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ABSTRACT 

Vertical partitioning is the process of 
subdividing the attributes of a relation or a record 
type, creating fragments. Previous approaches have 
used an iterative binary partitioning method which is 
based on clustering algorithms and mathematical cost 
functions. In this paper, however, we propose a new 
vertical partitioning algorithm using a graphical 
technique. This algorithm starts from the attribute 
affinity matrix by considering it as a complete graph. 
Then, forming a linearly connected spanning tree, it 
generates all meaningful fragments simultaneously by 
considering a cycle as a fragment. We show its 
computational superiority. It provides a cleaner 
alternative without arbitrary objective functions and 
provides an improvement over our previous work on 
vertical partitioning. 

1.. Introduction 

The partitioning of a global schema into 
fragments can be performed in two different ways: 
vertical partitioning and horizontal partitioning [Ceri 
841. This paper is concerned with vertical 
partitioning. 

Vertical partitioning is the process that 
divides a global object which may be a single relation 
or more like a universal relation into groups of their 
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attributes, called vertical fragments [Nava 84, Nava 
85, Corn 871. It is used during the design of a 
database to enhance the performance of transactions 
[Nava 841. In order to obtain improved performance, 
fragments must closely match the requirements of 
the transactions. Vertical partitioning has a variety of 
applications wherever the match between data and 
transactions can affect performance. That includes 
partitioning of individual files in centralized 
environments, data distribution in distributed 
databases, dividing data among different levels of 
memory hierarchies, and so on. 

Hoffer and Severance [Hoff 751 measure the 
affinity between pairs of attributes and try to cluster 
attributes according to their pairwise affinity by using 
the bond energy algorithm (BEA) developed in 
[McCo 721. 

Navathe, et. al. [Nava 841 extend the results 
of Hoffer and Severance and propose a two phase 
approach for vertical partitioning. During the first 
phase, they use the given input parameters in the 
form of an attribute usage matrix and transactions, to 
construct the attribute affinity matrix on which 
clustering is performed. After clustering, iterative 
binary partitioning is attempted, first with an 
empirical objective function. The process is continued 
until no further partitioning results. During the 
second phase, the fragments can be further refined by 
incorporating estimated cost factors weighted on the 
basis of the type of problem being solved. 

Cornell and Yu [Corn 871 apply the work of 
[Nava 841 to relational databases. They propose an 
algorithm which decreases the number of disk 
accesses to obtain an optimal binary partitioning. 
They show how knowledge of specific physical factors 
may be incorporated into the fragmentation 
methodology to yield better overall performance. 
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Ceri, Pernici and Wiederhold [Ceri 881 
extend Navathe, et. al.‘s work by considering it as a 
DIVIDE tool and by adding a CONQUER tool. 
Their CONQUER tool again extends the same basic 
approach in the direction of adding details about 
operations and physical accesses similar to [Corn 871. 
This approach is focussed on the decomposition of 
the design process into several design subproblems 
and provides no algorithmic improvement in the 
process of vertical partitioning itself. 

In all algorithms that we have surveyed, the 
binary partitioning technique has been used for 
partitioning afrer clustering attributes. Thus binary 
partitioning is required to be repeated until all 
meaningful fragments are determined. It is also 
necessary that clustering be repeated at each iteration 
after clustering two new affinity matrices 
corresponding to the newly generated fragments. 

In this paper we propose a new vertical 
partitioning algorithm which has less computational 
complexity and generates all meaningful fragments 
simultaneously by using a graphical method. This 
approach is based on the fact that all pairs of 
attributes in a fragment have high “within jkagment 
aJinity” but low “between fragment aflnity”. Section 2 

deals with preliminaries. In Section 3, the algorithm 
and its analysis are presented. Section 4 describes the 
application of the proposed approach, and Section 5 
gives the conclusion. 

