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ABSTRACT

Context. The origin of turbulence in accretion discs is still not fully understood. While the magneto-rotational instability is thought
to operate in sufficiently ionised discs, its role in the poorly ionised protoplanetary disc is questionable. Recently, the vertical shear
instability (VSI) has been suggested as a possible alternative.
Aims. Our goal is to study the characteristics of this instability and the efficiency of angular momentum transport, in extended discs,
under the influence of radiative transport and irradiation from the central star.
Methods. We use multi-dimensional hydrodynamic simulations to model a larger section of an accretion disc. First we study inviscid
and weakly viscous discs using a fixed radial temperature profile in two and three spatial dimensions. The simulations are then
extended to include radiative transport and irradiation from the central star.
Results. In agreement with previous studies, for the isothermal disc we find a sustained unstable state with a weak positive angular
momentum transport of the order of α ≈ 10−4. Under the inclusion of radiative transport the disc cools off and the turbulence
terminates. For discs irradiated from the central star we again find a persistent instability with a similar α value as for the isothermal
case.
Conclusions. We find that the VSI can indeed generate sustained turbulence in discs, albeit at a relatively low level with α about few
times 10−4.
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1. Introduction

The origin of the angular momentum transport in accretion discs
is still not fully understood. Observationally it has been con-
firmed that the molecular viscosity is by many orders of mag-
nitude too small to explain the effective mass and angular mo-
mentum transport in discs (Pringle 1981). This can be inferred
for example from time variations in the disc luminosity in close
binary systems, or by correlating the infrared-excess caused by
discs around young stars with the age of the system. As a con-
sequence it is assumed that discs are driven by some kind of
turbulent transport whose cause is still not known. Despite its
unknown origin, the efficiency of the turbulence is usually pa-
rameterised in terms of the dimensionless parameter, α, as in-
troduced by Shakura & Sunyaev (1973). Observationally, val-
ues of a few times 10−3 as in protostellar discs to 10−1 for
discs in close binary stars are suggested. For sufficiently well
ionised discs the magnetorotational instability (MRI) is certainly
the most promising candidate to provide the transport (Balbus
2003). While this may be true for the hot discs in close binary
systems or in active galactic nuclei, there is the important class
of protostellar discs where at least the thermal ionisation levels
are too low to provide a sufficient number of charged particles
that can support the MRI (Armitage 2011). In such discs turbu-
lence plays an important role in several aspects. Not only does it
determine the lifetime of an accretion disc, but it also influences

where and how planets can form and evolve in the disc. A va-
riety of sources such as stellar X-rays, cosmic rays or collisions
with beta particles from radioactive nuclei have been invoked to
provide the required ionization levels, but recent studies indicate
the presence of an extended dead zone where, because of the
lack of ionization, no magnetically driven instability may oper-
ate. Additionally, recent studies on the origins of turbulence in
protostellar discs that include non-ideal magnetohydrodynami-
cal (MHD) effects such as ambipolar diffusion or the Hall ef-
fect, indicate that the MRI may even be suppressed strongly in
these discs, see the review by Turner et al. (2014) and references
therein.

As a consequence, alternative mechanisms that provide
turbulence are actively discussed. Typical examples for non-
magnetised discs are convective instability (Ruden et al. 1988),
gravitational instability (Lin & Pringle 1987), or baroclinic in-
stability (Klahr & Bodenheimer 2003), for further references
see Nelson et al. (2013). While any of these may operate un-
der special conditions in the disc, e.g. suitable radial entropy
gradients or a sufficiently high disc mass, none seems to have
general applicability. Searching for alternatives two linear in-
stabilities have been recently discussed in the literature, both
acting on the radial temperature structure of the disc. One is a
convective overstability that preferably acts for thermal relax-
ation times close to the orbital period (Klahr & Hubbard 2014;
Lyra 2014), and two is a vertical shear instability (VSI) that
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operates best for cooling times much shorter than the orbital
period or for discs that are adiabatically stratified in the verti-
cal direction. The present paper focuses on the latter instabil-
ity. Here, the instability is caused by a vertical gradient of the
angular velocity, Ω, in the disc. Through linear analysis it has
been shown that for a sufficiently strong vertical shear there are
always modes that can overcome the stabilizing angular momen-
tum gradient (Rayleigh-criterion) and generate instability (Urpin
& Brandenburg 1998; Urpin 2003). This instability is related
to the Goldreich-Schubert-Fricke instability that can occur in
differentially rotating stars (Goldreich & Schubert 1967; Fricke
1968).

Concerning vertical shears effectiveness with respect to an-
gular momentum transport numerical simulations were per-
formed by Arlt & Urpin (2004) and Nelson et al. (2013). The
first authors analysed the instability for globally isothermal discs
and found that the instability in this case could only be triggered
by applying finite initial perturbation because the equilibrium
state of the disc (being strictly isothermal) did not contain a shear
inΩ. The maximum values of α obtained by Arlt & Urpin (2004)
were around 6 × 10−6, but the turbulence was decaying in the
long run. Nelson et al. (2013) extended these simulations and
performed high resolution simulations of the VSI for so-called
locally isothermal discs that contain a radial temperature gra-
dient, but are vertically isothermal. Under these conditions the
equilibrium state has a vertical gradient in the shear and indeed
an instability sets in. As shown by Nelson et al. (2013) the insta-
bility has two distinct growth phases, it starts from the surface
layers of the disc where the shear is strongest and then protrudes
towards the midplane. In the final state the vertical motions in
the disc are antisymmetric with respect to the disc’s midplane,
such that the gas elements cross the midplane, a feature found
for the vertical convective motions in discs as well (Kley et al.
1993). For the efficiency of the VSI induced turbulence Nelson
et al. (2013) found a weak angular momentum transport with
α = 6 × 10−4. They also showed that in the presence of a small
viscosity or thermal relaxation the instability is weaker and can
easily be quenched.

