Verus. A Tool for Quantitative Analysis of
Finite-State Real-Time Systems

S. Campos E. Clarke W. Marrero M. Minea
August 12, 1996
CMU-CS-96-159

School of Computer Science
Carnegie Méllon University
Pittsburgh, PA 15213

Revised version of the paper appearing in the proceedings of the ACM Wobrkshop on Languages, Compilers
and Tools for Real-Time Systems, La Jolla, CA, June 1995

Abstract

Symbolic modd checking is a technique for verifying finite-state concurrent systems that has been extended to handle
real-time systems. Models with up to 10°° states can often be verified in minutes. In this paper, we present a new tool
to analyze rea-time systems, based on this technique. We have designed a language, called \erus, for the description of
real-time systems. Such a description is compiled into a state-transition graph and represented symbolically using binary
decision diagrams. We have devel oped new a gorithmsfor exploring the state space and computing quantitativeinformation
about the system. |In addition to determining the exact bounds on the delay between two specified events, we compute
the number of occurrences of an event in all such intervals. This technique allows us to determine performance measures
such as schedulability, response time, and system load. Our algorithms produce more detailed information than traditional
methods. Thisinformation leadsto a better understanding of the behavior of the system, in additionto verifyingif itstiming
requirements are satisfied. We integrate these ideas into the Verus tool, currently under devel opment. To demonstrate how
our technique works, we have verified a robotics control system. The results obtained demonstrate that our method can be
successfully applied in the analysis of rea-time system designs.

This research was sponsored in part by the National Science Foundation under grant no. CCR-9217549, by the Semiconductor
Research Corporation under contract 96-DJ-294, and by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel
Command, USAF, and the Advanced Research Projects Agency (ARPA) under grant F33615-93-1-1330.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of NSF, SRC, or the U.S. government.

Keywords: real-time systems, forma verification, symbolic model checking, rate monotonic scheduling,
guantitative timing analysis, robotics controller

1 Introduction

Model checking isatechnique for specifying and verifying finite-state concurrent systems[4, 5]. It determines
automatically if a system satisfiesits specifications. Modelswith up to 10%° states can often be verified in minutes
by using symbolic techniques [2, 11]. The method has been used successfully to verify a number of real-world
applications. For example, it has been used to find errors in the Futurebus+ cache coherence protocol, adopted
as a standard by both IEEE and the U.S.Navy [6].

Many real -time systems can be represented by finite-state models. 1n [3] we have shown how to apply symbolic
model checking techniques to analyze finite-state real-time systems. The method presented in that paper differs
significantly from other verification methods. It computes quantitative timing information about a model rather
than just determining whether it satisfies a given specification or not. The algorithmstherein provide insight into
how well a system works, in addition to determining its temporal correctness.

In this paper, we extend our technique in two ways. Variations of the previously described algorithms are
discussed. The original algorithmscompute the exact lower and upper bounds on the amount of timethat el apses
between two events. Alternatively, we may be interested not only in the length of the time interval between
two events, but also in the number of times athird event occurs within such an interval. For example, priority
inversion time may be determined by computing the number of time steps executed at lower priority levels from
the moment a high priority process requests execution until it has finished. We describe in detail algorithms
to compute such information. The addition of these agorithms increases the power and applicability of our
technique.

We a so extend our previous work by defining a new language, Verus, for describing real-time systems. This
language has been specifically tailored to simplify the expression of real-time properties and constraints. Verus
provides specia primitivesto express timing aspects such as deadlines, prioritiesand delays. Nondeterminismis
a so supported, which allows partial specificationsto be described. The syntax of Verus resemblesthe Clanguage
syntax, since we believe that the familiarity with awell known language will enable non-experts to use the new
tool more efficiently.

Finaly, weintegrate al these ideasinto atool for the analysis and verification of rea-time systems, the Verus
tool, currently under development. The real-time application being analyzed is described in the Verus language.
This description is then compiled into alabeled state-transition graph that formally models the behavior of the
system. The quantitative agorithms described above can be used to analyze its behavior. Moreover, a CTL
symbolic model checker [11] is implemented to augment the power of the tool. This model checker has been
extended to handlethe RTCTL logic [7], alowing the expression of time bounded properties.

