Very Compact Hardware Implementations of the
Blockcipher CLEFIA

Toru Akishita and Harunaga Hiwatari

Sony Corporation
{Toru.Akishita,Harunaga.Hiwatari}@jp.sony.com

Abstract. The 128-bit blockcipher CLEFIA is known to be highly ef-
ficient in hardware implementations. This paper proposes very com-
pact hardware implementations of CLEFIA-128. Our implementations
are based on novel serialized architectures in the data processing block.
Three types of hardware architectures are implemented and synthesized
using a 0.13 pum standard cell library. In the smallest implementation,
the area requirements are only 2,488 GE, which are about half of the
previous smallest implementation as far as we know. Furthermore, only
additional 116 GE enable to support decryption.

Key words: blockcipher, CLEFIA, compact hardware implementation,
ASIC

1 Introduction

CLEFIA [9,11] is a 128-bit blockcipher supporting key lengths of 128, 192 and
256 bits, which is compatible with AES [2]. CLEFIA achieves enough immunity
against known attacks and flexibility for efficient implementation in both hard-
ware and software. It is reported that CLEFIA is highly efficient particularly in
hardware implementations [12,10, 13].

Compact hardware implementations are very significant for small embedded
devices such as RFID tags and wireless sensor nodes because of their limited
hardware resources. As for AES with 128-bit keys, low-area hardware implemen-
tations have been reported in [3] and [4]. The former uses a RAM based archi-
tecture supporting both encryption and decryption with the area requirements
of 3,400 GE, while the latter uses a shift-register based architecture supporting
encryption only with the area requirements of 3,100 GE. Both implementations
use an 8-bit serialized data path and implement only a fraction of the Miz-
Columns operation with additional three 8-bit registers, where it takes several
clock cycles to calculate one column. Very recently, another low-area hardware
implementation of AES was proposed in [5] requiring 2,400 GE for encryption
only. Unlike the previous two implementations, it implements MizColumns not
in a serialized way, where one column of MizColumns is processed in 1 clock
cycle. Thus it requires 4 times more XOR gates for MizColumns, but requires
no additional register and can reduce gate requirements for control logic.

In this paper, we present very compact hardware architectures of CLEFIA
with 128-bit keys based on 8-bit shift registers. We show that the data process-
ing part of CLEFIA-128 can be implemented in a serialized way without any
additional registers. Three types of hardware architectures are proposed accord-
ing to required cycles for one block process by adaptively applying clock gating
technique. Those architectures are implemented and synthesized using a 0.13
pm standard cell library. In our smallest implementation, the area requirements
are only 2,488 GE, which are to the best of our knowledge about half as small
as the previous smallest implementation, 4,950 GE [10,12], and competitive to
the smallest AES implementation. Furthermore, only additional 116 GE are re-
quired to support decryption by switching the processing order of F-functions
at even-numbered rounds.

The rest of the paper is organized as follows. Sect. 2 gives brief description
of CLEFIA and its previously proposed hardware implementations. In Sect. 3,
we propose three types of hardware architectures. Sect. 4 describes additional
hardware resources to support decryption. Sect. 5 gives evaluation results for
our implementations, compared with the previous results of CLEFIA and AES.
Finally, we conclude in Sect. 6.

2 128-bit Blockcipher CLEFIA

2.1 Algorithm

CLEFIA [9,11] is a 128-bit blockcipher with its key length being 128, 192, and
256 bits. For brevity, we consider 128-bit key CLEFIA, denoted as CLEFIA-128,
though similar techniques are applicable to CLEFIA with 192-bit and 256-bit
keys. CLEFIA-128 is divided into two parts: the data processing part and the
key scheduling part.

The data processing part employs a 4-branch Type-2 generalized Feistel net-
work [14] with two parallel F-functions Fy and Fj per round. The number of
rounds 7 for CLEFIA-128 is 18. The encryption function ENC, takes a 128-bit
plaintext P = Py|P;|P2|Ps, 32-bit whitening keys WK; (0 < i < 4), and 32-
bit round keys RK; (0 < j < 2r) as inputs, and outputs a 128-bit ciphertext
C= 00‘01|02|C3 as shown in Fig. 1.

