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Background

�e propagation constant, the source–observer distance, and the current moment of a 

dipole source are necessary in the standard description of sub-ionospheric radio wave 

propagation at the extremely low frequency band (ELF: 3–3  kHz). �e propagation 

constant plays an especially important role in computations and modeling. �erefore, 

significant efforts were directed to its precise estimation (see e.g. Nickolaenko and Hay-

akawa 2002, 2014 and references therein). �e commonly accepted heuristic frequency 

dependence ν  (f) of the propagation constant has been suggested in Ishaq and Jones 

(1977) based on the vast experimental data collected at a global array of the Schumann 

resonance observatories. �e observation sites were positioned in both the eastern and 

western hemispheres. According to Ishaq and Jones (1977), the complex propagation 

constant ν (f) is found from the following equations:

(1)v
(

f
)

=

[

0.25 + (kaS)2
]1/2

− 0.5,
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where a is the Earth’s radius in m, k is the free space wavenumber in m−1, f is the fre-

quency in Hz, and the dimensionless complex sine parameter S is given as follows:

c is the light velocity of, V is the wave phase velocity in m/s both, and η accounts for the 

wave attenuation in the cavity.

A comparison of experimental Schumann resonance data with those computed from 

Eqs. (1–4) has confirmed the validity of the model by Ishaq and Jones (1977), although 

some other models are used in the literature suggesting simpler expressions for the ν(f) 

dependence (Nickolaenko and Hayakawa 2002, 2014). We use relations (1–4) in what 

follows as the standard or the reference model.

In the field computations and in the interpretation of experimental data, the knowl-

edge is redundant of the vertical profile of atmospheric conductivity σ(h). It is sufficient 

to use the regular expressions for the electromagnetic fields incorporating the propa-

gation constant, the current moment of the field source, and the ionosphere effective 

height (see e.g. Nickolaenko and Hayakawa 2002, 2014).

However, information on the vertical profile of atmospheric conductivity σ(h) 

becomes obligatory when using the direct modeling methods such as finite difference 

time domain (FDTD) technique or the 2D telegraph equation (2DTE) (Kirillov 1996; 

Kirillov et al. 1997; Kirillov and Kopeykin 2002; Morente et al. 2003; Pechony and Price 

2004; Yang and Pasko 2005). �is kind of computations is impossible without knowing 

a particular vertical profile of air conductivity and the relevant complex permittivity of 

atmosphere. �e range of heights 50–100 km is crucial for the ELF radio propagation, 

but it is inaccessible by any modern remote sensing. �e existing experimental data on 

the air conductivity within these altitudes are rare and have been usually obtained by the 

rocket probes. �erefore, one can find only a limited amount of altitude profiles of the 

air conductivity in the literature. It is significant that none of these profiles provides a 

realistic frequency dependence of ELF propagation constant as given by Eqs. (1–4).

�e objective of our paper is a realistic σ(h) profile consistent with the Schumann 

resonance observations. Such a model profile is desirable when modeling the sub-iono-

spheric radio propagation in the real Earth–ionosphere cavity.

The air conductivity as a function of altitude

We start from the classical work (Cole and Pierce 1965) when constructing the altitude 

dependence σ(h) corresponding to the observed peak frequencies and the quality factors 

of the Schumann resonance oscillations. �e particular profile σ(h) in Cole and Pierce 

(1965) was based on the results of observations and the aeronomy data. �is profile is 

often used in different applications, and it is shown in Fig.  1 by the curve with dots. 

�e major drawback preventing its application in the Schumann resonance studies is 

inaccurate value of the propagation constant, as seen below. As a result, the computed 

(2)S = c/V−i × 5.49 × η/f ,

(3)c/V = 1.64−0.1759 × ln
(

f
)

+ 0.01791 ×
[

ln
(

f
)]2

,

(4)η = 0.063 × f 0.64,
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Schumann resonance spectra noticeably deviate from observations. Our profile (curve 2 

in Fig. 1) was obtained from curve 1 by modifications and exhaustive search, and it sug-

gests more realistic data. Simultaneously, it does not seriously deviate from the classical 

dependence (Cole and Pierce 1965), hence it matches the direct conductivity measure-

ments and the aeronomy data. �e particular data on the air conductivity are listed in 

Table 1.