To demonstrate how our tools work, we verify arobotics example derived from [10]. The robot we describe
is used in nuclear reactors to measure the shapes of pipes by moving around them with a distance sensor. Its
controller consists of a set of periodic processes that control each subsystem of the robot. We modéd this
controller, and use the algorithms described in this paper to gather timing information about it. We determine
the schedulability of the system using this data. Moreover, the type of information computed by our algorithms

1

allows us to identify inefficiencies, to suggest optimizations to the design, and to analyze the performance of
these proposed changes.

Several other methodsfor analyzing real-timesystemsexist. Therate monotonicschedulingtheory (RMS) [13,
10] proposes aschedul ability test based ontotal CPU utilization. However, thereareanumber of limitationsonthe
type of processes that can be analyzed by this method, including restrictions on periodicity and synchronization.
Another approach to schedulability analysis uses algorithms for computing the set of reachable states of afinite-
state system [8, 9]. No restrictions are imposed on the model but the algorithm only checks if exceptions can
occur or not, and other types of properties can only be verified if encoded as exceptions. A symbolic model
checker for rea-time systems is proposed in [14]. However, in this approach quantitative information is not
generated, and the verifier only determinesif the model satisfies a given property or not.

By contrast, our analysismethod only requiresthat the model befinite-state. Moreover, our algorithmsprovide
valuable timing information about the system, as opposed to only determining if it satisfies a given property.
This can lead to a better understanding of system behavior and can be essential in improving performance.

The remainder of the paper is organized as follows. The next section discusses the Verus language. In
Section 3 the symbolic agorithms for computing the longest and shortest paths between two state sets are
presented. Symbolic algorithms for counting the number of states that satisfy a given condition along a path
between two sets of states are described in section 4. Section 5 discusses the robotics exampl e and shows how it
can be analyzed using our techniques. Section 6 concludes the paper with directions for future work.

2 TheVerusLanguage

Verusis the language we use to specify the real-time systemsto be verified. It is an imperative language with a
syntax resembling that of the C language. Specia primitives are provided for the expression of timing aspects
such as deadlines, priorities, and time delays. The datatypes allowed are integer and boolean. Nondeterminism
issupported, which allows partial specifications to be described. The language constructs have been kept simple,
making an efficient compilation into a state-transition graph possible. This aso allows the user to express the
desired features precisely, and thus to optimize the code. Smaller representations can then be generated, which
in our experience is critical to the efficiency of the verification and permits larger examples to be handled.

We briefly describe the syntax of the Verus language using as an example part of the code for the robot
model analyzed inthispaper. Periodic execution isdescribed in Verusby the peri odi ¢ statement, which has
three parameters followed by the code that will be executed periodically. The first parameter is the start_time,
which specifies the number of time units before the first execution of the periodic code. In this exampleit starts
immediately. The second parameter is the period; in this case the statements following peri odi ¢ execute
once every 40 timeunits. Thelast parameter defines adeadlinefor the code. It specifies that the code must finish
execution in a most 40 time units or an exception israised. Deadlines can also be defined in a similar manner
without forcing the process to execute periodically by using the primitive deadl i ne.

Passage of time is controlled by the wai t statement. For example, in line 12 the not or _cont r ol task

1 rmotor_control ()

2

3 bool ean start, finish;

4

5 periodi c(0, 40, 40) {

6 start = 1;

7 priority(10){

8 data_in = dev_ready & !abort;
9 wait(1);

10 1

11 priority(7)({

12 wai t (5);

13 data out = data_in & !abort;
14 };

15 finish = 1;

16 1

17}

Figure 1: The motor control task

waits for 5 time units before resuming execution. Unlike regular imperative languages, in Verus time passes
onlyon wai t statements. This feature alows amore accurate control of time, and eliminates the possibility of
implicit delays influencing the verification results. It also generates models with less states, since consecutive
statements not separated by await statement are compiled into a single change of state. Noticethat thisfeature
affects the behavior of the program significantly. For example, in general, a block of code not containing the
wai t statement executes atomically.

