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Abstract. A model of vertical signal flow across a layered cortical structure is presented and analyzed. Neurons 
communicate through spikes, which evoke an excitatory or inhibitory postsynaptic potential (spike response model). 

The layers incorporate two anatomical features - dendritic and axonal arborization patterns and distance-dependent 

time delays. The vertical signal flow through the network is discussed for various stimulus conditions using two 
different, but typical, axonal arborization patterns. We find stationary as well as oscillatory response, but the 
oscillatory response may be restricted to a single layer. Confronted with conflicting stimuli the network separates 
the patterns through phase-shifted oscillations. We also discuss two hypothetical animals, to be called “cat” and 

“mouse.” These have different axonal arborizations, which give rise to a different oscillatory response (if any) of 
the various layers. 
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1. Introduction 

A section of the mammalian cortex reveals a clear lam- 
inar structure in the vertical direction, whereas the con- 

nectivity is isotropic in the tangential plane (see, e.g., 
Kandel et al., 1991). The layered structure is reflected 

in the vertical range of the dendritic and axonal ar- 

borization of pyramidal cells. That is, the afferent and 
efferent connectivity is layer-dependent (Braitenberg 

and Schiiz, 1991; Felleman and van Essen, 1991). As- 

cending projections tend to terminate in layer IV (gran- 

ular layer), whereas feedback connections from higher 

areas usually project to infragranular and supragran- 
ular layers, avoiding layer IV (Nakajima et al., 1988; 

Cauller and Connors, 1994). These findings suggest a 

complicated pattern of vertical signal flow. 

In this paper, the question of signal flow in the cortex 

is related to the problem of existence (or nonexistence) 

of collective 30-50Hz oscillations, which have been 
observed in cat and monkey visual cortex (E&horn et 
al., 1988; Gray and Singer, 1989; Gray et al., 1989; 
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Kreiter and Singer, 1992). Coherent oscillations with 
zero phase-lag have been detected within one column 

between different layers (E&horn et al., 1988), cells 
exhibiting oscillatory responses being located primar- 

ily in supra- and infragranular layers, rarely in layer IV 

(Gray et al., 1990). This synchronized activity could 

be a mechanism for feature linking, acting as a tempo- 

ral label and thus solving the problem of global object 

perception (von der Malsburg, 1981; von der Malsburg 

and Schneider, 1986; E&horn et al., 1988; for a critical 

discussion see Ghose and Freeman, 1992). 

Here we develop a model of the layered cortical 

structure in order to study the vertical signal flow in a 

small slab of cortex (e.g., a hypercolumn of 1 mm di- 

ameter). We focus on the question whether collective 

oscillations (if they occur at all) are restricted to a single 

layer or whether they are spread out vertically over the 

full hypercolumn. The model described here is an ex- 

tension of the spike response model, SRM (Gerstner et 

al., 1993ab; Ritz et al., 1994), which includes many bi- 

ological details such as time delays and realistic EPSP 

and IPSP shapes. 
Our model of a layered structure is similar to the 

models of Krone et al., (1986) Thomas et al., (1991) 
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and Patton et al., (1992). In contrast to these models, 

which are based on a coding by the mean firing rate, 
the SRM describes single spikes of single neurons. In 

addition, our model shows some associative structure 

similar to the Hopfield model (Hopfield, 1982). 

2. Definition of the Model 

The underlying network model is the spike response 

model (SRM), which has been introduced before (Ger- 

stner et al., 1993ab; Ritz et al., 1994). After a brief 
summary of the main features, the model is extended 

so as to deal with different cortical layers. 

2.1. Spike Response Model 

We consider a network of N fully connected model 

neurons that is able to store q patterns (1 5 p 5 q) us- 
ing a Hebbian learning rule. After learning, the synap- 
tic efficacies Jij of signal transmission from neuron j 

to neuron i are (van Hemmen et al., 1990) 

(1) 

where the {<r = ltl jl < i 5 N} are random pat- 
terns and a denotes the mean activitv of the natterns 

u E (c’) = & cE=, c,“=, e’ . Each of the’se Heb- 
bian neurons ‘Is also connected to an inhibitory partner 

neuron. By this extreme form of locality we mimic 

the local inhibition caused by, for example, spiny stel- 

late cells as observed in the mammalian cortex. Cor- 
respondingly, the Hebbian neurons represent the cor- 
tical pyramidal cells, which exhibit long-range inter- 

action. Spikes are described by a formal variable 

Z(t) E {0,1) ( w ere S,(t) = 1 denotes a single h 
spike) and take a typical spike width of 1 ms as the 
basic time step of our model. We use parallel (that is, 

simultaneous) updating, the dynamics of neuron i be- 
ing defined by the probability of firing during one time 

step, given a membrane potential hi, 

Pr[Si(t + 1) = +ljhi(t)] = 

i [l + tanh(O{b[S(t)] - 6})] , 
(2) 

where we have introduced a noise-parameter p and a 

threshold 29. 
In the SRM, the membrane potential hi(t) consists 

of three components 

hi(t) = hpY”(t) + h:‘(t) + hyt(t) , (3) 

where h”xt describes an external stimulus, hiY” is the 

input of ill other neurons, and hyf models the absolute 

refractory period of duration r,,f. If we take 

(4) 

and R >> 1, then firing is prevented during a time r,.,f 

after emission of a spike at t = tF. Here we choose 

‘T,,r = 1 ms. The synaptic component hTY” is the sum 
of the inputs from all other neurons, both Hebbian and 

inhibitory, 

hsYn = @ebb + ,t”” 
2 (5) 

