
Verus: A Tool for Quantitative Analysis of
Finite-State Real-Time Systems

S. Campos E. Clarke W. Marrero M. Minea
August 12, 1996
CMU-CS-96-159

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Revised version of the paper appearing in the proceedings of the ACM Workshop on Languages, Compilers
and Tools for Real-Time Systems, La Jolla, CA, June 1995

Abstract

Symbolic model checking is a technique for verifying finite-state concurrent systems that has been extended to handle
real-time systems. Models with up to 1030 states can often be verified in minutes. In this paper, we present a new tool
to analyze real-time systems, based on this technique. We have designed a language, called Verus, for the description of
real-time systems. Such a description is compiled into a state-transition graph and represented symbolically using binary
decision diagrams. We have developed new algorithms for exploring the state space and computing quantitative information
about the system. In addition to determining the exact bounds on the delay between two specified events, we compute
the number of occurrences of an event in all such intervals. This technique allows us to determine performance measures
such as schedulability, response time, and system load. Our algorithms produce more detailed information than traditional
methods. This information leads to a better understanding of the behavior of the system, in addition to verifying if its timing
requirements are satisfied. We integrate these ideas into the Verus tool, currently under development. To demonstrate how
our technique works, we have verified a robotics control system. The results obtained demonstrate that our method can be
successfully applied in the analysis of real-time system designs.

This research was sponsored in part by the National Science Foundation under grant no. CCR-9217549, by the Semiconductor
Research Corporation under contract 96-DJ-294, and by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel
Command, USAF, and the Advanced Research Projects Agency (ARPA) under grant F33615-93-1-1330.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of NSF, SRC, or the U.S. government.

Keywords: real-time systems, formal verification, symbolic model checking, rate monotonic scheduling,
quantitative timing analysis, robotics controller

1 Introduction

Model checking is a technique for specifying and verifying finite-state concurrent systems [4, 5]. It determines

automatically if a system satisfies its specifications. Models with up to 1030 states can often be verified in minutes

by using symbolic techniques [2, 11]. The method has been used successfully to verify a number of real-world

applications. For example, it has been used to find errors in the Futurebus+ cache coherence protocol, adopted

as a standard by both IEEE and the U.S.Navy [6].

Many real-time systems can be represented by finite-state models. In [3] we have shown how to apply symbolic

model checking techniques to analyze finite-state real-time systems. The method presented in that paper differs

significantly from other verification methods. It computes quantitative timing information about a model rather

than just determining whether it satisfies a given specification or not. The algorithms therein provide insight into

how well a system works, in addition to determining its temporal correctness.

In this paper, we extend our technique in two ways. Variations of the previously described algorithms are

discussed. The original algorithms compute the exact lower and upper bounds on the amount of time that elapses

between two events. Alternatively, we may be interested not only in the length of the time interval between

two events, but also in the number of times a third event occurs within such an interval. For example, priority

inversion time may be determined by computing the number of time steps executed at lower priority levels from

the moment a high priority process requests execution until it has finished. We describe in detail algorithms

to compute such information. The addition of these algorithms increases the power and applicability of our

technique.

We also extend our previous work by defining a new language, Verus, for describing real-time systems. This

language has been specifically tailored to simplify the expression of real-time properties and constraints. Verus

provides special primitives to express timing aspects such as deadlines, priorities and delays. Nondeterminism is

also supported, which allows partial specifications to be described. The syntax of Verus resembles the C language

syntax, since we believe that the familiarity with a well known language will enable non-experts to use the new

tool more efficiently.

Finally, we integrate all these ideas into a tool for the analysis and verification of real-time systems, the Verus

tool, currently under development. The real-time application being analyzed is described in the Verus language.

This description is then compiled into a labeled state-transition graph that formally models the behavior of the

system. The quantitative algorithms described above can be used to analyze its behavior. Moreover, a CTL

symbolic model checker [11] is implemented to augment the power of the tool. This model checker has been

extended to handle the RTCTL logic [7], allowing the expression of time bounded properties.

To demonstrate how our tools work, we verify a robotics example derived from [10]. The robot we describe

is used in nuclear reactors to measure the shapes of pipes by moving around them with a distance sensor. Its

controller consists of a set of periodic processes that control each subsystem of the robot. We model this

controller, and use the algorithms described in this paper to gather timing information about it. We determine

the schedulability of the system using this data. Moreover, the type of information computed by our algorithms

1

allows us to identify inefficiencies, to suggest optimizations to the design, and to analyze the performance of

these proposed changes.

