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Vertical split-ring resonator based 

anomalous beam steering with 

high extinction ratio
Wei-Lun Hsu1, Pin Chieh Wu1, Jia-Wern Chen1, Ting-Yu Chen1, Bo Han Cheng2, 

Wei Ting Chen1, Yao-Wei Huang1, Chun Yen Liao1, Greg Sun3 & Din Ping Tsai1,2

Metasurfaces created artificially with metal nanostructures that are patterned on surfaces of different 
media have shown to possess “unusual” abilities to manipulate light. Limited by nanofabrication 
difficulties, so far most reported works have been based on 2D metal structures. We have recently 
developed an advanced e-beam process that allowed for the deposition of 3D nanostructures, namely 
vertical split-ring resonators (VSRRs), which opens up another degree of freedom in the metasurface 

design. Here we explore the functionality of beam steering with phase modulation by tuning only 
the vertical dimension of the VSRRs and show that anomalous steering reflection of a wide range 
of angles can be accomplished with high extinction ratio using the finite-difference-time-domain 
simulation. We also demonstrate that metasurfaces made of 3D VSRRs can be made with roughly 
half of the footprint compared to that of 2D nano-rods, enabling high density integration of metal 
nanostructures.

Metamaterials, the arti�cial structures with plasmonic sub-wavelength scale structures, promis-
ing novel and exotic electromagnetic phenomena not found in nature, such as negative refraction1–3, 
super-resolution4–6 and cloaking7,8, have attracted much attention. Nearly all these “unusual” phenom-
ena of metamaterials are connected to the localized surface plasmon resonances (LSPR)9 associated 
with the subwavelength metal structures. Unfortunately, those metamaterials calling for construction 
of multi-layer nanostructures have been very challenging to fabricate and even when they are made the 
extraordinary properties that require light penetration into the medium are di�cult to observe because 
of the tremendous optical loss associated with the metal typically used as the constituent nanostructures. 
As a way to alleviate these insurmountable barriers, recently a subcategory of metamaterials known as 
metasurfaces has emerged where only a single layer of metal nanostructures deposited on the surface of 
a dielectric medium is utilized to realize those “unusual” abilities to manipulate light. For instance, the 
extraordinary Snell’s law was demonstrated using the extra momentum contributed by a metasurface10. 
�ese phenomena have been successfully employed in a range of practical applications including light 
steering11–13, �at lenses14,15, polarization converter16 and hologram imaging devices17,18. �e concept of 
re�ective metasurfaces was recently proposed to improve the operation e�ciencies of these devices11,18.

We have recently developed a high precision alignment technique that enables us to fabricate metas-
urfaces made of the vertical split-ring resonators (VSRRs)19–21 capable of both phase and re�ection mod-
ulation by controlling the VSRR dimensions. In comparison with 2D SRRs where the tunings of LSPRs 
are achieved with variation of dimensions in the x-y plane of the metasurface, the VSRRS allows for 
phase and re�ectance modulation by changing the heights of their prongs along z-direction, e�ectively 
providing an additional degree of freedom in design. Here we propose to use VSRRs as the basic building 
blocks to construct metasurface that re�ects a normal incident light within telecommunication band to 
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a direction tunable by design in violation of the conventional Snell’s law. �e metasurface is patterned 
with periodical unit cells where each unit consisting of six Au VSRRs with gradient prong lengths sitting 
on �xed base. �e unit cell period determines the re�ection angle of light upon its incidence on the 
metasurface. �is investigation is carried out with numerical simulation where we have used the period-
ical boundary conditions. Results indicate that a highly directional re�ection can be achieved with the 
full-width-at-half-maximum (FWHM) angle of 2.9o at λ =  1548 nm and the anomalous re�ection signal 
shows the extinction ration as high as 31 relative to that of normal re�ection. In comparison with the 
metasurface made of 2D metal nano-rods where the LSPR is modulated with rod length, our 3D-VSRR 
design with tuning of prong height has the advantage of covering the surface area with higher density of 
metal structures which is desirable for minimizing metasurface device size for applications in integrated 
photonics.

