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Abstract: Verticillium (Verticillium dahliae Kleb.) wilt is one of the most devastating diseases affecting
olive (Olea europaea L. subsp. europaea var. europaea) cultivation. Its effective control strongly relies on
integrated management strategies. Olive cultivation systems are experiencing important changes
(e.g., high-density orchards, etc.) aiming at improving productivity. The impact of these changes
on soil biology and the incidence/severity of olive pests and diseases has not yet been sufficiently
evaluated. A comprehensive understanding of the biology of the pathogen and its populations,
the epidemiological factors contributing to exacerbating the disease, the underlying mechanisms
of tolerance/resistance, and the involvement of the olive-associated microbiota in the tree’s health
is needed. This knowledge will be instrumental to developing more effective control measures to
confront the disease in regions where the pathogen is present, or to exclude it from V. dahliae-free
areas. This review compiles the most recent advances achieved to understand the olive–V. dahliae

interaction as well as measures to control the disease. Aspects such as the molecular basis of the
host–pathogen interaction, the identification of new biocontrol agents, the implementation of “-omics”
approaches to unravel the basis of disease tolerance, and the utilization of remote sensing technology
for the early detection of pathogen attacks are highlighted.

Keywords: biological control agents; breeding for resistance; defoliating and non-defoliating;
integrated disease management; Olea europaea; organic amendments; pathogen detection; soil
microbiota; vascular disease; Verticillium dahliae

1. Introduction

Olive (Olea europaea L. subsp. europaea var. europaea) is cultivated between latitudes 30◦ and 45◦

in Mediterranean-type climate regions of both hemispheres, a tree crop integrating an unique set
of morphological and developmental characteristics suited to the relatively dry, rustic conditions of
these geographical areas [1,2]. Olive is the most iconic tree in the Mediterranean Basin, with huge
economic, social, and ecological importance [3]. The multiple uses of cultivated and wild (O. europaea

L. subsp. europaea var. sylvestris Brot.) olives as a source of food, wood, and cattle fodder explain the
spread of olive groves with the expansion of human civilization [2]. Approximately 10.5 million ha are
currently devoted to olive cultivation around the world, the Mediterranean Basin accounting for 98%
of this surface [3]. Spain is the leading producing country of olive oil and table olives, Tunisia ranks
second, followed by Italy, Turkey, and Greece (data from the 2017/2018 cropping season available at the
International Olive Council database, [4]). Andalusia region, at the southernmost part of the Iberian
Peninsula, concentrates the largest cultivation area of this tree crop [5].

During the last two decades, changes introduced in modern olive cultivation systems have
revolutionized this crop, mostly aiming to increase yield [6,7] and production [8,9] and to improve
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management and mechanization practices [10]. For instance, the development of super high-density
hedgerow orchards [11] (Figure 1) and the use of drip irrigation systems are modifying the traditional
olive landscape built over millennia in the Mediterranean countries. While these benefits are desirable,
the increasing reduction in the number of cultivars or practices such as high inputs of fertilizers or
fungicides may have detrimental consequences, namely the reduction in olive genetic diversity or
harmful effects on the soil microbiota [12,13]. These alterations, coupled with the high vegetation
densities usually present in high-density orchards, may pose problems related to increasing the
incidence and severity of specific olive pests and soil-borne diseases, yet have been insufficiently
evaluated [10,14].

Figure 1. A super high-density hedgerow olive orchard located in Córdoba province (Spain).

Currently, Verticillium wilt of olive (VWO), caused by the hemibiotrophic soil-borne fungus
Verticillium dahliae Kleb., is considered one of the most devastating olive diseases and a major limiting
factor for olive oil production. Besides economic losses due to tree mortality and fruit yield reduction,
the negative effect on the commercial value of virgin olive oil has been recently demonstrated because
of the poor organoleptic properties from fruits of V. dahliae-infected trees [15]. The aim of this review
is to compile and discuss the most recent advances to enhance our knowledge of the olive–V. dahliae

pathosystem and the efforts to control the spread and effects of the disease. We will focus on the literature
produced during the last ten years (Figure 2). For general aspects related to the biology and genetics of
the pathogen, epidemiological factors contributing to the expansion of the disease, and the strategies
for its control, interested readers are kindly invited to consult the earlier comprehensive reviews by
López-Escudero and Mercado-Blanco, Tsror, Jiménez-Díaz and co-workers, and Mercado-Blanco and
López-Escudero [16–19].



Plants 2020, 9, 735 3 of 31

Figure 2. Tag-cloud showing the most relevant keywords cited in the bibliography consulted to produce
this review article. The figure was built using a free online word cloud generator [20]. The importance
of each tag is visually weighted according to its frequency of use. The acronyms used are defined as
follows: Arbuscular Mycorrhizal Fungi (AMF), Biocontrol Agents (BCA), Confocal Laser Scanning
Microscopy (CLSM), Defoliating (D), Essential Oils (oils), Ethylene (ET), Gas Chromatography–Mass
Spectrometry (GCMS), Horizontal Gene Transfer (HGT), Induced Systemic Resistance (ISR), Integrated
Disease Management (IDM), Jasmonic Acid (JA), Loop-Mediated Isothermal Amplification (LAMP),
Non-Defoliating (ND), Organic Amendments (OA), Plants Extracts (extracts), Plant Growth Promotion
(PGP), Reactive Oxygen Species (ROS), Salicylic Acid (SA), Systemic Acquired Resistance (SAR),
Transcription Factor (TF), Unmanned Aerial Vehicle (UAV), Vegetative Compatibility Groups (VCG),
Verticillium Wilt of Olive (VWO), Water Disinfestation (Water), World Olive Germplasm Bank (WOGB).

2. Modern Olive Cropping Systems and Verticillium Wilt: Finding the Balance
between Management Practices and Disease Risk

Over centuries, the traditional olive landscape was shaped under the low precipitation irregular
rain regimes usually found in Mediterranean-type climatic conditions. During the last couple of
decades, however, olive cultivation systems have experienced significant changes aiming to increase
productivity and facilitate mechanization [11]. This has led to a different concept of the olive orchard
coupled with more efficient management practices. Thus, the traditional low-tree-density olive
orchard managed under rainfed conditions (Figure 3) is being replaced in some areas by high-density
(250-400 trees/ha) or super high-density hedgerow orchards (1500-2200 trees/ha), (Figure 1) along with
highly efficient drip irrigation systems [11].



Plants 2020, 9, 735 4 of 31

Figure 3. The traditional olive trees landscape in the Mediterranean Basin. Olive cultivation is part
of the history, culture, landscape, and economy of this region. It is a tree crop well adapted to
Mediterranean climatic conditions.

However, the transition to modern olive cropping systems may pose risks such as the increased
incidence and severity of VWO. Moreover, inadequate agronomic practices can increase the dispersion
of the pathogen, seriously compromising olive production in many growing areas. On one side, this
potentially enhanced exposure to VWO (and other traditional or emergent pests and diseases) may
relate to new planting densities and frames in soils where the disease/pathogen has been already
present, a scenario that is often overlooked from the phytopathological perspective. On the other
hand, it is already known that in many cases the onset of the disease coincides with the reconversion
of olive orchards from dry land to irrigation [21,22]. Two explanations have been proposed, both
supported by experimental evidence. One is based on assays performed with susceptible olive varieties
under controlled and field conditions, which have demonstrated that highly irrigated plots showed
significantly higher VWO incidence than those subjected to reduced irrigation doses [22–25]. Moreover,
the development of disease incidence may be influenced by the number of years since irrigation was
implemented [22,23]. The second explanation relies on reports suggesting that the disease development
is not directly influenced by the irrigation frequency but by the water content in the soil profile.
Indeed, keeping a satisfactory water content level below 24% may delay or slow down the VWO
onset/development [24]. It is worth mentioning that a high percentage of visited olive orchards (93.1%)
in these studies were planted with the susceptible cultivars Picual and/or Hojiblanca [22], both of them
very susceptible to V. dahliae attacks [16]. “Picual” and “Hojiblanca” are commonly used for olive oil
production due to their high productivity and climatic adaptation. The planting of new varieties, such
as “Arbequina” (moderately susceptible) and “Frantoio” (tolerant) may decrease the risk of pathogen
dispersion, since irrigation frequency did not seem to influence the disease progress and low disease
rates have been reported for both cultivars [23].

