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Vertical nanowire light-emitting diode
R. Könenkamp,a) Robert C. Word, and C. Schlegel
Physics Department, Portland State University, 1719 SW 10th Avenue, Portland, Oregon 97201

(Received 29 March 2004; accepted 20 October 2004)

We report room-temperature, white-color electroluminescence in vertically oriented ZnO nanowires.
Excitonic luminescence around 380 nm is observed as a shoulder on a broader defect-related band
covering all of the visible range and centered at 620 nm. The ZnO nanowires are grown in a
low-temperature process on SnO2-coated glass substrates, employing a technique that is suitable for
large-area applications. The nanowires are robustly encapsulated in a thin polystyrene film deposited
from high-molecular-weight solutions. Electron injection occurs through the transparent SnO2 layer,
while hole injection is mediated by ap-doped polymer and an evaporated Au contact. Stable device
operation is observed at ambient conditions on the time scale of 1 h. ©2004 American Institute of
Physics. [DOI: 10.1063/1.1836873]

Low-dimensional semiconductor nanostructures, such as
quantum wires and quantum dots, are promising for use as
the active material in various optoelectronic devices because
of their extremely small volume and modified light–matter
interaction.1–5 Free-standing vertically arranged ZnO nanow-
ires can be made in a variety of processes, including chemi-
cal vapor deposition,6 metalorganic vapor phase epitaxy,7

and electrodeposition.8,9 The latter is a low-temperature pro-
cess compatible with glass and polymer substrates and pro-
duces crystalline nanowires of excellent electronic quality.9

The alignment of these nanowires produces unusual polariza-
tion effects10 and makes them of considerable interest in op-
tical applications. A strong excitonic photoluminescence
(PL) at 384 nm and a defect luminescence band around 600
nm is observed at room temperature.6,11 Here, we report on
free-standing ZnO nanowires grown on transparent
SnO2-coated glass substrates and embedded in a thin poly-
styrene(PS) film showing strong electroluminescence(EL)
at room temperature. Without further encapsulation their op-
eration as light-emitting diodes(LEDs) is stable for,1 h in
ambient atmosphere.

ZnO nanowires were grown in electrodeposition from
aqueous solutions on fluorine-doped SnO2-coated glass sub-
strates of 5 cm35 cm in size. The deposition involved a
standard three-electrode arrangement with a Pt counter and
reference electrodes. An aqueous solution of 5310−4 M
ZnCl2 and 0.1 M KCl was used, the KCl solution serving as
a supporting electrolyte. The electrodeposition was carried
out in the range from2660 to2760 mV versus the normal
hydrogen reference electrode potential at 80 °C under exter-
nally induced convection and oxygen bubbling. Typical
deposition currents were 0.6–1 mA/cm2 after the nucleation
process.12 The ZnO formation proceeds in two chemical
steps. First, oxygen is electroreduced at the substrate surface.
This increases the OH−-concentration at the surface, thereby
leading to a second chemical reaction, the deposition of
amorphous ZnsOHd2 or of crystalline ZnO. Under appropri-
ate conditions, which are detailed in Ref. 8, the latter mate-
rial prevails and well-crystallized hexagonal ZnO columns of
100–200 nm diameter and up to 2µm in length can be
grown. In electrodeposition, the ZnO growth proceeds under

electron injection from the underlying SnO2 layer. It can
therefore be expected that a reasonable electron contact at
the SnO2/ZnO interface is established. Doping of the grow-
ing ZnO with Al can be performed by adding 1310−6 M
AlCl3 to the solution.9 In previous work, we carried out an
electrical9 and structural characterization of these
nanowires.12,13 The carrier mobilities in these nanowires
match those on high-quality polycrystalline ZnO films. Typi-
cally, we find electron mobilities of the order of 10 cm2/V s
in undoped material, and slightly lower values in Al-doped
films.9 Depending on the details of the deposition, the orien-
tation of the wires can be optimized to be preferentially ver-
tical to the substrate.12 The wires can be processed in a va-
riety of ways, including coating, ion exchange,12 and
etching.13 Figure 1 shows these single-crystalline wires and a
cross-sectional view of a single wire. As illustrated in Fig. 2,
for LED applications, a high-quality insulation of the SnO2
layer and a homogeneous filling of the space between them
is desired, while only an extremely thin insulator layer on the
wire tips can be afforded. We have approached this problem
by using solution deposition of high-molecular-weight poly-
mers, such as polystyrene, polyvinylene, and others. We fol-
lowed recent work of Yanet al.14 who demonstrated that
polymers adhere well to oxidic surfaces, when polymeriza-
tion is supported by a short UV-curing process. The thick-
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FIG. 1. (a) Electron micrograph of electrodeposited ZnO nanowires on
polycrystalline SnO2 films on glass.(b) Tip view of a single ZnO wire
showing a faceted hexagonal cross section.
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ness of the polymer can be varied by adjusting the spin
speed, the polymer molecular weight, and the polymer con-
centration. For the samples discussed here, we used a spin
speed of 3000 rpm and ps of molecular weight 1.7
3106 g/mol in a concentration of 50 g/L dissolved in tolu-
ene. The films were UV cured for 30 min, soaked in toluene
for 10 min, and rinsed by pipette with 3 mL toluene. Figure
3 shows electron micrographs of the obtained films. Figure
3(c) shows that a very thin coating on top of the nanowires
can be achieved, while the space between wires is solidly
filled with the polymer. From the electron micrograph, we
estimate the ps layer thickness on the nanowire tips to be in
the range of 10–50 nm. This thickness is comparable to the
thickness obtained on planar substrates using similar experi-
mental conditions, i.e., spin speed, molecular weight, etc., as
used here.14 At this thickness, the ps is only a weak insulator;
current transport occurs through electronic and structural
defects and due to dielectric breakdown. To establish a
p-type contact to the nanowire tips, we applied a coating
of poly(3,4-ethylene-dioxythiophene)(PEDOT)/poly(styrene-
sulfonate) on top of the ps layer. The solution layer was
deposited manually in a paint-brush process, which estab-
lishes a better homogeneity than spin coating and results in a
layer thickness of approximately 0.5–1.5µm. Within this
thickness range, no qualitative changes in the device behav-
ior was observed. Finally, a 100 nm thick Au layer was de-
posited by vacuum evaporation to provide a Schottky barrier-
type contact for hole injection.15