Results and discussions
�e basic building block as shown in Fig.  1(a) is an Au VSRR which is composed of a base rod and 
two prongs standing on its two ends. �e VSRRs are deposited on a SiO2 layer (G =  70 nm) over an Au 
mirror. �e thin SiO2 spacer is necessary for the coupling between VSRRs and the bottom Au mirror 
to achieve strong excitation22 of the LSPR and broader phase modulation23. Each VSRR has its base rod 
�xed with dimensions of L =  170 nm, W =  60 nm, and H1 =  30 nm, while the height (H2) of the prongs 
is varied to obtain the desired phase modulation. Each VSRR occupies an area of 120 ×  250 nm2. �e 
�nite-di�erence time domain (FDTD) based commercial so�ware CST is used to simulate the re�ectance 
and phase shi� by a 2D array of such VSRRs. �e VSRRs are excited with a light source polarized along 

Figure 1. Re�ectance and phase shi� in isolated VSRR structures. (a) Schematic diagram for VSRR 

with structural parameters: L =  170 nm, W =  60 nm, H1 =  30 nm, Px =  120  m, Py =  250 nm, G =  70 nm, and 

prong height H2. Simulation of (b) re�ectance and (c) phase shi� with various H2 under y-polarized normal 

illumination of di�erent wavelength. (d) Re�ectance and phase shi� as a function of H2 at λ  =  1548 nm. Red 

stars indicate the chosen values of VSRR prong height H2 to be implemented in a unit cell.
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the VSRR base length (y-direction marked in Fig. 1(a)). �e re�ectance and phase shi� vs. VSRR prong 
height (H2) and excitation wavelength (λ ) are shown in Fig. 1(b,c), respectively, where we can see that 
re�ectance variation is far more modest than that of the phase shi�, a desirable scenario for the beam 
steering application for preserving its intensity. �is is better viewed in Fig. 1(d) at a single wavelength 
of λ  =  1548 nm, for the range of prong height H2 that yields phase modulation of 2π  the re�ectance only 
varies within 0.45 to 0.75. �e phase modulation curve calculated in Fig. 1(d) needs to be digitized when 
implemented on metasurface for beam steering. For wave front reconstruction under the assumption of 
uniform re�ectance, 2π  phase modulation with a constant phase gradient is important. We have chosen 
to use six equally spaced phase modulation points separated by 60° corresponding to prong heights of 
H2 =  30, 60, 90, 120, 150, and 0 nm as shown in Fig. 1(d). We could have designed �ner phase modu-
lation steps with smaller VSRR height changes, but this would present a signi�cant challenge in future 
fabrication of such metasurface.

We subsequently use these VSRRs of six di�erent heights to construct a unit cell with the necessary 
period to steer a normal incident beam of a particular wavelength onto a pre-determined angle. 
Figure 2(a) shows the schematic of a VSRR based unit cell occupying an area of Lx ×  Ly =  2160 ×  250 nm2. 
Such a unit cell is repeated along x- and y-directions to form the functional metasurface where the long 
period of 2160 nm is chosen to yield a steering angle of 45° for the normal incident light of λ  =  1548 nm 
as shown in Fig. 2(b). It takes 18 VSRRs to �ll up a unit cell (Fig. 2(a)) in which six sets of three VSRRs 
of same height are arranged to obtain the phase modulations in Fig. 1(d). In order for a normal incident 
beam to be redirected to 45° (Fig. 2(b)) according to the generalized Snell’s law, the amount of in-plane 
wave-vector that needs to be provided by the metasurface is ζ π= / ,L2 x

where π λ= /k 20
 is the wavevec-

tor in free space. It follows then that such a metasurface will also steer light with an arbitrary incident 
angle θi to the re�ection angle θr according to θ θ ζ= ( + / )−

sin ksinr i

1

0
.