3. Knowing the Enemy and Its Most Dangerous Representative for Olive: The Defoliating
Isolates of Verticillium dahliae

The reproduction of V. dahliae is strictly asexual. Therefore, the only possible way to exchange
genetic material among its populations is through hyphal anastomosis. Verticillium dahliae isolates
able to anastomose their hyphae and form a stable heterokaryon are compatible, which led to their
traditional classification into vegetative compatibility groups (VCG) [26]. The clonal structure of
V. dahliae populations was first established by using VCG analysis, which was well supported later
on by implementing different molecular marker approaches (see, for instance, López-Escudero and
Mercado-Blanco, 2011 [16], and references therein). The current clonal population structure of V. dahliae

is probably a dual consequence of a selection process due to the adaptation to crops and the clonal
expansion of fit genotypes [27,28]. Single nucleotide polymorphisms (SNP) have been used in recent
years for the genotyping of V. dahliae isolates to assign them to clonal lineages and determine the
populations’ genetic structure [29]. Thus, nine distinct clonal lineages were identified by SNP analysis
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and shown to have originally arisen by recombination [30]. The four main VCGs identified in V. dahliae

are VCG1, VCG2, VCG4, and VCG6, the first three being further divided into subgroups, A and B,
based on the frequency, speed, and vigor of complementation [28]. In addition, supported by molecular
genetic markers, the VCG2B lineage has been subdivided into three genetically distinct lineages,
2B334, 2B824 [30,31], and 2BR1 [30]. Moreover, population genomic analyses of V. dahliae revealed
that clonal lineages historically arose by recombination, particularly lineages 2B334, 2BR1, and 6 [30].
Nevertheless, the assumption that isolates within a given VCG comprise genetically related isolates
originating from a common ancestor has been questioned [31]. Phylogenetic analyses of individual
and combined datasets indicated that for some V. dahliae VCG, this assumption is not necessarily true.
Indeed, VCG may comprise a genetically heterogeneous group of isolates that are phylogenetically
distant. VCG subgroups 1A and 1B are closely related and share a common ancestor [31]. However,
isolates from VCG2A and 4B structurally and phylogenetically grouped together and distinctly from
their “sister” VCG subgroups 2B and 4A, respectively [31,32]. In contrast to its clonal population
structure, genes involved in meiosis were recently identified in the V. dahliae genome. This evidence
suggested that V. dahliae has reproduced sexually in the past and, more interestingly, may still retain
this potential [30,33].

It is well known that the severity of VWO attacks depends on the virulence of isolates that infect
the tree. Focusing on V. dahliae isolates infecting olive, two pathotypes differing in their virulence level
are traditionally described which correlate with specific VCG and clonal lineages: the defoliating (D)
and the non-defoliating (ND) pathotypes. This classification is based on their ability to cause the severe
defoliation of the tree (D pathotype) or a moderate wilting syndrome (ND pathotype) [16,34]. A second
type of pathogenic variation in V. dahliae is based on the presence of two pathogenic races. Race 1
is defined by the presence of the effector gene Ave1, which confers avirulence to cultivars of tomato
that carry the resistance gene Ve1. This gene encodes pattern-recognition receptors that recognize
products encoded by Ave1, leading to a defense response against infection by race 1. In contrast,
race 2 strains evade recognition due to the loss of Ave1 and are able to infect Ve1 host plants [27,35].
The latest advances in understanding the relationships among pathotypes, races and lineages of
V. dahliae reveal a degree of complexity. Isolates of race 1 belong to the lineage 2A and ND pathotype.
The finding of race 1 in a single clonal lineage with identical Ave1 sequences is consistent with the
hypothesis that race 1 arose once in V. dahliae. Under this scenario, the hypothesis suggests that
V. dahliae acquired Ave1 from plants by horizontal gene transfer [35]. Molecular markers and virulence
assays confirmed the well-established fact that the D pathotype is found only in lineage 1A, and all
isolates in lineage 1A have the D pathotype [27]. Nevertheless, race 2 comprises seven lineages (1A,
1B, 2B334, 2B824, 2BR1, 4A, and 4B) and both pathotypes (D and ND); consequently, their understanding
remains more complex [27]. Undoubtedly, a more comprehensive knowledge of relationships among
the races, pathotypes, and clonal lineages will be of great help in VWO resistance breeding programs,
aiding to identify and/or generate olive genotypes able to better cope with infections caused by more
virulent isolates.

4. Understanding the Molecular Bases of the Verticillium dahliae-Olive Interaction

Our knowledge of the biology and genetics of V. dahliae, as well as of the molecular bases of its
interaction with different hosts, has hugely advanced during recent years. Major breakthroughs in
V. dahliae research are due to the development and implementation of Next Generation Sequencing
(NGS) approaches (for a review, see, for instance, [36]). Thus, the availability of several Verticillium spp.
genomes [37,38] and the use of comparative genomics [39–41] and whole transcriptome analyses [42,43],
coupled with powerful molecular and microscopy methodologies [44], has enabled the identification of
an increasing number of genes involved in different aspects of V. dahliae pathogenicity and virulence [45].
The number of published studies in this regard is continuously increasing, and their comprehensive
overview is beyond the aim of this review. We will now present a summary of some of the most relevant
aspects. While some of the examples mentioned here refer to different V. dahliae–host interactions,
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the information generated serves well for our review purpose and can be extrapolated to the olive–V.

dahliae pathosystem.

4.1. Microsclerotia: The Main Infective Propagule under Natural Conditions

The biological cycle of V. dahliae when interacting with tree hosts, including the parasitic phase,
has been described earlier [46]. In the particular case of olive, detailed microscopy imagery of the
infection and plant tissue colonization processes is available [47]. It is well known that the natural
infective propagules of V. dahliae (microsclerotia, MS) can endure in soil or plant debris for prolonged
periods of time. This dormant structures can be spread by rain, irrigation water, human and animal
activities, and agricultural tools and machines, distributing the pathogen to distant areas from the
original inoculum source [48]. The infection process, and hence the parasitic phase, begins when MS
germinate upon stimulation by host root exudates [26]. The identification of genes involved in MS
production is thus of great relevance because of the epidemiological and pathogenic importance of
these structures (i.e., central roles in pathogen survival and early steps in the root infection process).
Yet, our knowledge on the genetics of MS production is limited. Since the focus of this review is VWO,
we will just refer to some representative studies, avoiding an exhaustive description of the abundant
literature recently generated on genes involved in MS biogenesis, as well as the relation between MS
and virulence and the importance of the melanization process in MS generation. Interested readers are
kindly invited to consult the available contributions on these issues (e.g., Luo et al. 2014; Luo et al.
2016 [45,49]).

Duressa and co-workers [50] identified more than 200 differentially expressed genes (DEG)
involved in MS biogenesis, including pigment synthesis and secondary metabolism, cell growth,
morphogenesis and cell death-related genes, carbohydrate-active enzymes and transport proteins. It is
worth mentioning that nearly 50% of the identified DEG corresponded to hypothetical protein-coding
genes, stressing the need to investigate many functions and processes yet to be uncovered. It has
been demonstrated that VdHog1 and VdUDG mutants exhibited the reduced production and delayed
maturation of MS [51]. The disruption of the VdUDG gene also inhibited spore formation [52].
The APSES proteins form a conserved class of transcription factors (TF) that control different aspects of
the disease cycle, regulating the morphogenesis and other cellular processes in pathogenic species. In a
recent study, the deletion of the APSES family TF Vst1 directly affected the development of V. dahliae

MS as well as melanization and sporulation processes [53]. Similarly, the deletion of two nuclear TF,
VTA3 and SOM1, led to MS alteration. The VTA3 deletion strain produced less MS than the wild type,
and the SOM1 deletion strain was unable to form MS [54]. The involvement of additional TF such as
basic leucine zipper (bZIP) TF has been investigated as well. For instance, the expression of one bZIP
(VDAG_08640) that significantly increased during MS development [55] showed as down-regulated in
the corresponding deletion mutant (VdMcm1) [56]. VDAG_08640 was also differentially up-regulated
in a MS-forming strain of V. dahliae compared with a strain impaired in MS production [50]. While bZIP
TF VDAG_08640 and VDAG_08676 were differentially expressed during MS development, the deletion
of either gene did not affect MS formation. However, altered phenotypes such as the reduction in
conidia production and virulence were observed in a VDAG_08676 mutant but not in a VDAG_08640
mutant [57].

It is well established that the development of fully functional MS in V. dahliae is linked to the
biosynthesis of fungal dihydroxynaphthalene (DHN) melanin during the MS maturation process [58].
An impairment in synthesizing melanin implies a lack of MS production [50]. Besides this, there is
a correlation between reduced MS and pigment production and the low survival of V. dahliae [59].
Therefore, the study of genes involved in these two highly connected processes can shed light on
pathogenicity and virulence. Nevertheless, the relationship between melanization and V. dahliae

virulence seems sometimes contradictory. Indeed, melanin-deficient mutants commonly show reduced
virulence, also correlated to their inability to produce MS [49,59], although this rule does not always
apply [60].
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Finally, the role of autophagy in soil-borne fungal biology and physiology has also been studied,
although its involvement in these processes is still poorly understood. Of particular interest is how
autophagy processes have evolved in plants and phytopathogens in relation to defense and infection
strategies, respectively [61]. The results obtained with two autophagy-associated genes are worth
mentioning. Indeed, while phenotypes of V. dahliae mutants lacking either VdATG8 or VdATG12 genes
(related to autophagy) showed similar MS to those generated by the wild-type strain, they showed an
altered aerial hyphae development and reduced conidiation [62].