Figure 4 shows the electrical and optical device charac-
teristics of the obtained LEDs. After some forming action
which is likely to occur in the polymer layers at high elec-
trical fields and which results in a steady reduction of the
conductance across the device, the current–voltagesI–Vd
characteristics become diodelike. In fast voltage scans,
.10 V/s, negative differential resistance(NDR) is observed
over a limited voltage range. We attribute this behavior to
charging in a defect-controlled transport process through the
residual PS layer at the nanowire tips. In slower voltage
scans, the NDR disappears and monotonic rectifying behav-
ior prevails. Visible emission of white light sets in at current
densities of 5 mA/cm2, corresponding to,100 mA/cm2 at
the nanowire tip. Figure 4(b) compares the PL and EL spec-
tra of our ZnO nanowires. The EL spectrum comprises a
broad defect-related distribution centered at 620 nm. This
distribution covers most of the visible spectrum and gives
rise to the apparent white color of the emission. There is a
distinct shoulder extending into the UV region down to
wavelengths of 360 nm, which is clear evidence of an addi-
tional and sizeable excitonic contribution.7,16 In the PL spec-
trum of uncoated nanowires, the excitonic contribution is
much more pronounced. More detailed work showed that the
relative strength of the UV and visible bands is somewhat
dependent on the substrate properties and processing
details.11 The comparably low UV contribution in the EL

may be due to a slow and trap-influenced transport process
that leads to a stronger reduction of the average carrier en-
ergy in EL than in the homogeneously excited PL. Alterna-
tively, the ZnO/polymer interface may produce a stronger
defect luminescence than the interface to air. We expect that
more work can clarify these issues and will soon lead to an
increase the UV portion of the EL.

From the known values of band gap, work function, dop-
ability, and on the basis of the observedI–V and lumines-
cence characteristics, we conclude that the SnO2/ZnO inter-
face provides comparably good electron transfer. This idea is
also supported by the fact that the electrodeposition process
occurs under electron transfer. Since the hole-injecting con-
tact at the nanowire tips has a residual PS interface layer

FIG. 2. Schematic diagram of nanowire LED arrangement with insulator
filling the space between wires and a very thin film covering the wire tips.

FIG. 3. Electron micrograph of nanowires embedded in PS.(a) Overview at
,45° beam incidence.(b) Close-up of nanowire tips with PS showing thin
PS coverage at nanowire tips.(c) Scanning electron micrograph of a single
nanowire tip. The layer thickness ranges between,10 and 50 nm depending
on preparation conditions.
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between the nanowires and the PEDOT/Au layer, we expect
the injection of holes through this contact to be the
performance-limiting process in the present device configu-
ration. Future work will have to address further reduction of
the PS thickness at the nanowire tips.

In Fig. 5, we show stability data for the device operation
under ambient air at room-temperature conditions and with-
out encapsulation. In EL operation, we observe stability over
time periods of typically 1 h. After this time, a gradual de-
crease in current density accompanied by a decrease in
brightness is observed. To a good approximation, the decay
dependence follows a stretched exponential behavior,Istd
= Io exps−st /tdad with t=7000 s anda=0.7. As the nanow-
ires are not completely uniform in dimensions, alignment,
and contact area, a distribution int may be expected, ex-
plaining qualitatively the stretched exponential behavior.17

To conclude, we have observed EL in vertically oriented
ZnO nanowires at room temperature. The EL spectrum
ranges from 360 nm throughout the visible spectrum. A com-
parison with the PL spectrum indicates that excitonic and
defect transitions are involved. It can be expected that further
work will achieve an enhancement of the excitonic transi-

tions, and that blue or UV LEDs can eventually be devel-
oped. In the present configuration, the nanowires are embed-
ded in a transparent polymer. This configuration is
mechanically very robust. The near-vertical orientation al-
lows one to use sandwich-like contacts, which can easily be
patterned. Although not shown here, it can be expected that
light emission and polarization will be affected by the direc-
tional orientation of the nanowires.18 It appears feasible to
lift the nanowire film off the substrates and, by this route,
obtain a robust flexible LED arrangement with inorganic ac-
tive components. First experiments show stable operation in
ambient conditions for,1 h.

It is a pleasure to acknowledge experimental support in
the polymer deposition process by Professor M. Yan and B.
Harnish at Portland State University.
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FIG. 4. (a) I–V characteristics of the LED structure. For fast scans a NDR
regime is observed, that can be attributed to a slow transport process and
charging. In slower scans, a monotonic behavior is found.(b) PL and EL
spectra obtained at room temperature in air. The PL is obtained with exci-
tation at 355 nm of a frequency-tripled Nd–YAG laser. A strong excitonic
band at 384 nm and a defect-related band centered at 620 nm are observed.
The EL occurs at a threshold of,10 V. As in the PL spectrum, a defect-
related band centered at 620 nm is observed. A shoulder indicates excitonic
luminescence in the UV region.

FIG. 5. Stability of light emission at room temperature in air. The solid line
is a least-squares fit based on a stretched exponential dependence,Istd
= Io exps−st /tdad with t=7000 s anda=0.7.
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