If a Hebbian neuron fires (Si = +l), the inhibitory 
partner neuron is also excited. After a delay Aph, the 

inhibition by the partner neuron is fed back to the Heb- 

bian neuron. Using a memory kernel T(T), we have 

hFh(t) = c v(~)$(t - T - A:“) (6) 
r=O 

The IPSP ~(7) starts with a steep increase to a satura- 

tion value qmax and decays exponentially with a time 

constant 7-n = 6 ms afterwards - that is, 

ri(~) = -vmaxexP(-~/~17) . (7) 

The upper bound Y-,~~~ in (6) is a soj? maximum and 

adjusted in such a way that summation is stopped 

after the first nonvanishing term, a simple means to 
include saturation effects. The delay Aph is a ran- 

dom variable sampled with uniform distribution from 
Ail+ < Ai,nh < Ainh 

nun - z - tnax Similarly, connections be- 
tween Hebbian neurons have a transmission delay Ai, 

which is taken to be a stochastic variable in a range 

Amin I At < Amax. Spikes induce a postsynaptic 

potential 

hhebb 
2 = 5 Jij 9 E(T)S~(~ - 7 - A,) (8) 

j=l T=o 
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with a time course e(t), here taken to be an alpha func- 

tion 

c(t) = c$ exp(-t) (91 

normalized such that C, e(t) = 1, and the amplitude 

given by the synaptic efficacies Jij. 

Note that all important features of neuronal signal 

transmission are summarized in the delays and the time 

course of the response functions ~(7) and E(T). 

As we have shown previously (Gerstner et al., 

1993a), three different states can evolve, depending on 
the timing of the EPSP E(T) in relation to the IPSP 

~(7): weakly locked oscillatory, stationary, or per- 

fectly locked oscillatory activity. 

2.2. Layered Cortical Structure 

In the model presented here, we assume three different 
layers, each containing N pairs of neurons as described 

in the previous subsection. The upper layer (layer 1) 
models the cortical supragranular layers, whereas the 

lower layer (layer 3) represents the infragranular lay- 
ers. Layer 2 corresponds to the cortical input layer IV. 
The reduction of six cortical layers to three model lay- 

ers is suggested by common interareal connections. A 
uniform distribution of 3N neurons to three layers is 
not far from reality, as one can conclude from exper- 

imental data on cell densities and thickness of layers 
(Creutzfeldt, 1983). 

We assume full connectivity of the Hebbian neurons 

in each layer, leading to an isotropic tangential struc- 
ture, consistent with the known homogeneous wiring 

structure in the tangential plane of a small cortical slab. 

The vertical structure of, for example, a hypercolumn 

is introduced into the SRM by two new features: 

l a layer-dependent vertical range of axonal and den- 
dritic arborization and 

l distance-dependent dendritic and axonal delays in- 
stead of a stochastic distribution; the latter is quite 

popular in theoretical work. 

Our main aim here is to study the effect of these 
features on the collective activity of the neurons in dif- 
ferent layers. Also, the question appears which of the 

two approaches is more effective-the anatomical spec- 

ification of the layers or the temporal delays between 
them. 

First, let us consider the dendritic and axonal ar- 

borization, which is layer-dependent (Lund et al., 1979; 

Creutzfeldt, 1983; Gilbert and Wiesel, 1983; Valverde, 

1984; Braitenberg, 1986; Krone et al., 1986; Burkhal- 

ter, 1989; Douglas and Martin, 1991; Anderson et al., 

1993; Gilbert, 1993). Specifically, we assume the fol- 

lowing dendritic arborization (see Fig. 1A). For a neu- 

ron in layer 1 the dendrites ramify in layer I and in all 

layers above layer 1, in agreement with typical cortical 

dendritic arborization as observed in different mam- 

mals. 
Regarding the axonal arborization, experimental re- 

sults vary between different mammals. We will there- 

fore take the axonal branching pattern as variable and 
study its effects on the collective activity of neurons in 

different layers. 
Given the axonal and dendritic branching pattern, 

we have to define a connection scheme between neu- 
rons located in different layers. Since cortical axons 

and dendrites are found to be densely covered with 

synapses (Braitenberg, 1986), one can assume that 
there is a synaptic connection whenever a dendrite of 
one neuron touches an axon of another neuron. We 

go even further and make the following assumption. 
Given neuron i in layer 1 (1 5 1 5 3) and neuron j in 
layer Ic (1 5 k 5 3), there is a connection from neuron 

j to neuron i in each layer which is passed or reached 
by both axons of neurons in layer k and dendrites of 
neurons in layer 1 (see Fig. 1B). 

In passing we note that it depends on the chosen 
axonal branching pattern whether the 3N neurons are 
fully connected or not, if the dendritic arborization is 

given as described above. 