4.2. Understanding the Olive–Verticillium dahliae Interaction

Soil-borne pathogens have developed different strategies to successfully invade the host plant [63].
Regarding to V. dahliae, a number of genes involved in fungal adhesion or root penetration have been
described in recent years [54,64]. Interestingly enough, some of these genes are also involved in MS
production (see above), stressing the fact that the production of these resting structures, pathogenicity,
virulence, and host infection are processes intimately interconnected [36]. Our knowledge on the
physiological, biochemical, and genetic mechanisms underlying the olive–V. dahliae interaction has
increased during the last decade. Indeed, different aspects related to pathogenicity and virulence as
well as host tolerance/resistance to VWO were recently unveiled.

To successfully invade the host, the pathogen must first overcome a physical defense barrier
composed of lignin, a major component of the plant cell wall, and suppress the activity of secondary
metabolites and antimicrobial compounds released by the host as part of the defense response
deployed against the invader. Therefore, the production of cell wall-degrading enzymes is one of the
pathogenicity factors contributing to Verticillium wilts [65]. Once the pathogen is able to surmount the
mechanical defense layer of the roots, it invades the xylem vessels, impairs water transport, and causes
the typical wilt syndrome, with symptoms such as early senescence, chlorosis, necrosis, stunting,
defoliation, and, in some cases, the death of the plant (Figure 4) [26,34,66,67].

Figure 4. Symptoms observed upon the artificial inoculation of the defoliating pathotype of
Verticillium dahliae in olive plants cultivar Picual. (A) Chlorotic and distorted leaf; (B) partial severe
defoliation (affecting some stems) of green leaves; (C) fully defoliated dead plant; (D) olive plants
may undergo the so-called natural recovery phenomenon (see, for instance, López-Escudero and
Mercado-Blanco, 2011 [16]).

The loss of hydraulic conductivity is attributed to vessel occlusion by tyloses and gels produced
by the plant as a response to the infection by the pathogen aiming to halt its spread [66,68]. Cavitation
induced by vascular pathogens also reduces water conductivity in the xylem due to the air filling of the
vessels [69]. Starch hydrolysis is considered a mechanism to restore the hydraulic conductivity after
cavitation. The degradation of starch in the parenchyma cells of the xylem produces soluble sugars
that are released into the vessels, thereby promoting an osmotic flux of water into their lumen [67,70].
The correlation between the starch content and density of occluded vessels has been recently studied
in olive cultivars differing in susceptibility to VWO [67]. The results showed that the infected plants of
the susceptible cultivars Arbequina and Picual displaying moderate to high disease severity levels,
presenting an increase in the density of occluded vessels. In contrast, the starch content decreased
in these cultivars. Interestingly, in the resistant cultivar Frantoio, the starch content and density of
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the occluded vessels in the stem did not differ from the control plants. This may be explained by a
quick defense response and the activation of physical and chemical mechanisms in the root and basal
stem of this cultivar [67,71] that restricted the shoot colonization and, consequently, the effect of vessel
cavitation and occlusion [67]. In this regard, upon pathogen attacks plants have developed a set of
defense mechanisms such as the induction of the antioxidant system, activation of defense signaling
pathways by production of reactive oxygen species (ROS), and reinforcement of the cell wall by the
deposition of lignin and suberin at the site of infection [72]. While ROS are molecules highly toxic for
the plant cells that increase under stress situations, they also act as signaling molecules involved in
pathogen defense responses [72,73]. After V. dahliae inoculation, a significant H2O2 burst was observed
in olive plants, especially in resistant cultivars [72]. During the first stage of the infection process,
resistant and moderately susceptible olive cultivars maintained high levels of H2O2, while susceptible
cultivars showed a significantly lower content [72,73]. To dissipate the toxic effects of ROS, plants
have developed a set of highly regulated enzymatic and non-enzymatic mechanisms [72–74]. For
instance, the observed significant increase in superoxide dismutase activity in the resistant cultivar
Sayali evidenced the importance of this enzyme in the antioxidative defense mechanism of the olive
plant against V. dahliae infection. In addition, a suppression of catalase activity was reported in the
pathogen-inoculated resistant cultivar two days after inoculation (DAI), which could explain why
this cultivar accumulates much more H2O2. By contrast, the significant up regulation of catalase
and ascorbate peroxidase activities from four DAI in the inoculated plants of the susceptible cultivar
Chemlali may explain why this cultivar did not display an ROS burst [72,73].

Chitin is the main component of the pathogen cell wall. Thus, cell wall-degrading enzymes such
as chitinases and β-1,3-glucanase are generally involved in the plant defense against fungal pathogens.
Indeed, chitinase and β-1,3-glucanase activities were induced earlier in the resistant cultivar Sayali than
in susceptible “Chemlali” plants. The early up-regulation of genes coding for both enzymes allowed
the host to anticipate the spread of the pathogen, restricting its growth at the site of infection [72].
Finally, polyphenols, soluble sugars, and lignin content were positively correlated with the resistance
level of the cultivars. The higher concentrations of these compounds in resistant cultivars suggest their
implication as key factors in olive defense against V. dahliae [68,73,74].

The activation of plant defense pathways is also mediated by the plant hormones salicylic acid
(SA), jasmonic acid (JA), and ethylene (ET), which are well known to play central roles in the defense
against pathogens. The up-regulation of SA-related genes was simultaneously accompanied by the
H2O2 burst in the resistant cutivar Sayali. Meanwhile, the analysis of the expression patterns of JZIM

(jasmonate ZIM domain) and bHLH (BHLH binding factor responsive to JA) revealed that both genes
were strongly induced in “Sayali” but not in “Chemlali” (susceptible). Likewise, an ET response
factor (ERF) was strongly induced at the early stage of infection in the resistant cultivar but not in
the susceptible one, suggesting that ET may play a role in the enhancement of olive resistance to
V. dahliae [72].

Nevertheless, an in-depth knowledge of the mechanisms underlying the response of olive plants
to V. dahliae attack, as well as those related to resistance to VWO, requires further molecular and
physiological analyses, providing a more holistic perspective. The availability of powerful NGS-based
methodologies has undoubtedly helped in this endeavor. Earlier, and by using Suppression Subtractive
Hybridization (SSH), many genes differentially expressed during the interaction of the D pathotype
with the tolerant cultivar Frantoio were identified [71]. The expression pattern of some of them was then
evaluated over time upon inoculation with V. dahliae in other cultivars differing in susceptibility to VWO.
For instance, the expression pattern of GRAS1, a TF involved in plant response, was down-regulated in
tolerant cultivars. On the contrary, “Picual” plants (VWO susceptible) showed a sharp decrease in
GRAS1 expression levels over time. Similarly, the expression of DRR2 (coding for a disease resistance
response protein) was down-regulated in tolerant cultivars but up-regulated in “Picual” plants [71].
Thus, the differential expression patterns of these two genes were proposed to be used as markers of
the tolerance level of olive cultivars to V. dahliae.
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Later on, and by using RNAseq, the co-transcriptomes of V. dahliae (D pathotype) and olive
(cv. Picual) were generated from a time-course experiment aiming to determine the responses of both
the host and the pathogen during the early moments of the interaction [43]. Up to date, this is one of the
few examples so far available of a co-transcriptome study, offering the unique opportunity to analyze
the genetic dialogue established between a pathogen and its host at the whole transcriptome level.
A newly assembled olive transcriptome was further generated upon enrichment with the transcriptome
generated during the interaction of “Frantoio” plants with the same D isolate, eventually generating
the so-called “PicFra” transcriptome. The main conclusion of these studies was that VWO tolerance
displayed by “Frantoio” plants is a consequence of a complex and multifaceted process in which both
the basal and early V. dahliae-induced differential transcriptomic responses are involved [75]. Moreover,
the transcriptomic response of the pathogen was also different depending on the cultivar with which
it interacts. Indeed, the comparative quantification of V. dahliae mRNA amounts indicated that the
biomass of the pathogen was significantly higher in the roots of “Picual” than in those of “Frantoio”.
By extension, a very high number of V. dahliae unigenes coding for niche-adaptation, pathogenicity,
virulence, and MS development were induced in “Picual” plants [42]. Analyzing transcriptomic data
from the pathogen and the host, it can be concluded that VWO susceptibility can be largely explained
by the absence of basal and some pathogen-induced transcriptomic responses in susceptible varieties,
thereby favoring the proliferation of the pathogen, enhanced transcriptional activity, colonization,
and further dissemination in host tissues [42]. These results are in agreement with those from other
studies in which the biomass of the pathogen was also more abundant in the roots and stems of
VWO-susceptible olive cultivars than in resistant ones [68,73]. A somehow similar scenario has been
reported in resistant wild olive compared with “Picual” plants. In this case, the mean amount of
V. dahliae D pathotype DNA in the stem tissues of this susceptible cultivar was >90 times higher than
the highest mean value scored in the resistant wild olive clones “Ac-13”, “Ac-18”, and in cultivar
Frantoio [76].