The two F-functions Fy and Fj consist of round key addition, 4 non-linear
8-bit S-boxes, and a diffusion matrix. The construction of Fy and Fj is shown
in Fig. 2. Two kind of S-boxes Sy and S; are employed, and the order of these
S-boxes are different in Fy and F. The diffusion matrices of Fy and F} are also
different; the matrices My for Fy and M; for F; are defined as

01 02 04 06 01 08 02 OA
02 01 06 04 08 01 OA 02
Mo=104 06 01 02| ™ =102 oa 01 08
06 04 02 01 0A 02 08 01

The multiplications between these matrices and vectors are performed in GF(2°)
defined by a primitive polynomial 28 4+ 2% + 23 + 22 + 1.

ko k1 ko ks

8 8 8 8
Py Py P Ps
zo —H~D So - yo
32 32 32 32 s A 3
T1 %) S1 Y1
RK(] *WKO RKl *WKl 8 A]WO 8
i Z2 N, So Y2
._. 23 8 BN @ T
Fo
ko k1 ko ks
8 8 8 8
ro SH-P S o
w1 =% % @*M ey
N> 1 £
xz S5} @-’ 8 Y3

RKzr—zl
v

Fig. 2. F-functions Fy,

128 bits
7] 57 | 571 7]

Co Cy

[57 77l 57]

Fig. 1. Encryption function ENC,

Fig. 3. DoubleSwap function ¥

The key scheduling part of CLEFIA-128 takes a secret key K as an input,
and outputs 32-bit whitening keys WK; (0 < ¢ < 4) and 32-bit round keys
RK; (0 <j < 2r). It is divided into the following two steps: generating a 128-
bit intermediate key L (step 1) and generating WK, and RK; from K and L
(step 2). In step 1, the intermediate key L is generated by 12 rounds of encryption
function which takes K as a plaintext and constant values CON; (0 < ¢ < 24)
as round keys. In step 2, the intermediate key L is updated by the DoubleSwap
function X, which is illustrated in Fig. 3. Round keys RK; (0 < j < 36) is
generated by mixing K, L, and constant values CON; (24 < i < 60). Whitening
keys W K; is equivalent to 32-bit chunks K; of K as K = Ky|K;|K2|Ks3.

2.2 Previous Hardware Implementations

Hardware implementations of CLEFIA-128 have been studied in [12,10,13].
In [12], optimization techniques in data processing part including S-boxes and

diffusion matrices were proposed. The compact architecture, where Fp is pro-
cessed in one cycle and F} is processed in another cycle, was implemented, and
its area requirements in area optimization are reported to be 4,950 GE.

In [10], two optimization techniques in key scheduling part were introduced.
The first technique is related to implementation of the DoubleSwap function X.
2 is decomposed into the following Swap function {2 and SubSwap function ¥
as X =Wo (.

2. XY
Y = X[64-127] | X[0-63]
UV: XY
Y = X[71-127] | X[57-70] | X[0-56]

Xa-b] denotes a bit string cut from the a-th bit to the b-th bit of X. Please note
that {2 and ¥ are both involutive. The 128-bit key register for the intermediate
key L is updated by applying {2 and ¥ alternately. Round keys are always
generated from the most significant 64-bit of the key register. After the final
round of encryption, L is re-stored into the key register by applying the following
FinalSwap function &.

. XY
Y = X[49-55] | X[42-48] | X [35-41] | X[28-34] | X[21-27] | X [14-20] |
X|[7-13] | X[0-6] | X[64-71] | X[56-63] | X[121-127] | X[114-120] |
X[107-113] | X[100-106] | X[93-99] | X [86-92] | X[79-85] | X [72-78]

Please note that @ is also involutive. In case of decryption, round keys are always
generated from the most significant 64-bit of the key register by applying the
inverse functions of (2, ¥ and @ in reverse order of encryption. Due to their
involutive property, only three functions {2, ¥ and & are required for encryption
and decryption.

In the second technique, XOR operations with the parts of round keys re-
lated to a secret key K are moved by an equivalent transformation into the two
data lines where key whitening operations are processed. Therefore, these XOR
operations and key whitening operations can be shared.

In [13], five types of hardware architectures were designed and fairly com-
pared to the ISO 18033-3 standard blockciphers under the same conditions. In
their results, the highest efficiency of 400.96 Kbps/gates was achieved, which is
at least 2.2 times higher than that of the ISO 18033-3 standard blockciphers.

