoder) can
benefit an arbitrary machine learning task and flexibly select any
classification model for local tasks; in comparison, FTL is a neural
network-based end-to-end training framework that lacks modules
for directly training intermediate layers. This makes it challenging
to use non-neural network classifiers in FTL. Another recent work
on local samples’ learning for VFL is proposed by Ren et al. [40],
which transfers the knowledge from the shared samples’ federated
model to the local model by distilling the soft labels generated by
the federated model. Like FTL, it also works in a task-dependent
manner based on neural networks, which is different from our
VFedTrans.

5.2 Federated Learning in Healthcare
FL is a distributed AI paradigm that has been recognized as a promis-
ing solution in the field of intelligent healthcare [9, 47, 50]. Fed-
Health [6] is designed for wearable health monitoring with smart-
phone collaboration. Actually, the three steps of this method —
local training, model sharing, and server aggregation — are car-
ried out under HFL. Then transfer learning is used in the phase of
model personalization. FGTF [33] investigates enhancing a tensor
factorization-based collaborative model to handle sensitive health
data. FGTF is more concerned with ensuring model convergence
and quality reliability while reducing uplink communication costs.
Flop [52] is an application of HFL in the field of medical image
classification. In Flop, the client only needs to share a partial model
with the server for federated averaging; the remaining few layers of
neural network can remain private. These existing federated health-
care frameworks rarely consider how to address the imbalance,
insufficiency, and heterogeneity of health data among healthcare
institutions from a VFL perspective, which however is the objective
of our research.

6 CONCLUSION
In this work, we propose a vertical-federated-knowledge-transfer
unified framework (VFedTrans) to transfer the knowledge from
cross-institutional shared samples to each hospital’s local samples.
VFedTrans can significantly improve the application scenarios of
VFL in healthcare collaborative learning, as it is complementary to
the traditional VFL solutions that work only for shared samples. Ex-
tensive experiments on medical datasets verify the effectiveness of
VFedTrans. Future work may focus on incorporating various SOTA
FL techniques [13, 27] into VFedTrans to enrich the framework
and considering a new blockchain-based peer-to-peer collabora-
tive learning paradigm [15, 45, 56] to remove the reliance on the
third-party server for higher privacy protection.
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A APPENDIX
A.1 Notation
The used notation can be found in Table 3 (as referred to Sec. 2.)

Notation Description

𝑡, 𝑑 Task hospital and Data hospital.
𝑑𝑖 The i-th data hospital.

𝑋𝑡 , 𝑋𝑑 Features of task hospital and data hospital.
𝐼𝑡 , 𝐼𝑑 Samples of task hospital and data hospital.
𝑌𝑡 , 𝑌𝑑 Labels of task hospital and data hospital.
𝐻𝑖 The original local data of hospital 𝑖 .

𝐻
𝑝

𝑖
, 𝐻𝑠
𝑖

Hospital i’s private samples and shared samples.
𝐻𝑠 Non-directly usable shared samples between two hospitals.
𝑥
𝑓 𝑒𝑑
𝑠 Federated latent representations (Sec. 3.2).

𝐸𝑛𝑐 (𝑥) Encoder’s output in LRD module (Sec. 3.3).
𝑥∗ Enriched loacal samples’ representations.

L𝑟𝑒𝑐𝑜𝑛𝑠 Reconstruction loss (Equa. 7).
L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 Novel distillation loss (Equa. 7).

𝜃 Weight parameter (Equa. 7).
Table 3: List of used notions.

A.2 Algorithm
The procedure steps of VFedTrans can be found in Algorithm 1 (as
referred to Sec. 3).

Algorithm 1 VFedTrans algorithm
Require: Hospital series: {𝐻1, 𝐻2, · · · , 𝐻𝑛}

Choose two hospitals 𝐻𝑖 and 𝐻 𝑗

Get the private samples 𝐻𝑝

𝑖
and 𝐻𝑝

𝑗

Get the shared samples 𝐻𝑠
𝑖
and 𝐻𝑠

𝑗

Get the non-directly usable samples 𝐻𝑠

𝑋
𝑓 𝑒𝑑
𝑠 ← 𝐹𝑅𝐿(𝐻𝑠 ) ⊲ Details are in Sec. 3.2

for 𝐻𝑘 ∈ {𝐻𝑖 , 𝐻 𝑗 } do
𝐸𝑛𝑐 (𝑋𝑘 ) ← 𝐿𝑅𝐷 (𝐻𝑝

𝑘
, 𝐻𝑠

𝑘
, 𝑋

𝑓 𝑒𝑑
𝑠 ) ⊲ Details are in Sec. 3.3

𝑋 ∗
𝑘
←< 𝑋𝑘 , 𝐸𝑛𝑐 (𝑋𝑘 ) >

end for
for 𝐻𝑘 ∈ {𝐻𝑖 , 𝐻 𝑗 } do

𝑀𝑒𝑑𝑖𝑐𝑎𝑙𝑇𝑎𝑠𝑘 (𝑋 ∗
𝑘
)

end for

A.3 Dataset
This is a supplement to Sec. 4.1.

A.3.1 Details of the medical datasets.

• Medical InformationMart for Intensive Care (MIMIC-III) dataset
provides de-identified health-related data for 58976 patients
from 2001 to 2012. The dimension is R58976×15. Length of
stays (LOS) is the target of prediction and varies between 1
and 4.
• Human Activities and Postural Transitions (HAPT) is an activ-
ity recognition dataset based on smartphone sensor readings.
• Gene Expression Cancer RNA-Seq (RNA-Seq) dataset includes
gene expressions in patients with different types of tumor.
The dimension is R801×20531 and there are 5 tumor types

to predict. The dataset dimension is R10929×561. The task
label is the activity type (12 types).
• Breast is calculated from the digital image of the fine nee-
dle aspirate of the breast lumps. It has 569 samples and 31
features. The diagnosis result is a binary classification (M =
malignant, B = benign).