�e profiles of atmospheric conductivity are shown in Fig. 1 for the altitudes ranging 

from 0 to 100 km. �e thin curve with points 1 shows the classic profile (Cole and Pierce 

1965) and the smooth thick curve 2 depicts the more realistic profile σ(h). As might be 

seen from the figure, the both curves are rather close to each other, although profile 2 

has a more pronounced alteration in the 50–60 km interval (the so-called “knee”). Devi-

ations begin from the 30 km altitude, and the profile 2 becomes “elevated” over the clas-

sical plot.

�e heuristic “knee model” is popular in the modern Schumann resonance studies 

proposed in the paper by Mushtak and Williams (2002). It might be applied in computa-

tions of the propagation constant instead of formulas (1–4). Similarly to previous works 

(Kirillov 1996; Kirillov et al. 1997; Kirillov and Kopeykin 2002; Greifinger and Greifinger 

1978; Nickolaenko and Rabinowicz 1982, 1987; Sentman 1990a, b; Fullekrug 2000), the 

knee model postulates a set of parameters allowing computing the two complex charac-

teristic heights (the “electric” and “magnetic” heights) together with the real (i.e., hav-

ing no imaginary part) scale heights nearby these altitudes. �e propagation constant 

is computed by substituting these parameters into the “standard” equations, while the 

frequency dependence is postulated for all the model parameters in Mushtak and Wil-

liams (2002). After finding the appropriate propagation constant, one can turn to the 

field computations (Nickolaenko and Hayakawa 2014; Williams et al. (2006)).

Unfortunately, all the works applying the knee model are based on only the verbal 

description of the relevant σ(h) profile. None of these depicts the conductivity profile 

nearby the both characteristic heights. Obtaining such a profile is not a simple task, pro-

vided that it is possible at all, especially because all the model parameters depend on 

the signal frequency. �us, it is not clear in what a way the real function of height σ(h), 

Fig. 1 Altitude profiles of air conductivity. Line 1 is the classic profile (Cole and Pierce 1965); line 2 is the sug-

gested profile corresponding to Schumann resonance observations in a better way
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being independent of frequency, might be constructed from the complex functions of 

frequency. At any rate, the problem remains currently unresolved.

�e simplified conductivity profiles are widely used in the direct methods of field 

computation. �ese are typically the lg[σ(h)] plot incorporating the two straight lines 

that form a twist at the knee altitude due to the change in the scale height (see e.g. 

Morente et al. 2003; Yang and Pasko 2005; Toledo-Redondo et al. 2013; Molina-Cuberos 

et al. 2006; Zhou et al. 2013). �e vicinity of upper, “magnetic” characteristic height is 

ignored. �e curved height dependence of the air conductivity is in fact the well-known 

two-scale exponential model. Advantages and drawbacks of such a model are quite well 

known, and these were comprehensively discussed in the literature (Mushtak and Wil-

liams 2002; Sentman 1990a, b; Greifinger et al. 2007). Besides, the two-scale exponential 

Table 1 Logarithm of air conductivity (S/m) as function of altitude above the ground sur-

face

z km lg(σ) z km lg(σ) z km lg(σ)