We now turn to the temporal aspects of a layered 
cortical structure. In our model, we have chosen a time 

delay of 1 ms per model layer for both dendritic and 

axonal signal transmission, which seems to be a real- 

istic assumption (Patton et al., 1992). This leads to a 
delay 

Al(rn, k) = Ik - ml + Im - 11 ; 2 F<y (10) 
- - 

for signal transmission from neurons in layer k to those 

in layer 1 with a synaptic connection in layer m (see 
Fig. 1B). The dendritic arborization has been taken into 
account in the upper bound 1 for the values of m (that 

is, for the location of synaptic connections). We then 

haveAl(m, k) E (0:. ,l+l},andAl(m, k) < 4ms. 
This means that if axonal arborization leads to a fully 
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Fig. 1. Structure offhe layered nemork: Three layers representing the supragranular (I-III), input (IV), and infragranular (V, VI) layers of the 
cortex are interconnected according to the above scheme. A The dendrites of a neuron in layer 1 (1 = 1,2,3 from left to right) ramify in layer 
1 and in all layers above layer 1. B Different pathways between two neurons may exist and result in different delays (as illustrated for neuron 
j of layer 2 with neuron i in layer 3). One pathway (1) via a synapse in layer 1 leads according to (10) to a delay Aif = 3 ms, while for the 
pathways (2) and (3) a delay A:: = Aif = 1 ms arises. C, D Axonal branching structure for AC and Am, respectively. 

connected network, we end up in the regime of weakly 

locked oscillatory activity, because the delay times are 

comparatively short (Gerstner et al., 1993a). 

The synaptic efficacies determine the amplitude of 

the contribution of all other Hebbian neurons to the 
postsynaptic potential of neuron i in layer 1 

The layered network learns a set of q random pat- 
terns comprising all three layers. Specifically, a pat- 

tern p is defined as a set of independent, identically 
distributed, random variables $, with 1 < p 5 q, 

1 5 1 5 3, and 1 5 i 5 N, which assume the val- 
ues c: = il with probability (1 i a)/2, where a is, 
as before, the mean activity of the learned patterns. 

Learning these patterns yields the synaptic efficacies 

(van Hemmen et al., 1990) 

Jli,kj = 

independent of the location m of the synapse. Com- 
pared to (1) we have slightly changed the notation and 
the normalization. 

k=l m=l j=l 

5 +-)‘%j(t - 7 - ark), 

(12) 

r=O 

with the response function e(r) as in (9). The ma- 

trix Akrn represents the axonal branching pattern (see 
Fig. lC, D for two examples). That is, we have 

Akrn = 0 if neurons in layer Ic do not send axonal col- 
laterals into layer m, and Akrn = 1 if they do. The den- 
dritic arborization has been taken into account through 

the upper bound 1 for the summation over the synap- 

tic locations m, in agreement with the assumption that 
dendritic trees of neurons in layer 1 extend to all layers 
above layer 1, including layer 1 itself. 

As a measure for the correlation between the state 
of the neurons in one layer and the corresponding part 
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of the learned pattern p we introduce the overlaps 

(13) 

The overlap takes a maximum value, if all neurons 

of layer k that belong to the foreground of pattern ~1 

(<& = 1) fire synchronously during one time step 

while all the background neurons (<,& = -1) stay 
quiescent. It vanishes, if firing of foreground as well 

as background neurons occurs stochastically and N is 

large (N + 00). 
With the above definitions (10) through (12), the 

synaptic contribution to the postsynaptic potential of 

neuron i in layer 1 is 

7=0 

Tnmx 

+ c q(7&(t - 7 - AiFh) . (14) 
7=0 

Simulations of the extended SRM, eqs. (2) through 

(13), are discussed now. 

3. Simulation Results 

In this section, we present the results of simulations 

with a network of N = 2,000 neuron pairs in each of 

the three model layers, which was trained on 4 = 5 pat- 
terns of low activity (a = -0.8). In passing we note 

that a higher loading would not change the network 

performance as long as q is of the order of N but the 
computational effort would increase substantially, so 

we refrained from doing so. The inhibitory delay times 

have been chosen from the interval [2 ms, 5 ms] and the 

time constant of the response function (9) is taken to 

be rE = 2 ms. During 1,000 time-steps the network 

is updated simultaneously according to (2) with finite 

noise (p = 15) and a threshold r9 = 0.14. We start with 

a randomly chosen state of activity a = -0.8. After 
200ms a week external signal hTct = r(<E + 1)/2, 

with y = 0.22, is switched on in one or more layers 
1. This external signal is switched off after another 

600ms. First, we stimulate only layer 1 = 2, which 

corresponds to the input-layer IV of the cortex. In a 

second step, we also study the system under an input 

in layers 1 and 3, which represent the supra- and in- 
fragranular layers where feedback signals from higher 

areas arrive. 

3.1. Feedforward Input 

In this subsection, we study the network activity in 

all layers for different axonal branching patterns Akrn 
in the case of input into layer 1 = 2 only, that is 

h rc” = 6rzy(cE + 1)/2. Biologically, this can be in- 
terpreted as a stimulation of input-layer IV, such as in 

the primary visual cortex by signals coming from the 

thalamus. 
It can be extracted from neuroanatomical data about 

the visual cortex of cats (Lund et al., 1979; Gilbert 

and Wiesel, 1983; Douglas and Martin, 1991; Gilbert, 
1993), monkeys (Tigges and Tigges, 1982; Valverde, 

1984; Anderson et al., 1993), and men (Creutzfeldt, 
1983) that pyramidal cells in supragranular layers send 
their axons vertically downwards and leave the cortex 

to terminate in other cortical areas or in subcortical 
structures. On their way through the cortex they send 

out collaterals in regular intervals, but generally avoid- 

ing layer IV. The axons of pyramidal cells located in 
other layers also leave the cortex having crossed the 

layers below them, where they send out collaterals. In 

addition, there are collaterals which reach the upper 
layers (see Fig. 1C). 