The sel ect statement (not used in the sample code) is used to introduce nondeterministic choice into a
program. If, for example, not or _cont r ol were allowed not to signal end of execution, we could replace
line15withfini sh = sel ect{O0, 1}; . Inthiscase, thevalueof fi ni sh after executing sel ect can
be either 0 or 1. These choicesindicatethat not or _cont r ol may signal termination, but does not have to do
so. Inthisway we can model both possibilitieswithout having to specify al the details that are actually needed
to decide between these two options. Besides hiding unnecessary details, nondeterminism can be used to verify
partial specifications. Whenever the value of a variable hasn’t been determined in the design, nondeterminism
can be used to specify all possible values the variable could take. This approximates the behavior of the actual
system by exploring all possibilities. Asthe design process evolves, the values can be restricted until the correct
behavior is determined. Nondeterminism encourages the use of automated verification in earlier phases of the
design. Components of the system can be validated before all modules have been specified. In thisway errors
can be uncovered before they propagate to components added later in the design.

3 Minimum and Maximum Delay Algorithms

This section presents algorithms for computing minimum and maximum time delays between specified events.
We first describe how a state-transition graph can be used to model the real-time system being verified. A state
o in this model is represented by a vector assigning values to the state variables vy, v, . . ., v,. The transition

relation N (v, v/) evaluates to true when there is atransition in the model from the state v to the state v, where
T = (v1,...,0,) ad v’ = (v},...,v.). A pathin the transition graph is defined as a sequence of states

To, U1, U2, - . . Such that N (73, 7;77) istrue for every ¢ > 0. All computations are performed on states reachable
from a predefined set of initial states.

Thealgorithmsdescribed inthiswork areimplemented using symbolic model checking techniques[2]. Boolean
formulas can be constructed from the propositiona variables of the model. A formulais said to be satisfied in
astateif and only if the assignment of variable values in the state to the corresponding variables in the formula
makes it true. In general, a formula can be satisfied in many states, and we identify a formula with the set of
states that satisfy it. The transition relation can aso be represented by a boolean formula constructed from two
copies of the propositional variables one for the current state and one for the next state. Thereis a transition
from state v to state v’ if the assignment of the variable values in state v to the current state variables, and the
assignment of variable valuesin state v’ to the next state variables satisfy the formula

Our algorithms work on boolean formul as representing sets of states. For example, the formula representing
T(S)={s| N(s,s') holdsfor some s € S}, the set of all successors of states in a state set .S, can be easily
constructed from the formula for .S and the formula for the transition relation in one step, regardless of the
number of statesin .S and 7'(.S). The fact that all operations consider sets of states instead of individual states
is one of the main reasons for the efficiency of our method. Moreover, boolean formulas are implemented by
binary decision diagrams (BDDs) [1], enabling the use of efficient algorithmsfor their manipulation [2].

We consider the minimum delay algorithm first (figure 2). The agorithm takes two sets of states as input,
start and final. It returns the length of (i.e. number of edgesin) a shortest path from a state in start to a statein
final. If no such path exists, the algorithm returns infinity. Recall that the function 7°(.S) gives the set of states
that are successors of somestatein S. Thefunction 7', the state sets R and R/, and the operations of intersection
and union can al be easily implemented using BDDs.

proc minimum (start, final) proc maximum (start, final)
=0 =0
R =dtart; R =TRUE;
R =T(R)UR,; R’ =not_final;
while (R’ # R A RN final = () do while (R # R A R’ N start # () do
1 =14+ 1; 1 =14+ 1;
R =R, R= R
R =T(R)UR R = T~YR") N not_final,
if (RN final # 0) if (R=R)
then return i; then return oo;
elsereturn oo; elsereturn i;

Figure 2: Minimum and Maximum Delay Algorithms

Thefirst algorithmisrelatively straightforward. Intuitively, theloop in the a gorithm computesthe set of states
that are reachable from start. If at any point, we encounter a state satisfying final, we return the number of steps
taken to reach that state.

