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ABSTRACT

The atmospheric moisture and temperature profiles from the Atmospheric Infrared Sounder (AIRS)/Ad-

vanced Microwave Sounding Unit on the NASA Aqua mission, in combination with the precipitation from

the Tropical Rainfall Measuring Mission (TRMM), are employed to study the vertical moist thermodynamic

structure and spatial–temporal evolution of the Madden–Julian oscillation (MJO). The AIRS data indicate

that, in the Indian Ocean and western Pacific, the temperature anomaly exhibits a trimodal vertical struc-

ture: a warm (cold) anomaly in the free troposphere (800–250 hPa) and a cold (warm) anomaly near the

tropopause (above 250 hPa) and in the lower troposphere (below 800 hPa) associated with enhanced

(suppressed) convection. The AIRS moisture anomaly also shows markedly different vertical structures as

a function of longitude and the strength of convection anomaly. Most significantly, the AIRS data dem-

onstrate that, over the Indian Ocean and western Pacific, the enhanced (suppressed) convection is generally

preceded in both time and space by a low-level warm and moist (cold and dry) anomaly and followed by

a low-level cold and dry (warm and moist) anomaly.

The MJO vertical moist thermodynamic structure from the AIRS data is in general agreement, particu-

larly in the free troposphere, with previous studies based on global reanalysis and limited radiosonde data.

However, major differences in the lower-troposphere moisture and temperature structure between the

AIRS observations and the NCEP reanalysis are found over the Indian and Pacific Oceans, where there are

very few conventional data to constrain the reanalysis. Specifically, the anomalous lower-troposphere

temperature structure is much less well defined in NCEP than in AIRS for the western Pacific, and even has

the opposite sign anomalies compared to AIRS relative to the wet/dry phase of the MJO in the Indian

Ocean. Moreover, there are well-defined eastward-tilting variations of moisture with height in AIRS over

the central and eastern Pacific that are less well defined, and in some cases absent, in NCEP. In addition,

the correlation between MJO-related midtropospheric water vapor anomalies and TRMM precipitation

anomalies is considerably more robust in AIRS than in NCEP, especially over the Indian Ocean. Overall,

the AIRS results are quite consistent with those predicted by the frictional Kelvin–Rossby wave/conditional

instability of the second kind (CISK) theory for the MJO.
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1. Introduction

The Madden–Julian oscillation (MJO; Madden and

Julian 1971, 1972) is the dominant component of the

intraseasonal (30–90 day) variability in the tropical at-

mosphere. It is characterized by a slow eastward propa-

gation (�5 m s�1) of deep convection and large-scale

circulation anomalies mainly in the equatorial Indian

Ocean and western Pacific (Madden and Julian 2005;

Wang 2005; Zhang 2005). Since its discovery, the MJO

has continued to be a topic of significant interest be-

cause of its complex nature and profound influence on

the global weather and climate at all time scales. Un-

fortunately, we are still facing great difficulties of accu-

rately simulating and predicting the MJO using even

the most sophisticated global climate and weather fore-

cast models (e.g., Slingo et al. 1996, 2005; Waliser et al.

2003b; Waliser 2006). Furthermore, a comprehensive

theory for the MJO that accounts for all the fundamen-

tal characteristics of the MJO, such as initiation in the

western Indian Ocean, slow eastward propagation in

the Indian Ocean and western Pacific, and intrasea-

sonal time scale, has proven elusive (see Wang 2005 for

a detailed review). It is fair to say that understanding,

modeling, and predicting the MJO still remains a chal-

lenge for tropical atmospheric scientists and oceanog-

raphers (see Lau and Waliser 2005 and Zhang 2005 for

detailed summaries).

Observational analyses of the large-scale three-

dimensional structure and spatial–temporal evolution

of the MJO have proven valuable in addressing this

challenge. Studies to date have made the most of the

available, yet sparse, radiosonde data (e.g., Hendon

and Liebmann 1990; Lin and Johnson 1996; Kemball-

Cook and Weare 2001; Kiladis et al. 2005), the compre-

hensive, yet model-dependent, reanalysis products,

such as the National Centers for Environmental Pre-

diction–National Center for Atmospheric Research

(NCEP–NCAR) reanalysis (Kalnay et al 1996) and the

European Centre for Medium-Range Weather Fore-

casts (ECMWF) reanalysis (Gibson et al. 1997; e.g., Rui

and Wang 1990; Hendon and Salby 1994; Jones and

Weare 1996; Maloney and Hartmann 1998; Sperber

2003; Seo and Kim 2003; Hsu and Lee 2005; Kiladis et

al. 2005), and in a few cases vertically resolving satellite

data (e.g., Bantzer and Wallace 1996; Myers and Wa-

liser 2003). In general these studies have characterized

a number of important properties of the MJO. For ex-

ample, MJO convection is preceded by low-level mass

convergence, upward motion, warming, and moisten-

ing. Furthermore, free tropospheric warming and

moistening coincide with MJO convection. While these

studies have been instrumental in helping to formulate

our conceptual and theoretical understanding of the

MJO, they are still subject to a number of limitations

and uncertainties. For example, the radiosonde analy-

ses are limited to the fringes of the Indian Ocean but do

not include the equatorial region where the most im-

portant components of the MJO thermodynamic activ-

ity occur. The excellent vertical radiosonde profiles

from field experiments like the Tropical Ocean Global

Atmosphere (TOGA) Coupled Ocean–Atmosphere

Experiment (COARE) have significantly advanced our

understanding of the MJO (Lin and Johnson 1996);

however, the spatial and temporal coverage of the

TOGA COARE radiosonde data is limited. Similarly,

because of the lack of observations, there are virtually

no radiosonde analyses of MJO-driven thermodynamic

variability in the central and eastern Pacific Ocean.

Moreover, the lack of radiosonde data in these regions

makes results based on reanalysis efforts more suspect

as the data in these regions is more strongly determined

by the model component of the reanalysis. Finally,

while there have been some satellite data sources avail-

able for MJO analysis (e.g., Bantzer and Wallace 1996;

Myers and Waliser 2003) as well as for inclusion into

the reanalyses, the vertical resolution, particularly in

the lower troposphere where it is most needed, is rather

low (�3–4 km). Thus, the vertical moist thermody-

namic structure of the MJO requires continued exami-

nation based on improved observations.

The Atmospheric Infrared Sounder (AIRS)/Ad-

vanced Microwave Sounding Unit (AMSU) is a new

satellite-based sounding system on the National Aero-

nautics and Space Administration (NASA) Aqua mis-

sion, and is the most advanced temperature and humid-

ity sounding system ever deployed (Parkinson 2003).