These neuroanatomical observations can be incor- 
porated schematically in our model using the following 

matrix to describe the axonal branching pattern 

E AC (15) 

Here, the superscript c should be considered as a label 

for a branching pattern that is inspired by some anatom- 

ical findings in the cat, but we do not claim to model the 

cortex of a cat in any detail, especially since there may 

be no connections from layer IV to layer V in real cats 

(Gilbert and Wiesel, 1983; Gilbert, 1993). In short, c 
refers to a hypothetical animal. With this form of the 
matrix Akmr all neurons of our model network send 

their axons to all layers except neurons in layer k = 1, 

which do not send axons into layer m = 2 (A12 = 0). 

Nevertheless, the network as a whole is fully connected, 
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Table I. Delays A,(m, Ic) according to (10) for signal transmis- 
sion from neurons in layer k to neurons in layer 1 through synapses 

in layer m, for AC as the axonal branching pattern. The dendritic 
arborization is restricted to m < I. 

A, (m, k) for AC 

1 1 2 3 

k m 1 1 2 1 2 3 

1 0 1 - 2 2 

2 1 2 0 3 1 1 

3 2 3 1 4 2 0 

as one can see in Table 1, where we listed those time 

delays that arise with (10) and (15), taking into ac- 

count the given dendritic branching. Each delay time 

Al (m, Ic) represents existing connections from neurons 

in layer k to neurons in layer 1 over synapses in layer 

m. 

The result of the simulation for A” as defined in 

(15) is shown in Fig. 2. Note the collective oscillation 

(25-30 Hz) in layers 1 and 3, whereas the overlap with 

the stimulated pattern is nearly stationary in input layer 

2. This result is in accordance with some experimental 

results on collective oscillations in visual cortex from 

cats (Eckhorn et al., 1988; Gray et al., 1990), where al- 

most no oscillations could be found in the input layer. 

Since the depicted overlap is obtained during a single 

run, this ensemble averaged quantity clearly reflects 

every synchronized activity as soon as a substantial 

amount of neurons takes part in it. So, by just look- 

ing at the plots one gets a hint from the time structure 

whether collective activity is present and to what ex- 

tend. This is already enough for the questions we are 

interested in here. Concerning the drawbacks of such 

a straightforward approach and how to reveal arbitrary 

phase relations the reader is referred to Gerstner et al., 

(1993b). 

The axonal branching pattern of mice and rats 

(Krone et al., 1986) seems to be different from the 

one described for, for example, cats and monkeys in 

that pyramidal cells only send axonal collaterals into 

their own layer and the layers below. Cells in layer 

IV, however, have additional recurrent axons that reach 

the upper layers (see Fig. lD), whereas rats show an 

even higher extent of connectivity (Burkhalter, 1989). 

These principles of axonal branching can be modeled 

by means of the following branching matrix: 
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Fig. 2. Simulation resulrsfor AC: The overlaps rnk with astimulated 
pattern p are shown as a function of time for the three different layers 
k, 1 5 k 5 3, together with a spike raster of seven representative 
neurons of pattern p in each layer. Finally, the total overlap with 
pattern p, mP, is plotted. The pattern is presented from t = 200 ms 
to 800 ms but only to neurons of layer 2, the input layer, as indicated 
by the horizontal bar underneath the overlap. Note the collective 
oscillation (25-30Hz) in layers 1 and 3, which receive no stimulus, 
while in the input layer 2 the overlap is almost stationary. 

Table 2. Delays &(m, k) according to (IO) for signal transmis- 
sion from neurons in layer k to neurons in layer 1 through synapses 
in layer m, using A”’ as axonal branching matrix and the given 
dendritic arborization m < 1. 

A,(m, k) for Am 

1 1 2 3 

k m 1 1 2 1 2 3 

1 0 1 1 2 2 2 

2 1 2 0 3 1 1 

3 0 

EArn. (16) 

With this matrix, the network is no longer fully con- 

nected because there is no connection from neurons in 
layer k = 3 to neurons in layers 1 = 1 and 1 = 2 
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Fig. 3. Simularion resulrsfor Am: The plot is organized as before 
(see Fig. 2). Due to the change in the arborization pattern, a stimu- 
lation of the input layer 2 now induces a collective oscillation in all 
three layers but with a higher frequency (40 Hz) as compared to the 
scenario A”. In layer 1, however, the activity is only slightly above 
the spontaneous activity, as can clearly be seen in the spike raster, 
because there is only one pathway feeding input into this layer (see 
Table 2). 

(AsI = A32 = 0 and m < 2). Thus the network has 

less intracolumnar feedback than with (15). The su- 

perscript m now refers to an other hypothetical animal 

(for convenience the reader may think of a mouse but 

we concentrate here only on a different connectivity 

scheme). 

The simulation of the network dynamics using (16) 

shows an collective oscillatory activity (40 Hz) in lay- 

ers 2 and 3 (see Fig. 3). In layer 1, however, the ampli- 

tude of the response to the stimulus in layer 2 exceeds 

only slightly the spontaneous activity because neurons 

in layer 1 = 1 receive signals only from neurons in 

their own layer and from layer k = 2, with only one 

synaptic connection per neuron. On the other hand, 

the amplitude of the oscillation in layer 3 is larger than 

that in layer 2, although only layer 2 receives an in- 

put signal. The reason for this effect is the dendritic 

branching structure, which leads to seven synaptic con- 

nections per neuron for layer 1 = 3 in contrast to four 

connections per neuron for layer 1 = 2 (see Table 2). 