Median Day Night Median Day Night Median Day Night

2 −12.77 −12.02 −12.03 34 −10.19 −10.72 −10.73 66 −7.73 −6.62 −9.24

3 −12.68 −11.98 −11.98 35 −10.14 −10.68 −10.69 67 −7.50 −6.39 −9.13

4 −12.60 −11.94 −11.94 36 −10.09 −10.64 −10.65 68 −7.35 −6.16 −9.00

5 −12.51 −11.9 −11.90 37 −10.03 −10.6 −10.6 69 −7.17 −5.94 −8.85

6 −12.43 −11.86 −11.86 38 −10.0 −10.56 −10.56 70 −7.02 −5.71 −8.69

7 −12.31 −11.82 −11.82 39 −9.95 −10.52 −10.52 71 −6.85 −5.48 −8.51

8 −12.22 −11.78 −11.78 40 −9.92 −10.47 −10.48 72 −6.72 −5.25 −8.32

9 −12.08 −11.74 −11.74 41 −9.86 −10.43 −10.44 73 −6.55 −5.02 −8.13

10 −11.97 −11.7 −11.7 42 −9.83 −10.39 −10.40 74 −6.37 −4.79 −7.93

11 −11.84 −11.65 −11.66 43 −9.78 −10.34 −10.36 75 −6.25 −4.56 −7.72

12 −11.74 −11.61 −11.62 44 −9.75 −10.3 −10.32 76 −6.12 −4.34 −7.51

13 −11.62 −11.57 −11.58 45 −9.70 −10.25 −10.28 77 −6.02 −4.11 −7.29

14 −11.53 −11.53 −11.54 46 −9.67 −10.19 −10.24 78 −5.93 −3.88 −7.08

15 −11.42 −11.49 −11.50 47 −9.64 −10.13 −10.2 79 −5.83 −3.65 −6.87

16 −11.34 −11.45 −11.46 48 −9.62 −10.05 −10.16 80 −5.76 −3.42 −6.65

17 −11.25 −11.41 −11.42 49 −9.59 −9.97 −10.12 81 −5.66 −3.19 −6.43

18 −11.17 −11.37 −11.38 50 −9.56 −9.86 −10.08 82 −5.58 −2.96 −6.22

19 −11.09 −11.33 −11.34 51 −9.52 −9.77 −10.04 83 −5.49 −2.73 −6.0

20 −11.02 −11.29 −11.30 52 −9.48 −9.6 −9.99 84 −5.40 −2.51 −5.78

21 −10.94 −11.25 −11.25 53 −9.44 −9.43 −9.96 85 −5.29 −2.28 −5.57

22 −10.88 −11.21 −11.21 54 −9.40 −9.26 −9.91 86 −5.19 −2.05 −5.35

23 −10.80 −11.17 −11.17 55 −9.30 −9.06 −9.87 87 −5.05 −1.82 −5.13

24 −10.74 −11.13 −11.13 56 −9.23 −8.86 −9.83 88 −4.94 −1.59 −4.91

25 −10.67 −11.09 −11.09 57 −9.11 −8.65 −9.79 89 −4.77 −1.36 −4.7

26 −10.61 −11.05 −11.05 58 −9.02 −8.43 −9.74 90 −4.64 −1.14 −4.48

27 −10.55 −11.01 −11.01 59 −8.87 −8.21 −9.7 91 −4.43 −0.91 −4.26

28 −10.49 −10.96 −10.96 60 −8.75 −7.98 −9.65 92 −4.29 −0.68 −4.05

29 −10.42 −10.92 −10.93 61 −8.57 −7.76 −9.60 93 −4.04 −0.45 −3.83

30 −10.37 −10.88 −10.89 62 −8.45 −7.53 −9.55 94 −3.89 −0.22 −3.61

31 −10.32 −10.84 −10.85 63 −8.24 −7.30 −9.48 95 −3.58 0.01 −3.40

32 −10.28 −10.80 −10.81 64 −8.10 −7.08 −9.41 96 −3.40 0.24 −3.18

33 −10.24 −10.76 −10.77 65 −7.87 −6.85 −9.33 97 −3.01 0.46 −2.96

98 −2.81 0.69 −2.74
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model does not predict any correct values of the peak frequencies and the Q-factors of 

the Schumann resonance modes when applied in the FDTD technique.