Several other methods for analyzing real-time systems exist. The rate monotonic scheduling theory (RMS) [13,

10] proposes a schedulability test based on total CPU utilization. However, there are a number of limitations on the

type of processes that can be analyzed by this method, including restrictions on periodicity and synchronization.

Another approach to schedulability analysis uses algorithms for computing the set of reachable states of a finite-

state system [8, 9]. No restrictions are imposed on the model but the algorithm only checks if exceptions can

occur or not, and other types of properties can only be verified if encoded as exceptions. A symbolic model

checker for real-time systems is proposed in [14]. However, in this approach quantitative information is not

generated, and the verifier only determines if the model satisfies a given property or not.

By contrast, our analysis method only requires that the model be finite-state. Moreover, our algorithms provide

valuable timing information about the system, as opposed to only determining if it satisfies a given property.

This can lead to a better understanding of system behavior and can be essential in improving performance.

The remainder of the paper is organized as follows. The next section discusses the Verus language. In

Section 3 the symbolic algorithms for computing the longest and shortest paths between two state sets are

presented. Symbolic algorithms for counting the number of states that satisfy a given condition along a path

between two sets of states are described in section 4. Section 5 discusses the robotics example and shows how it

can be analyzed using our techniques. Section 6 concludes the paper with directions for future work.

2 The Verus Language

Verus is the language we use to specify the real-time systems to be verified. It is an imperative language with a

syntax resembling that of the C language. Special primitives are provided for the expression of timing aspects

such as deadlines, priorities, and time delays. The data types allowed are integer and boolean. Nondeterminism

is supported, which allows partial specifications to be described. The language constructs have been kept simple,

making an efficient compilation into a state-transition graph possible. This also allows the user to express the

desired features precisely, and thus to optimize the code. Smaller representations can then be generated, which

in our experience is critical to the efficiency of the verification and permits larger examples to be handled.

We briefly describe the syntax of the Verus language using as an example part of the code for the robot

model analyzed in this paper. Periodic execution is described in Verus by the periodic statement, which has

three parameters followed by the code that will be executed periodically. The first parameter is the start time,

which specifies the number of time units before the first execution of the periodic code. In this example it starts

immediately. The second parameter is the period; in this case the statements following periodic execute

once every 40 time units. The last parameter defines a deadline for the code. It specifies that the code must finish

execution in at most 40 time units or an exception is raised. Deadlines can also be defined in a similar manner

without forcing the process to execute periodically by using the primitive deadline.

Passage of time is controlled by the wait statement. For example, in line 12 the motor control task

2

1 motor_control()
2 {
3 boolean start, finish;
4
5 periodic(0, 40, 40) {
6 start = 1;
7 priority(10){
8 data_in = dev_ready & !abort;
9 wait(1);

10 };
11 priority(7){
12 wait(5);
13 data_out = data_in & !abort;
14 };
15 finish = 1;
16 };
17 }

Figure 1: The motor control task

waits for 5 time units before resuming execution. Unlike regular imperative languages, in Verus time passes

only on wait statements. This feature allows a more accurate control of time, and eliminates the possibility of

implicit delays influencing the verification results. It also generates models with less states, since consecutive

statements not separated by a wait statement are compiled into a single change of state. Notice that this feature

affects the behavior of the program significantly. For example, in general, a block of code not containing the

wait statement executes atomically.

The select statement (not used in the sample code) is used to introduce nondeterministic choice into a

program. If, for example, motor control were allowed not to signal end of execution, we could replace

line 15 with finish = select{0,1};. In this case, the value of finish after executing select can

be either 0 or 1. These choices indicate that motor control may signal termination, but does not have to do

so. In this way we can model both possibilities without having to specify all the details that are actually needed

to decide between these two options. Besides hiding unnecessary details, nondeterminism can be used to verify

partial specifications. Whenever the value of a variable hasn’t been determined in the design, nondeterminism

can be used to specify all possible values the variable could take. This approximates the behavior of the actual

system by exploring all possibilities. As the design process evolves, the values can be restricted until the correct

behavior is determined. Nondeterminism encourages the use of automated verification in earlier phases of the

design. Components of the system can be validated before all modules have been specified. In this way errors

can be uncovered before they propagate to components added later in the design.

3 Minimum and Maximum Delay Algorithms

This section presents algorithms for computing minimum and maximum time delays between specified events.