The dynamical evolution in layer 2 is almost inde- 

pendent of the other layers because it receives signals 

from only layers 1 and 2 and the activity.of layer 1 can 

be neglected. The appearance of a collective oscillation 

of 40Hz in layers 2 and 3 is easy to understand. Be- 

cause of the short delay times, the excitation of a neuron 

in layer 2 due to the spikes of other neurons in the same 

layer arrives when the neuron is still shunted by local 

inhibition. After the IPSP has declined, the external in- 

put is again able to fire some neurons, which due to the 

short delay times can drag some other neurons along. 
This also explains why the oscillation stops when the 

stimulus is switched off (see scenario I in Gerstner et 

al., 1993a). Layer 3 receives a strong input from layer 
2 and thus displays the same dynamics as layer 2. Note 

that there is a small phase lag in the response of layer 

3 relative to the input layer. 

But why does the axonal branching matrix A” lead to 
oscillations in layers 1 and 3, and why is the frequency 
smaller than for A”? To answer these questions, we 

study the effect of additional feedback via the parame- 
ters A31 and A32. 

If we take 

=A tram 
(17) 

as an axonal branching pattern instead of (16) we have 

an additional feedback. In contrast to (16) there now 
is a connection from layer I = 3 to layer I = 2. 

We have simulated a network with the connectivity 
matrix Atrans, driven by an external input into layer 2. 

In this layer we find a stationary overlap with the stimu- 
lus pattern, while layer 3 exhibits collective oscillatory 

activity, but with a longer oscillation period as com- 
pared to the scenarios before (see Fig. 4). The break- 

down of the collective oscillation in layer 2 found for 

A” can be explained by the phase lag in the response 

in layer 3, which is now fed back into layer 2. The 

oscillation period in layer 3 is longer than for A” be- 

cause this layer receives a stationary input from layer 2 

(activity in layer 1 being negligible) with an amplitude 
less than y = 0.22 (for rnb < 0.22, see Fig.4) which 

means that it takes longer for the IPSP to decline far 
enough so as to allow the input to layer 3 to be strong 
enough to stimulate the neurons again. 

If we turn on the feedback parameter AS1 (that is 
choosing the matrix Akm = 1 for all Ic, m as axonal 

branching matrix Afull), we arrive at a fully connected 
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Fig. 4. Simulation resultsfor Atrans: The only structural difference 
as compared to the scenario Am before (Fig. 3) is that we now allow 
feedback from layer 3 to the input layer 2 (A32 = l), resulting in 
two changes in the network’s response. First, the oscillation in layer 
2 is suppressed. Second, the frequency is lowered to 33 Hz. We refer 

to Section 3.1 for an explanation of these effects. 

network. The only difference compared to A” is that the 

connection from layer 1 to layer 2 is stronger. So it is 

not surprising that simulation results are quite similar, 

except that layer 2 exhibits a slightly oscillatory over- 

lap with the stimulated pattern because of the stronger 
oscillatory input from layer 1 (see Fig. 5). 

3.2. Feedback from Higher Cortical Areas 

In this subsection we present simulations with an ex- 

ternal input into the model layers 1 and 3, which cor- 

respond to the supra- and infragranular layers, which 

receive feedback signals from higher cortical areas 

(anatomical data showing this may be found in Cauller 

and Connors, 1994, for rats and in Nakajima et al., 

1988, for cats). 

For A” the simulation yields a collective oscillatory 

activity in layer 2 and practically stationary overlap 

with the stimulated pattern in input layers 1 and 3, 
whereas for A” we have a stationary overlap with the 

stimulated pattern in layer 1 and synchronous oscilla- 

Fig. 5. Simulation results for A fUtt: Now, all neurons are sending 

axons to all layers (Akm = 1 for all k and m). As a result, the 
response to a stimulus is oscillatory in the layers 1 and 3 with a fre- 
quency of 28 Hz while it is almost stationary in the input layer where 
the stimulus is fed into (see Fig. 2, where we had Al2 = 0). 

tory activity in layer 3, the response of layer 2 being 

negligible (see Fig. 6). 
More interesting in this context is the following 

question: What happens if the feedback from higher 
cortical areas corresponds to a different pattern than the 

one evoked by the stimulus? This can be interpreted as 

a conflict between the internal expectation and the out- 
side world. In our model, this can be described by an 

stimulus hext , which is different in layer 2 (external in- 
put) than in layers 1 and 3 (internal feedback stimulus). 

Thus we have 

h 7;” = y-y& + 1)/2 

h”,Tt = yeXt([& + 1)/2 with p # Y 

h g” = y-y<& + 1)/2. 

(18) 

The results of a simulation with this stimulus (yext = 

0.22, yfb = 0.18) are shown in Fig. 7 for the axonal 
branching structure A”. In layer 1, we find an oscilla- 

tory response (30 Hz) of the overlap, which is mainly 
correlated with pattern V, the pattern supported by the 
cortical feedback. Similarly in layer 2 the overlap with 
pattern p, the external stimulus, dominates. In layer 
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Fig. 6. Feedbackfrom higher corrical areas: Simulation results for the stimulation of pattern p in layers 1 and 3 (y = 0.22) as indicated by the 
horizontal lines for the axonal branching patterns Am (left) and AC (right). We plot the overlaps rnt with the stimulus pattern pas a function of 
time for all three layers separately. While for Am the network tends to an oscillatory response in the stimulated layers (1 and 3), this is different 
for AC. Here a pronounced oscillation is found in layer 2. 