The propagation constant

�e ELF propagation constant ν  (f) is usually constructed on the assumption that the 

ionosphere plasma is isotropic and horizontally homogeneous. �en, by using the full 

wave solution (see Hynninen and Galuk 1972; Bliokh et al. 1997, 1980; Galuk and Ivanov 

1978; Galuk et  al. 2015), one might compute the ν  (f) dependence corresponding to a 

given profile σ (h). �e full wave solution is the rigorous solution of the radio propaga-

tion problem within the vertically stratified ionosphere, and it allows us to obtain the 

sub-ionospheric propagation constant (f). We will mention the major steps in obtaining 

the solution without reproducing equations here, as these could be found in the above-

cited works. �e upward and downward waves are taken into account in every plasma 

layer. �eir thickness is much smaller than the wavelength in the medium. �e tangen-

tial field components are continuous at the layer boundaries. It might be shown then 

(Hynninen and Galuk 1972; Bliokh et al. 1997; Galuk and Ivanov 1978; Galuk et al. 2015) 

that the electromagnetic problem is reduced to a nonlinear differential equation of the 

first order for the surface impedance (the ratio of the tangential components of E and 

H fields). �e surface impedance satisfies boundary conditions at the ground and at the 

upper boundary in the ionosphere from where the plasma density is supposed to remain 

constant. �e problem is solved numerically by using the iteration procedure, and the 

desired propagation constant ν (f) is obtained as a result. �e method is regarded as the 

full wave solution, since it strictly accounts for all the fields propagating in the stratified 

plasma and in the air.

Frequency variations of the real and imaginary part of the propagation constant are 

compared in Fig. 2 computed from the formulas (1–4) and from the full wave solution 

for the profiles 1 and 2 of Fig. 1. Iterations in the full wave solution were performed until 

Fig. 2 Dispersion curves (Panel a, real part and Panel b, imaginary part). a Frequency variations of the real 

part of the propagation constant: Lines 1–3 show correspondingly the Re[ν (f)] functions for the reference 

model (Ishaq and Jones 1977), for the classical profile (Cole and Pierce 1965), and for the conductivity profile 

suggested in this paper. b The imaginary part of the propagation constant: line 4 is the model (Ishaq and 

Jones 1977), line 5 is the classic profile (Cole and Pierce 1965), and line 6 is our profile
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the novel value of the surface impedance deviates from the previous one by less than 

10−7.

As might be seen, all models give very close values in the real part of the propaga-

tion constant (i.e., the phase velocity of radio waves), because deviations are only a few 

percents. So, the resonant frequencies are almost coincident for all three models. But, 

deviations in the imaginary part or in the attenuation rate of radio waves are more dis-

tinct. �e standard or the reference model (Ishaq and Jones 1977) and the conductivity 

profile 2 provide similar dependences (curves 4 and 6), while the attenuation factor fol-

lowing from the classical conductivity profile (Cole and Pierce 1965) (curve 5) consider-

ably deviates from them.

�e normalized deviations are shown in Fig.  3 of the real (curve 1) and the imagi-

nary part of propagation constant (curve 2). Deviations in the real part of the propa-

gation constant were computed from Eq. (5), and excursions of the imaginary part are 

described by Eq. (6):

Here ν0(f) is the reference dependence determined from Eqs. (1–4) and ν2(f) is the propa-

gation constant found for profile 2 by using the full wave solution.

Plots in Fig. 3 indicate that profile 2 provides a rather good propagation constant being 

close to the reference model in the entire Schumann resonance band: deviations in the 

phase velocity do not exceed 1 %, and those in the attenuation rate are still within an 

interval of ±5 %. �erefore, profile 2 might be used in modeling of the global electro-

magnetic resonance of the Earth–ionosphere cavity, especially, in direct methods of field 

computations, such as FDTD and 2DTE (the parameters are listed in Table 1).