Through multispectral coverage in infrared and micro-

wave channels, the AIRS/AMSU system obtains verti-

cal profiles of atmospheric temperature and water va-

por with vertical resolution of 1–2 km, horizontal reso-

lution of 45 km, temporal resolution of twice daily,

radiosonde accuracy, global coverage, and for cloud

cover up to about 70%. Thus, the AIRS data provide an

unprecedented opportunity to examine the MJO three-

dimensional structure. In this study, we seek to exploit

these high-resolution soundings to characterize the ver-

tical moist thermodynamic structure and spatial–

temporal evolution of the MJO. In addition, by com-

paring results from AIRS and the NCEP reanalysis, an

extensively used reanalysis for MJO studies, we hope to

illustrate areas where confidence can be ascribed to the

reanalyses as well as highlight areas for where caution

might be warranted.

The outline for the rest of this paper is as follows:
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The data and methodology are introduced in section 2.

Section 3 presents the main observational results of this

study followed by a comparison with those obtained

using NCEP in section 4. Section 5 summarizes the ma-

jor findings of this study and discusses the implications

of these observational results to MJO theory.

2. Data and methodology

a. AIRS

The AIRS experiment includes the AIRS, AMSU,

and the Humidity Sounder for Brazil (HSB) instru-

ments but HSB malfunctioned after launch. This study

uses retrievals based only on AIRS and AMSU. The

AIRS/AMSU sounding system, which is included on

the NASA Aqua platform, has been operational since 1

September 2002. The two instruments are each cross-

track scanning nadir sounders that are coaligned and

have a swath roughly 1650 km wide. The AIRS instru-

ment is a 2378-channel grating spectrometer measuring

infrared radiance at wavelengths in the range 3.7–15.4

�m. The horizontal resolution is about 13.5 km at nadir

(Aumann et al. 2003). These wavelengths are sensitive

to clouds, surface properties, minor gases, and profiles

of temperature and water vapor. AMSU is a 15-channel

microwave radiometer with a horizontal resolution of

about 45 km at nadir. Twelve AMSU channels are sen-

sitive to temperature, with the other three channels

used for water vapor measurement and precipitation

detection.

The retrieval method for AIRS geophysical quanti-

ties uses an iterative, least squares physical inversion of

clear column radiances, obtained from a combination

of infrared and microwave observations following the

approach of Chahine (1968, 1977). The AIRS retrieval

algorithm is described by Susskind et al. (2003), and

includes forward radiative models for calculating infra-

red (Strow et al. 2003) and microwave spectra (Rosen-

kranz 2003). The retrieval methodology uses a set of a

single AMSU microwave spectrum and nine associated

AIRS infrared spectra. AIRS obtains 324 000 profile

estimates daily. The horizontal resolution of profile

quantities is 45 km, the same as AMSU observations.

While the true vertical resolution of AIRS is not

known, simulations indicate resolution of about 1 km

for temperature and 2 km for water vapor in the lower

and middle troposphere (Susskind et al. 2003). Those

numbers pertain to individual profiles, while the results

shown here are based on composites over many thou-

sands of soundings. The composite profiles can be ex-

pected to have better vertical resolution.

The resulting AIRS profiles have specified tropo-

spheric uncertainties of 1 K in 1-km layers for tempera-

ture, and 15% of mean specific humidity in 2-km layers

for water vapor. These uncertainties have been con-

firmed empirically through validation studies for a wide

range of conditions using operational radiosondes (Di-

vakarla et al. 2006), and best-estimate atmospheric con-

ditions from a suite of in situ observations (Tobin et al.

2006). The Tobin et al. analysis includes comparisons

with AIRS-dedicated radiosondes at Nauru Island in

the equatorial Pacific Ocean (0.54°S, 166.93°E), where

AIRS retrievals exceed the measurement specification

for temperature and water vapor described above.

Gettelman et al. (2004) showed that AIRS retrievals in

the moist Tropics have uncertainties in water vapor of

20% or less in the upper troposphere below 150-hPa

pressure level, and temperature uncertainties of �1K

into the stratosphere. The AIRS water retrievals have

uncertainties of 30%–50% over land versus 20% over

water. In radiosonde comparisons over nondesert land

and water regions, these uncertainties are dominated

by a random component (Tobin et al. 2006; Divakarla

et al. 2006). These random uncertainties will be reduced

by the averaging effect of the composing technique

used in this study. Our studies indicate desert regions

have spurious wet biases in AIRS retrievals, but these

regions lie outside the limits of this study. Finally, sen-

sitivity studies indicate that land-induced uncertainties

do not affect the conclusions of our study because the

MJO is most active in the equatorial Indian and west-

ern Pacific Oceans.

The primary data in this study are the daily (count-

weighted average of the ascending and descending

modes) AIRS level 3 v4.0.8.0 atmospheric moisture and

temperature profiles from 1 September 2002 to 26

January 2005. The data have a horizontal resolution of

1° latitude � 1° longitude, and the vertical grid is based

on the World Meteorological Organization (WMO)

standard pressure levels from 1000 to 1 hPa for tem-

perature and layers from 1000 to 100 hPa for water

vapor.

The AIRS level 3 data include only those retrievals

utilizing both infrared (AIRS) and microwave (AMSU)

observations, designated full retrievals. The validation

studies described above have also concentrated on

AIRS full retrievals. The AIRS full retrieval yield is a

strong function of cloud amount, dropping to zero for

effective cloud fraction (the product of true fraction

and infrared emissivity) greater than about 70%. This

yield can vary with time and location, and be as small as

15% in some regions studied here. Yields typically

range between 30% and 80%, with slight day/night dif-

ferences presumably due to diurnal cycles in cloudiness.

Fetzer et al. (2006) show that AIRS total water vapor is

unbiased in regions of deep convection, even when
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AIRS yields are small. This implies that the AIRS

lower tropospheric humidity, at least, is also unbiased.

b. Other data sources

Tropical Rainfall Measuring Mission (TRMM) ad-

justed merged-infrared precipitation (3B42) from 1

January 1998 to 4 February 2005 was used to identify

MJO events. The TRMM 3B42 rainfall is on a 3-h tem-

poral resolution and a 0.25° � 0.25° spatial resolution in

a global belt extending from 50°S to 50°N. In the fol-

lowing discussion, rainfall is used as a proxy for MJO

convection. To compare the MJO vertical structure

based on AIRS with that from traditional global re-

analysis products, the daily NCEP reanalysis and the

NCEP–Department of Energy (DOE) reanalysis

(Kanamitsu et al. 2002; NCEP2 for simplicity) at the

same period as AIRS were also employed. The vertical

resolution of NCEP temperature profile is the WMO

standard pressure levels from 1000 to 10 hPa and from

1000 to 300 hPa for water vapor. The latitude–longitude

resolution of the NCEP reanalysis is 2.5° � 2.5°. For

validation purposes, the contemporaneous daily NCEP

quality-controlled radiosonde data at Truk, Micronesia

(7.47°S, 151.85°E), were also utilized.

c. Compositing procedure

Because of the limited number of MJO events in this

study, pentad data were used for the MJO analysis in-

stead of daily data in order to give adequate samples on

a given map. The data from TRMM, AIRS, NCEP, and

radiosonde were first binned into 5-day average (i.e.,

pentad) values. Then, the annual cycle was calculated

based on the pentad data and smoothed with a 30-day

running mean. Next, pentad anomalies were obtained

by removing the annual cycle from the pentad data.