It is not clear what influence radiation transport will have on
this instability. Without external heat sources one might expect
that, because of radiative cooling and the dependence of the in-
stability on temperature, the instability will die out. Here, we
evaluate the evolution of the instability for radiative discs and an
ideal equation of state. Additionally, we extend the radial domain
and include irradiation from the central star. We perform 2D and
3D hydrodynamical simulations including radiative transport.

This paper is organised as follows. In Sect. 2, we present
the physical setup of our disc models and in Sect. 3 the numer-
ical approach. The isothermal results are presented in Sect. 4,
followed by the radiative cases in Sect. 5. Stellar irradiation is
considered in Sect. 6 and in Sect. 7 we conclude.

2. Physical setup

In order to study the VSI of the disc in the presence of radiative
transport we construct numerical models solving the hydrody-
namical equations for a section of the accretion disc in two and
three spatial dimensions.

2.1. Equations

The basis our studies are the Euler Eqs. (1)–(3) describing
the motion of an ideal gas. These are coupled to radiation

transport (4) for which we use the two temperature approxima-
tion applying flux-limited diffusion. The equations then read

∂ρ

∂t
+ ∇(ρu) = 0 (1)

∂

∂t
ρu + ∇(ρuu) + ∇p = ρaext (2)

∂

∂t
e + ∇[(e + p)u] = ρuaext − κPρc(aRT 4 − E) (3)

∂

∂t
E + ∇F = κPρc

(

aRT 4 − E
)

. (4)

Here ρ is the density; u the velocity; e the total energy den-
sity (kinetic and thermal) of the gas; p denotes the gas pressure;
the acceleration due to external forces, such as the gravitational
force exerted by the central star is given by aext; and E and F are
the energy density and the flux of the radiation. The last terms on
the righ-hand side of Eqs. (3) and (4) refer to the coupling of gas
and radiation, i.e. the heating/cooling terms. Here, c stands for
the speed of light, aR is the radiation constant, and κP the Planck
mean opacity.

We close the equations with the ideal gas equation of state

p = (γ − 1)eth, (5)

where eth = e − 1/2ρu2 is the thermal energy density. The tem-
perature of the gas is then calculated from

p = ρ
kBT

µmH

, (6)

where µ is the mean molecular weight, kB the Boltzmann con-
stant, and mH the mass of the hydrogen atom. In our simula-
tions with radiation transport we use γ = 1.4 and µ = 2.35. To
compare to previous studies we performed additional isothermal
simulations where we use γ = 1.001 and additionally reset to the
original temperature profile in every step. This procedure corre-
sponds to an isothermal simulation, but allows for an arbitrary
temperature profile. It also allows to use the feature of slowly re-
laxing to a given original temperature such as used for example
in Nelson et al. (2013). Note that without resetting the tempera-
ture the gas remains adiabatic, and the perturbation will die out
for our setup.

The radiation flux in the flux-limited diffusion (FLD) ap-
proximation (Levermore & Pomraning 1981) is given by

F = −λ c

κRρ
∇E, (7)

where κR is the Rosseland mean opacity and λ is the flux-limiter,
for which we use the description of Minerbo (1978). For the
Rosseland mean opacity we apply the model of Bell & Lin
(1994). For simplicity, in this initial study we use the same value
for the Planck mean opacity, see also Bitsch et al. (2013).

In some of our studies we add viscosity and stellar irradiation
to the momentum and energy equations. This will be pointed out
below in the appropriate sections.

2.2. Disc model

To be able to study the onset of the instability we start with a ref-
erence model in equilibrium. For this purpose, we follow Nelson
et al. (2013) and use a locally isothermal disc in force equilib-
rium, where for the midplane density we assume a power law
behaviour

ρ(R,Z = 0) = ρ0

(

R

R0

)p

, (8)

A77, page 2 of 12



Moritz H. R. Stoll and Wilhelm Kley: Vertical shear instability in accretion disc models with radiation transport

and that the temperature is constant on cylinders

T (R,Z) = T0

(

R

R0

)q

· (9)

To specify the equilibrium state we have used a cylindrical co-
ordinate system (R,Z, φ). However, our simulations will be per-
formed in spherical polar coordinates (r, θ, φ) because they are
better adapted to the geometry of an accretion disc. In Eqs. (8)
and (9), ρ0 and T0 are suitably chosen constants that determine
the total mass content in the disc and its temperature. The ex-
ponents p and q give the radial steepness of the profiles, and
typically we choose p = −3/2 and q = −1. Assuming that in
the initial state there are no motions in the meridional plane and
the flow is purely toroidal, force balance in the radial and verti-
cal directions then leads to the equilibrium density and angular
velocity profiles that we use for the initial setup (Nelson et al.
2013)

ρ(R,Z) = ρ0

(

R

R0

)p

exp

[

GM

c2
s

(

1
√

R2 + Z2
− 1

R

)]

, (10)

and

Ω(R,Z) = ΩK

[

(p + q)

(

H

R

)2

+ (1 + q) − qR
√

R2 + Z2

]
1
2

· (11)

Here, cs =
√

p/ρ denotes the isothermal sound speed, ΩK =
√

GM⊙/R3 the Keplerian angular velocity, and H = cs/ΩK is
the local pressure scale height of the accretion disc. We note
that the Z dependence of Ω in the equilibrium state is the origin
of the VSI because the vertical shear provides the opportunity
for fluid perturbations with a wavenumber ratio kR/kZ above a
threshold to tap into a negative gradient in the angular momen-
tum as the perturbed fluid elements move away from the rotation
axis (Nelson et al. 2013). The angular velocity given by Eq. (11)
is also used to calculate the Reynolds stress tensor, for details
see below.