2. Preliminaries 

2.1 Overview 

The algorithm that we propose starts from 
the attribute affinity (AA) matrix, which is generated 
from the attribute usage matrix using the same 
method as that of our previous approach [Nava 841. 
The attribute usage matrix represents the use of 
attributes in important transactions. Each row refers 
to one transaction; the “1” entry in a column 
indicates that the transaction “uses” the 
corresponding attributes. Whether the transaction 
retrieves or updates the relation can also be captured 
by another column vector with R and U entries for 
retrieval and update. That information may be used 
by an empirical objective function as in [Nava 841. 
The attribute usage matrix for 10 attributes and 8 
transactions is shown in Figure 1. Attribute affinity 
is defined as 

Attribute usage matrix Type 
Number of 
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timeperiod 
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Fig. 1 Attribute usage matrix 
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Fig.2 Attribute aflkity (AA) matrix 
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affj = X aCJ&j 

kar 

where ac+ is the number of accesses of transaction 
k referencing both attributes i and j. The summation 
occurs over all transactions that belong to the set of 
important transactions 7. This definition of attribute 
affinity measures the strength of an imaginary bond 
between the two attributes, predicated on the fact 
that attributes are used together by transactions. 
Based on this definition of attribute affinity, the 
attribute affinity matrix is defined as follows: It is an 
n x n matrix for the n-attribute problem whose (ij) 
element equals affij. Figure 2 shows the attribute 
affinity matrix which was formed from the Figure 1. 
A diagonal element AA(i,i) equals the sum of the 
elements in the attribute usage matrix for the column 
which represents ai. This is reasonable since it shows 
the “strength” of that attribute in terms of its use by 
all transactions. 

A note about the attributes: in this proposed 
technique as well as in the previous techniques, the 
set of attributes considered may be 

(a) the universal set of attributes in the whole 
database. 

(b) the set of attributes in a single relation (or 
record type). 

By using (a), the fragments generated may be 
interpreted as relations or record types. By using (b), 
fragments of a single relation are generated. 

In previous approaches, they apply a 
clustering algorithm to the AA matrix. In our present 
approach, however, we consider the AA matrix as a 
complete graph called the ajjinity graph in which an 
edge value represents the affinity between the two 

Fig. 3 Affinity graph after excluding zero-valued edges 
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attributes. Then, forming a linearly connected 
spanning tree, the algorithm generates all meaningful 
fragments in one iteration by considering a cycle as 
a fragment. A “linear& connected” tree has only two 
ends. Figure 3 shows the affinity graph corresponding 
to the AA matrix of Figure 2 after excluding zero- 
valued edges. Note that the AA matrix serves as a 
data structure for the affinity graph. 

The major advantages of the proposed 
method over that in [Nava 841 are that: 

(a) There is no need for iterative binary 
partitioning. The major weakness of iterative 
binary partitioning is that at each step two 
new problems are generated increasing the 
complexity; furthermore, termination of the 
algorithm is dependent on the discriminating 
power of the objective function. 

(b) The method requires no objective function. 
The empirical objective functions in [Nava 
841 were selected after some trial and error 
experimentation to see that they possess a 
good discriminating power. Although 
reasonable, they constitute an arbitrary 
choice. This arbitrariness has been eliminated 
in the proposed methodology. 

2.2 Definitions and notations 

We shall use the following notation and 
terminology in the description of our algorithm. 

A,B,C ,... denotes nodes. 
a,b,c ,... denotes edges. 
p(e) denotes the affinity value of an edge e. 
primitive cycle denotes any cycle in the 
affinity graph. 
affinity cycle denotes a primitive cycle that 
contains a cycle node. In this paper we 
assume that a cycle means an affinity cycle, 
unless otherwise stated. 
cycle completing edge denotes a “to be 
selected” edge that would complete a cycle. 
cycle node is that node of the cycle 
completing edge, which was selected earlier. 
former edge denotes an edge that was selected 
between the last cut and the cycle node. 
cycle edge is any of the edges forming a cycle. 
extension of a cycle refers to a cycle being 
extended by pivoting at the cycle node. 

The above definitions are used in the 
proposed algorithm to process the affinity graph and 
to generate possible cycles from the graph. They will 
become clearer when we explain them in Section 2.3. 
Each cycle gives rise to a vertical fragment. The 
intuitive explanation of why such a procedure yields 
meaningful fragments can be given only after we fully 
describe the algorithm in Section 3 of the paper. 