Figure 2. Schematic of VSRR-based metasurface. (a) Schematic of a unit cell consisting of 18 VSRR 

of equal base but six di�erent prong heights: 30, 60, 90, 120, 150, and 0 nm, with three VSRRs of equal 

dimensions. Each unit cell occupies Lx =  2160 nm and Ly =  250 nm. (b) Illustration of the VSRR-based 

metasurface beam steering.
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Figure 3(a) shows the normalized �eld intensity of re�ection at 1548 nm under various incident angle 
(θi =  0°, 5°, 10°, 15°, and 20°). �e re�ection angle θr increases from 45° to 77° as the incident angle θi 
varied from 0° to 15°, consistent with our design parameters. Small amount of scattered light can be seen 
within the region of θr <  40° as a result of unmodulated. FWHM angle of 2.9° around the re�ection angle 
of 45° is obtained for the normal incidence and the intensity of re�ection at 45° is 31 times stronger than 
that of normal re�ection, suggesting that the VSRR-based metasurface is capable of steering light with a 
high extinction ratio. Figure 3(b) shows that the FDTD simulation result is good agreement with gener-
alized Snell’s Law θ θ ζ= ( + / ).−

sin ksinr i

1

0
 �e simulation result of the re�ected wave front propagating 

along 45° is displayed in Fig. 3(c) for the normal incident. As the incident angle is increased to 20°, no 
re�ection can be observed as shown in Fig  3(a) as the incident light is being di�racted into a surface 
wave with its wave front normal to the metasurface as shown in Fig. 3(d).

In comparison with metasurfaces made of the simplest metal nanostructures such as Au nano-rods, 
the VSRRs require a smaller footprint to perform the same functionalities. To illustrate this, we have 
simulated the optical response of 2D arrays made of Au nano-rods patterned on the same SiO2 layer of 
70 nm thick on top of an Au mirror at λ  =  1548 nm. As shown in Fig. 4(a), each Au nano-rod has a �xed 
width of W =  60 nm and thickness of H1 =  30 nm, and occupies an area of Prx ×  Pry =  120 ×  480 nm2. 
Figure  4(b) shows the range of nano-rod length Lr required to obtain 2π  phase shi�. Similar to our 
VSRR design, we can once again choose to use six equally spaced phase modulation points (orange 
dots in Fig. 4(b)) separated by 60° corresponding to nano-rod lengths of Lr =  60, 240, 270, 288, 314, and 
400 nm for beam steering at 1548 nm. �e same long period of 2160 nm is required for the unit cell in 
order to attain the same steering performance. Such a unit cell consisting of 18 nano-rods (six sets of 
three nano-rods of same length) is shown side by side with the VSRR unit cell in Fig.  4(c). It can be 
seen that while both structures have the same long period of 2160 nm for equal steering, the nano-rod 
unit cell requires a much greater short period (480 nm) along y-direction in order to accommodate the 
longer nano-rod lengths than that of the VSRR base (250 nm). It can be established that the footprint 
of the VSRR unit cell is roughly half of that of nano-rods, allowing for implementation of high density 
con�guration for a range of metasurface-based applications.

Conclusions
In summary, we have conducted FDTD simulation of re�ectance and phase shi� by a VSRR metasurface 
for beam steering. Fixing the base dimensions of VSRRs, we vary their prong heights to obtain 2π  phase 

Figure 3. Scattered �eld of VSRR-based matasurface. (a) Angular dependence of the re�ected �eld 

intensity under various incident angles at λ  =  1548 nm. (b) FDTD results (blue stars) and generalized Snell’s 

Law (orange line). Simulation of the wave front (y-component of the electric �eld) plotted in the x-z plane 

for incident angle (c) θ i =  0° and (d) 20°.
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modulation. We subsequently use six-level phase modulation design to construct VSRR unit cells. �e 
simulation results show that VSRR-based metasurface enables directional and high extinction ratio beam 
steering for normal incidence at the telecommunication wavelength λ =  1548 nm. In addition, the meta-
surface also di�racts incident light into a surface wave when its angle of incidence approaches a critical 
angle. In comparison with metasurface made of nano-rods for the same beam steering functionality, 
the VSRR unit cell can be made with roughly half of the footprint, enabling high density integration of 
metal nanostructures.
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