The lineage-specific (LS) regions are genome sequences, unique or shared among a subset of strains,
that contain hundreds of genes [77]. Moreover, these LS regions are enriched in in planta-induced
putative effector genes and transposable elements [39,78]. Genomic studies have provided evidence
supporting that these regions significantly contribute to virulence and niche adaptation [39,78,79].
Recently, the deletion of seven genes, designated as VdDf genes and encoded in an LS region, produced
the non-defoliating phenotype on cotton, olive, and okra [80]. The complementation of two of them
restored the D phenotype. Thus, this study enabled the association of strain-specific LS regions (LSRs),
called G-LSR2, to the D pathotype of V. dahliae. Furthermore, the gen VdDf7 shared homology with
proteins involved in the biosynthesis of N-lauroylethanolamine (N-acylethanolamine (NAE) 12:0),
a compound that induces defoliation [80].

Finally, the application of crude extracts containing Verticillium toxins has been demonstrated
to elicit plant defense responses in olive. Indeed, crude extracts from representatives of the D and
ND pathotypes induced the curling of leaves and browning of olive twigs in tolerant (Frantoio) and
susceptible (Leccino) cultivars. Defoliation eventually was observed in both cultivars. Overall,
the symptoms were similar to those observed when both cultivars were naturally infected by
V. dahliae [81,82]. In addition, the phytotoxic metabolites present in the crude extracts were able to
induce physiological changes affecting the transpiration stream, cell membrane integrity, and chemical
defenses associated with plant secondary metabolites involved in stress resistance/tolerance [82].

5. Advances in Verticillium dahliae Detection

VWO is widely distributed worldwide and its devastating effects are well known. Disease
management becomes difficult due to the presence of MS that remain dormant for long time in
the soil. In addition, infected but asymptomatic plants favor, among other epidemiological factors,
the silent spread of the disease. New detection and diagnosis technologies have been developed
and implemented, complementing and improving approaches already available and mostly based on
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different PCR-based procedures [16,34]. These are essential for the early detection of VWO, even when
symptoms are not yet visible, as the first crucial step in the integrated disease management strategy.

5.1. Detecting the Pathogen: From Remote Sensing

The visual inspection of VWO symptoms in the field, particularly at early stages of the disease
development, may constitute an expensive and time-consuming endeavor. This is due to the usually
large size of olive orchards in some regions and the unfeasibility of performing disease diagnosis tests
for each tree. Currently, the use of remote sensing constitutes a revolutionary technology employed
in assessing crop status under field conditions, enabling the detection of the pathogen even at early
stages of disease development. Remote sensing is a set of advanced technologies based “on the
information obtained from an object without physical contact, by measuring the electromagnetic energy
reflected/backscattered or emitted by the surface of the target object” [83]. The spectral measurements
acquired by portable instruments, called proximal sensing, are also included in this definition [83].
These methods are rapid, non-destructive, and cost-effective, enabling the user to collect data rapidly
compared to the usually time-consuming diagnosis/detection by ground-based techniques [84,85].
As mentioned above, V. dahliae infects the plant through the roots and colonizes its vascular system,
blocking the water flow to the aboveground organs and eventually leading to the characteristic wilting
syndrome [16]. This effect translates to changes in the spectral reflectance in the aerial organs of the plant,
changes that can be measured. For instance, a decrease in the transpiration rate due to the occlusion
of xylem vessels induces stomata closure, thereby reducing evaporative cooling and increasing the
canopy temperature. In addition, the reduction in photosynthesis caused by V. dahliae infection leads
to an increase in the dissipation of energy by fluorescence [85]. The use of thermal, multispectral,
and hyperspectral imagery acquired with unmanned aerial vehicles (UAV) represents a useful approach
to detect VWO at early stages of disease development. Information provided by these indexes goes
a step further and can be used as indicators to detect and differentiate the presence of moderate to
severe damage caused by V. dahliae attacks [86]. Therefore, the data obtained by UAV showed that
normalized olive canopy temperature, chlorophyll fluorescence, and blue/blue–green/blue–red ratios
(B/BG/BR indices) were found to be the best indicators of early stage infection by the pathogen, while
the Photochemical Reflectance Index (PRI), structural, chlorophyll, and carotenoid indices detected
only moderate to severe V. dahliae infections [85,86]. Furthermore, a very recent study even included
the use of indices derived from RGB (red-green-blue) images for the first time to assess VWO in
combination with control strategies, such as the use of organic amendments [84].

Despite the advantages discussed here, the main challenge these techniques must face is the
accurate differentiation between biotic and abiotic stresses leading to the same effects. Verticillium dahliae

infection directly affects the physiological status of the olive tree, causing effects that can also be produced
by abiotic stress (i.e., drought), or even by other vascular or root-damaging pathogens. Notwithstanding
these current limitations, remote sensing is predicted to be the principal methodological approach for
data acquisition from agricultural fields, assisting in the early diagnosis of diseases such as VWO.

5.2. To on Ground Diagnosis

Even though remote sensing techniques are becoming (and will definitively be) more relevant,
the traditional molecular methods for detecting the target pathogen, both in planta and in soil,
remain the most frequently used diagnosis tools. The latter are more accessible to farmers and
agricultural extensionists, and usually allow the unequivocal detection of the pathogen. As mentioned
above, the pathogen infection may cause similar symptoms to those produced by other abiotic/biotic
stresses. In addition, many plants can be infected but remain asymptomatic [87,88], or may recover
from symptoms later on [89], hindering their detection and promoting the spread of the disease.
Advances in the diagnosis and detection of VWO have been mostly focused on the improvement
of the detection threshold of the pathogen and on the refinement (i.e., accuracy and effectiveness)
of the available procedures [90]. There is a study regarding in planta detection and, to the best
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of our knowledge, advances relating to the improvement, evaluation, and comparison of available
PCR-based approaches [87]. This exhaustive and comparative study concluded that some of the
published real-time qPCR protocols were not truly specific for V. dahliae, or were ineffective when
used in a plant tissue extracts background. The available literature about V. dahliae detection in soil
has been moderately enriched during the last few years. Yet, traditional identification based on PCR
procedures is the most frequent methodological approach. This relies on the isolation and purification
of DNA collected from soil samples that is then subjected to PCR protocols using specific primers.
Alternatively, V. dahliae can be grown from soil samples using appropriate culturing media and then
morphologically and molecularly identified [16]. To overcome some of the limitations of these methods,
mainly aiming at reducing the costs for insufficiently equipped labs, a loop-mediated isothermal
amplification (LAMP)-based procedure was developed with satisfactory results [91]. Besides being
more cost effective (no need of expensive equipment), the DNA purification step is skipped. The LAMP
technique is growing in popularity for the detection of many human, animal, and plant pathogens [92].
However, the available information on its use in V. dahliae detection is still limited. Due to the need to
detect the least amount of MS per soil sample, a method that combines the conventional wet-sieving [93]
with SYBR Green I-based real-time qPCR, namely the wet-sieving qPCR method [94], has revealed as
an useful tool to quantify V. dahliae in soil samples. This method can consistently quantify V. dahliae

propagules at as low as 0.5 MS/g in soil, which is sensitive enough for most research studies and
practical applications. Compared with other techniques, this is also the lowest detection limit among
assays currently available for V. dahliae, as the addition of a TaqMan probe has reported a detection
limit of 1-2 MS/g in soil [95].

Finally, a peculiar way to detect V. dahliae has been investigated. Microorganisms are able to
produce a broad range of metabolites, including volatile organic compounds (VOC). These compounds
are mostly undetectable by humans but some animals, among them domestic dogs, are able to detect
these substances present even at very low concentrations. Remarkably, one study has explored the
possibility of detecting V. dahliae by exploiting the highly sensitive olfactory sense of dogs. A specifically
trained canine unit was thus able to detect the pathogen with a 97% success rate and 95% specificity
under a controlled working environment. A preliminary assay with real infected trees showed excellent
effectiveness, with the dogs providing positive responses for 19 out of 20 olive trees affected by
VWO [96]. To our knowledge, this is the first study reporting the detection of V. dahliae by the emission
of specific VOC. Despite the novelty of this methodology, it is undeniable that more studies will be
necessary for its implementation. Moreover, since VOC production can be affected by plants, microbes,
environmental conditions, etc., this methodology seems to be difficult to standardize. In addition,
to corroborate the presence of the pathogen, detection by molecular methods will be necessary.