2.3 Fundamental concepts 

Based on the above definitions we would like 
to explain the mechanism of forming cycles. For 
example, in Figure 4, suppose edges a and b were 
selected already and c was selected next. At this time, 
since c forms a primitive cycle, we have to check if 
it is an affinity cycle. This can be done by checking 
the possibility of a cycle. PossibiZity of a cycfe results 
from the condition that no former edge exists, or 
p(former edge) <= p(al1 the cycle edges). The 
primitive cycle a,b,c is an affinity cycle because it has 
no former edge and satisfies the possibility of a cycle. 
Therefore the primitive cycle a,b,c is marked as a 
candidate partition and node A becomes a cycle 
node. 

cycle node 

Fig. 4 Cycle and extension 

Now let us explain how the extension of a 
cycle is performed. In Figure 4, after the cycle node 
is determined, suppose edge d was selected. At this 
time, d is checked as a potential edge for extension. 
It can be done by checking the possibility of 
extension of the cycle by d. Possibility of extension 
results from the condition of p(edge being constiered 
or cycle completing edge) > = p(any one of the cycle 
edges). Thus the old cycle a,b,c is extended to the 
new cycle a,b,d,f if the edge d under consideration, or 
the cycle completing edge f, satisfies the possibility of 
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extension which is: p(d) or p(f) >= minimum of 
(p(a),p@),p(c)). Now the process is continued: 
suppose e was selected as the next edge. But we 
know from the definition of the extension of a cycle 
that e cannot be considered as a potential extension 
because the primitive cycle d,b,e does not include 
the cycle node A. Hence it is discarded and the 
process is continued. 

The next concept that we wish to explain 
corresponds to the relationship between a cycle and 
a partition. There are two cases in partitioning. 

(1) Creating a partition with a new edge. 
In the event that the edge selected next for 

inclusion (e.g. d in Figure 4) was not considered 
before, we call it a new edge. If a new edge by itself 
does not satisfy the possibility of extension, then we 
continue to check an additional new edge called cycle 
completing edge (e.g. fin Figure 4) for the possibility 
of extension. In Figure 4, new edges d and f would 
potentially provide such a possibility of extension of 
the earlier cycle formed by edges a,b,c. 

If d,f meet the condition for possibility of 
extension stated above (namely p(d) or p(f) >= 
minimum of (p(a),p(b),p(c))), then the extended new 
cycle would contain edges a,b,d,f. If the condition 
were not met, we produce a cut on edge d (called 
the cut edge) isolating the cycle a,b,c. This cycle can 
now be considered a partition. 

(2) Creating a partition with a former edge. 
After cutting in (l), if there is a former edge, 

then change the previous cycle node to that node 
where the cut edge was incident, and check for the 
possibility of extension of the cycle by the former 
edge. For example, in Figure 5, suppose that a,b, and 
c form a cycle with A as the cycle node, and that 
there is a cut on d, and that the former edge w 
exists. Then the cycle node A is changed to C 
because the cut edge d originates in C. We are now 
evaluating the possibility of extending the cycle a,b,c 
into one that would contain the former edge w. 
Hence we consider the possibility of the cycle a,b,e,w. 
Assume that w or e does not satisfy the possibility of 
extension, i.e., if “p(w) or p(e) >= minimum of 
(p(a),p(b),p(c)) ” is not true. Then the result is the 
following: i) w will be declared as a cut edge, ii) C 
remains as the cycle node, and iii) a,b,c becomes a 
partition. Alternately, if the possibility of extension 
is satisfied, the result is: i) cycle a,b,c is extended to 
cycle w,a,b,e, ii) C remains as the cycle node, and iii) 
no partition can yet be formed. 

cycle node 

Fig. 5 Partition 

Intuitively, the algorithm presented below 
achieves the decision of partitioning in the following 
manner. Keeping the pivot on a present cycle node, 
extension of the cycle is attempted by considering 
either new edges or former edges which would 
expand the area under the cycle. For example, in 
Figure 4 we attempted to “grow the cycle” from area 
ABC to area ABCD by considering new edges d and 
f. In Figure 5, we shifted the pivot from node A to 
C and then attempted to grow from area ABC to 
ABCW with a former edge w. The next growth of 
ABCW would be attempted counterclockwise with 
respect to the pivoting cycle node C by considering 
edges “fomter” to w incident on node W. 