3, however, we get a different response. Both patterns 

are activated in a collective oscillation (30 Hz) of sim- 

ilar strength but phase-shifted (see Fig.7). Thus, in 
layer 3 both patterns are present. They do not appear, 
however, in a mixture state but are separated through a 

phase shift of the respective activity. 

On the other hand, with the axonal branching pat- 
tern A” we find a separated activation of both patterns 

throughout the whole network (see Fig. 8). This is not 

surprising because due to the higher connectivity for 

A” as compared to A” the external signal as well as 

the feedback input is mediated strongly to all neurons 

- as we have seen in Section 3.1 for the case of a single 
input into layer 2. 

3.3. Simulations Without Distance-Dependent De- 

lays 

Until now we have modeled a layered cortical struc- 
ture based on two features, a layer-dependent vertical 

range of dendritic and axonal arborization on the one 
hand and distance-dependent time delays on the other 

hand. In order to find out if the anatomical laminar 

structure as described by layer-dependent arborization 

alone leads to the described layer-dependent collec- 

tive activity or whether the temporal aspect of lay- 

ered structure is essential, the same simulations as de- 

scribed in the above subsections were performed with 

delay-times &i chosen stochastically out of an inter- 

val [O; Am”“]. For A Inax < 3 the results are the same 

as with distance-dependent delays according to (10). 

This is in agreement with results obtained previously 

from homogeneous networks (Gerstner et al., 1993a; 

Ritz et al., 1994). There, it has been shown that, as 

long as the excitatory transmission delays are shorter 

than the inhibitory ones, the network is in the weak 

locking regime, i.e., stimulus induced collective oscil- 

lations are possible. For a more detailed discussion of 

results regarding the existence and delay dependence 

of collective oscillations in the SRM, see Gerstner et 

al. (1993a) and Ritz et al. (1994). This suggests 

that the specific distribution of time delays that results 

from the anatomical structure of dendritic and axonal 

arborization is not essential in our model here. What is 

important is the connectivity resulting from the vertical 

arborization. 
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Fig. 7. Conflicring stimulifor Am: Simulation results for the stimu- 
lation of pattern p in layer 2 (yext = 0.22; solid lines) and pattern v 
in layers 1 and 3 (rfb = 0.18; dotted lines) for the axonal branching 
pattern A”. In layer I we have a strong overlap with pattern V, while 
in layer 2 pattern p dominates. In layer 3, however, both patterns 
are activated but phase-shifted with respect to each other. This is 
interpreted as a separation of the two patterns. 

4. Discussion 

Taking advantage of the spike response model, SRM 

(Gerstner et al., 1993ab; Ritz et al., 1994) we have in- 
troduced a layered structure that includes two major 

elements of cortical organization -typical arborization 
patterns for dendrites and axons in the vertical direction 
and, second, realistic distance-dependent dendritic and 

axonal delays. Local inhibition and synaptic responses 

are taken into account by response kernels for the EPSP 
and IPSP as in the SRM. 

The general branching pattern is based on the idea 

that neurons from layer 1 (1 5 1 5 3) get input from all 
layers above I (including 1 itself) according to available 

anatomical data (Lund et al., 1979; Creutzfeldt, 1983; 
Gilbert and Wiesel, 1983; Valverde, 1984; Braiten- 

berg, 1986; Krone et al., 1986; Burkhalter, 1989; Dou- 

glas and Martin, 1991; Anderson et al., 1993; Gilbert, 
1993). Specifically, we have considered two different, 
anatomically inspired, axonal branching patterns, AC 

and A”, under various stimulus conditions. Stimula- 
tion of model layer 2 (corresponding to layer IV of the 

cortex) describes external say, sensory, input whereas 

layers 1 and 3 are (if identified with the supra- and infra- 

granular layers of the cortex) the terminals for feedback 

signals from higher cortical areas. 

Our results can be summarized as follows. Stim- 

ulation of layers 1 and 3 has a different effect on the 

network than stimulation of layer 2; This result is in- 

dependent of the branching pattern. The characteris- 

tic response for A” is an oscillation in the frequency 

range of 40 to 45 Hz in layer 3 and in the layer that is 

directly stimulated by external or cortical input. For 

A”, however, we typically get no oscillation in the di- 

rectly stimulated layers, but only in the others. The 

oscillation period ranges from 30 to 35 Hz. 

The layered network is also capable of pattern seg- 

mentation when confronted with conflicting stimuli 

from the external and feedback inputs (as in Wang et 

al., 1990, and Ritz et al., 1994, for a superposition of 

several stimuli in the external input). Both patterns are 

activated coherently but phase-shifted, in the case of A” 

throughout the whole network, for A” only in layer 

3. Thus the systems response to a conflict between 

reality and expectation consists in an ambivalent reac- 

tion: both patterns remain active but separated. This is 

true for almost uncorrelated patterns as is the case here 

where we have random patterns in the low loading, low 

activity limit. We did not study the case of correlated 

patterns since then the learning rule (1) breaks down, 

but it would be interesting to look at different models, 

where correlated patterns could be handled - such as 

using the unlearning algorithm (Hopfield et al., 1983; 

van Hemmen et al., 1990; Wimbauer et al., 1994). 

The observed layered response seems to be due 

mainly to the vertical arborization structure and not 

primarily to the distance-dependent delays, as can be 

concluded from the different responses for A” and A” 

to stimulation of layer 2 only. Additional feedback 

from layer 3 to layers 2 and 1 removed the differences 

as shown in the branching patterns Atrans and Afull. 