We first describe how a state-transition graph can be used to model the real-time system being verified. A state

v in this model is represented by a vector assigning values to the state variables v1; v2; : : : ; vn. The transition

3

relation N(v; v0) evaluates to true when there is a transition in the model from the state v to the state v0, where

v = hv1; : : : ; vni and v0 = hv01; : : : ; v
0

n
i. A path in the transition graph is defined as a sequence of states

v0; v1; v2; : : : such that N(vi; vi+1) is true for every i � 0. All computations are performed on states reachable

from a predefined set of initial states.

The algorithms described in this work are implemented using symbolic model checking techniques [2]. Boolean

formulas can be constructed from the propositional variables of the model. A formula is said to be satisfied in

a state if and only if the assignment of variable values in the state to the corresponding variables in the formula

makes it true. In general, a formula can be satisfied in many states, and we identify a formula with the set of

states that satisfy it. The transition relation can also be represented by a boolean formula constructed from two

copies of the propositional variables one for the current state and one for the next state. There is a transition

from state v to state v0 if the assignment of the variable values in state v to the current state variables, and the

assignment of variable values in state v0 to the next state variables satisfy the formula.

Our algorithms work on boolean formulas representing sets of states. For example, the formula representing

T (S) = fs0 j N(s; s0) holds for some s 2 Sg, the set of all successors of states in a state set S, can be easily

constructed from the formula for S and the formula for the transition relation in one step, regardless of the

number of states in S and T (S). The fact that all operations consider sets of states instead of individual states

is one of the main reasons for the efficiency of our method. Moreover, boolean formulas are implemented by

binary decision diagrams (BDDs) [1], enabling the use of efficient algorithms for their manipulation [2].

We consider the minimum delay algorithm first (figure 2). The algorithm takes two sets of states as input,

start and final. It returns the length of (i.e. number of edges in) a shortest path from a state in start to a state in

final. If no such path exists, the algorithm returns infinity. Recall that the function T (S) gives the set of states

that are successors of some state in S. The function T , the state sets R and R0, and the operations of intersection

and union can all be easily implemented using BDDs.

proc minimum (start, final)
i = 0;
R =start;
R0 = T (R)[R;
while (R0 6= R ^ R \ �nal = ;) do

i = i+ 1;
R = R0;
R0 = T (R0) [R0;

if (R \ �nal 6= ;)
then return i;
else return 1;

proc maximum (start, final)
i = 0;
R =TRUE;
R0 =not final;
while (R0 6= R ^R0 \ start 6= ;) do

i = i+ 1;
R = R0;
R0 = T�1(R0) \ not �nal ;

if (R = R0)
then return 1;
else return i;

Figure 2: Minimum and Maximum Delay Algorithms

The first algorithm is relatively straightforward. Intuitively, the loop in the algorithm computes the set of states

that are reachable from start. If at any point, we encounter a state satisfying final, we return the number of steps

taken to reach that state.

Next, we consider the maximum delay algorithm. This algorithm also takes start and final as input. It returns

4

the length of a longest path from a state in start to a state in final. If there exists an infinite path beginning in a

state in start that never reaches a state in final, the algorithm returns infinity. The function T�1(S0) gives the set

of states that are predecessors of some state in S0 (i.e. T�1(S0) = fs j N(s; s0) holds for some s0 2 S0g). We

also denote by not final the set of all states that are not in final. As before, the algorithm is implemented using

BDDs, however, a backward search is required in this case.

4 Condition Counting Algorithms

In many situations we are interested not only in the length of a path from a set of starting states to a set of final

states, but also in measures that depend on the number of states on the path that satisfy a given condition. For

example, we may wish to determine the minimum (maximum) number of times a given condition holds on any

path from starting to final states.

Both algorithms in this section take as input three sets of states: start, cond and final. The algorithms compute

the minimum and the maximum number of states that belong to cond, over all finite paths that begin with a state

in start and terminate upon reaching final.

To guarantee that the minimum (maximum) is well-defined, we assume that any path beginning in start must

reach a state in final in a finite number of steps. This can be checked using the maximum delay algorithm

described in the previous section. Finally, we ensure that all computations involve only reachable states, by

intersecting start with the set of reachable states computed a priori.

To keep track at each step of the number of states in cond that have been traversed, we define a new state-

transition system, in which the states are pairs consisting of a state in the original system and a positive integer.

Thus, if the original state-transition graph has state set S, then the augmented state set will be Sa = S � IN.