Next, we consider the maximum delay algorithm. Thisalgorithm also takes start and final asinput. It returns

4

the length of alongest path from a state in start to astate in final. If there exists an infinite path beginning in a
state in start that never reaches a state in final, the algorithm returns infinity. The function 7-1(S") gives the set
of states that are predecessors of some statein S’ (i.e. T=1(S’) = {s | N(s, s') holdsfor some s’ € S’}). We
also denote by not_final the set of al states that are not in final. As before, the algorithm isimplemented using
BDDs, however, a backward search isrequired in this case.

4 Condition Counting Algorithms

In many situations we are interested not only in the length of a path from a set of starting states to a set of fina
states, but also in measures that depend on the number of states on the path that satisfy a given condition. For
example, we may wish to determine the minimum (maximum) number of times a given condition holds on any
path from starting to final states.

Both algorithmsin this section take asinput three sets of states: start, cond and final. The algorithms compute
the minimum and the maximum number of statesthat belong to cond, over al finite paths that begin with a state
in start and terminate upon reaching final.

To guarantee that the minimum (maximum) is well-defined, we assume that any path beginning in start must
reach a state in final in a finite number of steps. This can be checked using the maximum delay algorithm
described in the previous section. Finaly, we ensure that all computations involve only reachable states, by
intersecting start with the set of reachable states computed a priori.

To keep track at each step of the number of statesin cond that have been traversed, we define a new state-
transition system, in which the states are pairs consisting of a state in the original system and a positive integer.
Thus, if the original state-transition graph has state set .5, then the augmented state set will be S, = .S x IN.

If N C S xS isthetransitionrelationfor theorigina state-transition graph, we define the augmented transition
relation N, C S, x S, as

No({s, k), (s', k")) = N(s,8") AN (s € cond Nk =k +1V s & cond Nk = k)

In other words, there will be atransition from (s, k) to (s’, ') in the augmented transition relation NV, iff thereis
atransitionfrom s to s’ inthe origina transitionrelation N and either s’ € condand ¥’ = k+1or s’ ¢ cond and
k" = k. We dlso define T' to be the function that for agiven set U C S, returns the set of successors of all states
inU. Moreformally, T'(U) = {u’ | N,(u,«’) holdsfor someu € U}. Intheactual BDD-based implementation,
an initial bound k,,,,,- can be selected to achieve a finite representation for &, and new BDD variables can be
added dynamically if this bound is exceeded. The system is ill finite-state because al paths we consider are
finiteand £ is bounded by their maximum length.

Theagorithm for computing the minimum count isgivenin figure 3. Inthe algorithm text, Final and Not_final
denote the sets of statesin final and .S — final, paired with all possible values of k. Moreformally:

Final = {(s,k) | s € final,k € IN} and Not_final ={(s, k)| s & final,k € IN}
The agorithm uses R to represent the state set in S, reached at the current iteration, while Reached_final and
R’ are itsintersections with Final and Not_final respectively. Variable current_min denotes the minimum count

5

proc mincount (start, cond, final)
current_min = oo;
R={(s,1)| s € start N cond} U {(s,0) | s € start N cond};
loop
Reached _final = R N Final,
if Reached_final # 0 then
m = min{k | (s, k) € Reached_final};
if m < current_min then current_min = m;
R’ = RN Not_final,
if &' = () then return current_min;
R=T(R);
endloop;

Figure 3: Minimum Condition Count Algorithm

for al previous iterations. The computation of the minimum value of & in a set of pairs (s, k) can be done
by existentially quantifying the state variables (computing X' = {k | 3(s, k) € S}) and following the |eftmost
nonzero branch in the resulting BDD, provided an appropriate variable ordering is used.

At iteration ¢, the algorithm considers the endpoints of paths with : states. The reached states that belong to
final areterminal states on pathsthat we need to consider. The minimum count for these pathsis computed, using
the counter component of the path endpoints, and the current value of the minimum is updated if necessary. For
thereached states that do not belong to final, we continuetheloop after computing their successors. If all reached
states are in final, there are no further pathsto consider and the a gorithm returns the computed minimum.