3 Proposed Architectures

In this section we propose three types of hardware architectures. Firstly, we
propose a compact matrix multiplier for CLEFIA-128. Next, in Type-I architec-
ture, we propose a novel serialized architecture of the data processing block of
CLEFIA-128. By adaptively applying clock gating logic to Type-I architecture,

ko ki ko k Er o]
0 K1 Ky K3 20 21 2 I3 R <
23 I _TF
2 a J [o =Xl
X, q So N & j/‘ 1<l 2
z, PSS =
o a Vi =
x; %, M (N7 2 N ﬁl_*
MU i z) Pl b‘ 1102 a;
. N g 2 D i
2 % 0 D
e
x -l 5, |2 D 2ty
W Matrix Multiplier
W Wy Wy Wy
(a) e (b)
l 1 2 3 4

Ro|[z3®{06}ap|zo®{04}ao®{06}a1| 21PD{02}ao®a1®{06}as [z0Pao®{02}a; ®{04}asPH{06}as

=)

R1||zo®{04}ap 23@{06}(10@{04}0,1 z0®ao@{02}a1®{04}a2 z1 6P 02}@0@@1@{06}(12@ 04}tas

Ro||z1B{02}a Zo@ao@{oz}al Z369{06}a0@{04}a1€9{02}a2 2o ® 04}(10@{06}(11@(12@ 02}as

o

R3 zo®Pao z1®{02}apDay zo®{04}aoD{06}a1 Daz [23B{06}ag®{04}a;®{02}asDas

()

Fig. 4. Matrix multiplier: (a) F-function Fy, (b) Data path, (c) Contents of registers
R; (0 < j < 4) at the I-th cycle

we can reduce the number of multiplexers (MUXes) in Type-II and Type-III
architectures with increasing cycle counts.

Clock gating is a power-saving technique used in synchronous circuits. For
hardware implementations of blockciphers, it was firstly introduced in [8] as a
technique to reduce gate counts and power, and have been applied to KATAN
family [1] and AES [5]. Clock gating works by taking the enable conditions
attached to registers. It can remove feedback MUXes to hold their present state
and replace them with clock gating logic. In case that several bits of registers
take the same enable conditions, their gate counts will be saved by applying
clock gating.

3.1 Matrix Multiplier

Among low-area AES implementations, MixColumns matrix operations are
computed row by row in [3], while they are computed column by column in [4].
In our architecture, matrix operations are computed column by column in the
following way.

The 4-byte output of My operation is XORed with the next 4-byte data
as shown in Fig. 4 (a). The matrix multiplier in Fig. 4 (b) performs the matrix
multiplication together with the above XOR operation in 4 clock cycles. Fig. 4 (c)
presents the contents of the registers R; at the I-th cycle (1 <1 < 4). At the 1st
cycle, the output ag of Sy are fed to the multiplier and multiplied by {01}, {02},
{04}, and {06}. The products are XORed with the data z; (0 < i < 4), and then
the intermediate results are stored in the four registers R; (0 < j < 4). As each

! .
8] (S (S = i~
— R13; RIZ‘ R = 10) — 03 o2 "[Fo1[00
data_out
R0 ¥
— o
|—
. H—R,, &
Data Processing Block L =
(=
N R v,
= 2
=
Fan)
T 1R
— o
128
Key Scheduling Block o
[8-bitshift+x | [8-bitshift+x] con2Ebd
128 128 Ol
128 128

Fig. 5. Data path of Type-I architecture

column in My consists of the same coefficients, the matrix multiplication can be
performed by selecting the intermediate results through MUX2 and XORing the
products of a; (i = 1,2,3) with them at the (i + 1)-th cycle. After 4 clock cycles,
w; (0 <1< 4) are stored in R;. The multiplication by M; can be performed by
switching MUX1.

In [4], three 8-bit registers are required for the construction of a parallel-to-
serial converter due to avoiding register competition with the next calculation of
a matrix. On the other hand, no competition occurs in our architecture because
z; is input at the 1st cycle of a matrix multiplication. w; can be moved into the
register where z; for the newly processing F-function is stored.