IfN � S�S is the transition relation for the original state-transition graph, we define the augmented transition

relation Na � Sa � Sa as

Na(hs; ki; hs
0; k0i) = N(s; s0) ^ (s0 2 cond ^ k0 = k + 1 _ s0 62 cond ^ k0 = k)

In other words, there will be a transition from hs; ki to hs0; k0i in the augmented transition relation N
a

iff there is

a transition from s to s0 in the original transition relationN and either s0 2 cond and k0 = k+ 1 or s0 62 cond and

k0 = k. We also define T to be the function that for a given set U � Sa returns the set of successors of all states

inU . More formally, T (U) = fu0 j Na(u; u0) holds for some u 2 Ug. In the actual BDD-based implementation,

an initial bound kmax can be selected to achieve a finite representation for k, and new BDD variables can be

added dynamically if this bound is exceeded. The system is still finite-state because all paths we consider are

finite and k is bounded by their maximum length.

The algorithm for computing the minimum count is given in figure 3. In the algorithm text, Final and Not final

denote the sets of states in final and S � �nal, paired with all possible values of k. More formally:

Final = fhs; ki j s 2 �nal; k 2 INg and Not �nal = fhs; ki j s 62 �nal ; k 2 INg

The algorithm uses R to represent the state set in Sa reached at the current iteration, while Reached final and

R0 are its intersections with Final and Not final respectively. Variable current min denotes the minimum count

5

proc mincount (start, cond, final)
current min = 1;
R = fhs; 1i j s 2 start \ condg [fhs; 0i j s 2 start \ condg;
loop

Reached �nal = R \ Final ;
if Reached �nal 6= ; then

m = minfk j hs; ki 2 Reached �nalg;
if m < current min then current min = m;

R0 = R \ Not �nal ;
if R0 = ; then return current min;
R = T (R0);

endloop;

Figure 3: Minimum Condition Count Algorithm

for all previous iterations. The computation of the minimum value of k in a set of pairs hs; ki can be done

by existentially quantifying the state variables (computing K = fk j 9hs; ki 2 Sg) and following the leftmost

nonzero branch in the resulting BDD, provided an appropriate variable ordering is used.

At iteration i, the algorithm considers the endpoints of paths with i states. The reached states that belong to

final are terminal states on paths that we need to consider. The minimum count for these paths is computed, using

the counter component of the path endpoints, and the current value of the minimum is updated if necessary. For

the reached states that do not belong to final, we continue the loop after computing their successors. If all reached

states are in final, there are no further paths to consider and the algorithm returns the computed minimum.

Finally, we note that the algorithm for the maximum count has the same structure and can be obtained by

replacing min with max and reversing the inequalities. Variants of both algorithms can be used to compute other

measures that are a function of the number of states on a path that satisfy a given condition. For example, we

can determine the minimum and the maximum number of states belonging to a given set cond over all paths of a

certain length l in the state space.

5 A Robotics System

One application of real-time systems that is becoming increasingly common is in robotic systems. Guaranteeing

that tasks are executed within their expected deadline is critical for the integrity of a robot and for the success of

its mission. We show how the computation of quantitative properties can assist in validating such systems. The

example discussed in this section is derived from the one in [10]. It describes a real robot used in nuclear reactors

to measure the shapes of pipes by moving around them with a distance sensor. The robot architecture has three

subsystems, motor, measurement and command (figure 4). The motor subsystem controls the robot movements

and position. The function of the measurement subsystem is to activate and control the distance sensors. Finally,

the command subsystem is responsible for receiving commands from the communication link and sending those

commands to the appropriate tasks.

Each subsystem consists of a set of tasks. The motor subsystem contains one task, motor control. Its

6

servo
read

servo
control

motor control

comm.
read

comm.
interpret

command read
comm.
execute

comm.
process

command proc

buffer

sensor
read

sens read

sensor
control

sens control

control
var.

control flow
data flow

Figure 4: Robot Architecture

function is to receive data from sensors in the servo motors, and actuate them. The task consists of two subtasks,

servo read and servo control. The first one is an interrupt routine that reads data directly from the

physical devices. The second one processes this data and outputs control signals to the motors at a lower

priority. The measurement subsystem has two tasks, sensor read and sensor control. The first task

reads data from the distance sensors and preprocesses it. This information is then sent to sensor control,

which processes it further and outputs the results to a remote system to be analyzed. Finally, the command

subsystem also has two tasks. The command read task receives commands from the communication link and

interprets them. It consists of two subtasks: an interrupt routine, followed by a second subtask of lower priority.