2.3. Stability

Nelson et al. (2013) repeated the original analysis in Goldreich
& Schubert (1967) for a locally isothermal and compressive gas
for an accretion disc using the local shearing sheet approxima-
tion at a reference radius r0. They derived the same stability cri-
terion as Urpin (2003) and obtained the following growth rate of
the instability

σ2 =
−κ2

0
(c2

0
k2

Z
+ N2

0
) + 2Ω0c2

0
kRkZ

∂V̄
∂z

c2
0
(k2

Z
+ k2

R
) + κ2

0
+ N2

0

, (12)

where κ0 is the epicyclic frequency, c0 the sound speed, and N0

is the Brunt-Vaisaila frequency at the radius r0; V̄ denotes the
mean deviation from the Keplerian azimuthal velocity profile,
and kR and kZ are the radial and vertical wavenumbers of the
perturbations in the local coordinates.

For negligible N0, small H0/R0, and kZ/kR ∼ O(qH0/R0), as
seen in their numerical simulations, Nelson et al. (2013) find

σ ∼ qΩ
H

R
, (13)

which implies that the growth rate per local orbit to first order
depends on the temperature gradient as given by q and on the
absolute temperature, because of H/R. We will compare our nu-
merical results with these estimates.

3. Numerical model

To study the VSI in the presence of radiative transport we per-
form numerical simulations of a section of an accretion disc in
two and three spatial dimensions using spherical polar coordi-
nates (r, θ, φ), and a grid which is logarithmic in radial direction,
keeping the cells squared. We solve Eqs. (1) to (4) with a grid-
based method, where we use the PLUTO code from Mignone et al.
(2007) that utilises a second-order Godunov scheme, together
with our radiation transport (Kolb et al. 2013) in the FLD ap-
proximation, see Eq. (7).

The simulations span a region in radius from r = 2−10 AU,
this is the range where the dead zone can be expected (Armitage
2011; Flaig et al. 2012). Here, we use a larger radial domain as
Nelson et al. (2013) did because we intend to study the global
properties of the instability over a wider range of distances.
Additionally, this larger range is useful because we need some
additional space (typically ≈1 AU) to damp possible large scale
vortices in the meridional plane that show up at the inner radial
boundary of the domain (see below). The origin of these vortices
is possibly that the instability moves material along cylindrically
shaped shells, a motion that is not adapted to the used spherical
coordinates, such that the midplane is cut out at the inner bound-
ary. Vortices can also arise if the viscosity changes apruptly, a
situation mimicking a boundary. Additionally, in some cases the
wavelengths are large, such that the coupling between different
modes cannot be captured in a small domain. We also use a wide
range because with radiation transport the growth rates are ex-
pected to depend on the opacity, which is a function of ρ and T
and thus of the radius. In the meridional direction (θ) we go up
to ±5 scale heights above and below the equator in the isothermal
case, and we use the same extension for the radiative simulation,
where it corresponds to more scale heights. For the 3D simu-
lations we used in the azimuthal direction (φ) a quarter circle,
from 0 to π/2.

We use reflective boundaries in the radial direction. In the
meridional direction we use outflow conditions for the flow out
of the domain and reflective conditions otherwise. For the radi-
ation transport solver we set the temperature of the meridional
boundary to 10 K, which allows the radiation to escape freely.
We use damping of the velocity near the inner radial boundary
within 2–3 AU to prevent the creation of strong vortices arising
through the interaction with the reflecting boundary, which can
destroy the simulation. This is done by adding a small viscosity
of ν = 2×10−7 with a linear decrease to zero from 2 AU to 3 AU
(similar to the damping used in de Val-Borro et al. 2006).

We assume that the disc orbits a solar mass star and we ap-
ply a density of ρ0 = 10−10 g/cm3 at 1 AU. Because the surface
density decays with r−0.5, we get a surface density Σ = 80 g/cm2

at 5 AU. To study the mass dependence we vary ρ0 for the radia-
tive models. To seed the instability we add a small perturbation
of up to 1% of the sound speed to the equilibrium velocity, see
Eq. (11).

Because our radiation transport solver is only implemented
in full 3D (Kolb et al. 2013), we use two grid cells in the az-
imuthal direction for the 2D axisymmetric simulations using ra-
diation transport.

4. Isothermal discs

Before studying full radiative discs, we first perform isothermal
2D simulations to compare our results and growth rates to those
of Nelson et al. (2013). Then we will extend the simulation to
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Fig. 1. Kinetic energy of the motion in the meridional plane at different
radii in an inviscid disc. The kinetic energy at the different locations
is in each case averaged over a radial interval with length 0.5 AU. We
note that the unit of time is given in local periods at the centre of the
specified interval. Hence, it is different for each curve, but this allows
easy comparison.

full 3D using a quarter of a disc and discuss the dependence on
resolution and viscosity.

4.1. Growth rates

To analyse the possible growth and instability of the initial equi-
librium state, we analyse the time evolution of the kinetic energy
in the meridional plane

ekin =
1

2
ρ
(

u2
r + u2

θ

)

, (14)

at different radii. The obtained growth of ekin of a run with
q = −1 and p = −3/2 is shown at different radii in Fig. 1 for an
inviscid disc model with a grid resolution of 2048×512. We note
that the time is measured in local orbits (2π/Ω(ri)) at the corre-
sponding centres of the intervals, ri. We measure a mean growth
rate of 0.38 per orbit for the kinetic energy (light blue line in
Fig. 1), which is twice the growth rate (σ) of the velocity. We
calculate the growth rate by averaging the kinetic energy at the
different ri over an interval with length 0.5 AU. Our results com-
pare favourably with the growth rates from Nelson et al. (2013)
who obtained 0.25 per orbit averaged over 1−2 AU for q = −1.
Averaging over this larger range leads to a reduced growth be-
cause the rate at 2 AU, measured in orbits at 1 AU, is smaller by
a factor of 21.5 = 2.8, and so their result is a slight underestimate.