Last, MJO anomalies (or just anomalies for simplicity)

were isolated through the difference between the 15-

day and 45-day running means of the pentad anomalies.

A time–longitude diagram of TRMM rainfall anomalies

along the equator (not shown) indicates that a number

of MJO events (�10–15) are evident during the AIRS

data period. To obtain a representative MJO vertical

structure and spatial–temporal evolution, MJO events

were chosen based on an extended empirical orthogo-

nal function (EEOF) analysis (Weare and Nasstrom

1982), using a temporal lag of 11 pentads (from �5 to

�5 pentads), of the TRMM rainfall anomalies from

Northern Hemisphere (NH) wintertime (November–

April) and the region 30°N–30°S and 30°E–150°W. This

region, that is, mainly equatorial Indian Ocean and

western Pacific, is the active geographic region of the

classic eastward propagating MJO with a peak season

in the NH wintertime (e.g., Madden 1986; Wang and

Rui 1990a; Jones et al. 2004; Zhang and Dong 2004).

The spatial–temporal pattern for the first EEOF

mode, explaining about 6% variance, is shown in Fig. 1

and depicts the bulk characteristics of a typical MJO

cycle in terms of rainfall anomaly. MJO convection first

develops in the western Indian Ocean, then slowly

propagates eastward in the Indian Ocean and western

Pacific, and finally disappears in the central Pacific,

consistent with previous studies, such as Wang and Rui

(1990a) and Hendon and Salby (1994). In this depic-

tion, the MJO appears to oscillate with a period of

about 40 days. Also consistent with Hsu and Lee

(2005), the eastward propagation of MJO convection is

typically not continuous and occurs mainly in two re-

gions: the Indian Ocean (60°–110°E) and the western

Pacific warm pool (135°E–170°W). The Maritime Con-

tinent where the eastward propagation is very weak

separates these two regions.

Figure 2 shows the amplitude pentad time series of

the first EEOF mode of the NH wintertime TRMM

rainfall anomaly for the AIRS period. MJO events are

selected for compositing if their peak time series am-

plitude is greater than �1 standard deviation (e.g., Wa-

liser et al. 2003a), Based on this simple criterion, eight

MJO events were selected for the AIRS data period, as

indicated by eight crosses in Fig. 2. For each selected

MJO event, the corresponding 11-pentad rainfall, tem-

perature, and water vapor anomalies were extracted for

each dataset (TRMM, AIRS, NCEP, and radiosonde).

A composite MJO cycle (11 pentads) of the anomalies

was then obtained by averaging the eight selected MJO

events. Sensitivity study based on a longer time period

of NCEP data indicates that the MJO structure based

on the current eight MJO events should be significant

and useful to report at this stage.

3. Observed MJO vertical structure from AIRS

a. MJO vertical thermodynamic structure

Figure 3 shows the pressure–longitude cross sections

of temperature anomaly for the composite MJO cycle.

For simplicity, only lags from �3 to �3 pentads of the

MJO cycle are shown. Please note that the MJO struc-

ture of lag �4 pentads is very similar to that of lag �4

and �3 pentads. In addition, the line plots overlaid on

the contour diagrams are the corresponding MJO-

related TRMM rainfall anomalies. Note that the mag-

nitude of the composite temperature anomalies ranges

up to about �0.4 K. However, inspection of the indi-

vidual events shows that they range up to about �1.5 K
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but the compositing procedure reduces the signal am-

plitude.

In the Indian Ocean and western Pacific, where MJO

convection is active, the temperature anomaly shows a

trimodal vertical structure with roughly three layers:

lower troposphere (below 800 hPa), free troposphere

(800–250 hPa), and tropopause region (above 250 hPa).

Near the tropopause (above 250 hPa), a cold (warm)

anomaly (�0.2 K) is generally found over the region of

enhanced (suppressed) convection with a maximum in

FIG. 1. Spatial–temporal pattern for the first EEOF mode of TRMM rainfall anomaly from NH wintertime (November–April) and

the region 30°N–30°S and 30°E–150°W. The unit for the lag is pentad. The color red denotes positive rainfall anomalies, i.e., enhanced

convection, while the color blue indicates negative rainfall anomalies, i.e., suppressed convection.

2466 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 63



the lower stratosphere, indicating that deep convec-

tion—at least as organized by the MJO—tends to lo-

cally cool the tropopause region (see also Lin and

Johnson 1996; Sherwood et al. 2003; Kiladis et al. 2005;

Kim and Dessler 2004). The tropopause temperature

anomaly exhibits a structure tilting upward from west

to east and appears to be part of the global-scale tem-

perature anomaly signals originating from the upper

troposphere over the western Pacific, which is a well-

documented feature of the MJO (Eguchi and Shiotani

2004; Kiladis et al. 2005). This tilted structure appears

to be a manifestation of the higher-order of vertical

modes that results from a large change in the stratifi-

cation in the tropopause region (Wang and Chen 1989).

In the free troposphere (800–250 hPa) in Fig. 3, a

warm (cold) anomaly (�0.4 K) is collocated with en-

hanced (suppressed) convection with a maximum in the

upper or middle troposphere, suggesting that deep con-

vection tends to locally warm the free troposphere

(Hendon and Liebmann 1990; Lin and Johnson 1996;

Kemball-Cook and Weare 2001; Sherwood et al. 2003;

Kiladis et al. 2005). In the Indian Ocean, the extrema

tend to be in the middle troposphere (500 hPa), while it

tends to be in the upper troposphere (350 hPa) over the

western Pacific and shifts slightly upward over the cen-

tral Pacific. In the lower troposphere (below 800 hPa)

in Fig. 3, on the other hand, a cold (warm) anomaly

(�0.2 K) is generally found under the region of en-

hanced (suppressed) convection with a maximum near

the surface, implying that deep convection tends to lo-

cally cool the lower troposphere and the surface (Hen-

don and Liebmann 1990; Lin and Johnson 1996;

Kemball-Cook and Weare 2001; Sherwood et al. 2003;

Kiladis et al. 2005). Note that Kiladis et al. (2005) found

higher vertical mode tropospheric temperature struc-

tures over the Indian Ocean (their Figs. 8a,b) based on

the radiosonde data, somewhat different than the struc-

tures shown here. This could be due to a number of

factors, such as sampling, the location of these stations

south of the equator, and seasonality.

Over the Western Hemisphere (i.e., east of the date

line), where MJO convection is weak, significant tem-

perature anomalies are also found in the free tropo-

sphere and the tropopause region, which have the same

sign as those over the western Pacific. In these regions,

the temperature anomaly tends to have a bimodal ver-

tical structure (a difference between troposphere and

stratosphere) compared to the trimodal structure to the

west.