The final task of this subsystem is command process. Its first subtask receives the command interpreted by

command read, and the second one then executes the command. Control variables that are updated by this

subtask are used to communicate commands to all other subsystems.

All tasks are periodic, and their timing requirements reflect the characteristics of the environment in which

the robot works and the robot’s expected response time. These requirements are summarized in table 1. Each

task is presented as a sequence of components, each with a different execution time and priority. A component

may correspond to a subtask, or subtasks may be split in more than one component due to synchronization. For

example, the first components of both motor control and command read correspond to their interrupt

routines and execute at high priorities. Synchronization accounts for the other components. For example, the last

component of command process updates control variables that will be used by other tasks. Interference from

other tasks is avoided by accessing those variables at a high priority level. The other components have been created

to reflect the synchronization pattern between processes sharing data (in this case between sensor read and

7

sensor control), and between command read and command process. Priority inheritance protocols

have been used to avoid priority inversion [12]. These protocols change the priority of the tasks at synchronization

points, thus dividing the tasks into components.

Task Period Exec. times Deadline Priorities
C1 C2 C3 P1 P2 P3

Motor control 40 1 5 - 40 10 7 -
Sensor read 100 10 5 5 100 4 8 4

Sensor control 50 8 12 - 50 5 8 -
Command read 200 10 20 3 200 9 2 3

Command process 400 2 12 10 400 3 1 6

Table 1: Timing requirements for the task set

The Analysis of the Robotics System

We have determined the schedulability of the task set by computing the minimum and maximum response

times for each task. This technique has enabled us to evaluate performance, identify inefficiencies, and suggest

optimizations to the architecture. Using the same algorithms we have analyzed the modified design, and then

evaluated the effects of our changes.

Computing response times for all processes generated the results in table 2. This table shows that the task set is

schedulable. Moreover, the maximum execution times of many tasks are close to their deadlines. This indicates a

high load on the system; it is unlikely that adding more tasks to the task set would produce a schedulable system.

This information allows the designer to optimize or fine tune the system.

Task Deadline Exec. times
min max

Motor control 40 6 16
Sensor read 100 45 95

Sensor control 50 20 49
Command read 200 181 190

Command process 400 219 223

Table 2: Schedulability analysis for original system

Using the results computed by our algorithms, we have been able to suggest changes to the design and

to analyze the effects of such changes. In the original design sensor read generates data that is used

by sensor control. However, the two tasks execute independently of one another. In some cases

sensor control might execute even if data is not yet available. In this case, sensor control uses data

generated by the previous instantiation of sensor read, which may be obsolete. We have changed the system

to avoid this problem and have analyzed the resulting design. The modification consists of making the termination

of sensor read trigger the execution of sensor control. Care must be taken, however, because the pro-

cesses involved have different periods; sensor read executes every 100ms, while sensor control exe-

cutes every 50ms. We change the system so that sensor read signals the execution of sensor control

every 100ms, but sensor control also executes independently 50ms after sensor read runs. In this case

8

one instantiation of sensor control is synchronized with sensor read while the other is independent.

The schedulability analysis of the modified example is given in table 3:

Task Deadline Exec. times
min max

Motor control 40 6 16
Sensor read 100 20 36

Sensor control 50 21 121
Command read 200 91 91

Command process 400 96 296

Table 3: Schedulability analysis for modified system

The new design is not schedulable, since sensor control can take up to 121ms to execute. We can use

the same quantitative algorithms to find out more about the behavior of the system and to correct the problem. A

more detailed analysis reveals that the two instantiations of sensor control have very distinct behaviors.

Whenever executing periodically (and independent of sensor read), sensor control takes between 21

and 121ms to finish. However, whenever executing after sensor read, it takes exactly 26ms to execute in the

modified model. This shows that the periodic execution of sensor control is the bottleneck of the system.