A closer look at Fig. 1 reveals two distinct growth phases.
An initial strong linear growth phase with a rate of 0.38 per
orbit lasting about 20 local orbits, and a slower second phase
with a rate of 0.10 per orbit (grey line in Fig. 1). To understand
these regimes, we present in Fig. 2 the velocity in the merid-
ional direction, uθ, in 2D contour plots at different times. The
top panel reveals that the first phase corresponds to symmet-
ric (mirror symmetry with respect to the equatorial plane) dis-
turbances that grow from the top and bottom surface layers of
the disc. Here, the gas does not cross the midplane of the disc.
When the disturbances meet in the disc’s midplane they develop
an anti-symmetric phase with lower growth rates where the gas
flow crosses the midplane of the disc as shown in the middle
panel. The converged phase shown in the lower panel then shows
the fully saturated global flow. Figure 2 indicates that in the top
panel the whole domain is still in the anti-symmetric growth
phase, in the middle panel only the smaller radii show symmetric

Fig. 2. Velocity in the meridional direction, uθ, in units of local Kepler
velocity for an isothermal run without viscosity. The panels refer to
snapshots taken at time 100, 210 and 750 (top to bottom), measured in
orbital periods at 1 AU. In units of local orbits at (2.5, 3.5, 4.5) AU
this refers to (25, 15, 10) (53, 32, 22) (190, 115, 79) orbits, from top to
bottom.

growth, while in the lower panel the whole domain has reached
the final equilibrium, in accordance with Fig. 1.

We point out that the growth rate per local orbit (∼σ/Ω) is
independent of radius in good agreement with the relation (13),
for constant H/R. We will show later that the growth rate is also
independent of resolution.

4.2. Comparison to 3D results and Reynolds stress

In addition to the 2D simulation we ran an equivalent 3D case
using a quarter of a disc with a resolution of 512×128×128 grid
cells. We will use this to discuss the validity of the 2D results,
in particular the estimates on the turbulent efficiency factor α.
In Fig. 3 we compare the growth of the meridional kinetic en-
ergy for the 3D and the 2D simulation. After a slower start, the
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6

Fig. 3. Growth of the kinetic energy for the quarter of a disc and the
2D equivalent. The kinetic energy is averaged from 4 AU to 5.5 AU.

3D simulation shows very similar growth and reaches the same
final saturation level.

To estimate any possible angular momentum transfer caused
by the turbulent motions induced by the instability we calculate
the corresponding Reynolds stress (Balbus 2003)

Trφ =

∫

ρδurδuφdV

∆V
=

〈

ρδurδuφ
〉

, (15)

where δur and δuφ are defined as the fluctuations of the velocity
field from the mean flow and ∆V is the volume of the integrated
domain. To calculate a coordinate dependent stress we integrate
only over thin slices with a thickness of one cell in the apropriate
direction. While δur is just the radial velocity, ur, at the point of
interest because the initial ur was zero, δuφ is difficult to calcu-
late, as one has to subtract the mean background rotational ve-
locity. Armitage (2011) defines it as the difference to the Kepler
rotation, while strictly speaking it is the deviation from the un-
perturbed equilibrium state that is not Keplerian in our case, see
Eq. (11). In 3D simulations it is mostly calculated by averag-
ing over the azimuthal direction (Flock et al. 2011; Fromang
& Nelson 2006), but this instability is nearly axisymmetric (see
Fig. 4), so this is not appropriate here and the correct way is to
average over time to obtain the steady-state velocity. However,
this is computationally inconvenient because this time average
is not known a priori. In Fig. 5 we show that the time averaging
method leads to the same results as the equilibrium method us-
ing the analytic Eq. (11), and we use the latter for our subsequent
simulations.

To calculate the dimensionless α-parameter, Trφ has to be
divided by the pressure. To show the radial and vertical depen-
dence of α it is useful to use different normalisations. We divide
the Reynolds stress in Eq. (15) by the midplane pressure to il-
lustrate the dependence on the meridional (vertical) coordinate,
thus making it independent of the number of scale heights of the
domain. The stress as a function of the radius, Trφ(R), is divided
by the vertical averaged pressure, making it again independent
of the numbers of scale heights. This procedure corresponds to
a density weighted height integration (Balbus 2003).

In Fig. 5 we present the different methods for calculating
the Reynolds stress, Trφ, for the simulation of a quarter of a
disc with a resolution of 512 × 128 × 128 and the same initial
conditions as in the 2D case. We can see that indeed the ax-
isymmetric property of the instability leads to incorrect results
if one only averages over the azimuthal direction. All further
results for the isothermal discs are calculated with the equilib-
rium method. This allows us to approximate the Reynolds stress

Fig. 4. Vertical velocity in the midplane of the disc for the 3D model
after 4000 orbits. The nearly axisymmetric property of the instability is
clearly visible.
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Fig. 5. Reynolds stress (code units) from 3−10 AU averaged
over 41 time steps, each step 100 orbits apart beginning with or-
bit 1000, calculated with different averaging methods. For “mean time”
the steady-state ūφ = uφ − δuφ, needed to calculate the Reynolds stress
at each step, was calculated through averaging over the 41 time steps.
For “mean phi” the steady-state velocity was calculated by averaging
over the azimuthal direction at each time step. For “equilibrium” ūφ is
calculated analytically by using the equilibrium Eq. (11) at each step.
For the 2D model we used the equilibrium method as well.

even in a transient disc and calculate the stress continuously dur-
ing the whole runtime of the simulation, strongly reducing the
amount of data needed to be written to the hard drive because the
Reynolds stress can now be calculated independent of the other
time steps. In addition, the computations show that the stresses
of the reduced 2D simulations yield stresses comparable to the
full 3D case and can be used as a proxy for the full 3D case. In
Fig. 4 we show the vertical velocity in the midplane of the disc
for the 3D model. As shown, the motions are only very weakly
non-axisymmetric.