To examine the horizontal structure of the tempera-

ture anomalies in the three layers above and their re-

lationships with the convection anomaly, maps of tem-

perature anomalies representing the tropopause region,

the free troposphere, and the lower troposphere are

shown in Figs. 4, 5, and 6, respectively. In addition,

contour lines of �1 mm day�1 rainfall anomaly are also

shown in the maps. The eastward propagation of warm

(cold) anomalies in the free troposphere (Fig. 5) and

cold (warm) anomalies in the tropopause region (Fig.

4) and the lower troposphere (Fig. 6) are coincident

with the eastward propagation of the enhanced (sup-

pressed) convection anomaly. It is also interesting to

note that significant upper tropospheric and tropopause

temperature anomalies over the central and eastern Pa-

cific are equatorially confined (Figs. 3, 4, and 5), imply-

ing an equatorial Kelvin wave response to the enhanced

(suppressed) convection in the western Pacific (Gill

1980). Furthermore, significant off-equatorial cold

(warm) anomalies in 100 hPa (Fig. 4) and warm (cold)

anomalies in 400 hPa (Fig. 5) are found to the west of

the enhanced (suppressed) convection, suggesting an

equatorial Rossby wave response to the enhanced (sup-

pressed) convection (Gill 1980). This horizontal struc-

ture of the MJO temperature anomaly from AIRS is

consistent with the previous studies of Hendon and

Salby (1994) and Bantzer and Wallace (1996) based on

the coarse-resolution Microwave Sounding Unit

(MSU) temperature data. However, the magnitude

from AIRS is much larger than the MSU estimate from

Bantzer and Wallace (1996) due presumably to the

resolution difference.

A lower-troposphere preconditioning temperature

FIG. 2. Amplitude pentad time series for the first EEOF mode of TRMM rainfall anomaly from NH wintertime

(November–April) and the region 30°N–30°S and 30°E–150°W.
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FIG. 3. Pressure–longitude cross sections of temperature anomaly (K) for the composite MJO cycle based on AIRS data. For

simplicity, only lags from �3 to �3 pentads of the MJO cycle are shown. The color red denotes positive temperature anomalies, i.e.,

warming, while the color blue indicates negative temperature anomalies, i.e., cooling. The superimposed solid black line denotes the

associated TRMM rainfall anomaly at the AIRS spatial resolution (1° � 1°). The anomalies are averaged from 8°S to 8°N.

2468 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 63



anomaly associated with the development of the MJO

convection anomaly is very evident in the AIRS data

for both the Indian and western Pacific Oceans. Spe-

cifically, the enhanced (suppressed) convection is gen-

erally preceded by a lower-tropospheric warm (cold)

anomaly and followed by a lower-tropospheric cold

(warm) anomaly in both time and space (Figs. 3 and 6).

For example, at lag �1 pentads, enhanced convection

and associated free-tropospheric warm anomaly are lo-

cated over the Indian Ocean (�60°–120°E), while sup-

pressed convection and associated free-tropospheric

cold anomaly are centered over the western Pacific

(�130°E–170°W). However, a lower-tropospheric cold

anomaly is seen over the Indian Ocean, while a lower-

tropospheric warm anomaly is found over the western

Pacific. The lower-tropospheric warm anomaly over the

FIG. 4. Spatial pattern of temperature anomaly (K) at 100 hPa for the composite MJO cycle

based on AIRS. The superimposed solid black line denotes the TRMM rainfall anomaly of 1

mm day�1, while the dashed black line indicates the TRMM rainfall anomaly of �1 mm day�1.
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western Pacific leads (�60° longitude east) the en-

hanced convection over the Indian Ocean, and the lat-

ter is followed (under and to the west) by the lower-

tropospheric cold anomaly over the Indian Ocean.

Similarly, considering a specific location, such as 90°E

at the equator, the MJO convection at lag �1 pentads

is preceded (�4 pentads ahead) by a lower-tropo-

spheric warm anomaly (lag �3 or �4 pentads) and fol-

lowed immediately by a lower-tropospheric cold

anomaly. Note that the eastward propagating MJO

convection implies a consistent lead/lag relationship in

time and space. Please note that the MJO vertical tem-

perature structure observed by AIRS is in general

agreement with previous studies based on limited ra-

diosonde data, such as Hendon and Liebmann (1990),

Lin and Johnson (1996), Kemball-Cook and Weare

(2001), and Kiladis et al. (2005) as discussed in the in-

troduction.

FIG. 5. As in Fig. 4 but for temperature anomaly (K) at 400 hPa.
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b. MJO vertical moisture structure

Diagrams similar to Figs. 3, 4, 5, and 6 but for specific

humidity are shown in Figs. 7, 8, and 9, respectively. In

this case, the horizontal maps are for 648 hPa (Fig. 8,

representing middle and lower troposphere from 547 to

886 hPa), and 961 hPa (Fig. 9, representing surface

layer).

The moisture anomaly shows markedly different ver-

tical structures as a function of longitude, similar to the

findings by Myers and Waliser (2003), and also as a

function of the strength of the convection anomaly. In

the regions of strongly enhanced (suppressed) convec-

tion in the Indian Ocean and western Pacific, moist

(dry) anomalies (�0.3 g kg�1) are generally found

throughout the atmospheric column above 925 hPa

with a maximum in the middle or lower troposphere.

This is consistent with the traditional view that deep

convection serves to locally moisten the upper tropo-

sphere (Held and Soden 2000; Tian et al. 2004).

FIG. 6. As in Fig. 4 but for temperature anomaly (K) at 850 hPa.
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Figure 7 also suggests that AIRS can sense free tropo-

spheric moist (dry) anomalies reaching up to the lower

stratosphere (83 hPa), and that deep convection tends

to moisten the stratosphere and may play an important

role in controlling the stratospheric water vapor (Sher-

wood and Dessler 2000). Near the surface (961 hPa),

weak dry (moist) anomalies (�0.1 g kg�1) are generally

found under the regions of the strongly enhanced (sup-

FIG. 7. As in Fig. 3 but for specific humidity anomaly (g kg�1). The color red denotes positive moisture anomalies, i.e., moistening,

while the color blue indicates negative moisture anomalies, i.e., drying.
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pressed) convection. In the regions of weakly enhanced

(suppressed) convection over the Indian Ocean and

western Pacific, there exists a bimodal structure, with

moist (dry) (�0.1 g kg�1) anomalies in the upper tro-

posphere (above 500 hPa) and dry (moist) (�0.3 g

kg�1) anomalies in the middle and lower troposphere

(below 500 hPa). In addition, the eastward propagation

of the upper tropospheric moist (dry) anomaly and

lower tropospheric and near-surface dry (moist)

anomaly is apparent along the eastward propagation of

the enhanced (suppressed) convection anomaly (Figs.

7, 8, and 9). The AIRS-observed MJO vertical moisture

structure over the Indian Ocean and western Pacific is

consistent with that observed by Kemball-Cook and

Weare (2001) based on radiosonde data.

