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ABSTRACT:

In this contribution the complexity of the vertical vegetation structure, based on dense airborne laser scanning (ALS) point cloud data
(25 echoes/m?), is analyzed to calculate vegetation roughness for hydraulic applications. Using the original 3D ALS point cloud, three
levels of abstractions are derived (cells, voxels and connections) to analyze ALS data based on a 1x1 m? raster over the whole data set.
A voxel structure is used to count the echoes in predefined detrended height levels within each cell. In general, it is assumed that the
number of voxels containing echoes is an indicator for elevated objects and consequently for increased roughness. Neighboring voxels
containing at least one data point are merged together to connections. An additional height threshold is applied to connect vertical
neighboring voxels with a certain distance in between. Thus, the connections indicate continuous vegetation structures. The height
of the surface near or lowest connection is an indicator for hydrodynamic roughness coefficients. For cells, voxels and connections
the laser echoes are counted within the structure and various statistical measures are calculated. Based on these derived statistical
parameters a rule-based classification is developed by applying a decision tree to assess vegetation types. Roughness coefficient values
such as Manning’s n are estimated, which are used as input for 2D hydrodynamic-numerical modeling. The estimated Manning’s
values from the ALS point cloud are compared with a traditional Manning’s map. Finally, the effect of these two different Manning’s n
maps as input on the 2D hydraulics are quantified by calculating a height difference model of the inundated depth maps. The results
show the large potential of using the entire vertical vegetation structure for hydraulic roughness estimation.

1 INTRODUCTION channel flow regime. Thus, hydraulic models need to parameter-
ize the effect of roughness through the use of hydraulic friction
Airborne Laser Scanning (ALS), often referred to as LiDAR, is coefficients such as Manning’s n or Chézy’s C, which describe

used as a fast and accurate technique to collect topographic infor- the resistance of the channel and floodplain to the flow of water
mation. ALS has become a state-of-the-art data source for cap- (Acrement and Schneider, 1984; Straatsma and Baptist, 2008).
turing terrain data. ALS is a time and cost-effective method to The state-of-the-art in hydraulic roughness parametrization is to
acquire large area topographic data with low amount of user in- use land cover maps derived from aerial images and/or field trips

teraction, high ground sampling density and height accuracy of to estimate representative roughness values that show the most re-
less than 15 cm. It is used for area-wide 3D data acquisition alistic flood inundation patterns. As highlighted in literature this

to support a range of scientific disciplines like (geo)archeology, method is not optimal because of the deficits in the model scheme
geology, geomorphology, hydrology and many more (Hofle and  and computation method. The model input may be compensated
Rutzinger, 2011). by using roughness values that are physically not representative

(Straatsma and Baptist, 2008).
Hydrology and water management benefit mostly from techno-

logical advances in airborne, mobile and terrestrial laser scan- The main objective of this study is to improve the determination
ning. It is a permanent process that sensor weight and size con-  of the near surface vegetation structure affecting the flow regime
tinue to decrease whereas the functionality (full-waveform, mul- and being essential for hydraulic simulation, and to calculate hy-
tiple pulses in air, multiple wavelengths, on-line radiometric cal-  graulic roughness maps for 2D hydrodynamic simulations. With
ibration, higher sampling density, increasing vertical resolution a minimum of user interaction and a standardized method, the de-
etc.) and the usability are improving (Pfennigbauer and Ullrich, lineation of Manning’s n values from ALS point cloud data lead

2010). Because laser pulses can penetrate the vegetation canopy  to a time consistent geospatial input data set. As a major benefit,
only through gaps of the foliage, a very dense ALS data set is the digital terrain model (DTM) and the roughness are derived

needed to determine vertical vegetation structure parameters. from the same ALS point cloud and, thus, have no temporal dif-
Dense la:ser scar}ning point. cloud d?ta proyide precise geome- ference. This improves the modeling results and may replace the
try and high vertical resolution allowing an improved 3D surface preparation of roughness maps by digitizing aerial images and
classification for hydraulic roughness map calculation. performing field surveys.