A characteristic feature of the present three-layer 

network is increasing activation from layer 1 to layer 

3, due to the dendritic arborization. This is based on 

the idea that dendrites of neurons in the lower layers 

are longer than those of neurons on top of the cortex 

and seems to be a realistic assumption regarding the 

mean cortical anatomy (Krone et al., 1986; von See- 
len et a1.,1987). As a consequence of this feature the 

activity of the lowest layer 3 is strong enough to excite 

the upper layer 1 even if there is only a weak signal 
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Finally, the question arises: what are the docu- 

mented effects good for? As long as there are only 

speculative assumptions about the functional role of 

collective oscillations (if there is any), this answer 

can’t be given here relying only on a model study. 
Of course, it is tempting to speculate that these phe- 

nomena are reflecting parts of the neuronal correlate of 

visual awareness, attention, or other higher brain func- 
tions (Koch and Crick, 1994; Singer, 1994; Crick and 

Koch, 1995). In that case, our findings would suggest 

that there are fundamental differences in higher cortical 
functions between different species due to the wiring 

of their cortical tissue even at such an early stage as the 
primary visual cortex. Whether one of these interpreta- 

tions could result in a testable prediction regarding the 

performance of these two species in a psychophysical 
paradigm remains an outstanding question in the con- 

text of one of the greatest mysteries science can ever 
deal with. 
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Fig. 8. ConfIicting stimulifor AC; Taking the same stimulus as be- 
fore (Fig. 7) but the branching structure AC, we get pattern segmen- 
tation throughout the whole network (stimulus for layer 2: pattern 

Pa Y ext = 0.22, solid lines; stimulus for layers 1 and 3: pattern 

“3 Y fb = 0.18, dashed lines). 

to layer 2 provided there are enough connections from 

layer 3 to layer 1 as with the branching pattern AC. The 

direct connections from layer 2 to layer I do not suffice 

as was shown for the branching pattern A” 

Regarding our connectivity scheme we follow the 

model of Krone et al., (1986), but we reduce it to three 

layers and neglect all lateral structure. Thus, our net- 

work is structurally more transparent, but - we hope - 

still capable of producing biologically relevant results. 

The major difference to Krone et al., (1986) is in the 

dynamics. While Krone et al., (1986) use a linear dy- 

namics for the mean firing rate we have implemented 

a nonlinear, noisy threshold dynamics producing sin- 

gle spikes together with realistic delays and synaptic 

response kernels. In contrast to Thomas et al., (1991) 

and Patton et al., (1992), who use an extremely detailed 

model of the structural as well as the dynamical proper- 

ties of single neurons we have concentrated on the study 

of structural principles manifested in the organization 

of the cortex. A side advantage is (though not shown 

here) that the dynamics can be treated analytically as 

well. 

This work has been supported by the Deutsche 

Forschungsgemeinschaft (grant number: He 1729/2-l 
and 2). UF gratefully acknowledges support from the 
Studienstiftung des Deutschen Volkes. 

References 

Anderson JC, Martin KAC, and Whitteridge D (1993) Form, func- 
tion, and intracortical projections of neurons in the striate cortex 
of the monkey Macacus nemestrinus. Cerebral Correx 3:412420. 

Braitenberg V (1986) Two views of the cerebral cortex. In: Palm Cl, 

and Aertsen A, eds. Brain Theoty. Springer, Berlin, Heidelberg, 
New York. pp. 81-96. 

Braitenberg V, and Schiiz A (1991) Anaromy of the cortex. Springer, 

Berlin, Heidelberg, New York. ch. 28. 
Burkhalter A (1989) Intrinsic connections of rat primary visual cor- 

tex: Laminar organization of axonal projections. J. Camp. Neural. 

279:171-186. 
Cauller LJ, and Connors BW (1994) Synaptic physiology of hori- 

zontal afferents to layer I in slices of rat SI neocortex. J. Neurosci. 
14:751-762. 

Creutzfeldt OD (1983) Correx Cerebri. Springer Berlin, Heidelberg, 

New York. 
Crick F, and Koch C (1995) Are we aware of neural activity in pri- 

mary visual cortex? Nature 375:121-123. 
Douglas RJ, and Martin KAC (1991) A functional microcircuit for 

cat visual cortex. J. Physiol. (London) 440:735-769. 
Eckhom R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, and 

Reitboeck HJ (1988) Coherent oscillations: A mechanism of fea- 
ture linking in the visual cortex? Biol. Cybern. 60:121-130. 



136 Fuentes, Ritz, Gerstnel; and van Hemmen 

Felleman DJ, and van Essen DC (1991) Distributed hierarchical pro- 
cessing in the primate cerebral cortex. Cerebral Corfex 1: l-47. 

Fuentes U (1993) Einflull der Schicht- und Arealstruktur auf die 

Informationsverarbeitung im Cortex. Diplomarbeit, Technische 
Universitat Miinchen. 

Gerstner W, Ritz R, and van Hemmen JL (I 993a) A biologically mo- 
tivated and analytically soluble model of collective oscillations in 

the cortex: I. Theory of weak locking. Biol. Cybern. 68:363-374. 

Gerstner W, Ritz R, and van Hemmen JL (1993b) Why spikes? Heb- 
bian leaming and retrieval of time-resolved excitation patterns. 
Bid. Cybem. 69:503-515. 