Over the Western Hemisphere, where MJO convec-

tion is small, the water vapor anomalies are surprisingly

large (�0.4 g kg�1), especially over the eastern Pacific,

as noted by Myers and Waliser (2003). In the eastern

Pacific, large moisture variations are mainly confined to

FIG. 8. As in Fig. 4 but for specific humidity anomaly (g kg�1) at 648 hPa.
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the lower troposphere (below 500 hPa), with small out-

of-phase variations above. It should also be mentioned

that AIRS reveals a westward tilt of moisture anomaly

with height over the Indian Ocean (Fig. 7), which has

been extensively documented by previous studies, such

as Sperber (2003), Seo and Kim (2003), and Kiladis et

al. (2005) based on NCEP or ECMWF and by Myers

and Waliser (2003) based on the Television Infrared

Observation Satellite (TIROS) Operational Vertical

Sounder (TOVS). However, over the western Pacific,

this vertical tilt seems disappear and develop into an

eastward tilt of moisture anomaly with height over the

central Pacific Ocean (Myers and Waliser 2003).

Most importantly, similar to temperature anomaly,

there is also a clear preconditioning lower tropospheric

water vapor anomaly for the convection anomaly over

the Indian Ocean and western Pacific. Specifically,

strongly enhanced (suppressed) convection is generally

preceded, both in time and space, by a low-level moist

(dry) anomaly and followed by a low-level dry (moist)

FIG. 9. As in Fig. 4 but for specific humidity anomaly (g kg�1) at 961 hPa.
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anomaly (Figs. 7, 8, and 9). This is similar to the previ-

ous findings by Kemball-Cook and Weare (2001) based

on radiosonde data, by Sperber (2003), Seo and Kim

(2003), and Kiladis et al. (2005) based on NCEP or

ECMWF and by Myers and Waliser (2003) based on

TOVS. However, previous studies based on localized

radiosonde data mainly focused on the temporal evo-

lution (e.g., Kemball-Cook and Weare 2001), while

those based on global reanalysis mainly focused on the

spatial evolution (e.g., Sperber 2003; Kiladis et al.

2005). Here, we present a comprehensive spatial and

temporal evolution of the MJO.

Comparison of Fig. 3 and Fig. 7 shows an interesting

difference between the MJO vertical temperature and

moisture structures. The preconditioning temperature

anomaly is generally found in the lower troposphere

(Fig. 3), while the preconditioning water vapor anomaly

can reach up to the middle troposphere (around 500

hPa; Fig. 7). The preconditioning moist (dry) anomaly

as exhibited by AIRS seems also to be divided into two

steps. It first develops near the surface (below 925 hPa)

under the region of strongly suppressed (enhanced)

convection (Figs. 7 and 9). After about two pentads, the

suppression (enhancement) of convection gets much

weaker and the preconditioning water vapor anomaly

reaches up to the middle troposphere (around 500

hPa). Then, after about 2 pentads, the suppressed (en-

hanced) convection vanishes and is replaced by en-

hanced (suppressed) convection (Figs. 7 and 8). For

example, a moist anomaly can be clearly seen in the

648-hPa map (Fig. 8) over the equatorial Indian Ocean

at lag �2 pentads and over the western Pacific at lag 0

pentads. This low-level moistening ahead of the MJO

deep convection may be caused by the middle-level cu-

mulus congestus clouds associated with shallow convec-

tion, which were observed during TOGA COARE

(Johnson et al. 1999; Kikuchi and Takayabu 2004). Fur-

thermore, combining deep convection and its associ-

ated preconditioning stage (i.e., weak and strongly sup-

pressed convection) together, the trimodal vertical

structure in the moisture anomaly from AIRS is clear,

which seems to be consistent with the TOGA COARE

soundings (Johnson et al. 1999; Kikuchi and Takayabu

2004).

4. Comparison of the MJO vertical structure

between AIRS and NCEP

To better highlight the new results of the MJO ver-

tical moist thermodynamic structure from AIRS and

also to identify possible systematic errors in the NCEP

reanalysis, we present a direct comparison of the MJO

vertical moist thermodynamic structure based on AIRS

with that from NCEP. Identical analysis and composit-

ing procedures are applied to NCEP and AIRS, which

are at the same period.

a. Comparison of the MJO vertical thermodynamic

structure

A diagram similar to Fig. 3 but based on NCEP is

shown in Fig. 10. Comparison between Figs. 3 and 10

suggests that both AIRS and NCEP show a similar tem-

perature structure near the tropopause and in the free

troposphere. For example, both data reveal a warm

(cold) anomaly in the free troposphere and a cold

(warm) anomaly near the tropopause collocated with

enhanced (suppressed) convection, an eastward propa-

gation of temperature anomalies with the convective

anomaly, and a similar tilted temperature structure

from west to east near the tropopause. However, the

magnitude of the composite anomalies seems to be

much larger in AIRS (�0.4 K) than NCEP (�0.2 K).

Furthermore, the free-tropospheric warm (cold)

anomaly center is typically collocated with the en-

hanced (suppressed) convection center in AIRS, but it

shifts further eastward in NCEP.

Over the western Pacific, the lower-troposphere tem-

perature anomaly has the same sign between AIRS and

NCEP but the magnitude is much larger in AIRS than

that in NCEP. Furthermore, the lower-troposphere

temperature anomaly is more well-defined in AIRS

than NCEP; that is, the transition from the lower-

tropospheric warm (cold) anomaly to the free tropo-

spheric cold (warm) anomaly is much sharper in AIRS

than NCEP. In addition, the lower-troposphere tem-

perature anomaly is much shallower in AIRS (below

�800 hPa) than NCEP (below �700 hPa). These points

are more clearly quantified in the upper panel of Fig.

11, which compares the area-averaged vertical profiles

of the temperature anomaly difference between lag �4

pentads and lag 0 pentads (wet–dry conditions) over

the equatorial western Pacific (8°S–8°N, 150°–160°E)

based on AIRS and NCEP. The Student’s t test also

shows that the difference is statistically significant with

95% confidence level.

In addition, comparison of Figs. 3 and 10 illustrates

even more significant differences in temperature

anomaly between AIRS and NCEP exist in the lower-

troposphere over the Indian Ocean where there are

very few conventional data to constrain the reanalysis.

Over the Indian Ocean, the well-defined lower-

troposphere temperature anomaly (below 800 hPa)

from AIRS (Fig. 3) is entirely different in NCEP (Fig.

10). AIRS suggests a bimodal structure in the tropo-

sphere; that is, positive (negative) in the free tropo-

sphere versus negative (positive) in the lower tropo-

sphere as well as a sharp transition between them, while
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FIG. 10. As in Fig. 3 but based on NCEP. The superimposed solid black line also denotes the associated TRMM rainfall anomaly but

at the NCEP spatial resolution (2.5° � 2.5°), which is smoother than that in Fig. 3. Considering the grid resolution, the latitude average

extends between 8.75°S and 8.75°N.
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the NCEP shows a constant-sign temperature anomaly

throughout the troposphere for lags 0, �4 pentads and

the opposite sign anomalies for lags �2 pentads. Fur-

thermore, the signs of the lower-troposphere tempera-

ture anomaly are always opposite between AIRS and

NCEP during nearly the whole course of the MJO cycle

with negative (positive) anomalies for AIRS (Fig. 3),

in contrast to positive (negative) in NCEP (Fig. 10),

collocated with enhanced (suppressed) convection.