One solution to the problem is simply removing the periodic instantiation of sensor control. This solution

was easily implemented, and the schedulability analysis is presented in table 4:

Task Deadline Exec. times
min max

Motor control 40 6 16
Sensor read 100 20 36

Sensor control 50 26 26
Command read 200 91 91

Command process 400 70 270

Table 4: Schedulability analysis for final system

The system is again schedulable, but now sensor control executes only once every 100ms. Is this a

satisfactory solution? Again, we can use the same algorithms to analyze the modified design. By computing

the time between the end of the execution of sensor read and the beginning of sensor control we

can verify if data produced by the first task is being consumed timely by the second one. In the modified

model this time is between 1 and 7ms, meaning that data produced by sensor read is promptly consumed by

sensor control. Therefore we can conclude that in spite of changing the periodicity of sensor control

we are still maintaining predictability. The condition counting algorithms have also been useful in analyzing

the performance of this model. We have been able to verify how the old periodicity of sensor control

relates to the new model. We can consider all execution paths from the time sensor read starts until

sensor control finishes as the active period for the measurement subsystem. During such a period, how

many times can the 50ms timeout occur? In other words, how many times would sensor control be

activated using the original periodicity during an active period? The result is from 1 to 3 times. We conclude

that the modified system satisfies the original timing constraints, even though it has a lighter load.

9

In this example we were able analyze the behavior of the robot from several perspectives. We have determined

that it would meet its deadlines, but that it was inefficient. We were able to optimize the design and analyze the

performance of the modified design. The example shows that these techniques are both easy to use and versatile

enough to be of great assistance in specifying and verifying real-time systems.

6 Conclusion

This paper describes a tool for computing quantitative properties of real-time systems. A formal state-transition

graph model of the system is constructed from a description written in the Verus language. We show how this

graph can be used to determine the minimum and maximum delay between two events and how to compute the

minimum and maximum number of times a given event can occur on any path between two state sets.

Because our techniques are based on symbolic model checking, they can be applied to designs of realistic

size and complexity. Frequently it is possible to search exhaustively state spaces with 1030 states in a matter of

minutes. We demonstrate the power of these techniques by analyzing a complex robotics system and showing that

its timing requirements are satisfied. In addition, our approach provides the user with quantitative information

rather than simply verifying that a formula is true in the model. In other words, our algorithms can compute

performance measures in addition to verifying correctness. Our techniques can also be used during the design

process itself. In the robot controller example we have shown how the information generated by our algorithms

can be used to suggest optimizations to the system. These modifications can again be analyzed to see how the

system behavior has changed.

There are a number of possibilities for extending the range of problems that can be handled by our techniques.

In the future we intend to augment the model to allow transitions to be labelled with probabilities. Statistics

about different paths in the graph can then be generated. In some cases, we only want paths satisfying certain

properties to be considered by our algorithms. Linear temporal logic formulas seem to be ideal for restricting

the set of paths considered. It is clear that these extensions would make our approach more powerful and would

allow us to handle an even larger class of systems.

References

[1] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers,

C-35(8), 1986.

[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic model checking: 1020

states and beyond. In Proceedings of the 5th LICS, 1990.

[3] S. V. Campos, E. M. Clarke, W. Marrero, M. Minea, and H. Hiraishi. Computing quantitative characteristics

of finite-state real-time systems. In IEEE Real-Time Systems Symposium, 1994.

10

[4] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching time temporal logic.

In Logic of Programs: Workshop, Yorktown Heights, NY, May 1981. LNCS 131, Springer-Verlag, 1981.

[5] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems

using temporal logic specifications. ACM TOPLAS, 8(2):244–263, 1986.

[6] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, and L. A. Ness. Verification

of the Futurebus+ cache coherence protocol. In Proceedings of the 11th CHDL, 1993.

[7] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal reasoning. In Lecture

Notes in Computer Science. Springer–Verlag, 1990.

[8] A. N. Fredette and R. Cleaveland. RTSL: a language for real-time schedulability analysis. In IEEE

Real-Time Systems Symposium, 1993.

[9] R. Gerber and I. Lee. A proof system for communicating shared resources. In IEEE Real-Time Systems

Symposium, 1990.

[10] M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Timing analysis for fixed-priority scheduling of hard

real-time systems. IEEE Transactions on Software Engineering, 20(1), 1994.

[11] K. L. McMillan. Symbolic model checking — an approach to the state explosion problem. PhD thesis,

Carnegie Mellon University, School of Computer Science, 1992.

[12] R. Rajkumar. Task synchronization in real-time systems. PhD thesis, Carnegie Mellon University, Dept. of

Electrical and Computer Engineering, 1989.

[13] L. Sha, M. H. Klein, and J. B. Goodenough. Rate monotonic analysis for real-time systems. In Foundations

of Real-Time Computing — Scheduling and Resource Management. Kluwer Academic Publishers, 1991.

[14] J. Yang, A. Mok, and F. Wang. Symbolic model checking for event-driven real-time systems. In IEEE

Real-Time Systems Symposium, 1993.

11