The roughness of the terrain and the type of vegetation (trees,
shrubs or grass) have a strong influence on the floodplain and
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2 BACKGROUND

2.1 Vegetation structure and surface roughness

Remote sensing has been applied for Earth observation since the
1950s. The introduction of multi-echo LiDAR technology at the
end of the 1990s, made simultaneous measurements of the
canopies, inside the vegetation and the Earth surface under the
vegetation possible. A huge community related to forestry using
LiDAR data has been established in the last two decades. The
main objectives are in the fields of mapping forested areas, detec-
tion of vegetation in urban areas, biomass calculation, species dif-
ferentiation and many others (Hyyppa et al., 2004; Naesset et al.,
2004; Rutzinger et al., 2008; Hofle and Hollaus, 2010; Jochem
et al., 2010). In forestry applications the use of the point cloud
and the nDSM (normalized Digital Surface Model) is dominant.
Since a few years an increasing number of studies make use of
radiometric information together with the 3D point cloud from
discrete echo recording or full-waveform (FWF) signal analysis
or rasterized data with additional attributes for segmentation or
classification approaches (Koch, 2010). The use of FWF tech-
nology increases the ability to map vegetation in a more dense
horizontal and vertical structure than with discrete echo record-
ing systems (Doneus et al., 2010).

Fisher et al. (2009) use a voxel based approach to estimate the
vegetation types in a semiarid region by deriving point density in
different height levels. Hollaus et al. (2011), Hollaus and Hofle
(2010) and Aubrecht et al. (2010) present new methods for es-
timating vertical vegetation structure parameters of forested and
urban areas using detrended terrain points (ALS) for plane fitting
to describe the vertical distribution of ALS points per raster cell.
By calculating the vertical vegetation structure it is possible to es-
timate the volume of vegetation in different layers above the ter-
rain (Hollaus et al., 2011). The studies of Hollaus et al. (2011),
Aubrecht et al. (2010) and Hollaus and Hofle (2010) show the
ability of accurate close-surface vegetation structure data extrac-
tion.

An accurate DTM and roughness data are of high importance to
simulate water flow characteristics. Due to recent developments
in sensor technology, current ALS systems provide more infor-
mation such as vertical resolution, point density, which can be
used to generate more accurate DTMs (Pfennigbauer and Ullrich,
2010).

By using radiometric attributes of either discrete echo recording
or FWF-sytems vegetation mapping can be improved (Hofle et
al., 2009; Vetter et al., 2011). An additional attribute derived
from the FWF signal is the echo width’, which is a measure of
the height variation of a single echo within the laser footprint
(Hollaus et al., 2011).

2.2 LiDAR used in hydraulics and hydrology

An extensive overview about active and passive remote sensing
techniques in river environments is given by Marcus (2010), in
which the main focus is on the water course. From a LiDAR per-
spective three main topics are relevant for hydraulic studies: (i)
the extent of the water surface, (ii) the digital elevation or terrain
data of the river bed and the inundation area and (iii) the riparian
vegetation, artificial objects (e.g. buildings) within the inundation
area and roughness parameter delineation.

Hofle et al. (2009) and Vetter et al. (2009) present methods to
extract the water surface extent from the ALS point cloud using
radiometric and geometric information to map the water course.
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Heritage and Milan (2009) demonstrate a method using terres-
trial laser scanner (TLS) data to calculate the river bed roughness.
Vetter et al. (2011) present a study about river bed model imple-
mentation into the DTM by using terrestrially measured cross-
section data to calculate the volume differences along the river
bed caused by erosion and accumulation processes between two
flood events.

Several studies are presented about DTM generation in general
(Kraus and Pfeifer, 1998; Doneus et al., 2010). Related to hy-
draulic simulations the main focus is on reducing the complexity
of the DTM with minimum loss of information as presented in
Mandlburger et al. (2009).

The used roughness term in hydraulic studies relates mainly to
Manning’s or other empirical equations, in which the roughness
value is used to describe the loss of energy of the fluids occur
from grain size (in the channel) and/or form parameters such as
vegetation type (Naudascher, 1992). However, the term rough-
ness is used differently in various scientific disciplines and spatial
scales of interest. Roughness in hydraulics has a different mean-
ing than roughness in remote sensing (Acrement and Schneider,
1984; Naudascher, 1992). The challenge is to define roughness
in the sense of the related discipline and to describe the way
of the derived parameters and establish standards. Beside the
cross-discipline definition problem, even within the remote sens-
ing community there are different meanings of the term ’rough-
ness’. While in microwave remote sensing a surface may appear
smooth, the very same surface is rough for LiDAR, because of
the different scales (i.e. wavelengths). Thus, it is also a scaling
problem, which increases by getting a better spatial and vertical
resolution. Therefore, roughness should be related to the scale
or spatial resolution of the data and the application or discipline
(Hollaus et al., 2011).