This is illustrated more clearly in the lower panel of

Fig. 11, which compares the area-averaged vertical

profiles of the temperature anomaly difference be-

tween lag �2 pentads and lag �2 pentads over the

equatorial Indian Ocean (8°S–8°N, 90°–100°E) based

on AIRS and NCEP. It should be mentioned that a

fundamental difference in the MJO vertical thermody-

namic structure between AIRS and NCEP is that the

AIRS-observed lower-troposphere preconditioning

temperature anomaly over the Indian Ocean is absent

in NCEP. This finding may have important implications

for the MJO theory and is discussed in more detail in

section 5.

b. Comparison of the MJO vertical moisture

structure

The diagram similar to Fig. 7 but based on NCEP is

shown in Fig. 12. Over the Eastern Hemisphere, espe-

cially the Indian Ocean, the propagation and vertical

structure of the humidity anomaly in the troposphere

above 900 hPa are roughly similar between AIRS and

NCEP. For example, both datasets show that deep con-

vection serves to locally moisten the upper troposphere

(e.g., Held and Soden 2000; Tian et al. 2004). Both

datasets also show a low-level moistening (drying) be-

fore the occurrence of strongly enhanced (suppressed)

convection, similar to the findings by previous studies

by Kemball-Cook and Weare (2001) based on radio-

sonde data, by Sperber (2003), Seo and Kim (2003), and

Kiladis et al. (2005) based on NCEP or ECMWF and by

Myers and Waliser (2003) based on TOVS. The overall

magnitude of the tropospheric moist (dry) anomaly

seems also to be roughly similar between AIRS and

NCEP although regional differences are exhibited. As

discussed in section 3b, the westward tilt of moisture

anomaly with height in NCEP shown in Fig. 12 has been

extensively documented by previous studies, such as

Sperber (2003), Seo and Kim (2003), and Kiladis et al.

(2005) based on NCEP or ECMWF and by Myers and

Waliser (2003) based on TOVS and is also well repro-

duced by AIRS (Fig. 7).

However, there are a number of significant differ-

ences in the vertical moisture structures exhibited by

AIRS and NCEP. To begin with, the NCEP water va-

por is only available below 300 hPa, which is considered

to be the maximum height of useful humidity data from

reanalysis and radiosondes. Thus, any water vapor in-

formation above 300 hPa from AIRS could be consid-

ered as new compared with NCEP, although some cau-

tion is warranted as in overinterpreting the AIRS water

FIG. 11. Area-averaged vertical profiles of temperature

anomaly (K) over the (top) equatorial western Pacific (8°S–8°N,

150°–160°E) and (bottom) the equatorial Indian Ocean (8°S–8°N,

90°–100°E) for AIRS (solid line) and NCEP (dashed line). To

highlight the temperature signals, the difference between lag �4

pentads (wet phase) and lag 0 pentads (dry phase) for the western

Pacific and the difference between lag �2 pentads and lag �2

pentads for the Indian Ocean are used. The error bar denotes the

95% confidence level within the domain.
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vapor data above 150 hPa where it is known to begin to

lose sensitivity.

Aside from the above issue, significant differences

between AIRS and NCEP are found near the surface

over the equatorial Indian Ocean and western Pacific.

AIRS indicates a near-surface (below 925 hPa) precon-

ditioning moist (dry) anomaly for enhanced (sup-

pressed) convection under regions of strongly sup-

pressed (enhanced) convection. For example, over the

eastern Indian Ocean from �90° to 120°E, there is a

FIG. 12. As in Fig. 7 but based on NCEP.
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clear near-surface moist (dry) anomaly at lag �2 pen-

tads, which leads the enhanced convection at lag �2

pentad (Fig. 7). But this is absent in NCEP (Fig. 12). As

a result, the near-surface water vapor anomaly under

all regions of strong convection anomaly is nearly al-

ways opposite between AIRS and NCEP. In addition,

closer inspection of the midtropospheric water vapor

anomalies shows that the AIRS data appears to be

more closely related to the TRMM rainfall anomalies

than the NCEP. For example, in the Maritime Conti-

nent from �120° to �150°E, there is a local maximum

in the rainfall anomaly at lag 0 pentads. Accordingly, a

local maximum in the midtropospheric water vapor

anomaly shows up nicely in AIRS but not in NCEP.

This relation is further quantified in Fig. 13, which

shows the scatterplot of the �500-hPa water vapor

anomaly versus the TRMM rainfall anomaly for the

composite MJO cycle (lags 0, �4 pentads) over the

equatorial Indian Ocean and western Pacific (8°S–8°N,

50°–210°E). The upper figure based on AIRS clearly

shows a strong positive correlation between the midtro-

pospheric water vapor anomaly and the rainfall

anomaly (with a correlation coefficient of around 0.86),

while the bottom figure based on NCEP indicates the

correlation is considerably weaker. Please note the data

of AIRS, NCEP, and TRMM are all independent of

each other.

Finally, a significant difference in the water vapor

anomaly between AIRS (Fig. 7) and NCEP (Fig. 12)

can be found in the central Pacific. For example, NCEP

shows a relatively uniform water vapor anomaly across

the Pacific from the western Pacific to the eastern Pa-

cific with a weakened amplitude in the central Pacific

(around 180°–210°E). However, AIRS indicates an

anomaly of the opposite sign over the central Pacific

compared to the values to its east and west. AIRS also

suggests nearly vertically uniform moist anomalies over

the western Pacific and even an eastward tilt of mois-

ture anomalies with height over the central Pacific

around 150°W (Myers and Waliser 2003, see their Fig.

12), a feature that is considerably less obvious in NCEP.

c. Discussion

The comparison in the vertical moist thermodynamic

structure between AIRS and NCEP in the last two sub-

sections shows broad agreement in their representation

of the MJO. However, it also illustrates a number of

striking differences, especially in the lower troposphere

over the Indian Ocean and over the central and eastern

Pacific Ocean. These differences are statistically large

and occur in regions that are important for model and

theory validation. To explore the reasons for these dif-

ferences, a number of additional sensitivity analyses

were performed. Comparison of the MJO vertical

structure based on the twice-daily NCEP data (0000

and 1200 UTC or 0600 and 1800 UTC) and that from

the 4-time daily NCEP data demonstrated (not shown)

that these diurnal sampling differences did not qualita-

tively influence the depiction of the MJO cycle. This is

an indication that the differences exhibited between

AIRS and NCEP are not due to the sampling issues

(twice-daily satellite sampling for AIRS and 4-time

daily synoptic sampling for NCEP). Comparison of the

FIG. 13. The midtropospheric specific humidity anomaly vs the

TRMM rainfall anomaly for the composite MJO cycle (lags 0, �4

pentads) over the equatorial Indian Ocean and western Pacific

(8°S–8°N, 50°–210°E) between (top) AIRS (547 hPa) and (bot-

tom) NCEP (500 hPa).
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MJO vertical structure between NCEP and NCEP21

(not shown) shows that their overall MJO vertical

structure is very similar, thus implying that the differ-

ences between AIRS and NCEP2 are qualitatively the

same as those discussed above between AIRS and NCEP.