6. Advances in the Management of Verticillium Wilt of Olive

The effective control of Verticillium wilt is very difficult for reasons comprehensively reviewed
elsewhere [16,18,19]. The true fact is that recent surveys and reports continuously alert about the spread
of the disease to new areas or about the increase in its incidence and severity in regions where the
pathogen is present, particularly due to the growing prevalence of the highly virulent D pathotype [97].
Therefore, the well-known epidemiological factors contributing to its expansion (the diversity of
efficient dispersal method, the use of infected planting material, inadequate agronomical practices,
etc.) are still in effect, despite all efforts made by scientists, extension personnel, and diligent farmers
to handle the disease and hamper the dispersion of the pathogen. In addition, the endurance of MS in
soil, the long lifetime of trees permanently exposed to V. dahliae-infective propagules, the broad range
of hosts, the absence of methods to cure infected trees, and the presence of pathotypes (D and ND)
displaying differential virulence explain the difficulty of managing the disease. The implementation
of an integrated disease management framework is thus the only way to either successfully “live
with the problem” (in areas where the pathogen is present) or to avoid its spreading to new areas
where olive is being cultivated. This holistic approach, combining both preventive (pre-planting) and
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palliative (post-planting) measures, is the best strategy to confront the disease and mitigate pathogen
dispersal [16]. We now offer an overview on recent advances in VWO control measures.

6.1. The Continuous Search for Sources of VWO Tolerance/Resistance

The development of VWO tolerant/resistant genotypes has become a major objective for
olive breeding programs [98]. The use of resistant cultivars is considered as the most economic,
environmentally friendly, and efficient control measure for the disease, and efforts to search for
new resistant genotypes and/or evaluate available cultivars were previously reviewed [16,19].
Unfortunately, most of the olive cultivars so far evaluated are susceptible or extremely susceptible to
the pathogen, particularly those that are broadly cultivated in olive growing areas (e.g., “Arbequina”
and “Picual”) [99,100]. During the last 15 years, many olive cultivars with interesting agronomical and
commercial characteristics have been assessed as to their VWO resistance level [100]. In this sense,
the World Olive Germplasm Bank located in Córdoba (Spain), as well as other germplasm collections
elsewhere, represents an excellent source of cultivars and wild genotypes to be screened for disease
tolerance/resistance [101,102].

One of the main problems the studies evaluating new cultivars face is the difficulty to replicate
both the pathogen infection process and the disease development under (usually variable) natural
conditions. Moreover, to find a correspondence between the results obtained under controlled and field
conditions constitutes a true challenge. The amount of V. dahliae inoculum applied or present in infested
soils [100,103], different inoculation [102,104] and inocula production [105] methods, or different
temperatures [106] are variables that may influence the onset, incidence, severity, and virulence of the
disease. When performing olive genotype evaluations under field conditions, the scenario becomes
even more complex, since assays can be largely influenced by highly variable environmental, climatic,
and pedological factors as well as different crop management practices [24]. While widely used
cultivars are unfortunately susceptible to VWO (see above), others such as “Empeltre”, “Koroneiki”,
“Changlot Real”, and “Frantoio” have demonstrated high levels of tolerance to the D pathotype of
V. dahliae under controlled [98,107] and field [100] conditions. Nonetheless, in this latter scenario, VWO
symptoms were detected in some of the plants [100]. Besides this, the cultivars Escarabajillo, Menya,
and Sevillana de Abla have been shown to display high levels of resistance to the D pathotype as
well, performing even better than “Frantoio” under greenhouse conditions [102]. Results from field
experiments are still needed to confirm the level of resistance to VWO in these local cultivars.

Some studies have focused on the identification of potential new sources of resistant
cultivars/genotypes which are only grown in very specific geographical areas [76,108,109]. For example,
the Greek cultivar Kalamon was classified as resistant (greenhouse experiment) to the D pathotype [110].
In contrast, the Iranian indigenous cultivars Rowghani, Marry, and Zand were classified as susceptible
under the same experimental conditions. In Spain, the cultivars Cornezuelo de Jaén, Verdial de
Badajoz, Jaropo, Negrillo de Estepa, Jabaluna, Ocal de Alburquerque, Asnal, and Racimal were
reported as resistant or tolerant under greenhouse conditions, all of them showing just minor disease
symptoms [111]. These results are promising, although it must be taken into account that, in addition
of being resistant to the disease, desirable agronomic traits such as short juvenile period, early
bearing, industrial suitability, high oil content, and the diversity of olive oil composition must also be
present/preserved in the new selected varieties [112,113]. However, these resistant cultivars are rather
local and will be unlikely used in commercial olive production. Indeed, the choice of a given cultivar
for establishing new olive orchards is mainly driven by edaphic and climatic conditions, certificates of
geographical origin for oil production, and market requirements [76]. By implementing crossbreeding
techniques, new cultivars or well-established cultivars with modified/improved phenotypic traits can
be developed. For instance, “Sikitita”, the result of a cross between “Picual” (susceptible to VWO) and
“Arbequina” (moderately susceptible to VWO) was the first cultivar adapted to high-density hedgerow
orchards [112]. Unfortunately, this variety has been reported as moderately susceptible to VWO [98].
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Therefore, its use in old or newly established orchards should be limited to soils where the presence of
V. dahliae is discarded.

Regarding breeding for VWO resistance, different studies have confirmed that the cultivar Frantoio
confers a high level of resistance to V. dahliae to its progeny under artificial conditions [108]. However,
not all resistant cultivars conferred resistance to their offspring. For instance, the cultivars Changlot Real
and Empeltre, qualified as resistant to V. dahliae [98,100,107], mostly generated susceptible offspring in
greenhouse experiments when they were used as genitors, even from crosses among them, presumably
due to incompatibility phenomena [98].

Wild olive germplasm constitutes an interesting and valuable source of resistant genotypes to the
D pathotype of V. dahliae [76,114]. Fifty-six genotypes, including wild olives from the related subspecies
O. europaea subsp. guanchica (indigenous from Canary Islands) and genotypes originating from crosses
between “Picual” and wild olive trees were evaluated under controlled conditions upon inoculation
with a representative isolate of the D pathotype. Thirteen genotypes, two of them belonging to subsp.
guanchica populations, three genotypes from one of the “Picual” x wild olive crosses, and eight wild
olives from different locations were classified as resistant [114]. In this way, the wild olive genotype
and its progenies, even from crosses with the susceptible “Picual”, represent a source of resistance to
VWO. Moreover, this was the first report of resistant guanchica genotypes. In view of these promising
results, the use of wild olive genotypes opens new avenues in the search of sources of resistance to
V. dahliae. Nevertheless, it is worth mentioning that the main goal of these studies is the identification
of highly resistant rootstocks adapted to V. dahliae-infested soils and capable of satisfying farmers’
and consumers’ demands for high yield and good oil quality. Currently, none of the resistant wild
olives are being used in commercial fields. The validation of these cultivars as resistant to other
olive diseases could increase their interest. For instance, the VWO-resistant wild olive clones “Ac-13”
and “Ac-18” [76] were evaluated in co-inoculation experiments (V. dahliae and the phytopathogenic
nematode Meloidogyne javanica). Unfortunately, the experiments did not yield promising results. Both
of the clones were susceptible to M. javanica, although they retained their resistance to V. dahliae [115].
This fact validates the claim that both clones could be excellent rootstocks and of paramount importance
for the production of agronomically adapted and commercially desirable olive cultivars. Related to
this, Vertirés® [27,76], a trademark of different types of grafted olives over clones “Ac-13” and “Ac-18”
that is highly resistant to all the pathotypes and races of V. dahliae was developed. In addition, the roots
of Vertirés® are treated with the biocontrol fungus Trichoderma asperellum, which also protects against
the soil-borne oomycete Phytophthora spp. and the mycorrhizal fungus Rhizophagus irregularis (formerly
Glomus intraradices) in order to reinforce the root development and better tolerate water stress [116].

Finally, genetic transformation can be a useful approach for the development of resistance
against several plant pathogens. Aspergillus giganteus is known to produce one protein with
antimicrobial activity called antifungal protein (AFP). This protein interrupts the normal behavior of
the plasma membrane, and may enter the host cell and promote the neutralization and condensation
of DNA [117]. The xpression of the afp gene in transgenic plants effectively controlled pathogens such
as Fusarium graminearum in wheat [118], Rosellinia necatrix in olive [119], and Magnaporthe grisea in
rice [120]. Nevertheless, the constitutive expression of the afp gene in olive did not protect against
VWO [119]. In a recent study, transgenic olive plants expressing the NPR1 gene from Arabidopsis thaliana

were generated to evaluate their differential response to V. dahliae. The NPR1 gene is a key regulator
in the systemic acquired resistance (SAR) pathway. Regrettably, the heterologous expression of the
NPR1 gene in transgenic olives did not confer resistance to the D pathotype of V. dahliae, although it
improved the plant response to the ND pathotype [121].