Related to hydraulic roughness, vegetation and type of land cover
have an significant influence on the output of hydrodynamic mod-
eling. Many studies use ALS data for land cover mapping and
vegetation classification for hydrodynamic models (Straatsma and
Baptist, 2008; Alexander et al., 2010; Hollaus et al., 2011).
Forested and flood inundated areas are covered by trees, shrubs
and grass, which influence the flow characteristics of water, rep-
resented by a distinct Manning value for each land cover class.
By using ALS data the hydraulic friction coefficients for each
vegetation cover type can be derived and used as input for 2D
hydrodynamic-numerical models. Straatsma and Baptist (2008)
present a workflow to calculate hydrodynamic relevant vegetation
parameters for 2D hydrodynamic models from ALS data.

The state-of-the-art input data for flood modeling are: (i) the
geometry provided as DTM of the watercourse (LiDAR, pho-
togrammetry or terrestrial survey), (ii) roughness information,
based on land cover maps which are produced from aerial im-
ages or field trips, and (iii) the boundary conditions (water levels
and/or discharge data).

Casas et al. (2010) present a workflow to estimate hydraulic rough-
ness values using the AZ value calculated from subtracting the
DTM elevation from each laser echo within the related DTM cell.
Finally, they use the DTM detrended laser echo height to estimate
the off-terrain vegetation.

Regarding roughness scaling issues, another problem is the sub-
footprint roughness. If the footprint of a laser shot is 10 to 50 cm
in diameter, the recorded elevation of the echo will be a mixture
of the slope and the footprint internal surface roughness. If the
sub-footprint vertical height distribution is large enough, multi-
ple distinct echoes can be recorded, which will be enabled by a
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better vertical resolution via an increased digitizing rate of 10*°
Hz (0.1 ns) (Pfennigbauer and Ullrich, 2010). Components of
the surface roughness which are lower than the vertical resolu-
tion of the used scanning system are contained in the recorded
echo, which is also influenced by the terrain slope (Hollaus et al.,
2011).

3 METHOD

The method focuses on hydraulic roughness estimation, where
particularly roughness of the near surface layer is investigated.
This approach demonstrates the possibility to map hydrodynamic-
numerical roughness parameters such as Manning’s n by using
the ALS point cloud data. The main concept is to derive con-
nected vertical vegetation structures and to use them as input for
a rule-based classification to derive vegetation types, from which
the Manning’s n can be derived.

3.1 General concept

The main idea for delineating homogeneous roughness areas of
surface-near vegetation is based on the spatial discretization of
the laser echoes and an aggregation of the points into (a) cell-,
(b) voxel- and (c) connection-level, which are the different spatial
aggregation units (cf. Figure 1). We use this approach to calculate
different levels of abstraction within a predefined search extent
(1 x 1 m) to generate connected vertical vegetation structures.

Before sorting the echoes into the different aggregation levels the
height of each echo is normalized to the Z° level, which is the
height of the DTM at the X'Y-position of the laser point. All addi-
tional calculations are using this normalized height (nZ2) values.

In a first step, all laser echoes are sorted into cells of 1 x 1 m
size. In a second step, voxels are generated by slicing the cell
into vertical height levels of equal height (0.5 m). Based on the
nZ value each ALS echo is sorted into the related voxel. In a last
step, vertically neighboring voxels are combined to larger units
of arbitrary vertical extent (connections) where gaps between the
voxels smaller than a predefined threshold (1.1 m) are ignored.
Standard descriptive statistics (min, max, mean, median, std, ...)
are derived for the cells, voxels and connections (18 parameters
per level).

The statistical parameters of the cell-, voxel- and connection-
levels serve as basis for a rule-based classification to derive vege-
tation types, which are finally transferred to Manning values. It is
assumed that the descriptive statistical values of the connections-
level are significant parameters to derive hydraulic resistance val-
ues.