4.3. Resolution

In this section we look at the effect of resolution. We start with a
resolution of 256× 64, where the instability exists, but clearly is
not resolved, and go by doubling the resolution in several steps
up to a resolution of 2048×512, where the computations start to
be expensive. In Fig. 6 we show on the left the Reynolds stress
divided by the midplane pressure as a function of vertical dis-
tance. This is then averaged over the radius from 3−8 AU. On the
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Fig. 7. Mean wavenumber of the instability over the radius for different
numerical resolutions in the saturated phase. Upper panel: inviscid case
with ν = 0, lower panel: viscous case with ν = 5×10−7 (dimensionless).

right we plot the Reynolds stress divided by the pressure, where
both pressure and stress have been averaged over the meridional
direction.

From this plot it is not clear if the values for α converge to a
specific level for higher resolution. Nevertheless, it gives a first
impression on the strength of turbulent viscosity caused by this
instability being relatively weak with α-values a few times 10−4,
which is slightly smaller than the value of 6 × 10−4 found by
Nelson et al. (2013).

In Fig. 7 we show the wavelength of the perturbation as
a function of radius for different numerical resolutions, where
the wavelength has been estimated by measuring the distance
between two sucsessive changes of the sign of the vertically
averaged vertical momentum after the instability is saturated

Fig. 8. Histogram: colour coded is the logarithm of the probability for
the occurrence of a wavelength at a radius normalised at each radius by
the sum of all wavelengths for the specific radius. The black lines are
proportional to the radius to the power of 2.5 and the lines are a factor
of 2 apart from each other. The dashed line has linear slope. One can see
that the instability jumps successively between different modes for the
wavelength with corresponding jumps in frequency at the same radius.

(see Fig. 2, third panel, or Fig. 10 along the radius axis, begin-
ning with orbit 1000). This does not, of course, reveal the full
spectrum, but at this point we are more interested in the char-
acteristic mean wavelength. We note that the wavelength in the
growth phase can be smaller. In all shown resolutions one wave-
length is resolved with 15–50 grid cells, while larger radii are
better resolved. Despite the variation with radius one notices in
Fig. 7 that the wavelength clearly depends on the numerical res-
olution. One possible cause for this is the lack of physical vis-
cosity. Because the (intrinsic) numerical viscosity of the code
decreases with increasing resolution, this may explain the miss-
ing convergence, in particular since the growth rates depend of
the wavenumbers of the disturbances, see Eq. (12). We repeated
the run with an intermediate resolution of 1440 × 360 with re-
duced precision by using a first order instead of a second order
spatial interpolation. This clearly increased the wavelength (by
about 40%) indicating that the problem is caused by the numer-
ical viscosity.

Figure 7 indicates a strong reduction of the wavenumber with
radius. To further explore this dependence of the wavelength
on the radius, we performed an additional simulation with an
extended radial domain from 2 AU to 50 AU. Again, we es-
timate the wavelength by measuring the distance between two
sign changes in the vertical averaged vertical momentum. This
time we show all the wavelengths that were detected by this
method in Fig. 8, where we show how often a certain wave-
length was captured, normalised to the specific radius where it
was measured. An interesting behaviour can be observed. While
the global radial wavelength does indeed depend linearly on the
radius, locally it clearly deviates from this dependence and in-
stead depends on the radius to the power of 2.5. This can also be
seen in the simulation with smaller domain, but there it cannot
be clearly distinguished from the interaction with the boundary.

This supplies us with an explanation for the resolution de-
pendence of the instability. Since the modes cannot become ar-
bitrarily small (because of the finite grid) or large (because of the
limited vertical scale hight) there will be jumps between differ-
ent modes. The viscosity and the Kelvin-Helmholtz instability,
which can be observed in the simulations with high resolution,
are the candidates for a physical cause for this cut off at small
wavelengths.
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Fig. 9. Fourier power spectrum of the temporal evolution of the instabil-
ity after saturation (see Fig. 10). Analysed is the averaged meridional
momentum of the simulation without viscosity and resolution 1024 ×
256. Colour coded is the logarithm of amplitude of the frequency.

Because of the radius dependence of the wavenumber a spa-
tial Fourier transform is not applicable. Additionally, as we show
below, the wavelength in radial direction is not constant in time
and phase jumps also can occur. However, to obtain more insight
into the dynamics of the system, we show in Fig. 9 the results of
a Fourier analysis in time of the vertical momentum of the simu-
lation with resolution of 1024×256 (Fig. 10, along the time axis).
To reduce the problems that phase jumps pose for the analysis
(see below), we step through the data with a Hanning window
over 1000 orbits and then average over those 5% of the result-
ing spectra that give the highest amplitude. We can see a domi-
nant frequency at 0.022ΩK at the inner region; this frequency is
halved at the outer region beginning at about 5 AU. These jumps
in the frequency domain coincide with the jumps in wavenum-
ber. When the wavenumber jumps up, the frequency falls down,
indicating an inverse relationship. On each branch the frequency
is constant, while the wavenumber varies as ∝r−2.5. We can un-
derstand this relationship starting from Eq. (12) from which one
obtains for stable inertial oscillations (see Eq. (36) in Nelson
et al. 2013)

σ2 ∼ −Ω2
k2

Z

k2
R

· (16)

The vertical scale is given by the local disc’s scale height H ∼ r
and hence kZ ∼ r−1. In the quasistationary phase, we observed
kR ∼ r−2.5 (see Fig. 8), leading to an oscillation frequency inde-
pendent of the radius, which we also observed (see Fig. 9).