Validity of the conductivity profile #2 might be illustrated also by comparing the com-

puted wave attenuation rate with the data of direct measurements, which was based on 

the monochromatic radio signals from the ELF transmitters (Bannister 1999; Nickolae-

nko 2008a, b). Data from the paper by Bannister (1999) were based on the amplitude 

(5)δR = 100 × {Re[ν2(f )] − Re[ν0(f )]}Re[ν0(f )],

(6)δI = 100 × {Im[ν2(f )] − {Im[ν0(f )]}Im[ν0(f )].

Fig. 3 Normalized deviations from the reference model. Normalized deviations from the reference model in 

the real (curve 1) and the imaginary parts (curve 2) of the propagation constant computed for profile 2



Page 7 of 12Nickolaenko et al. SpringerPlus  (2016) 5:108 

monitoring of the signal arriving from the US Navy transmitter regarded as the Wis-

consin Test Facility (WTF), in which the global network was used to receive the sig-

nal. Data were obtained at the frequency of 76 Hz, and the average attenuation rate was 

0.82 dB/1000 km for the ambient night and 1.33 dB/1000 km in the ambient day condi-

tions. �e average attenuation at this frequency was equal to 1.08 dB/1000 km, and the 

relative standard deviation due to seasonal variations was ±25 %.

�e imaginary part of the propagation constant at this frequency for the pro-

file 2 is equal to Im[ν  (f)]∣f=76  =  0.86, and this value corresponds to the attenuation 

α  (76  Hz) =  1.17  dB/1000  km. �is attenuation is practically coincident with that by 

observations, and this fact is certainly in favor of the model.

�e imaginary part of the propagation constant was also published in the 

papers (Nickolaenko 2008a, b), and it was measured at the 82  Hz frequency. 

It is equal to Im[ν  (f)]∣f=82  =  0.92, which corresponds to the attenuation factor 

α (76 Hz) = 1.25 dB/1000 km. �e attenuation rate in Nickolaenko (2008a) was inferred 

from the distance dependence of the signal amplitude in the vertical electric field com-

ponents while the radio wave was emitted from the Kola Transmitter of the Soviet Navy. 

�e model imaginary part of the propagation constant Im[ν  (f)]∣f=82 = 0.92 is equal to 

the value measured experimentally.

A comparison with observations of the man-made ELF radio transmissions justifies 

the employment of the conductivity profile #2 in ELF applications.

Comparison of the power spectra

�e major goal of constructing propagation constant is its further application in the field 

computations. To demonstrate similarity of the results obtained with the profile 2 and 

the reference model (Ishaq and Jones 1977), we plot the power spectra of the vertical 

electric field in Fig. 4. �e globally uniform spatial distribution of the sources was used 

in Williams et  al. (2006) for eliminating the possible influence of the source–observer 

distance on the spectrum outline. In the case of uniform source distribution, the power 

Fig. 4 Frequency spectra of computed vertical electric fields. Schumann resonance spectra in the vertical 

electric field computed for the uniform global distribution of thunderstorms. The smooth curve 1 is the power 

spectrum obtained in the reference model. Curve 2 (with dots) shows the similar spectrum relevant to profile 

2 of Fig. 1. Line 3 (relevant to the right ordinate) depicts deviations (in %) from the reference curve
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spectrum is described by the following equation (Nickolaenko and Hayakawa 2002, 

2014):

Here, ω = 2π f is the circular frequency, n = 1, 2, 3, … is the Schumann resonance mode 

number, and Ids(ω) is the current moment of the field source being constant within the 

ELF band.

Two resonance spectra are shown in Fig. 4. �e smooth line 1 corresponds to the spec-

trum computed with the reference propagation constant (Ishaq and Jones 1977), and the 

line with dots 2 is the spectrum relevant to our conductivity profile of the atmosphere. 