Bare ground areas will contain only a single compact voxel/conn-
ection per cell whereas vegetated areas are characterized by a
larger vertical range of normalized height values within a cell.
In the latter case, a certain number of occupied voxels per cell
will be available. Depending on the vegetation structure, these
voxels will be grouped together to one or more connections. The
connections are a measure describing the compactness of the veg-
etation, which can be used for roughness classification.

In Figure 1 and 2, the cell-, voxel- and connection-level abstrac-
tion concept is demonstrated. First, the echoes per cell are col-
lected, then the voxels are created and finally the vertical connec-
tions are derived. In the right part of Figure 2 a schematic ALS
point cloud is shown covering different vegetation types. The fur-
thermost left part of Figure 2 represents all three levels at once for
the cell with the blue echoes of the right generalized point cloud.
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Figure 1: Basic concept: spatial discretization of the ALS
point cloud into cell-level (a, left), voxel-level (b, middle) and
connection-level (c, right)

The results are evaluated by visual comparison of the classifica-
tion maps in Figure 3 as well as by comparing the hydrodynamic
modeling results (depth and extent, Figure 4).

3.2 Cell-level

The cell-level is calculated in a X/Y domain of 1 x 1 m for the
whole region, which is also the classification extent. Within each
cell, the contained laser echoes are sorted by the nZ value. The
cell-level is the input for generating the voxels and can be used to
classify forested areas using the maximum height.

3.3 Voxel-level

The Voxels represents a cube or a cuboid with either a regular
or an irregular size. In this contribution the term voxel is used
to describe a 3D bounding box. All echoes of the cell-level are
sorted into the related voxels using the nZ heights. The voxels
are defined by the cell extent (X, Y) and the height of 0.5 m. Vox-
els without any echo are erased and no longer used. The voxels
are used to generate the connected vertical structures by merging
vertically neighboring voxels into single structures.

3.4 Connection-level

Connections describe vertically connected vegetation structures
which are apparent in the ALS point cloud. In other words, the
connections represent vegetation units or single plants. Connec-
tions are derived by merging vertical neighboring voxels which
are closer than a certain distance (1.1 m). This distance criterion
is used to merge non illuminated areas which are assumed to be of
the same vegetation structure as shown in the left part of Figure 2.

3.5 Hydraulic roughness classification

For hydraulic roughness classification as input data for a 2D hy-
draulic simulation based on the ALS point cloud the statistical
parameters of the cells, voxels and connections are used. Differ-
ent roughness products can be generated by using a rule-based
classification. Therefore, the surface-near vegetation roughness
is important and used in the classification of the lowest connec-
tion. For other roughness products like canopy roughness the
upper connections are of interest.

The rule-based classification thresholds for the statistical param-
eters are derived by a decision tree (available in the RapidMiner
software using default settings), which is based on a reference
map with vegetation types and related hydraulic resistance values
(Figure 3 a). A sample of 5,000 ALS echoes with the additional
cells, voxels and connections parameters for 6 vegetation types
was used to create the decision tree.
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Figure 2: Schema of the cell-, voxel- and connection-level related to a generalized ALS point cloud for different vegetation structures

Roughness class “ Rule-base Vegetation type ‘
0.045 max. height(lowest connection) < 0.15 streets, short grassland
0.050 max. height(lowest connection) > 0.15 AND < 0.25 grassland, agricultural area
0.070 max. height(lowest connection) > 0.25 AND < 2.00 shrubs
0.090 max. height(lowest connection) > 2.00 AND < 5.00 reed
0.100 number of connections > 1 AND max. height(cell) < 10.00 small trees
0.125 number of connections > 1 AND max. height(cell) > 10.00 forest

Table 1: Rule-base for hydraulic roughness classification

Finally, the derived rule-base (decision tree) is applied to the ALS
data using the statistical values shown in Table 1. After classi-
fying the 1x1 m cells in to vegetation types and transferring to
Manning’s n values a modus filter with 8 neighbors is used to
smooth the result and to reduce the spatial heterogeneity of the
resulting classification raster.

With the presented method it is not possible to derive the related
river bed roughness parameters. Therefore, the roughness val-
ues are manually classified for areas that are covered by water.
The water surface extents are delineated based on a DTM and an
ALS intensity image by a raster-based classification of low ALS
intensity values and a maximum DTM slope of less than 2° as
described in Vetter et al. (2011).