To obtain further insight into the spatio-temporal behaviour
of the flow dynamics in Fig. 10 we show the vertically aver-
aged momentum in the vertical direction as a function of space
and time. In this global overview we observe waves that ap-
pear to travel slowly from larger to smaller radii. As noticed
already in the Fourier analysis in Fig. 9, there is a transition be-
tween 4–5 AU with a change in wavelength of the perturbations
and occasional phase jumps. Coupled to this is a change in the
typical inward speed of the waves. They move more slowly when
farther away from the star. As inferred roughly from Fig. 10, the
wave speed at r = 6 AU is about 0.5 AU per 250 orbits, while
at 4 AU it is about 1 AU. However, there is some dependence of
this speed on time and space.

Near the outer boundary we sometimes see a region with
standing waves, indicating that the radial domain should not be
too small. This region is mostly only a few wavelengths in size
(less then 1 AU), but can sometimes also reach a few AU into the

domain. Reflections with the outer boundary play a role here as
well, as can be seen in Fig. 10 for example at t ≈ 500 or 3600. We
note that in contrast to our treatment at the inner radial boundary,
we did not apply a damping region at the outer boundary.

To check if the viscosity is important for the wavelength, we
add a small viscosity of ν = 5 × 10−7. As expected, this leads
to a wavenumber that is independent of the resolution, as shown
in the bottom panel of Fig. 7. The wavelength is of the order of
0.2 AU at a radius of 4 AU after the instability is saturated.

With the wavelength fixed, the Reynolds stress also shows
no strong dependence on the resolution as can be seen in Fig. 11
top panel. The inner region is strongly suppressed because we
also increased the damping from 2 AU to 3 AU. With that we
conclude that a small viscosity is necessary in order to intro-
duce a physical lengthscale for the smallest unstable wavelength.
To further explore the role of viscosity we repeat the simu-
lation for different viscosities. This is done with a resolution
of 1440 × 360. The growth rate is then calculated by fitting a
linear function to the logarithm of the kinetic energy, which was
at each point averaged over 100 grid cells. The results in the
lower panel of Fig. 11 indicate that for the two lowest viscosities
(10−8 and 10−7) the stresses are given by the numerical viscos-
ity. For the intermediate case (10−7) the stresses are larger while
for very large values the effect of the increased damping near the
inner boundary influences the results.

5. Discs with radiation transport

The isothermal discs discussed above do not capture the full
physics, and most importantly the transport of energy is miss-
ing. In this section we include radiative transport and the heat-
ing/cooling interaction of the gas with the radiation. In the first
set of models we start from the isothermal models as described
above and switch on the radiation according to Eqs. (3) and (4);
in a second series of models (in Sect. 6) we include irradiation
from the central star.

For the simulations with radiative transport we use a resolu-
tion of 1024 × 256 and the same spatial extent and initial condi-
tions as in the isothermal case. In Fig. 12 we show the midplane
temperature averaged from 4–5 AU and the meridional kinetic
energy when radiation is included, for two different values of
the disc density ρ0. In both cases the kinetic energy initially has
larger amplitudes than in the previous isothermal simulations be-
cause now the disc is no longer in hydrostatic equilibrium ini-
tially, and small motions in the meridional plane set in (lower
panel in Fig. 12). For the same disc density as before, ρ0 = 10−10,
the disc cools off quickly as soon as the instability begins to be
active, at around t = 10. The reason lies in the efficient radiative
cooling in this case, in particular near the surface layers where
the optical depth is small and the instability most active. Hence,
any turbulent heating will be radiated away quickly.

We repeated the simulation with a higher density, ρ0 = 10−9

at 1 AU, to increase the optical thickness. Now the disc does
not cool efficiently enough, and the instability begins to set in
between t = 10 and t = 20 orbits, very similar to the isother-
mal models, but then radiative cooling eventually leads again to
a cooling of the disc and the instability dies out. From these re-
sults it is clear that the instability does not produce enough heat
and cannot survive without an external source of heat, for the
typical opacities and densities expected in protoplanetary discs.
This potential problem was pointed out already by Nelson et al.
(2013).
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Fig. 10. Large scale time development of the instability. Shown is the vertically averaged momentum in the meridional direction for the inviscid
isothermal simulation with a resolution of 1024 × 256 (red curve in top panel of Fig. 7).
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6. Irradiated disc

Here, we extend our models and include irradiation from the cen-
tral star as an external heat source. Of course there are also other
sources possible, for example, the inner region of the disc where
the MRI is still active could be important.

6.1. Method of irradiation

We use a simple model for the external heating and consider
vertical irradiation from above and below the disc, where the
energy flux, F

irr, depends on radius. This procedure avoids the

100 101 102 103 104
0

20

40

60

80

100

120

140

160

te
m

p
er

at
u

re
in

K

100 101 102 103 104

orbits at 1AU

10−10

10−9

10−8

10−7

10−6

10−5

k
in

en
er

g
y

ρ0 = 10−9

ρ0 = 10−10

Fig. 12. Discs with radiation transport for two different densities, ρ0.
Upper panel: the midplane temperature at 4−5 AU as a function of time.
Lower panel: kinetic energy in the meridional flow in the discs.

problem of finding a self-consistent solution for the flaring of
the disc, as done for an irradiated and internally heated disc by
Bitsch et al. (2013).