6.2. The Key Is in the Water Treatment

As discussed above, irrigation water is a demonstrated dispersion source of V. dahliae infective
propagules, contributing to increases VWO disease incidence and severity in some areas. Therefore,
avoiding the spread of V. dahliae by irrigation systems must be a key measure within integrated disease
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management frameworks [48]. The use of sand filters failed to prevent the spread of V. dahliae through
the drip-irrigation systems of olive orchards [122]. Consequently, efforts to implement feasible water
disinfection strategies have been conducted during recent years. Adding commercial disinfectants
to irrigation water has revealed an excellent measure to control and reduce the viability of V. dahliae

propagules, reaching in some cases up to 100% effectiveness [123–125].
Hydrogen peroxide is classified as an environment-friendly disinfectant, with a broad spectrum

of activity and absence of persistent toxic by-products [126]. OX-VIRIN® and OX-AGUA AL25® are
two commercial water disinfectants based on hydrogen peroxide in combination with other oxidizing
and non-oxidizing agents, respectively. In addition to the advantages mentioned above, they can be
applied in a wide range of circumstances. Indeed, the application of OX-VIRIN® and OX-AGUA
AL25® produced a decrease in MS viability both under in vitro conditions [123,124] and in V. dahliae

naturally [123] or artificially infested [127] soils. Likewise, the effectiveness of the treatments was
verified in soil with plants by evaluating the VWO development. Thus, “Picual” and “Arbequina”
plants inoculated with V. dahliae and subjected to these disinfectants showed a lower disease incidence
compared with the untreated ones in experiments conducted in controlled growth chambers [125].
Under field conditions, olive trees transplanted into a soil previously treated with the disinfectants
effectively withstood the disease [128]. Similarly, a reduction in symptoms and disease incidence was
found in olive trees transplanted into an artificially infested soil subjected to disinfestation with respect
to untreated water control [127]. Moreover, the addition of these disinfectants neither affected the
growth parameters (shoot weight and foliar area) nor caused phytotoxicity [125,127] and, surprisingly,
improved the growth of the trees [127]

In conclusion, water treatment with disinfectants may constitute a very effective approach to
control the dispersion of V. dahliae propagules within an integrated VWO management strategy.
On the one hand, it can considerably reduce the inoculum level of V. dahliae in irrigation water
(suppressive measure). On the other hand, it can prevent both the introduction of pathogen propagules
in V. dahliae-free areas and the increase in the inoculum density in already infested soils (preventive,
exclusion measure).

6.3. Heat Treatments in Sanitation of Olive Plants

The knowledge of the most favorable soil temperature range for the onset and development
of VWO is instrumental to developing new approaches to manage the disease. It is well known
that MS are the most thermotolerant structures of V. dahliae [129]. In addition, MS constitute one of
the best sources to spread the disease. Therefore, any attempt to reduce the number of viable MS
constitutes a key element to control Verticillium wilts, including VWO. It has been demonstrated
that MS are better produced at 20±5 ◦C under laboratory controlled conditions [130]. Experiments
carried out in greenhouse conditions showed that soil temperature is critical for VWO development.
Thus, infection by the D pathotype was promoted by soil temperatures in the 16-24 ◦C range in the
cultivar Picual and in the 20-24 ◦C range in “Arbequina” plants. For infections caused by the ND
pathotype, soil temperatures ranging from 16 to 20 ◦C were the most favorable ones [131]. In all cases,
the disease incidence, disease severity, and extension of the stem vascular colonization decreased when
the soil temperature increased up to 32 ◦C. The application of heat treatments has been studied to
reduce or eliminate different pathogens in citrus species [132,133], grape [134,135], or pecan crops [136].
The evidence of VWO control by heat treatment was documented by Morello and workers [137]. In this
study, V. dahliae was eliminated from infected 1-year-old olive plants after moist hot air treatments
(42-44 ◦C for 6–12 h). This treatment is simply based on the reliable monitoring of temperature and is
not time consuming.

6.4. Organic Amendments: A Second Life for Agricultural Waste to Control VWO

Large amounts of agro-industrial products are produced during, for instance, the processing of
olives, grapes, or cork. These sub-products (e.g., the semisolid residue from the extraction of olive oil
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by the two-phase system (i.e., solid olive oil waste), grape marc, cork waste, and lactic acid), while
posing serious environmental problems may have advantages and the potential to improve soil health
and help in the control of soil-borne diseases [138].

The particular case of sub-products from the olive oil production process constitutes a serious
management problem due to their phytotoxicity and semisolid nature [139]. Consequently, the huge
amount of this residue generated in olive-producing countries needs urgent economic, environmentally
friendly and sustainable approaches for its proper management. Strategies to explore new uses of this
organic waste are thus encouraged [140–143]. Indeed, several studies highlight the added value of
these wastes as fertilizers when added to the soil due to their high organic matter and mineral contents.
In addition, the suppressive effects of olive mill waste water against soil-borne plant pathogens (e.g.,
Fusarium solani, Rhizoctonia solani, Sclerotinia sclerotiorum, V. dahliae . . . ) has also been studied [140,144].

Organic amendments (OM) include solid and liquid materials, or mixtures of them, with a highly
diverse composition and from a wide range of animal and plant origins. Composting is usually required
to reduce their phytotoxicity prior to their use. They are applied as natural fertilizers, contributing
to reducing heavy inputs of synthetic agrochemicals, thereby minimizing residues originating from
farming activity. Despite the numerous advantages of OM, their use in controlling VWO has not been
frequently reported, although some examples are available [145,146]. Recently, the ability to reduce the
mycelial growth and MS viability of V. dahliae by five OM from olive oil waste compost, cow manure,
vermicompost and two commercial compost teas, and combinations among them, was evaluated [145].
Results showed that the application of OM, especially solid olive oil waste compost and compost tea,
inhibited or reduced the viability of V. dahliae MS in soil as well as the disease incidence in olive plants.
Similarly, the co-compost of olive mill waste and olive leaves delayed the onset of VWO symptoms in
“Arbequina” plants compared with a standard substrate (coir fiber). Interestingly, grape marc compost
and a co-compost of olive mill waste and olive leaves reduced the number of infective MS in the olive
rhizosphere [147].

The effectiveness of OM is sometimes a consequence of synergies with other substances or
microorganisms, resulting in much better results compared with those obtained when the OM is used
alone [148]. For instance, the addition of lactic acid to the solid olive oil waste compost provided a
consistent reduction in MS viability [145]. In other cases, the effectiveness of the OM is determined
by the addition of a particular microorganism. In this way, the mixture of olive mill waste with
Bacillus amyloliquefaciens and Burkholderia cepacia produced a much better control of VWO compared
to that observed with the use a T. asperellum TV1-based biofungicide [146]. The application of these
amendments at the nursery stage may pose interesting practical advantages, mostly from the economic
and efficiency points of view. However, further studies under natural field conditions are essential to
demonstrate their effectiveness against VWO [149].

The ability to suppress VWO by using OM relies on different mechanisms that are yet insufficiently
understood. The inhibition of the pathogen’s growth may be attributed to biocontrol exerted by specific
components of the microbial communities present in the OM and/or that are stimulated upon the
addition of the OM to the soil, by means of antibiosis, competition, or parasitism [150,151]. The different
physical-chemical properties of OM, such as variations of pH; EC (dS/m); the concentration of K+, Ca+,
PPO4

3, N-NO3
-, and N-NH4

+; enzymatic diversity; β-glucosidase activity; oxygen uptake rate; or
phosphatase activity may influence the effectiveness of OM treatments and may be used as predictors
of the suppressive capacity of these composts against V. dahliae [147,152,153].

6.5. The Continuous Search for Effective Biological Control Agents Against VWO
and the Mechanisms Involved

Biological control represents an interesting, sustainable, and environmentally friendly approach
within the integrated management strategies of VWO. Recently, Deketelaere and co-workers [154]
have comprehensively and critically reviewed the use of biocontrol agents to confront Verticillium
wilts in general. We now focus on the recent advances on this topic for the particular case of VWO.
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The genome of the well-known BCA against VWO Pseudomonas fluorescens PICF7 has been
sequenced [155]. Regarding the mechanisms involved, a mutant analysis has revealed that neither
siderophore (pyoverdine) production nor swimming motility are required for the biological control
activity of strain PICF7 against V. dahliae. Moreover, these phenotypes are not involved in the ability
of PICF7 to colonize the olive root interior either [156]. Interestingly enough, the strain PICF7 is also
able to reduce Verticillium wilt symptoms in the model plant A. thaliana [157] and to promote plant
growth in a distant plant species such as barley (Hordeum vulgare L.) [158]. In contrast, no growth
promotion was observed in wheat (Triticum aestivum L.), even though the strain PICF7 displayed
similar endophytic behavior in both cereals. However, no evidence of endophytic colonization by
PICF7 was found in A. thaliana. Similarly to the results obtained for olive, siderophore production
and swimming motility were not involved in the biocontrol of Verticillium wilt in this model plant.
Finally, evidence of induced systemic resistance against Botrytis cinerea was reported in this study
system [157]. This raised the question of whether systemic defense responses could be effective in
distant tissues upon root colonization by the strain PICF7. Indeed, by using SSH it was demonstrated
that PICF7 is able to trigger, among others, a broad range of defensive responses upon root colonization.
This was not only true at the local level (i.e., roots, the original inoculation site) [159] but also in
aerial tissues [160]. While the up-regulation of genes involved in responses to different stress was
demonstrated, the systemic responses triggered by PICF7 seemed to be ineffective against another
olive pathogen, Pseudomonas savastanoi pv. savastanoi, causing olive knot disease [161]. Later on, and by
using a split-root system, effective biocontrol was not observed when V. dahliae and the strain PICF7
were spatially separated [162]. Overall, these results suggested that VWO biocontrol by PICF7 is likely
a consequence of competition for niche/nutrients, antibiosis, and plant responses triggered by the BCA
that act in a concerted way over time and space.