4 RESULTS AND DISCUSSION

The results of the classification are shown in Figure 3(b). A visual
evaluation of the results has been carried out between the classi-
fied ALS and the traditionally derived Manning’s n values in Fig-
ure 3(a). As shown in Figure 3 the dominant spatial patterns of
the Manning’s values are comparable. But the ALS derived val-
ues represent the whole area in more detail than the traditionally
derived map. Major differences are predominantly characterized
by the neighboring Manning classes in the ALS derived data. Be-
tween class 0.045 and 0.050 or 0.100 and 0.125 large differences
are evident, which we assume that they occur from wrong clas-
sification rules due to the low overall accuracy of 65% for those
four classes. For all other classes the overall accuracy is better
than 90%.

Furthermore, the hydrodynamic modeling results (depth and area
of inundation) are compared by using both roughness maps as
input. A calibrated model was used to perform two simulations
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with the same boundary conditions and the same DTM input data
with both roughness maps (original and ALS derived). Differ-
ences of the two simulation results are in the range of 2 to 3 cm
in water depth and a difference in inundation area extent of less
than 2800 m? (< 1% of total inundated area, Figure 4).

The roughness classification rules are based on a decision tree
using a subsample of the ALS data with calculated voxel and
connection statistical values (ALS derived) created from the orig-
inal Manning’s n map. These results in already calibrated Man-
ning’s n values for the classification of the connections where the
derived roughness map can be used as input for the 2D simula-
tion without any further calibration. If no calibrated reference
data are available, the calibration effort is the same as with tradi-
tional data. But the advantage of using ALS data for roughness
estimation is the standardization and transferability of the classifi-
cation and therefore the reduction of manual classification errors.
The second benefit is that the calculation is performed fully auto-
matically without any user interaction. The main potential of the
proposed method is to reach one consistent input data set for the
geometry and roughness data (elevation and Manning’s n) both
derived from ALS data originating from one date of acquisition.
Which is not the case if different land use and land cover data are
used to produce Manning’s n maps from different sources as it is
state-of-the-art up to now.

5 CONCLUSIONS AND FUTURE WORK

The presented method has shown the potential to use ALS data
as foundation for hydraulic surface roughness estimation using
vertical vegetation structure information. The proposed approach
derives hydraulic roughness parameters representing the near sur-
face vegetation roughness. As the results have shown, the degree
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Figure 3: Traditionally derived Manning’s values vs. the ALS
derived values [s/m'/?]

of detail clearly increases by the use of the proposed method,
as well as having only little effects on the 2D hydraulic sim-
ulation results (water depth and inundated extent). Therefore,
we assume that this method is applicable to produce hydraulic
roughness maps, which base on geometry data. The low differ-
ences between the two hydrodynamic model results lead us to the
conclusion that the spatial distribution of the Manning’s values
in our study is a feature with low impact on the hydraulic mod-
eling results. However, Manning’s n is an empirical value, the
transfer of the ALS based method to other regions can be prob-
lematic. We assume that a more physically founded parameter
such as the Darcy-Weissbach value f performs better. Therefore,
some further tests should be done with the presented method to
identify the roughness value that can be described best by ALS
geometry data. A further approach is to use the FWF echo width
and backscatter information to improve classification results es-
pecially for smooth areas such as roads and short grassland.

The presented approach does not include the slope effect for the
normalized height value calculation, which results in overestima-
tion of the height value. This results in misclassification in areas
with steep slopes which were not evident in the used test site.
By applying a slope adaptive nZ value the classification is made
free of slope effects and should finally result in better classifica-
tion accuracy.

One important feature of the approach is the point density which
has yet to be investigated. The proposed method uses statistical
values per cell, voxel and connection and we assume the point
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(b) Depth difference from ALS — traditional 2D simulation

Figure 4: Depth of inundated area and difference model from 2D
simulation based on the same boundary conditions for ALS and
traditional derived Manning’s n [m]

density is an important affecting parameter. It should be possible
to derive an inundation depth dependent hydraulic friction coef-
ficient by using the connection-level values in different heights.

For hydrodynamic models further follow up investigation should
focus on using dense vertical vegetation data sets as input. It is
not clear if the hydrodynamic-numerical models are able to use
dense input data sets (e.g. DTMs and vegetation of 1 x 1 m).
There is a need to verify whether the use of friction factors in the
models are adequate, or the models have to be adopted for dense
ALS derived vegetation parameters.
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