Relative deviations in percents from the reference spectrum are shown by curve 3 rel-

evant to the right ordinate. By comparing Figs. 3 and 4, we observe that deviations in the 

spectra are more apparent than in the dispersion curves ν  (f). Even a difference in the 

phase velocity of about 1–2 % is clearly visible in the spectra: the peak frequencies of the 

higher modes noticeably diverge. Curve 3 in Fig. 4 illustrates that relative deviations of 

the power spectrum occupy the interval from −5 to +15 %, and this is 3–4 times smaller 

than deviations pertinent to the classical profile (Ishaq and Jones 1977).

Accounting for ambient day and night conditions

�e conductivity profile #2 is consistent with the Schumann resonance observations and 

with measurements of attenuation rate of man-made ELF radio waves. �is allows us to 

proceed further and to introduce the σ(h) profiles for the ambient day and ambient night 

conditions. �e corresponding graphs are shown in Fig. 5.

�e horizontal axis of Fig. 5 depicts the logarithm of air conductivity, and the vertical 

axis is the altitude above the ground. �e smooth curve 2 reproduces the σ(h) profile 

that was shown by line 2 in Fig. 1. Line 1 in Fig. 5 corresponds to the conductivity at 

ambient night, i.e. when the ionosphere is known to be higher than by day. �e curve 3 

corresponds to ambient day condition.

(7)
∣

∣E
(

f
)∣

∣

2
≈

∣

∣

∣

∣

Ids(ω)
ν(ν + 1)

ω

∣

∣

∣

∣

2 ∞
∑

n=0

2n + 1

|n(n + 1) − ν(ν + 1)|2
.

Fig. 5 Vertical profiles of atmospheric conductivity. Curve 1 corresponds to ambient night conditions; profile 

3 is relevant to the ambient day conditions; line 2 is the median profile
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By using the full wave solution, we computed the frequency dependence of the com-

plex propagation constant for the day and the night profiles, and compared these data 

with the reference model of ν(f). When propagation constant is known, one can compute 

the power spectra of resonance oscillations in the ambient day and ambient night condi-

tions. We are not going to investigate the effect of the ionosphere day–night asymmetry 

on the global electromagnetic resonance. �erefore, the term “ambient day condition” 

means that the horizontally uniform ionosphere is described by the day profile all over 

the globe. Similarly, the words “ambient night condition” mean in what follows that the 

night profile of the ionosphere is valid over all points of the Earth’s surface.

Again, to eliminate the influence of the source–observer distance we use the uniform 

global distribution of thunderstorms being sources of Schumann resonance. Obviously, 

the “day” and the “night” spectra thus obtained will correspond to two ultimate provi-

sional situations of the “complete day” or the “complete night” ionosphere in the reso-

nator. �e spectrum pertinent to a realistic cavity with the day–night inhomogeneity 

should occupy an intermediate position between these two extreme curves (see Fig. 6).

Figure  6 shows the computational data for the day and night conductivity profiles. 

Graphs in the upper panel of Fig.  6 demonstrate that the reference attenuation rate 

(curve 1) lies between the values obtained for the night (curve 2) and the day (curve 3) 

Fig. 6 Attenuation rates of ELF waves and power spectra of vertical electric field. a Frequency variations of 

the imaginary part of propagation constant. Line 1 is the reference dependence (1)–(4); lines 2 and 3 charac-

terize losses in the “whole day” and the “whole night” cavities. b Power spectra of the vertical electric field. Line 

1 is the reference spectrum obtained with the propagation constant (1)–(4); lines 2 and 3 show spectra for the 

day and night conductivity profiles
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conductivity profiles within all Schumann resonance band. �e bottom panel of this fig-

ure depicts the power spectra of the vertical electric field. As it was expected, the reso-

nance peaks of the “night” power spectrum (curve with stars) are higher than those of 

the “day” spectrum. �e resonance frequencies and the quality factors corresponding to 

the night conductivity profile are also higher than those corresponding to the daytime 

ionosphere. �e spectrum relevant to the reference propagation constant occupies an 

intermediate position between the “day” and “night” spectra. �us, the outline of power 

spectra confirms the validity of the day and night conductivity profiles that we have 

shown in Fig. 5 and presented in Table 1.