The search for a novel BCA against VWO is ongoing and promising results have been gathered,
although mostly under controlled experimental conditions. Recently, three new Pseudomonas spp.
strains have been thoroughly characterized, including the genomic level [163,164]. The strains
Pseudomonas sp. PIC25, P. indica PIC105, and Pseudomonas sp. PIC141 were isolated from healthy
nursery-produced olive (cv. Picual) plants. The three strains showed in vitro antagonism against
several olive pathogens, including the D pathotype of V. dahliae. While P. indica PIC105 (for the
first time, a representative of this species was described as a BCA) was the most effective at
antagonizing olive pathogens, in planta assays demonstrated that the strain PIC141 was the most
effective against VWO under non-gnotobiotic conditions, with a comparable performance to that
observed for the well-characterized BCA PICF7. This emphasizes the absolute need to perform in planta
experiments to truly demonstrate the biocontrol effectiveness. In their study, Gómez-Lama Cabanás
and co-workers [163] have proposed a flowchart of actions aiming to isolate, identify, and characterize
novel and effective BCAs from the root/rhizosphere. Obviously, this scheme can be followed in other
soil-borne pathogen–plant scenarios. Field experiments to verify the effectiveness of these BCA under
natural (usually adverse and diverse) conditions are particularly encouraged within this scheme [163].

Bacterial BCA against VWO are not limited to Pseudomonas spp. members. For instance, following
the same scheme of actions mentioned above, three Bacillales strains (PIC28, PIC73, and PIC167) from
the olive rhizosphere were also identified as effective BCAs against the D pathotype [165]. Likewise,
Paenibacillus alvei K165 was earlier demonstrated as an excellent BCA towards VWO, significantly
decreasing the symptoms and severity of the disease on the susceptible cv. Amfissis in greenhouse
experiments. Interestingly enough, the strain K165 was able to suppress VWO and reduce the pathogen
biomass present in the tissues of “Amfissis” trees grown in naturally infested soils [166]. Similar
results were obtained with Bacillus velezensis OEE1, a bacterium capable of significantly reducing the
final mean disease severity index, percentage of dead plants, area under the disease progress curve,
and number of MS in naturally infested soil [167].

Several fungi have been also identified as good BCA against V. dahliae. The non-pathogenic
Fusarium oxysporum FO12 was able to reduce the viability of V. dahliae MS in naturally infested soils. This
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isolate also showed the ability to reduce symptoms in “Picual” plants under controlled conditions [168].
Likewise, treatments with conidial suspensions or chlamydospores of FO12 were effective in reducing
both the inoculum density of V. dahliae in the soil and the VWO severity [169]. As for the biocontrol
mechanism involved, the effect of secondary metabolites produced by FO12 against V. dahliae was
investigated [169,170]. In vitro experiments indicated that the metabolites produced by FO12 had little
effect on the inhibition of V. dahliae mycelial growth, suggesting that the antagonistic effect relies on the
presence of FO12 alive and on a direct interaction with the pathogen [169]. In addition, the production
of VOC by FO12 in the presence of V. dahliae has been reported. Several of these compounds have been
previously involved in antifungal activity and biological control [170].

More fungal and bacterial BCA against V. dahliae can be added to this overview. For instance,
isolates of Blastobotrys or Arthrobacter [144], Achromobacter xylosoxidans [171], Mucor spp., Rhizopus spp.,
or Phoma sp., [168] are examples of genera seldom investigated as BCA. It is worth mentioning that the
particular case of Phoma sp. poses an interesting added value since it can be easily and directly applied
to the aerial part of the olive plant [168]. Secondary metabolites produced by entomopathogenic
fungi such as Metarhizium brunneum and Beauveria bassiana were reported by their antifungal activity
against different plant pathogens, including V. dahliae [172,173]. The use of crude extracts and dialyzed
fractions of both entomopathogenic fungi altered the mycelial growth, MS formation, and conidia
germination in D and ND pathotypes of V. dahliae [172,173]. The effect of a number of environmental
factors such as temperature, UV light exposure, and pH on the antifungal activity of the dialyzed
fraction of M. brunneum was also investigated. The results showed that exposure to pH 7.5 and
8.5 for 24 h caused negative effects on its fungicidal activity, decreasing the inhibitory effect of the
dialyzed fraction against V. dahliae mycelium [173]. This result confirms once again the need to perform
evaluations of promising microorganisms also under field conditions, where climatic, environmental,
and physical-chemical factors can show large ranges of variation.

The ubiquitous fungal genus Trichoderma includes more than 400 species. It has been described as
BCA against many soil-borne plant pathogenic fungi. Some strains from diverse species have shown
the ability to inhibit the growth of V. dahliae, but only a few of them have demonstrated the biocontrol
of VWO. Indeed, the reduction in VWO symptoms and severity in the susceptible cv. Picual has been
reported [168,174,175], as well as the inhibition of V. dahliae mycelial growth by crude extracts [172],
extracellular compounds, or VOC [174,176]. By using fluorescently tagged derivatives of T. harzianum

and V. dahliae, detailed imagery on the colonization process of both microorganisms, their interaction
in olive root tissues, and the possible mechanisms of action of Trichoderma to control VWO have also
been reported in recent years [175,177].

Despite the fact that arbuscular mycorrhizal fungi (AMF) have been investigated for its ability
to control VWO (López-Escudero and Mercado-Blanco 2011, and references therein [16]), only a
few published studies have reported progress on this topic during the last decade [178–180]. Plants
infected with V. dahliae and pretreated with a native AMF consortium (Rhizolive) or with a R. irregularis

(formerly G. irregulare) pure strain significantly reduced the VWO severity and the area under the
disease progress compared with control plants in the cv. Haouzia [179]. In addition, pretreated olive
plants with a new Rhizolive consortium enhanced the root mycorrhizal intensity in the presence
of V. dahliae and decreased the percentage of the pathogen in the roots and stems of olive plants cv.
Picholine Marocaine [180]. This effect has been attributed to a decrease in ROS accumulation and
redox activities mediated by AMF compared with intact roots in contact with V. dahliae that showed an
increase in ROS and nitric oxide. These results evidenced that olive root defense responses differed
depending on whether the interaction takes place with a beneficial (AMF) or a deleterious (V. dahliae)
fungus [178].

Recent trends in the biocontrol of trees (plants in general) diseases are focusing on the development
and use of the consortia of beneficial microorganisms [13,181]. Thus, the combination of different
bacteria is suggested to provide better biocontrol efficacy against VWO compared to the outcomes
observed with individual treatments [165]. The joint application of some of the BCA mentioned
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in this review may serve to develop novel bioproducts. Thus, commercial biofungicides primarily
composed of a mixture of different microorganisms such as Ascophyllum nodosum, Bacillus subtilis Y1336,
Streptomyces spp., Trichoderma spp., or AMF are available. The application of different bio-formulations
allowed the reduction of the incidence of VWO under controlled conditions [182]. Similarly, the
effectiveness of a commercial biofungicide was tested in field conditions, and the tree recovery process
was verified through spectral reflectance data [183].

6.6. The Olive Belowground Microbiota: Yet to Be Fully Uncovered and Understood

The olive belowground microbiota has been largely unknown until very recently. A comprehensive
knowledge of the composition, structure, and functioning of the prokaryotic and fungal communities
associated with olive roots will enhance our understanding of the health, development, and fitness
of this tree crop. Moreover, under the holobiont conceptual framework, innovative perspectives can
be foreseen in areas such as breeding for VWO resistance and the development of novel biocontrol
tools [13,184]. Earlier, the olive associated microbiota was reported as an important reservoir of
microorganism with potential as BCA against VWO [185].

Recently, the use of high-throughput sequencing allowed us to explore the composition and
structure of microbial communities (fungi and bacteria) associated with olive cultivars from different
geographical origins grown under the same climatic, agronomical, and pedological conditions [12].
Data revealed several interesting findings, making it possible to define a rather complete inventory of
the rhizosphere and root endosphere microbiota (fungi and bacteria) associated with olive trees [12].
The results showed higher alfa diversity in the rhizosphere compared to that observed in the root
endosphere. While previous studies revealed the importance of the geographical origin in building up
the endophytic prokaryotic communities found in olive leaf tissues [185], our study concluded that
the genotype, rather than geographical origin, is the main factor in shaping the olive belowground
microbial communities. Moreover, the genotype is more determinant in the rhizosphere than in the
root endosphere, and more crucial for the bacteriota than for the mycota [12]. The study also revealed
that Actinophytocola was the most abundant genus inhabiting olive roots, followed by the genera
Streptomyces and Pseudonocardia. Research efforts should be aimed at isolating and characterizing
members of these relevant components of the olive belowground microbiota due to their potential role
in contributing to the health and stress tolerance of olive trees. Concerning fungal communities, the
results showed that a high percentage of sequences remained unclassified (10.7% in the root endosphere
and 35.4% in the rhizosphere), which highlights the fact that the fungal diversity associated with
olive roots is yet to be discovered. The prevalent classes present in the olive root endosphere were
Sordariomycetes and Eurotiomycetes, while Agaricomycetes, Eurotiomycetes, and Sordariomycetes were the
predominant classes in the rhizosphere. Future research efforts should also be aimed at isolating and
characterizing members of these relevant components of the olive belowground mycota [12].

