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Vertically emitting annular Bragg lasers using polymer epitaxial transfer
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Fabrication of a planar semiconductor microcavity, composed of cylindrical Bragg reflectors
surrounding a radial defect, is demonstrated. A versatile polymer bonding process is used to transfer
active InGaAsP resonators to a low-index transfer substrate. Vertical emission of in-plane modes
lasing at telecom wavelengths is observed under pulsed optical excitation with a submilliwatt
threshold. ©2004 American Institute of PhysidDOI: 10.1063/1.1807970

Integrated circulacring and disk microresonator-based PMMA was removed with a gentle isotropic,Plasma step.
devices have been studied extensively as key elemenifghe SiQ then served as a hard mask for pattern transfer into
within optical communication systems. Numerous active andhe active InGaAsP layer, using an ICP-RIE etch employing
passive devices, including modulatdrslaser sourced*all-  HI/Ar chemistry!” The patterns were etched to a depth of
optical switches:® channel drop filteré® and dispersion ~325 nm. The remaining SiChard mask was then stripped
compensatorshave been proposed and demonstrated. Interin a buffered hydrofluoric acid solution. A scanning electron
est in such microresonators has recently spread to the field oficroscopegSEM) image of an ABR device at this stage is
biosensing®!* making use of the fact that the whispering shown in Fig. 2a). To achieve strong vertical confinement,
gallery mode¥'® are sensitive to subtle environmental the InGaAsP membrane must be clad by low-index material
changes, via evanescent probing of the immediate surroundtoth above and below. An epitaxial layer transfer
ings. technique™® using an UV-curable optical adhesiyiorland

Recently, a new ring cavity geometry, based on opti-Products NOA 73n~1.54 at\=1.55um), was adopted to
mally designed cylindrical Bragg reflectors surrounding a raflip-bond the patterned semiconductor sample to a transpar-
dial defect, was proposéd!® Resonators of this class, ent sapphire substrate. Subsequently, the InP substrate was
known as annular Bragg resonat¢fBRs), are designed to removed by mechanical polishing and selective wet chemical
support azimuthally propagating modes, with energy conceretching, leaving the 250-nm-thick patterned InGaAsP mem-
trated within the defect region by radial Bragg reflection.brane embedded in the cured adhesive. Finally, the adhesive

Optical modes with an electric field having the form filling the trenches was removed with an isotropic J\G,
E(r,$,2=E(r,2€™ have been analyzed using several|CP-RIE etch. Amagnified view of several transferred annu-
techniques, including conformal transformation, a transfer
matrix approach, coupled mode theory, and finite-difference(
time-domain simulations. ABR devices are of great interest
for their superior sensitivity in biological and chemical sens- | ] . |
ing applications when compared to conventional total inter- _
nal reflection(TIR) based resonatot§.This letter describes
the fabrication and experimental demonstration of laser ac-(c) E-beam lithography & develop ~ (d) SiO2 ICP etch
tion in a semiconductor annular Bragg resonator. ’J_I_l_l_l_l_l_l_l_l_l_l_l_l_‘

Annular Bragg resonators with high contrast Bragg re- § | - AAARAAA_AAARAAR -

flectors were realized in active semiconductor material. The_ _

semiconductor medium consisted of a 250-nm-thick

a) Deposit SiO2 mask (b) Spin-coat PMMA e-beam resist

(e) Strip PMMA mask and (f) Strip SiO2 mask and flip bond
to sapphire

InGaAsP layer(n~3.35 atA=1.55um) on top of an InP InGaAsP/InP ICP etch
substrate. The InGaAsP layer included six 75-A-wide com-

pressively strained InGaAsP quantum wells positioned at the
center, with peak photoluminescence occurring at 1559 nm

Epitaxial layers were grown by MOCVD.
(9) InGaAsP membrane release (h) Adhesive ICP etch

The ABR fabrication process, illustrated in Fig. 1, pro-

ceeded as follows. First, a Sj@tch mask layer was depos-
ited by PECVD. A layer of PMMA electron beam resist was
then applied by spin-coating. The desired ABR geometry

was then defined using a Leica Microsystems EBPG 5000+ Legend:

direct electron beam writer operating at 100 kV. After devel- B e substrate [l PMMA resist [ ] NOA 73 adhesive
opment, the PMMA patterns were transferred into the ,SiO IGaASP QW . ‘

etch mask layer by inductively coupled plasma reactive ion membrane [Isiozmask [ supphire substate

etching (ICP-RIE) using GFg plasma. The remaining
FIG. 1. Flow diagram for annular Bragg resonator fabrication and polymer

bonding process. The dark region in the middle of the InGaAsP QW mem-
3Electronic mail: wgreen@caltech.edu brane is intended to represent the location of the quantum wells.
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FIG. 3. Optical spectra collected from lasing ABR cavity. Spectra are ver-
tically offset to illustrate effects of increasing pump power. Inset: Integrated
ABR emission vs pump power, showing laser threshold-860 uW.