Given the significant differences between AIRS and

NCEP discussed above, it is worthwhile to consider the

general shortcomings of each dataset in trying to un-

derstand their differences. In the case of AIRS data, it

is well known that the infrared and microwave based

remote sensing techniques are still a developing field

and thus subject to considerable uncertainties, espe-

cially in the region of intense cloud cover and heavy

precipitation and also in the lower troposphere (Suss-

kind et al. 2003; Fetzer et al. 2006). For example, where

MJO convection is active, the AIRS full retrieval yield

can be as low as 10% and this low yield would propa-

gate eastward in accordance with the MJO itself. Nev-

ertheless, Fetzer et al. (2006) have shown that the sam-

pling biases of the total precipitable water vapor in

these deep convective regions are small compared with

the Advanced Microwave Sounding Radiometer for

Earth Observing Satellite (EOS; AMSR-E). However,

the height-dependent biases in temperature and water

vapor profiles have yet to be quantified.

In the case of the reanalysis, such as NCEP or

NCEP2, the scarcity of radiosonde and other conven-

tional data over the tropical oceans is an important

consideration. For example, over the Indian Ocean,

part of the western Pacific and most of the central and

eastern Pacific there is very little radiosonde data to

constrain the analysis. Thus, the reanalysis over these

regions are mostly model-driven and may contain large

errors from the model’s boundary layer, deep convec-

tion, and cloud parameterizations. Along these lines, it

is interesting to note that the comparisons in section 4a

showed that the temperature anomaly difference be-

tween AIRS and NCEP is larger over the data-sparse

Indian Ocean than that over the western Pacific. To

more succinctly quantify this point, the root-mean-

square (RMS) difference of temperature anomaly be-

tween AIRS and NCEP is shown in Fig. 14. For this

figure, the RMS difference was calculated over the 11-

pentad cycle, normalized by the standard deviation of

the AIRS temperature anomaly, and then vertically av-

eraged from 200 to 1000 hPa. Clearly, the RMS differ-

ence is higher over radiosonde-sparse regions, particu-

larly the Indian Ocean and to some extent the eastern

Pacific and Atlantic Oceans. This may partially validate

our speculation above concerning model-driven errors

in the reanalysis. It should be noted that climate models

have a notoriously difficult time representing the MJO

over the Indian Ocean, which is also consistent with our

above speculation.

While the above comparison raises concerns about

NCEP it does not provide validation for the AIRS pro-

files of MJO temperature structure. Along with the pre-

vious mentioned AIRS validations studies (i.e., Gettel-

man et al. 2004; Divakarla et al. 2006; Tobin et al. 2006),

Fig. 15 illustrates a comparison between AIRS and ra-

diosonde data at Truk to check the reliability of the

AIRS data in the context of the MJO. This figure shows

there is relatively good agreement between AIRS and

radiosonde temperature profiles at this location over

the life cycle of the MJO. The reduced coherence of the

radiosonde stratospheric temperature structure may be

due to the smaller sampling of radiosonde above 100

hPa. The reduced coherence of the AIRS upper tropo-

1 Only seven MJO events were included in the composite MJO

cycle for NCEP2 instead of eight MJO events using AIRS and

NCEP because the NCEP2 data period does not include 2005.

FIG. 14. Temperature anomaly root-mean-square difference (RMSD) between AIRS

and NCEP.
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spheric temperatures may be due to decreasing AIRS

vertical resolution with altitude (Aumann et al. 2003).

While the agreement is not perfect, uncertainties asso-

ciated with the differences in the spatial scale of the two

measurement techniques, and the influence of land–sea

contrast on each of these, as well as AIRS retrieval

errors, all also likely contribute to the differences.

The scatter diagrams between midtroposphere water

vapor anomalies and TRMM rainfall anomalies in

Fig. 16 elicit similar concerns and findings regarding

NCEP water vapor anomalies and also support the

above speculation concerning the impact of data sparse

regions on the reanalysis. These diagrams are analo-

gous to Fig. 13 but using only the subset of points from

the Indian Ocean domain. The contrast between AIRS

and NCEP is even more dramatic when considering the

Indian Ocean alone, with the indication that AIRS is

better capturing the expected positive relation between

rainfall and midtropospheric water vapor anomalies.

5. Summary and discussion

In this study, the high-resolution temperature and

water vapor soundings from AIRS are used to charac-

terize the vertical moist thermodynamic structure and

FIG. 15. MJO vertical temperature structure using (top) radiosonde and (bottom) AIRS at

Truk (7.47°N, 151.85°E). The superimposed solid black line denotes the collocated TRMM

rainfall anomaly (mm day�1).
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spatial–temporal evolution of the MJO. The AIRS data

have revealed a coherent spatial and temporal relation-

ship between deep convection and atmospheric vertical

moist thermodynamic structure associated with the MJO.

In the Indian Ocean and western Pacific, the AIRS

temperature anomaly shows a trimodal vertical struc-

ture: a warm (cold) anomaly in the free troposphere

(800–250 hPa) and a cold (warm) anomaly near the

tropopause (above 250 hPa) and in the lower tropo-

sphere (below 800 hPa) associated with enhanced (sup-

pressed) convection (Figs. 3, 4, 5, and 6). Over the

Western Hemisphere, a bimodal vertical structure typi-

cally exists in the AIRS temperature anomaly with tro-

posphere and stratosphere anomalies being out of

phase and with the tropospheric anomalies appearing

to emanate from, and thus have the same sign as, those

over the western Pacific (Figs. 3, 4, 5, and 6).

The AIRS moisture anomaly shows markedly differ-

ent vertical structures as a function of longitude and the

strength of convection anomaly (Figs. 7, 8, and 9). In

the region of strongly enhanced (suppressed) convec-

tion, moist (dry) anomalies are generally found

throughout the atmospheric column except for weak

dry (moist) anomalies near the surface (961 hPa). In the

region of weakly enhanced (suppressed) convection,

moist (dry) anomalies are usually found in the upper

troposphere (above 500 hPa) and opposite anomalies in

the lower troposphere (below 500 hPa). AIRS also

shows a westward tilt of moisture anomalies with height

over the Indian Ocean, nearly vertically uniform moist

anomalies over the western Pacific, and an eastward tilt

of moisture anomalies with height over the central Pa-

cific (Fig. 7). In the eastern Pacific, the water vapor

anomalies are surprisingly large and mainly confined to

the lower troposphere (below 500 hPa; Fig. 7).