The results from the previous study enabled the characterization of the olive root-associated
microbial communities in the absence of V. dahliae pressure. Yet, two important questions remained to
be answered. On the one hand, it was uncertain whether the composition, structure, and functioning
of these communities differ depending on the VWO tolerance level of olive cultivars. On the other
hand, it was not known either what changes, if any, the root endosphere and rhizosphere microbial
communities of olive cultivars with different VWO tolerances undergo upon inoculation with V. dahliae.
Therefore, the objective of a very recent study aiming to address these questions was to assess whether
the belowground microbial communities of cultivars Frantoio (VWO tolerant) and Picual (VWO
susceptible) contribute to their differential disease susceptibility level [184]. Comparing the microbial
communities of non-inoculated plants of each cultivar, some interesting differences were observed.
At the phylum level, a higher abundance of beneficial genera was found in the root endosphere
communities of the cv. Frantoio. In contrast, the “Picual” roots showed a major abundance of potential
deleterious genera (e.g., Fusarium, Macrophomina, and Rhizoctonia). Consequently, the presence of
harmful representatives of these genera could somehow increase the susceptibility of “Picual” roots to
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V. dahliae attacks. The introduction of V. dahliae did not provoke significant alterations either in the
structure or in the functionality of the belowground microbial communities of any of the cultivars
assessed. However, notable differences were found in their networks in response to the pathogen
inoculation. Indeed, the analysis of the co-occurrence interactions revealed relevant topological
alterations, mostly in the root endosphere after inoculation. Thus, the communities of the cv. Frantoio
switched to a highly connected and low modularized network, while “Picual” communities showed
sharply different behavior. Furthermore, the VWO-susceptible cv. Picual showed a higher increase in
the number of negative interactions (e.g., competition and antagonism) than that observed in “Frantoio”
plants. These results may explain, at least to some extent, the differential VWO susceptibility displayed
by the tested olive cultivars [184]. Moreover, the triggering of a successful disease state in olive
cultivars seems to be not only due to the complex global processes [42,75] taking place just between V.

dahliae and olive, nor to the changes in co-occurrence interactions within the belowground fungal and
bacterial communities upon interaction with the pathogen [184]. Recently, and by using a systems
biology approach and metatranscriptomic analysis of the previously generated RNAseq data [43], a
much more complex scenario has been unveiled. Indeed, additional components of the belowground
biodiversity (i.e., amoebae, ciliates, and nematodes) can also play important roles, both in time and
space, which still remain to be correctly interpreted [186].

6.7. Plant Extracts, Essential Oils, and Seaweeds

Some plant extracts and essential oils can exert an effective control of plant pathogens [187,188]
and insect pests [189,190]. These compounds are advantageous in terms of sustainability, mode of
action, and low or null toxicity to be included in integrated management strategies [191]. However,
regarding the control of Verticillium wilts in general and VWO in particular, only a few studies are
available. For instance, the hydro-distilled essential oil from the leaves of Juniperus thurifera L. was able
to inhibit the mycelial growth of different phytopathogenic fungi, including V. dahliae [192]. Similarly,
the variable in vitro mycelial growth inhibition of S. sclerotiorum, F. oxysporum, and V. dahliae was
observed with essential oils extracted from Vaccinium myrtillus L., Laurus nobilis L., and Eucalyptus

camaldulensis Dehnh [193,194]. Finally, a study compared the antifungal effect of essential oils and
plant extracts of Mentha piperita L., Thymus vulgaris L., and Lavandula angustufolia Mill., showing that
essential oils provided better results for their ability to inhibit mycelial growth [195]. These results
showed that a detailed knowledge of the chemical composition of the essential oils is needed to develop
new effective formulas against plant pathogens. To the best of our knowledge, only one study has
been performed to evaluate the effectiveness of plant extracts and essential oils against V. dahliae in
olive plants [191]. The results showed that the essential oil from Thymus sp. 04 showed a remarkable
inhibition of mycelial growth and MS viability, as well as a significant reduction in VWO.

Seaweeds have a high polysaccharide content which is involved in early signaling processes
through the activation of secondary metabolic pathways [196]. The use of seaweeds in the biological
control of VWO has been seldom investigated. The effect of the application of potential elicitors
like alginate and laminarin (brown algae), carrageenan (red algae), and ulvan (green algae) over
phenylalanine ammonia-lyase (PAL) and lignin contents has been investigated. An increase in PAL
activity was detected after ulvan or laminarin application in the twigs of olive cv. Picholine Marocaine.
In addition, PAL is correlated with cell wall lignification and phenolic compound accumulation. In this
respect, the lignin content increased significantly in twigs treated with alginate, carrageenan, or ulvan.
Morevoer, twigs treated with alginate, laminarin, and ulvan experienced a 50% reduction in vascular
browning [197].

7. Conclusions

What did we learn about VWO and its control during the last decade? This is the question
proposed in the title of our review article. According to the main research efforts conducted and here
summarized, we think that some answers can now be provided. First of all, VWO is still one of the most
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serious diseases affecting olive cultivation in many areas, particularly within the Mediterranean Basin.
This is an unquestionable fact according to the available reports, even though a new emergent vascular
pathogen for olive (i.e., Xyllela fastidiosa, causing the olive quick decline syndrome) is devastating
specific olive growing areas [198]. Undoubtedly, the latter may represent an added serious biotic
constraint for the future of this tree crop in the main olive growing countries [199], where VWO is (or can
be) also present. Secondly, olive cropping systems have experienced significant changes during recent
decades, aiming to improve mechanization, yield, and quality. However, the impact that this huge
step forward for modernizing the traditional olive cultivation system has on traditional and emerging
diseases/pests has seldom been evaluated. Moreover, the consequences of these modern practices
on the health of soils and on the belowground olive-associated microbiome must not be overlooked.
Therefore, research efforts should be conducted in this regard. Thirdly, the early and accurate detection
of V. dahliae is crucial to successfully confront the disease. Sophisticated and accurate molecular
diagnosis procedures are currently available, providing pathogen detection thresholds unimaginable a
few years ago. The irruption of remote sensing technologies constitutes an air-borne defense strategy to
control the disease at large scales, although efforts are still necessary to overcome potential misdetections
with other biotic and abiotic stresses. Nevertheless, complementation with PCR-based approaches can
overcome these problems. Fourthly, irrigation water has been demonstrated as an effective way to
disperse infective propagules of V. dahliae over large distances. Therefore, the disinfection of irrigation
water should be considered as a key control measure, among others traditionally proposed, to hinder
the introduction of the pathogen to V. dahliae-free areas or to avoid the increase in propagules in
endemic areas.

The implementation of an integrated management strategy is the best way to deal with the disease
(Figure 5). During the last decade, a considerable body of knowledge has been generated on issues such
as screening, evaluation, and breeding for new genotypes/cultivars showing tolerance to VWO, their
use being the most sustainable and economically plausible control measure. It must be emphasized
that these efforts must be complemented with and assisted by a comprehensive knowledge of the
races, pathotypes, and clonal lineages of V. dahliae. Likewise, a comprehensive understanding of the
molecular and genetic mechanisms underlying the olive–V. dahliae interaction will be instrumental
in VWO breeding programs. Thanks to the huge amount of data generated by the development
and implementation of “-omics” approaches, the dialogue established between the host and the
pathogen seems now to be better understood, as well as that taking place between them and the
accompanying olive-associated microbial communities. Related to this, the contribution that the
belowground microbiota seem to make in tolerance to VWO must not be neglected. Nevertheless,
more efforts are needed to fully unveil the (i) complexity of this pathosystem, (ii) the multiplicity of
factors influencing the onset and severity of VWO, and (iii) reasons for the inconsistency of control
measures such as biocontrol, particularly at the field level. The disease must thus be confronted from a
holistic perspective and within the holobiont conceptual framework.
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Figure 5. An idealized compilation of the available Verticillium wilt of olive control measures described
in this review to be implemented within an integrated management strategy. (A) Use of spectral
technologies coupled with drones or UAV for the early detection of the disease at a large scale (modified
form an image kindly provided by Dr. J.A Jiménez Berni, IAS-CSIC, Córdoba); (B) identification based
on molecular methods; (C) dogs trained for the detection of Verticillium dahliae volatile compounds;
(D) heat treatments; (E) organic amendments; (F) biological control agents; (G) the use of plant extracts
and essential oils; (H) water disinfection treatments; (I) new sources of tolerance/resistance.
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