3. The algorithm 

An algorithm for generating the vertical 
fragments by the affinity graph is described below. 
Each partition of the graph generates a vertical 
fragment. 

3.1 Description of the algorithm 

First we briefly describe the algorithm in 5 
steps. 

Step 1. Construct the affinity graph of the attributes 
of the object being considered. Note that the 
AA matrix is itself an adequate data 
structure to represent this graph. No 
additional physical storage of data would be 
necessary. 
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2. Step 

3. Step 

4. Step 

Step 5. 

Start from any node. 

Select an edge which satisfies the following 
conditions: 

It should be linearly connected to the 
tree already constructed. 
It should have the largest value among 
the possible choices of edges at each 
end of the tree. 

This iteration will end when all nodes are 
used for tree construction. 

When the next selected edge forms a 
primitive cycle: 

If a c$le node does not exist, check for 
the “possibility of a cycle” and if the 
possibility exists, mark the cycle as an 
affinity cycle. Consider this cycle as a 
candidate partition. Go to step 3. 
If a cycle node exists already, discard 
this edge and go to step 3. 

When the next selected edge does not form 
a cycle and a candidate partition exists: 
(1) If no former edge exists, check for the 

possibility of extension of the cycle by 
this new edge. If there is no possibility, 
cut this edge and consider the cycle as 
a partition. Go to step 3. 

(2) If a former edge exists, change the cycle 
node and check for the possibility of 
extension of the cycle by the former 
edge. If there is no possibility, cut the 
former edge and consider the cycle as a 
partition. Go to step 3. 

To obtain a more detailed algorithm, 
suppose that the following data structures are 
used during implementation [Bras 881: The nodes 
of the affinity graph are numbered from 1 to n, N = 
w, ***, n}, and a symmetric matrix L gives the 
weight of each edge. Three vectors are used: B, 
strongest, and maxwt. B gives the sequence of 
scanned nodes. For each node i c N \ B, strongest[i] 
gives the node in B that is strongest with respect to 
i, and maxwt[i] gives the weight from i to 
strongestji]; strongest[l] and maxwt[l] are not used. 
Without loss of generality we can assume that the 
algorithm starts from node 1. The detailed 
description of the algorithm now follows. The 
algorithm uses variables with the following meaning: 

p-cycle: is a binary variable which denotes 
whether a primitive cycle exists. 

c-node: is a binary variable which denotes 
whether a cycle node exists. 
f-edge: is a binary variable which denotes 
whether a former edge exists. 
candidateq: is a binary variable which 
denotes whether an affinity cycle exists which 
can potentially generate a fragment. 
cycle c edge-w: is an integer variable for the 
weigKt;f the cycle completing edge. 
former-edge-wt: is an integer variable for the 
weight of the former edge. 

Procedure Make-partition(L[l..n,l..n]): set of edges 
(initialize flags and variables) 
B[ l] <- 1 
flc-l,f2c-0 (fl&Eteachrefertoanend 

of the spanning tree) 
p-cycle, c-node. f-edge. candidate-p <- false 
pminc- 0 {minimum edge of a cycle) 
(initialize vectors) 
for i <- 2 to n do 

strongest[i] <- 1 
maxwt[i] <- L[iJ] 
B[i] c- 0 

end-for 
repeat n-l times 

max <- -1 
(select the next node) 
for j<-2 to n do 

if maxwtu] > max and 
(strongestb] = fl or strongestlj] = f2) 

then max c- maxwtli] 
kc-j 

end-for 
(adjust the pointers for checking a primitive cycle) 
if strongest[k] = fl then if f2 = 0 then EL C- k 

else swapfl,lT 
f2<-k 

else EL<-k 
(check if there is a primitive cycle) 

for j <- 2 to n do 
if Bb]=k and c-node=false 
then p-cycle c- true 

if B&l] > 0 then f-edge <- true 
end-for 
if p-cycle = true (primitive cycle exists) 
then (check if it is an affinity cycle) 