Comparisons of the MJO vertical temperature struc-

ture between AIRS and NCEP suggest that both AIRS

and NCEP show a similar temperature structure near

the tropopause and, to a large extent, in the free tro-

posphere (Figs. 3 and 10). However, significant lower-

troposphere temperature differences exist over western

Pacific and the Indian Ocean. The anomalous lower-

troposphere temperature structure is much less well de-

fined in NCEP than in AIRS for the western Pacific,

and even has the opposite sign anomalies compared to

AIRS relative to the wet/dry phase of the MJO in the

Indian Ocean (Figs. 3, 10, and 11). Both AIRS and

NCEP also show a roughly similar propagation and ver-

tical structure of the humidity anomaly in the tropo-

sphere above 900 hPa over the Eastern Hemisphere

(Figs. 7, 8, 9, and 12). However, significant differences

are found for the near-surface and midtropospheric hu-

midity anomalies over the equatorial Indian Ocean

(Figs. 7, 12, 13, and 16) and moist vertical structure over

the western and central Pacific. It is suggested that the

model-driven errors such as parameterization deficien-

cies in the reanalysis may contribute to these differ-

ences between AIRS and NCEP.

Most significantly, the AIRS data demonstrate that

there exists a clear lower-troposphere moist thermody-

namic structure over the Indian Ocean and western Pa-

cific, that is, the enhanced (suppressed) convection is

generally preceded by a lower-tropospheric warm and

moist (cold and dry) anomaly about 3 pentads earlier or

around 60° to the east and followed by a lower-

tropospheric cold and dry (warm and moist) anomaly

FIG. 16. As in Fig. 13 but for the equatorial Indian Ocean

(8°S–8°N, 70°–100°E) only.
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after or under and to the west (Figs. 3 and 7). But this

low-level moist thermodynamic preconditioning, espe-

cially the low-level warming and cooling, is not well

reproduced by NCEP.

The vertical moist thermodynamic structure in AIRS

observations may have important implications for our

theoretical understanding of the MJO. First, the low-

level moist thermodynamic preconditioning can hardly

be explained by thermodynamic theories alone. The

thermodynamic theories such as cloud–radiation feed-

back (Hu and Randall 1994; Raymond 2001) and dis-

charge–recharge (Blade and Hartmann 1993; Kemball-

Cook and Weare 2001), or convection–moisture feed-

back (Woolnough et al. 2000; Tompkins 2001) only

produce stationary oscillation. On the other hand, the

low-level preconditioning structure can be explained by

the frictional Kelvin–Rossby wave–conditional instabil-

ity of the second kind (CISK) model.

Equatorial wave dynamics (Matsuno 1966; Gill 1980)

have been regarded as a cornerstone to understanding

equatorial large-scale circulations and its variabilities.

In the frictional Kelvin–Rossby wave–CISK theory for

the MJO (Wang 1988, 2005; Wang and Rui 1990b;

Wang and Li 1994; Salby et al. 1994), the nonlinear

interactions among convective-condensational heating,

low-frequency equatorial (Rossby and Kelvin) waves,

boundary layer moist dynamics, and wind-induced heat

exchange at the surface are fundamental physical com-

ponents of this MJO theory. Given an initial heating

centered on the equator, the theory predicts easterlies

(westerlies) to the east of (west of and under) the heat-

ing as a baroclinic Kelvin (Rossby) wave response.

Geostrophic balance in equatorial zonal winds requires

that inviscid low-level easterly wind perturbations be

accompanied by a pressure trough at the equator,

whereas low-level westerlies should be accompanied by

a pressure maximum at the equator. Therefore, friction

would foster mass convergence into the equatorial pres-

sure trough in the easterly regime and mass divergence

into the equatorial pressure maximum in the westerlies

(Wang and Rui 1990b). This lead/lag relationship be-

tween the surface convergence and MJO deep convec-

tion (Fig. 10.13 of Wang 2005) has been well docu-

mented by observational studies, such as Rui and Wang

(1990), Hendon and Salby (1994), Zhang (1996), Jones

and Weare (1996), Maloney and Hartmann (1998),

Matthews (2000), Seo and Kim (2003), Sperber (2003),

and Kiladis et al. (2005). The surface frictional mass

convergence associated with equatorial Kelvin waves

should result in low-level moistening and warming

ahead of the convection, while the surface frictional

mass divergence associated with equatorial Rossby

waves should result in low-level drying and cooling be-

hind and under the convection. The low-level moist

thermodynamic preconditioning structure observed

from AIRS is consistent with this theoretical predic-

tion. Also as discussed in section 3, the significant equa-

torial 100- and 400-hPa temperature anomalies over the

central and eastern Pacific as well as the significant

off-equatorial 100- and 400-hPa temperature anomalies

over the Eastern Hemisphere (Figs. 3, 4, and 5) imply

an equatorial Kelvin–Rossby wave response to MJO

convection, which are also consistent with the frictional

wave–CISK model.

A number of diagnostic studies of the model simula-

tions have also confirmed the importance of the bound-

ary layer frictional convergence/divergence in model-

simulated MJO variability in a number of climate mod-

els with different cumulus parameterization schemes

(e.g., Lau and Lau 1986; Lau et al. 1988; Maloney 2002;

Lee et al. 2003; Liu et al. 2005) and in a coupled climate

model (Waliser et al. 1999). Although the simplistic two

and a half layer frictional feedback model cannot de-

scribe the multiple time and spatial scales involved in

MJO and its simple representation of diabatic heating

presumes direct coupling between the MJO disturbance

and convection, the model results suggest that to simu-

late the MJO realistically, the cumulus parameteriza-

tion scheme has to allow the large-scale low-frequency

waves and associated boundary layer dynamics to feel

the effects of the parameterized convective heating and

to have some effects on the parameterized heating ei-

ther directly or indirectly. Based on the evaluation of

MJO simulations in 14 coupled GCMs participating in

the Intergovernmental Panel on Climate Change

(IPCC) Fourth Assessment Report (AR4), Lin et al.

(2006) found that the two models that arguably do best

at simulating the MJO are the only ones having con-

vective closures/triggers linked in some way to moisture

convergence. This lends further support to the rel-

evance of the frictional Kelvin–Rossby wave–CISK

theory.

However, it should be noted that many other factors

may be at work as well. For example, the near-surface

cooling and drying may indicate the influence of en-

hanced or suppressed convective downdrafts on the

boundary layer (Fu et al. 2006). It is also possible that

the intraseasonal sea surface temperature (SST)

anomalies may contribute to the low-level moist ther-

modynamic preconditioning by enhancing turbulent

surface fluxes or low-level meridional convergence as-

sociated with the frictional wave–CISK (Shinoda et al.

1998; Waliser et al. 1999; Fu et al. 2006). To fully un-

derstand this issue, detailed energy and moisture bud-

get studies based on high-quality data of boundary

layer wind, SST, and surface heat fluxes are needed.
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