pulses at a repetition rate of 78 MHz, with a center wave-
length of A ;=890 nm. The pump beam was incident normal
to the plane of the ABR devices, and focused through the
transparent sapphire substrate with ax3®.A.=0.42 mi-

i croscope objective. Owing to the mixed-order design, the
B e e L e 500 0nm— radial component of a wave resonant with the grating com-
pletes a full optical cycle between successive grating “peri-
FIG. 2. Scanning electron microscope images of ABR structure teged. 0ds.” Thus, light diffracted vertically from consecutive peri-
Taken after HI/Ar ICP-RIE step, and Sj@nask removal. The radial defect ods has phase differences ofr2and therefore interferes
is the sixth ring from the centefb) Magnified image of semiconductor constructivel)?.l The vertically emitted photoluminescence

rings, taken after epitaxial transfer process and optical adhesive etcz - : .
Brighter regions are the top and side surfaces of the semiconductor ring PL) signal was collected from the side opposite to the pump,

dark regions are the trenches from which the adhesive was removed. TH4SING @ 20X (N.A.=0.42 microscope objective. The col-
HI/Ar etch process results in very smooth and vertical sidewalls. lected PL was then focused into a multimode optical fiber
and fed into an optical spectrum analyzer. Measurements
) ) ) _ were performed at room temperature.
lar rings, taken after adhesive removal, is shown in Fig).2 Emission spectra obtained under several pump intensi-
Comparison of the two SEM images shows that exposure t@es are illustrated in Fig. 3, showing multiple lasing modes.
the NF;/O, plasma generated no additional roughness on thghe wavelength resolution was 1 nm. Evidence for observa-
semiconductor surfaces. tion of laser action from this device is given by a clear
While Bragg reflectors in Cartesian coordinates requirghreshold occurring at-860 «W, as shown in the insét—L
gratings with a constant pité'ﬁ,it has been shown that the curve. The pump spot was defocused to a diameter of
optimal cylindrical Bragg reflector requires a “chirped” grat- ~16 um and centered over the resonator, to ensure even
ing, in which the grating pitch changes as a function ofjllumination of the radial defect. Under these conditions, two
radius.” Since optical emission and gain from the compres-istinct groups of lasing modes were observed. At low pump
sively strained quantum wells favor TE-polarized electricpower (P,=1.17 mW, P,=1.52 m\Wj, resonances af;
fields? the ABR devices fabricated used gratings designed-1588.7 nm\,=1614.0 nm, and;=1562.6 nm, dominated
for this polarization. In order to simplify the design calcula- the spectrum. The FSR of this first group of modes was
tions, an effective index.z=2.8 (found with a numerical ~255 nm. At an increased pump power of 1.77 mW, an
mode solverwas used for the TE-polarized slab mode in theadditional mode at\,=1622.2 nm appeared, and &,
transferred InGaAsP membrane. The Bragg reflectors were2,06 mw, a mode ax;=1601.4 nm appeared. These new
of mixed order, with second-order high-index and first-ordermodes were attributed to a second group, owing to their nar-
low-index layers, and were designed for reflection at a centefower linewidth and smaller FSR 0£20.8 nm. Further in-
wavelengthh =1550 nm. The grating pitch was chirped from crease in pump intensity resulted in increased emission from
0.91 to 0.81um from the inner to the outer perimeter. The this second group of modes, with emission from the first
width of the high-index semiconductor defect was Oid8,  group showing saturation. A weak featurengt 1538.0 nm,
chosen for a first-order defect, and the defect radius wabelonging to the first group, appeared at the highest pump
7.72 um. The Bragg reflectors were composed of five peri-powers. Linewidth measurements taken from below thresh-
ods to the inside of the radial defect, and ten periods to theld PL spectra revedD factors up to 1000.
outside. In the vertical emission measurement configuration used
A resonator of the above-mentioned design was pumpetlere, the two distinct groups of lasing modes exhibited dif-
by pulsed optical excitation, using a mode-locked Ti:sapferent polarization characteristics. The modes of the first

phire laser emitting~100 fs full width at half maximum group were circularly polarized while the polarization state
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