Finally, we note that the algorithm for the maximum count has the same structure and can be obtained by
replacing min with max and reversing the inequalities. Variants of both a gorithms can be used to compute other
measures that are a function of the number of states on a path that satisfy a given condition. For example, we
can determine the minimum and the maximum number of states belonging to agiven set cond over dl paths of a
certain length [in the state space.

5 A Robotics System

One application of real-time systems that is becoming increasingly common isin robotic systems. Guaranteeing
that tasks are executed within their expected deadlineis critical for the integrity of arobot and for the success of
its mission. We show how the computation of quantitative properties can assist in validating such systems. The
example discussed in thissection isderived from theonein [10]. It describesareal robot used in nuclear reactors
to measure the shapes of pipes by moving around them with a distance sensor. The robot architecture has three
subsystems, motor, measurement and command (figure 4). The motor subsystem controls the robot movements
and position. The function of the measurement subsystem isto activate and control the distance sensors. Findly,
the command subsystem is responsible for receiving commands from the communication link and sending those
commands to the appropriate tasks.

Each subsystem consists of a set of tasks. The motor subsystem contains one task, not or _control . Its

—control flow

Todaallon " onsread |
| motor control ! sensor |
I Servo | : read ‘I
= read : |
: T : | sensﬁcontrol }
'l sevo |! sensor | |
<__:_ control : : control __:'>
| |
“-I-Z--ZZ | control | =TT T
| command read! var. | command proc!
I comm. I Q I comm I
¥ read : | execute |
| | | |
| v | | A |
: comm. : : comm. :
i| interpret | 1| process | |
| | | |

TN buffer — AT

Figure 4: Robot Architecture

function isto receive data from sensorsin the servo motors, and actuate them. The task consists of two subtasks,
servo._read and servo_control . Thefirst oneis an interrupt routine that reads data directly from the
physical devices. The second one processes this data and outputs control signas to the motors at a lower
priority. The measurement subsystem has two tasks, sensor _r ead and sensor _control . Thefirst task
reads data from the distance sensors and preprocesses it. Thisinformation isthen sent to sensor _control ,
which processes it further and outputs the results to a remote system to be analyzed. Finally, the command
subsystem also hastwo tasks. The comrand_r ead task receives commands from the communication link and
interprets them. It consists of two subtasks: an interrupt routine, followed by a second subtask of lower priority.
The final task of this subsystem is commrand_pr ocess. ltsfirst subtask receives the command interpreted by
command_r ead, and the second one then executes the command. Control variables that are updated by this
subtask are used to communicate commands to all other subsystems.

All tasks are periodic, and their timing requirements reflect the characteristics of the environment in which
the robot works and the robot’s expected response time. These requirements are summarized in table 1. Each
task is presented as a sequence of components, each with a different execution time and priority. A component
may correspond to a subtask, or subtasks may be split in more than one component due to synchronization. For
example, the first components of both not or _control and command_r ead correspond to their interrupt
routines and execute at high priorities. Synchronization accounts for the other components. For example, the last
component of conmand _pr ocess updates control variablesthat will be used by other tasks. Interference from
other tasksisavoided by accessing those variablesat ahigh priority level. The other components have been created
to reflect the synchronization pattern between processes sharing data (in this case between sensor _r ead and

sensor _cont r ol), and between conmand_r ead and conmand_pr ocess. Priority inheritance protocols
have been used to avoid priority inversion [12]. These protocolschangethepriority of thetasksat synchronization
points, thus dividing the tasksinto components.

Task Period | Exec. times | Deadline Priorities
C11Cr | Cs IZERENE
Motor control 40 1 5 - 40| 10| 7 -
Sensor read 100 10| 5| 5 100 4| 8| 4
Sensor control 50| 8] 12 - 50| 5| 8 -
Command read 200 10| 20| 3 200 9| 2| 3
Command process 400 2| 12| 10 400 3| 1| 6

Table 1: Timing requirements for the task set
The Analysis of the Robotics System

We have determined the schedulability of the task set by computing the minimum and maximum response
timesfor each task. This technique has enabled us to evaluate performance, identify inefficiencies, and suggest
optimizations to the architecture. Using the same a gorithms we have analyzed the modified design, and then
evaluated the effects of our changes.