if pmin >= former-edge-wt or f-edge = false 
then candidates <- true 

c-node <- true 
else f-edge c- false 

else 
insert k into B, maxwt[k] <- - 00 
if candidates = true 
then if maxw@c] c pmin or 

cycle-c-edge-wt < pmin 
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then (partition exists) 
reinitialize variables 
if f-edge=false 
then save this partition 
else change the cycle node 

if former-edge-wt < pmin 
then save this partition 
else extend the cycle 

else extend the cycle 
( pmin contains the minimum edge of a cycle) 
if pmin > maxwt[k] then pmin <- maxwt[k] 
(rearrange vectors for next selection) 
for j<-2 to n do 

if L[k+j] > maxwtfi] then maxwtb] <- L[k,j] 
strongestfi] < -k 

end-for 
end-repeat 

3.2 Why does the above algorithm produce 
reasonable partitioning ? (an intuitive explanation) 

Now we will give the proof of the correctness 
of the algorithm. The idea of the proof consists in 
showing that an affinity cycle is distinguished from 
other cycles in terms of the values of affinities. In 
other words, it means that all edges in a cycle should 
have similar affinities in contrast to other cycles. 

Fig.6 Proof of reasonable partitioning 

In Figure 6, suppose that a,b,c and d initially 
form a cycle and that there is a cut on w. Then by 
the definition of the possibility of a cycle, 

P(a)9P(b)YP(c),P(d) ‘= P(w)* 
Now, consider the subcycle a,b and e. Since the cycle 
node A is included in this cycle, 

p(e) ’ = P(w)- 
Likewise, 

P(f) >= p(w). 
Then, because the next edge which was selected first 
at node W was w, it implies that w was the largest 

Fig. 7(a) Result of the first example: 
start at node 9 
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edge at W. Hence 
P(W) ‘= P&9. 

Thus 
P(a),p@),p(c),p(d),p(e),p(f) > = P(w) > = 

P(g)- 
At this time, if p(w) had been equal to any edge in 
the cycle, then the cycle would have been extended. 
Thus we can conclude that 

P(a),P@),P(c)YP(d)YP(e),P(f) ’ PW 
This means that all edges in the cycle a,b,c,d have 
relatively similar affinities and are distinguished from 
other edges (namely, w and g) which are not in the 
cycle. 

3.3 Examples 

We will use the same example problems from 
[Nava 841 to illustrate how this algorithm works and 
to compare partitioning decisions. Since our 
algorithm uses the same attribute affinity matrix, we 
assume that it has already been completed from the 
original transaction matrix and the computation of 
affinities. For ease of understanding, we will refer 
back to the steps of the algorithm from Section 3.1. 

The attribute affinity matrix of the first 
example is shown in Figure 2 and its affinity graph 
after excluding the zero-valued edges appears in 
Figure 3. Suppose we start at node 9 (step 2), then, 
by the algorithm, edges 9-3, 9-2, and 2-8 are selected 
in order (step 3). At this time, edge 8-9 cannot form 
a cycle because it does not satisfy the possibility of a 
cycle (step 3). Thus edge 8-3 is selected as the next 
edge and it forms a candidate partition (step 4). Note 
that node 3 becomes a cycle node (step 4). Then the 
process is continued and edge 8-7 is selected (step 3). 
Since there is a candidate partition, the possibility of 
extension is checked (step 5.1). Thus the cycle 9,3,2,8 
considered as a partition because edge 8-7 (edge 
being considered) and 3-7 (cycle completing edge) 
are both less than any of the cycle edges (step 5.1). 
The relevant part of the graph is shown again in 
Figure 7(a). As shown in Figure 7(a), our algorithm 
generates three affinity cycles separated by edges 3- 
4 and 7-8. They generate three fragments: (l&7), 
(2,3,&g), (4,6,10). From that Figure, we know that 
the result of our algorithm is the same as that of 
[Nava 841. 