A.3.2 Data split. The data held by hospitals under different task
settings is shown in Table 4. We shuffle the data before dividing to
prevent interference from the label distribution. Assuming that the
task hospital 𝑡 has the fewer resources and its data is insufficient,
i.e., 𝑡 holds a smaller number of samples of features than a data
hospital 𝑑 with more abundant medical resources. This setting is
effective in experiments to verify that the knowledge transfer in
VFedTrans can better help the weaker party. All experiments except
Sec. 4.5 and the first experiment in Sec. 4.9 are single-party tasks
(one data hospital). In the multi-party task, the number of samples
and features of each data hospital are randomly generated within a
given interval. The sample size of the shared 𝐻𝑠𝑖 is also generated
in this manner while the number of features is 𝑋𝑡 +𝑋𝑑𝑖 . In addition,
we set the dimension of the federated latent representation 𝑥 𝑓 𝑒𝑑𝑠 in
Sec. 3.2 to be the same as 𝐻𝑡 , i.e., both R𝐼𝑡×𝑋𝑡 .

Task Hospital’s data
Dimension

MIMIC-III HAPT RNA-Seq Breast

Common 𝐻𝑡
𝐼𝑡 5000 4000 600 300

𝑋𝑡 5 100 6000 15

Single party
𝐻𝑑

𝐼𝑑 20000 8000 600 400

𝑋𝑑 10 250 8000 15

𝐻𝑠
𝐼𝑠 4000 3000 500 200

𝑋𝑠 15 350 16000 30

Multi-party
𝐻𝑑𝑖

𝐼𝑑𝑖 8000 ∼ 25000 5000 ∼ 10000 - -
𝑋𝑑𝑖 5 ∼ 10 200 ∼ 400 - -

𝐻𝑠𝑖
𝐼𝑠𝑖 2000 ∼ 4000 2000 ∼ 4000 - -
𝑋𝑠𝑖 𝑋𝑡 +𝑋𝑑𝑖 𝑋𝑡 +𝑋𝑑𝑖 - -

Table 4: Default samples and features held by each hospital.

A.4 Training configuration
This is a supplement to Sec. 4.3.

A.4.1 FRL techniques. In FRL, we use two VFL techniques, FedSVD
and VFedPCA, with the former being the default. We list the key
parameters of two methods in Table 5.

VFL Parameter Default Description

FedSVD num_party 2 The number of participants.
block_size 100 Build fix-size block in orthogonal matrix

generation.

VFedPCA

party_num 2 The number of participants.
iter_num 100 The number of local power iteration.

period_num 10 The number of communication period.
warm_start True Use the previous global aggregation vector.

Table 5: Default key parameters in FRL.
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A.4.2 LRD modules. We choose Adam optimizer for training distil-
lation module, with learning rate=0.001, batch size=100, epoch=500.
AE is the default LRD method. Simultaneously, we also carry out
experiments under different LRD modules, such as beta-VAE and
GAN, to verify the framework’s robustness. The key parameters of
the three distillation modules are shown in Table 6.

LRD Parameter Default Description

AE
depth 6 The depth of encoder and decoder.

activation Sigmoid The activation function of hidden layers.
𝜃 0.001 The weight parameter of L𝑑𝑖𝑡𝑖𝑙𝑙 .

beta-VAE
𝛽 4 Balance L𝑟𝑒𝑐𝑜𝑛𝑠 and L𝐾𝐿 .

kld_weight 0.00025 The weight of L𝐾𝐿 .
𝜃 0.00001 The weight parameter of L𝑑𝑖𝑡𝑖𝑙𝑙 .

GAN

d_depth 4 The depth of discriminator.
g_depth 4 The depth of generator.
activation LeakyReLU The depth of generator and discriminator.

negative_slope 0.2 The angle of the negative slope.
𝜃 0.00001 The weight parameter of L𝑑𝑖𝑡𝑖𝑙𝑙 .
Table 6: Default key parameters in LRD.

A.4.3 Task-specific medical models. For all the datasets, when train-
ing the task-specific medical model, we choose 80% of the data as
the training set and 20% as the test set. In order to prevent the
interference of random seeds, we carry out experiments under 10
different random seeds and compute the average results. Note that
we can leverage various machine learning algorithms to train the
task-specific model. In our experiments, we use the random forest
(RF) as the default machine learning algorithm. We also test the

other popular algorithms, including AdaBoost, KNN, XGBoost [4],
and neural network (NN) for robustness checks. The parameters of
the downstream model are summarized in Table 7.

Model Parameter Default Description

RF n_estimators 200 The number of the trees.
max_depth 10 The maximum depth of the tree.

AdaBoost
max_depth 3 DecisionTreeClassifier’s maximum

depth.
n_estimators 100 The maximum number of estimators.
learning_rate 0.5 Each classifier’s weight at each iteration.

NN

hidden_layer_sizes (100, 100, 50) The number of units in hidden layers.
𝛼 0.01 Weight of the L2 regularization term.

max_iter 400 Maximum of iterations.
activation relu Activation function for the hidden layer.

KNN n_neighbors 8 Number of neighbors.

XGBoost max_depth 7 The maximum depth of a tree.
learning_rate 0.01 Weight at each iteration.

Table 7: Default key parameters in downstream medical models.

A.5 Inductive learning: non-IID setting
This is a supplement to Sec. 4.7. We purposely choose half of the
labels and their corresponding samples. Then we randomly select
40% of this portion as new non-IID samples. The remaining 60% of
the samples and the other half of label’s samples are used for the
generation of hospital data.
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