To obtain a first approximation for the flux in the meridional
direction we assume that the angle of incidence of the flux is
approximately R⊙/r, where R⊙ is the star’s radius. This applies
to an infinitely flat disc as well as to the upper and lower surfaces
our computational grid in spherical polar coordinates because all
three represent planes that cross the centre of the central star. We
obtain for the meridional component of the flux

F irr
θ = Fr

R⊙
R
, (17)

where Fr = F⊙(R⊙/r)2 is the radial flux from the star at a
distance r. Applying this impinging vertical irradiation to the
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Fig. 13. Growth rates for models with radiation transport and irradiation
(irr) and isothermal models (iso) that have the same mean temperature,
for comparison. For each radius the kinetic energy was smoothed over
a range of 10% of its radius before fitting it to an exponential growth.

disc leads to a radial temperature profile exponent in the disc
of q = −0.55, in good agreement with the models of Chiang
& Goldreich (1997). Our procedure does not allow for self-
shadowing effects (Bitsch et al. 2013) but should give a phys-
ically realistic estimate of the expected temperatures in the disc.

To simplify the calculations and obtain a first order estimate
of the effect, we use for the irradiation opacity the Rosseland
opacity of Bell & Lin (1994). Hence, in the simulations we use
the same opacity for the irradiation, Rosseland and Planck opac-
ity (Bitsch et al. 2013). Numerically, we perform a ray-tracing
method to calculate the energy deposited in each cell of the com-
putational grid (Kolb et al. 2013).

6.2. Growth rate

To measure the growth rates of the instability for discs with ra-
diation transport and irradiation we ran models with zero vis-
cosity and a higher resolution case with ν = 10−7. To be able to
compare the growth rates with the previous isothermal cases, we
performed additional isothermal simulations using the temper-
ature profile from the simulations with radiation transport and
irradiation.

The growth rates for the instability in combination with ra-
diation transport are difficult to capture because the simulation
cannot be started in hydrostatic equilibrium because the equilib-
rium vertical profile is unknown. We use strong damping for the
first ten orbits to remove the disturbance caused by the transition
to the new density and temperature profile.

The results are shown in Fig. 13. We note that this time the
growth rates should depend on radius because the growth de-
pends on H/R which is not constant in the radiative cases. From
Fig. 13 it is clear that the growth rates for the isothermal models
are now lower than in the cases presented above, first because
the temperature is lower and second because the radial profile is
flatter as before, and both are important for growth. For the irra-
diated models the growth is again lower, with 0.1−0.2 per local
orbit around half the value for the isothermal case. In Fig. 14 we
show the evolution of the kinetic energy for the irradiated and
corresponding isothermal model. For the inviscid case the final
saturation levels agree very well with each other, while for the
viscous disc with ν = 10−7 the instability is weaker in the inner
regions of the disc (see below).
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6.3. Quasistationary phase

In the top panel of Fig. 15 we show the vertical temperature dis-
tribution for the saturated state at different radii in the disc for
the model without viscosity at a resolution of 1024 × 256. The
other models look very similar. In the bulk part of the disc the
profile is quite flat with a slight drop towards the midplane. A
lower central temperature is to be expected for irradiated dics,
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detailed radiative transfer models indicate an even larger tem-
perature drop towards the midplane (Dullemond et al. 2002). In
the upper layers the temperature falls off because the disc is op-
tically thin and the energy can freely leave the system. This drop
of the temperatures towards the surface despite the irradiation
is a result of the identical irradiation and Rosseland opacity. If
more radiation is allowed to be absorbed in the disc by increasing
the irradiation opacity then one can obtain hotter surface layers.
For a ten times larger value we find a hot corona similar to Flock
et al. (2013) and a cooler midplane. First results seem to indicate
a reduction in the Reynolds stress in this case, probably caused
by the lower temperature in the bulk of the disc. At this point we
leave the details to subsequent studies. The dotted line in Fig. 15
shows the profile for a simulation where we only solve for the
radiation energy and disable the hydrodynamic solver. We can
infer from this that the flat profile is a result of the combination
of turbulent heating and vertical motion. A test simulation with a
passive tracer added in the midplane of the disc in the saturated
state showed rapid spreading over the whole vertical extent of
the disc.

The vertically integrated optical depth is shown in the lower
panel, starting from very small values at the disc surfaces it
reaches 30–100 at the different radii. The nearly constant ver-
tical temperature within the disc motivates us to use the equilib-
rium azimuthal velocity for the corresponding isothermal model
of the steady state to calculate the Reynolds stress. In Fig. 16 we
can see that it is still a good approximation. We note that this
time the comparison is done with a 2D-simulation. Additionally
shown is the Reynolds stress calculated with the Kepler velocity
instead of the equilibrium velocity.

While the growth rates are weaker than in the isothermal
case, the kinetic energy in the meridional plane for stable satu-
rated phase in Fig. 17 reaches the same level with radiation trans-
port. The values for α are again between 0.5×10−4 and 2×10−4,
depending on the wavelength and thus viscosity, but independent
of radiation transport.

The strength of the instability measured in terms of the value
of the viscosity under which it still survives is, of course, dif-
ferent. Here, in the irradiated case, even a low viscosity of 10−7

suppresses the instability in the inner regions of the disc. This
is not only a result of the radiation transport, but also of the
flat temperature profile. The details will depend on the source
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tial conditions.

Fig. 18. Radiative diffusion time per Orbit at 4 AU for a lengthscale
of 0.1 AU.

of the heating and the opacity, but nevertheless the stability will
be weaker than in the purely isothermal case.