To show that this algorithm does not depend 
upon the starting node, let us start at node 1. By the 
algorithm, the first affinity cycle is not formed until 
edges l-5,5-7,7-8, 8-2, 2-9, and 9-3 are selected. The 
first cycle 8,2,9,3 is identified as a candidate partition 

Fig. 7(b) Result of the first example: 
start at node 1 

and node 8 becomes a cycle node. Then a cut occurs 
on edge 3-4 because neither edge 3-4 nor edge 4-8 
satisfies the possibility of extension of the cycle (step 
5.1). At this time, since there is a former edge, we 
have to change the cycle node to node 3 and check 
for the possibility of extension of the cycle by the 
former edge 7-8 (step 5.2). Thus another cut occurs 
on edge 7-8 because edge 7-8 and 7-3 are both less 
than any of the cycle edges. Figure 7(b) shows this 
result. Thus we can conclude that the resulting 
fragments are always the same irrespective of the 
node from which you start. 

The second example we will use is a global 
relation with 20 attributes and 15 transactions. The 
result of [Nava 841 partitions this relation into four 
fragments in three iterations: (M%3), 
(2,9,12,13,14), (3,7,10,11,17,18), (15,16,19,20). Our 
algorithm, however, generates five fragments in one 
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Fig. 8 Result of the second example 

iteration as shown in Figure 8: (1,5,8), (4,6), affinity matrix can be used as a symmetric matrix L. 
(2,9,12,13,14), (3,7,10,11,17,18), (15,16,19,20). Note 
that the algorithm starts from node 1 and the cut of 

The repeat loop in the detailed description is 
executed n-l times, where n denotes the number of 

edge 3-2 is performed earlier than that of edge 4-7. attributes. At each iteration, selection of the next 
This result shows that our algorithm can find one edge takes a time O(n). Also whether a cycle exists 
more possibility of partitioning. Thus what the or not can be implemented in time of O(n) by 
empirical objective function could not discriminate as scanning the vector B. Thus the algorithm takes a 
a potential partitioning in [Nava 841, is actually time O(n*), which is less than that of [Nava 841, 
detected by our procedure. namely, O(n* log n). 

3.4 Complexity of the algorithm 

Now we consider the computational 
complexity. Step 1 does not affect the 
computational complexity because the attribute 

4. Application 

This algorithm can be used effectively for 
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vertical partitioning because it overcomes the 
shortcomings of binary partitioning and it does not 
need any complementary algorithms such as the 
SHIFT and CLUSTER procedures that are used in 
[Nava 841. Furthermore, the algorithm involves no 
arbitrary empirical objective functions to evaluate 
candidate partitions such as those used in [Nava 841. 

Also this algorithm can be used for the cost- 
optimized vertical partitioning approach including 
different memory level partitioning and multiple site 
partitioning [Nava 841. This application is currently 
being researched. We think it can be achieved by 
adding and analyzing an additional graph which 
contains cost information. 

Another important application of this 
algorithm is the mixed partitioning tool which is under 
development in our D3T project. The mixed 
partitioning tool that we are currently researching 
will first generate a grid for a relation vertically and 
horizontally, and then merge cells as much as 
possible by using a cost function for determining a 
fragment. We propose to implement the present 
algorithm for generating the grid vertically because it 
can generate all fragments of a relation 
simultaneously in one iteration. 

The application of the proposed algorithm is 
in no way limited to just database design. The 
problem of clustering the nodes of a graph on the 
basis of affinity among the nodes can represent a 
variety of real life problems. They range from 
domains such as network design in communication to 
questionnaire design in social sciences where early 
work on clustering was done (e.g. see McCo 72). We 
see a vast potential for applying the proposed 
technique to a variety of domains. 

hierarchy. By combining with the previously proposed 
MULTI-ALLOCATE algorithm, this algorithm can 
be used to achieve the allocation of vertical 
fragments over a network. Potential application of 
this algorithm can be in any domain where clustering 
on the basis of affinity is possible and meaningful. 

Further extension of this research will be in 
the direction of developing an interactive design tool. 
This design tool will allow users to make 
fragmentation and allocation decisions for distributed 
databases using vertical, horizontal, and mixed 
partitioning. The present algorithm is being 
implemented for generating the vertical partitioning 
candidates in this mixed partitioning scenario. 
Extension of the present work to incorporate cost 
information will also be undertaken. 
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