Discussion and conclusions

�e height profile 2 of atmospheric conductivity is close to the classical profile 1, and it 

simultaneously agrees with the Schumann resonance parameters. �e realistic propaga-

tion constant ν(f) is obtained when one applies the rigorous full wave solution of the 

electrodynamics problem to the conductivity profile #2. It is rather close to the reference 

dependence ν(f) widely used in the literature. Simultaneously, the model values of profile 

2 agree with the attenuation rate obtained from the man-made ELF radio transmissions 

at frequencies above the Schumann resonance (Bannister 1999; Nickolaenko 2008a). We 

list the corresponding data in Table 2.

Table 2 compares values of attenuation rate of ELF radio waves computed for the con-

ductivity profile presented in Table 1 with those published in the literature and present-

ing the results of measurements of radio signals from the ELF radio transmitters. Data 

at 76 Hz were taken from the survey (Bannister 1999), which summarized the long-term 

observations of the signals transmitted by the US Navy Wisconsin Test Facility.

Data for the frequency of 82 Hz were obtained from the observed distance depend-

ence of the vertical electric field arriving from the Kola Peninsula Soviet Navy ELF trans-

mitter [29, 30]. It is necessary to note that Im (ν) is the dimensionless quantity measured 

in Napier per radian. �e experimentally deduced attenuation rate α is measured in 

dB/1000 km. �e quantities are connected by the following relation:

�e model values Im(ν) from Table 2 were translated in accordance with this formula 

to the equivalent attenuation α. As might be seen, the average model attenuation rate at 

the frequency of 76 Hz is 1.17 dB/1000 km, and the experimentally measured value is 

1.08 dB/1000 km. �e deviation is about 7 %. Deviation of the model attenuation from 

(8)α = π × lg(e) · Im(ν) ≈ 1.346 · Im(ν)

Table 2 Radio wave attenuation at  discrete frequencies obtained from  conductivity pro-

�le and measured experimentally

Kind of data 〈Im(ν)〉 〈α〉
dB/1000 km

Im(ν)
Day

α Day
dB/1000 km

Im(ν)
Night

α Night
dB/1000 km

f = 76 Hz model 0.86 1.17 0.96 1.31 0.75 1.02

f = 76 Hz experiment  
(Williams et al. 2006)

– 1.08 – 1.33 – 0.82

f = 82 Hz model 0.92 1.25 1.01 1.38 0.79 1.08

f = 82 Hz experiment  
(Yang Pasko 2005; Zhou et al. 2013)

– 1.25 – – – –
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that measured in the ambient day and night conditions are equal to 2 % and 24 % cor-

respondingly. �e attenuation values at 82  Hz are equal to 1.25  dB/1000  km, and the 

mutual deviation was less than 1 %. �ese data lead to the conclusion that the vertical 

profile 2 of the air conductivity suggested here is justified not only in the frequency band 

of global electromagnetic resonance, but also at frequencies above it.

We analyzed and compared model results with the literature data available and dem-

onstrated that the suggested vertical profile of the atmospheric conductivity is a rather 

realistic model. Firstly, it is consistent with the classical concept of the air ionization. 

Secondly, application of this profile in the full wave solution provides the frequency 

dependence of the ELF propagation constant close to the reference one in the whole 

Schumann resonance band. �ird, the computed the propagation constant is in good 

agreement with measurements of the man-made ELF radio signals.

When thinking about areas of future works, we anticipate that our profile will be use-

ful in direct modeling of Schumann resonance: the FDTD algorithms and in the 2DTU 

approach. In particular, all published FDTD solutions had Schumann resonance fre-

quencies exceeding the observed values. Deviations have arisen from unrealistic con-

ductivity profiles applied in these models. We are sure that profiles presented here will 

improve the data of direct modeling, and we plan applying the profiles in future investi-

gations of Schumann resonance.
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