Computing responsetimesfor all processes generated theresultsin table 2. Thistable showsthat thetask setis
schedulable. Moreover, the maximum execution times of many tasks are closeto their deadlines. Thisindicatesa
high load on the system; it isunlikely that adding more tasksto the task set would produce a schedulable system.
This information allows the designer to optimize or fine tune the system.

Task Deadline | Exec. times

min | max

Motor control 40 6 16
Sensor read 100 | 45 95
Sensor control 50| 20 49
Command read 200 | 181 | 190
Command process 400 | 219 | 223

Table 2: Schedulability analysisfor original system

Using the results computed by our algorithms, we have been able to suggest changes to the design and
to analyze the effects of such changes. In the originad design sensor _r ead generates data that is used
by sensor _control. However, the two tasks execute independently of one another. In some cases
sensor _cont r ol might execute even if datais not yet available. Inthiscase, sensor _cont r ol usesdata
generated by the previousinstantiationof sensor _r ead, which may be obsolete. We have changed the system
toavoid thisproblem and have analyzed theresulting design. The modification consistsof making thetermination
of sensor _r ead trigger theexecutionof sensor _cont r ol . Caremust betaken, however, because the pro-
cesses involved have different periods, sensor _r ead executes every 100ms, while sensor _contr ol exe-
cutes every 50ms. We changethe system sothat sensor _r ead signasthe execution of sensor _cont r ol
every 100ms, but sensor _cont r ol alsoexecutesindependently 50msafter sensor _r ead runs. Inthiscase

8

oneinstantiation of sensor _cont r ol issynchronized with sensor _r ead while the other isindependent.
The schedulability analysis of the modified exampleis givenin table 3:

Task Deadline | Exec. times

min | max

Motor control 40 6 16
Sensor read 100 | 20 36
Sensor control 50| 21 121
Command read 200 | 91 91
Command process 400 | 96| 296

Table 3: Schedulability analysisfor modified system

The new design is not schedulable, since sensor _contr ol can take up to 121ms to execute. We can use
the same quantitative algorithmsto find out more about the behavior of the system and to correct the problem. A
more detailed analysis reveals that the two instantiationsof sensor _contr ol have very distinct behaviors.
Whenever executing periodically (and independent of sensor _r ead), sensor _cont r ol takesbetween 21
and 121msto finish. However, whenever executing after sensor _r ead, it takes exactly 26msto execute in the
modified model. This showsthat the periodic execution of sensor _cont r ol isthe bottleneck of the system.
One solution to the problem is simply removing the periodic instantiationof sensor _cont r ol . Thissolution
was easily implemented, and the schedulability analysisis presented in table 4:

Task Deadline | Exec. times

min | max

Motor control 40 6 16
Sensor read 100 | 20 36
Sensor control 50| 26 26
Command read 200 | 91 91
Command process 400 | 70| 270

Table 4: Schedulability analysisfor final system

The system is again schedulable, but now sensor _cont r ol executes only once every 100ms. Is thisa
satisfactory solution? Again, we can use the same algorithms to analyze the modified design. By computing
the time between the end of the execution of sensor _r ead and the beginning of sensor _control we
can verify if data produced by the first task is being consumed timely by the second one. In the modified
model thistimeis between 1 and 7ms, meaning that dataproduced by sensor _r ead ispromptly consumed by
sensor _cont r ol . Therefore wecan concludethat in spite of changing the periodicity of sensor _cont r ol
we are still maintaining predictability. The condition counting agorithms have also been useful in analyzing
the performance of this model. We have been able to verify how the old periodicity of sensor _contr ol
relates to the new model. We can consider all execution paths from the time sensor _read starts until
sensor _cont r ol finishes as the active period for the measurement subsystem. During such a period, how
many times can the 50ms timeout occur? In other words, how many times would sensor _control be
activated using the original periodicity during an active period? The result is from 1 to 3 times. We conclude
that the modified system satisfies the original timing constraints, even though it has a lighter 1oad.