Ghose GM, and Freeman RD (1992) Oscillatory discharge in the 

visual system: Does it have a functional role? J. Neurophysiol. 
68:1558-1574. 

Gilbert CD (1993) Circuitry, architecture, and functional dynamics 
of visual cortex. Cerebral Cortex 3:373-386. 

Gilbert CD, and Wiesel TN (1983) Clustered intrinsic connections 
in cat visual cortex. J. Newosci. 3:ll l&l 133. 

Gray CM, Engel AK, f<iinig P, and Singer W (1990) Stimulus- 
dependent neuronal oscillations in cat visual cortex: Receptive 
field properties and feature dependence. Eur. J. Neurosci. 2 

(1990):607-619. 
Gray CM, Konig P, Engel AK, and Singer W (1989) Oscillatory re- 

sponses in cat visual cortex exhibit inter-columnar synchronization 
which reflects global stimulus properties. Nature 338:334-337. 

Gray CM, and Singer W (1989) Stimulus-specific neuronal 
oscillations in orientation columns of cat visual cortex. 
Proc. Natl. Acad. Sci. USA 86:1698-1702. 

Hopfield JJ (1982) Neural networks and physical systems with emer- 
gent collective computational abilities. Proc. Natl. Acad. Sci. 

USA 79:2554-2558. 

Hopfield JJ, Feinstein DI, and Palmer RG (1983) Unlearning has a 
stabilizing effect in collective memories. Nature 304: 158-159. 

Kandel ER, Schwartz JH, and Jesse11 TM (1991) Principles of neu- 
roscience (3rd ed.). Prentice-Hall, London. 

Koch C, and Crick F (1994) Some further ideas regarding the neu- 
ronal basis of awareness. In: Koch C, and Davies JL, eds. Large- 
scale neuronal theories of the brain. MIT Press, Cambridge, MA. 

pp. 93-109. 
Kreiter AK, and Singer W (1992) Oscillatory neuronal responses in 

the visual cortex of the awake macaque monkey. Eur. J. Neurosci. 

4~369-375. 
Krone G, MaIlot H, Palm G, and Schtiz A (1986) Spatiotemporal 

receptive fields: a dynamical model derived from cortical archi- 
tectonics. Proc. R. Sot. Lond., Ser. B 226:421-444. 

Lund JS, Henry GH, MacQueen CL, and Harvey AR (1979) Anatom- 

ical organization of the primary visual cortex (Area 17) of the cat. 

A comparison with Area 17 of the macaque monkey. J. Comp. 

New 184599-618. 

Nakajima S, Komatsu Y, and Toyama K (1988) Synaptic action of 
layer I fibers on cells in cat striate cortex. Brain Rex 457: 176-180. 

Patton P, Thomas E, and Wyatt RE (1992) A computational model 
of vertical signal propagation in the primary visual cortex. Biol. 
Cybern. 68~43-52. 

Ritz R, Gerstner W, Fuentes U, and van Hemmen JL (1994) A bi- 

ologically motivated and analytically soluble model of collective 
oscillations in the coltex: II. Application to binding and pattern 
segmentation. Biol. Cybern. 71:349-358. 

Singer W (1994) Putative functions of temporal correlations in neo- 
cortical processing. In: Koch C, and Davies JL, eds. Large-scale 
neuronal theories of the brain. MIT Press, Cambridge, MA. pp. 
201-237. 

Thomas E, Patton P, and Wyatt RE (1991) A computational model 
of the vertical anatomical organization of primary visual cortex. 
Biol. Cybern. 65: 189-202. 

Tigges J, and Tigges M (1982) Principles of axonal collateraliza- 
tion of laminae 11-111 pyramids in Area 17 of squirrel monkey: A 
quantitative Golgi study. Neuroscience Letters 29:99-104. 

Valverde F (1984) The organizing principles of the primary visual 

cortex in the monkey. In: Peters A, and Jones EG, eds. Cerebral 

Cortex (Vol. 3). Plenum Press, New York, London. 

van Hemmen JL, Gerstner W, Herz AVM, Kuhn R, Sulzer B, and 
Vaas M (1990) Encoding and decoding of patterns which are cor- 
related in space and time. In: Dorffner G, ed. Konnektionismus in 
Artificial Intelligence und Kognitionsforschung, Springer, Berlin, 
Heidelberg, New York. pp. 153-162. 

van Hemmen JL, loffe LB, Kuhn R, and Vaas M (1990) Increasing 
the efficiency of a neural network through unlearning. Physica A 

163:386-392. 

von der Malsburg C (1981) The correlation theory of brain func- 
tion. Internal Report 81-2, MPI fiir Biophysikalische Chemie, 

Gottingen. Reprinted in: Domany E, van Hemmen JL, and Schul- 
ten K, eds. (1994) Models of Neural Networks II. Springer, New 
York. ch. 2. 

von der Malsburg C, and Schneider W (I 986) A neural cocktail-party 
processor. Biol. Cybern. 54:29-40. 

von Seelen W, Mallot HA, and Giannakopoulos F (1987) Charac- 
teristics of neural systems in the visual cortex. Biot. Cybern. 

56:37119. 

Wang D, Buhmann J, and von der Malsburg C (1990) Pattern seg- 
mentation in associative memory. Neural Comp. 2:94-106. 

Wimbauer S, Klemmer N, and van Hemmen JL (1994) Universality 
of unlearning. Neural Networks 7:261-270. 