6.4. Discussion

As we have shown in the previous sections for an irradiated
disc there is the possiblity of generating an effective turbulence
through the VSI. As pointed out in Nelson et al. (2013) the
instability can only be sustained if the diffusion (local relax-
ation) time is a fraction of the local orbital period. To investigate
how this condition is fulfilled in our simulations we analyse the
timescale for radiative diffusion for the equilibrium irradiated
disc models. In units of the local orbital period this is given by

tdiff = ∆x2 cPρ
2κR

4λacT 3
· Ω

2π
, (18)

where ∆x is the characteristic wavelength of the perturbation. In
our case the radial diffusion is relevant (Nelson et al. 2013) and
we choose here ∆x = 0.05r, which is a typical radial wavelength
at r = 3 AU. Using Eq. (18) and the results from the simula-
tion we calculate for the optical thin region a very small cooling
time per orbit of tdiff = 10−10 as expected. For the optically thick
region we obtain tdiff = 0.11 for our standard density, which is
indeed a small fraction of the orbital period as required for the
instability to operate, see Fig. 18. The cooling time in the verti-
cal direction is longer, about a few orbital periods as implied by
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Fig. 19. Velocity in the meridional direction, uθ, in units of local Kepler
velocity for an irradiated run without viscosity at resolution 1024× 256
(top) and with resolution 2048 × 512 (bottom). Compare with Fig. 2
which has a spatial resolution of 2048 × 512.

the vertical optical depth (see Fig. 15), but this will keep the disc
nearly isothermal, again as required for instability.

In Fig. 19 we illustrate that the instability still resembles
closely the locally isothermal case except that the small scale
perturbations are missing, even in the optically thin region,
where we have very short cooling times. For comparison, Nelson
et al. (2013) found that the instability was completely suppressed
with relaxation times of trelax = 0.1, which is the timescale for
the flow to relax to the initial isothermal profile. We take this as
an indication that physically, radiative diffusion plus irradiation
behaves in a different way from a simple model of temperature
relaxation as used in Nelson et al. (2013).

As seen in Fig. 15 an increase in the density leads to higher
optical depths and longer diffusion times, and consequently to a
weaker instability. While doubling the density in a simulation
with resolution 2048 × 512 has no clear influence on the ki-
netic energy and the cooling times in the optical thin regions,
the Reynolds stress was clearly weaker by a factor of around 1.5
in the simulation with doubled density (the model in the middle
of Fig. 18). In addition the wavelength of the perturbations is
decreased.

A further increase in the density leads also to a strong de-
crease in the kinetic energy, with again a smaller wavelength.
This raises the question whether the simulation with resolution
of 2048× 512 is sufficiently resolved. These results indicate that
in very massive discs with long diffusion times (vertical and ra-
dial) the disc will behave more adiabatically, and the instability
will be quenched. The minimum solar mass nebula at 5 AU cor-
responds approximately to our model with 2 ρ0 and the instabil-
ity might just be operative.

7. Summary and conclusions

We have studied the vertical shear instability as a source of tur-
bulence in protoplanetary discs. For that purpose we have per-
formed numerical simulations solving the equations of hydrody-
namics for a grid section in spherical polar coordinates. To study
the global behaviour of the instability we have used a large radial
extension of the grid ranging from 2 AU to 10 AU.

In a first set of simulations we show that the instability oc-
curs for locally isothermal discs where the radial temperature
gradient is a given function of radius. Our results on the growth
rates for the instability are in good agreement with the theoreti-
cal estimates by Urpin & Brandenburg (1998) and Urpin (2003),
and we find two basic growth regimes for the asymmetric and
antisymmetric modes as seen by Nelson et al. (2013). After 20
to 30 local orbits the instability saturates and is dominated by
the vertical motions, which cover the whole vertical extent of
the disc.

Interestingly, we find that the local radial wavelength of the
perturbations scales approximately with λ ∝ r2.5 in the saturated
state with a constant frequency. However, on a global scale sev-
eral jumps occur where the wavelengths are halved, such that the
global scaling follows λ̄ ∝ r with λ̄/r = 0.03. We suspect that
the instability has the tendency to generate global modes that
show the observed wavelength behaviour according to Eq. (16).
Because of the radial stratification of the disc, jumps have to oc-
cur at some locations.

The waves approximately keep their shape and travel slowly
inwards. The two- and three- dimensional simulations yield es-
sentially the same results concerning the growth rates and satura-
tion levels of the instability because of its axisymmetric property.
The motions give rise to a finite level of turbulence and we cal-
culate the associated efficiency, measured in terms of α. We first
show that, caused by the two-dimensionality, α can be measured
directly from the two-dimensional simulations using the proper
equilibrium state of the disc. We find that the angular momentum
associated with the turbulence is positive and reaches α-values of
a few 10−4. For the isothermal simulations we find that at higher
numerical resolution α becomes smaller, but viscous simulations
indicate a saturation at a level of about α = 10−4 even for very
small underlying viscosities that are equivalent to α < 10−6.

Adding radiative transport leads to a cooling from the disc
surfaces and the instability dies out subsequently. We then con-
structed models where the disc is irradiated from above and be-
low which leads to a nearly constant vertical temperature profile
within the disc. This again leads to a turbulent saturated state
with a similar transport efficiency to the purely isothermal simu-
lations, or possibly slightly higher (see Fig. 17).

In summary, our simulations indicate that the VSI can indeed
generate turbulence in discs albeit at a relatively low level of
about a few times 10−4. This implies that even in (magnetically)
dead zones the effective viscosity in discs will never fall below
this level. Our results indicate that in fully 3D simulations the
transport may be marginally larger, but further simulations will
have to be performed to clarify this point.
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