9

In this example we were able analyze the behavior of the robot from several perspectives. We have determined
that it would meet its deadlines, but that it wasinefficient. We were able to optimizethe design and anayze the
performance of the modified design. The example shows that these techniques are both easy to use and versatile
enough to be of great assistance in specifying and verifying real-time systems.

6 Conclusion

This paper describes atool for computing quantitative properties of real-time systems. A formal state-transition
graph model of the system is constructed from a description written in the Verus language. We show how this
graph can be used to determine the minimum and maximum delay between two events and how to compute the
minimum and maximum number of times a given event can occur on any path between two state sets.

Because our techniques are based on symbolic model checking, they can be applied to designs of realistic
size and complexity. Frequently it is possible to search exhaustively state spaces with 10%° statesin a matter of
minutes. We demonstratethe power of thesetechniquesby analyzing acomplex robotics system and showing that
its timing requirements are satisfied. In addition, our approach provides the user with quantitative information
rather than simply verifying that a formulais true in the model. In other words, our agorithms can compute
performance measures in addition to verifying correctness. Our techniques can aso be used during the design
process itself. In the robot controller example we have shown how the information generated by our algorithms
can be used to suggest optimizationsto the system. These modifications can again be analyzed to see how the
system behavior has changed.

There are anumber of possibilitiesfor extending the range of problemsthat can be handled by our techniques.
In the future we intend to augment the model to allow transitions to be labelled with probabilities. Statistics
about different paths in the graph can then be generated. In some cases, we only want paths satisfying certain
properties to be considered by our agorithms. Linear temporal logic formulas seem to be ideal for restricting
the set of paths considered. It is clear that these extensions would make our approach more powerful and would
allow usto handle an even larger class of systems.

References

[1] R. E.Bryant. Graph-based algorithmsfor boolean function manipul ation. | EEE Transactionson Computers,
C-35(8), 1986.

[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic model checking: 10%°
states and beyond. In Proceedings of the 5th LICS, 1990.

[3] S.V.Campos, E. M. Clarke, W. Marrero, M. Minea, and H. Hirai shi. Computing quantitative characteristics
of finite-state real-time systems. In |IEEE Real-Time Systems Symposium, 1994,

10

[4]

(5]

6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

E. M. Clarkeand E. A. Emerson. Synthesis of synchronization skeletonsfor branching timetemporal logic.
In Logic of Programs: Workshop, Yorktown Heights, NY, May 1981. LNCS 131, Springer-Verlag, 1981.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems
using temporal logic specifications. ACM TOPLAS, 8(2):244-263, 1986.

E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, and L. A. Ness. Verification
of the Futurebus+ cache coherence protocol. In Proceedings of the 11th CHDL, 1993.

E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal reasoning. In Lecture
Notesin Computer Science. Springer—Verlag, 1990.

A. N. Fredette and R. Cleaveland. RTSL: a language for rea-time schedulability analysis. In IEEE
Real-Time Systems Symposium, 1993.

R. Gerber and I. Lee. A proof system for communicating shared resources. In IEEE Real-Time Systems
Symposium, 1990.

M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Timing anaysis for fixed-priority scheduling of hard
real-time systems. |EEE Transactions on Software Engineering, 20(1), 1994.

K. L. McMillan. Symbolic model checking — an approach to the state explosion problem. PhD thesis,
Carnegie Méellon University, School of Computer Science, 1992.

R. Rakumar. Task synchronizationin real-time systems. PhD thesis, Carnegie Mellon University, Dept. of
Electrical and Computer Engineering, 1989.

L. Sha, M. H. Klein, and J. B. Goodenough. Rate monotonic analysisfor rea-time systems. In Foundations
of Real-Time Computing — Scheduling and Resource Management. Kluwer Academic Publishers, 1991.

J. Yang, A. Mok, and F. Wang. Symbolic model checking for event-driven rea-time systems. In IEEE
Real-Time Systems Symposium, 1993.

11