3.2 Type-I Architecture

Fig. 5 shows the data path of Type-I architecture, where the width of data path is
8 bit except those written in the figure. It is divided into the following two blocks:
the data processing block and the key scheduling block. Type-I architecture

processes a round of the encryption function in 8 clock cycles. We show, in
appendix, the detailed data flow of the data registers R;; (0 <4,5 < 4) in Fig. 5
for a round of the encryption processing. As described in Sect. 3.1, at the 1st
and the 5th cycle in the 8 cycles, the data stored in Reg—Rs3 are moved into
Rp3—R12, and simultaneously the data stored in Ryg—R13 are input to the matrix
multiplier. Therefore, no additional register but the 128-bit data register exists
in the data processing block. Please note that R3p—Rs3 hold the current state at
the 5-8th cycle by clock gating.

In the start of encryption, a 128-bit plaintext is located to R;; in 16 clock
cycles by inputting it byte by byte from data_in. After 18 rounds of the encryp-
tion function which require 144 cycles, a 128-bit ciphertext is output byte by
byte from data_out in 16 clock cycles. Therefore, it takes 176 cycles for encryp-
tion. The reason why data_out is connected to R3p is that no word rotation is
necessary at the final round of encryption. In the start of key setup, a 128-bit
secret key K input from key_in is located to R;; in 16 clock. After 12 rounds of
the encryption function which require 96 cycles, a 128-bit intermediate key L is
stored into the key registers L;; (0 <4, j < 4) by shifting R;; and L;; in 16 clock
cycles. Therefore, it takes 128 cycles for key setup.

The two S-box circuits Sy and S are located in the data processing block,
and one of those outputs is selected by a 2-to-1 MUX (8-bit width) and input to
the matrix multiplier. The encryption processing of CLEFIA-128 is modified by
a equivalent transformation as shown in Fig. 7 (a). The 32-bit XOR operation
with 32-bit chunks K is reduced to the 8-bit XOR operation by locating it in the
matrix multiplier. A 32-bit chunk K; selected by a 32-bit 4-to-1 MUX is divided
into four 8-bit data, and then one of the data is selected by a 8-bit 4-to-1 MUX
and fed into the matrix multiplier one by one in 4 clock cycles.

In the key scheduling block, the intermediate key L stored in L;; is cyclically
shifted by one byte, and the 8-bit chunk in Lgg is fed into the data processing
after being XORed with the 8-bit chunk of CON;. At the end of even-numbered
rounds, L;; is updated by (8-bit shift+X) operation; at the end of encryption, L;;
is updated by (8-bit shift + X ~8) operation in order to recover the intermediate
key L. After re-storing the intermediate key L, L;; hold it by clock gating until
next start of encryption.

3.3 Type-II Architecture

In Type-II architecture, we aim the area optimization of the key scheduling
block. Since DoubleSwap function X is decomposed as X = ¥ o {2, where ¥
and 2 are both involutive, as described in Sect. 2.2, X8 satisfies the following

equations.

Swap function {2 is realized by 8 iterations of cyclic shifting. Thus X ~8 operation
can be achieved by 8 iterations of cyclic shifting, 8 iterations of X' operation,
and 8 iterations of cyclic shifting again, which require 24 cycle counts.

During the encryption processing the intermediate key L is updated by X
operation at the 17th cycle after 16 iterations of cyclic shifting every two rounds.
At the 17th cycle, the data registers must hold the current data by clock gat-
ing. Accordingly, both 8 additional cycles for the encryption processing and 8
additional cycles to recover the intermediate key L after outputting a ciphertext
are required, which results in 192 cycles for encryption. In compensation for the
increase of 16 cycle counts, a 128-bit input of MUX in the key scheduling block
can be removed.

3.4 Type-III Architecture

In Type-III architecture, we achieve the area optimization of the data processing
block by applying clock gating effectively. Fig. 6 shows the data path of Type-
IIT architecture. Instead of using MUXes, the data stored in R19p—R13 and those
stored in Ryp—Ra3 are swapped by cyclically shifting these registers in 4 clock
cycles, while the other data register and the key registers hold the current state
by clock gating. Simultaneously, the XOR operation with a 32-bit chunk K;
is done by XOR gates in the matrix multiplier, which leads the savings of 8
XOR gates. These data swaps are required twice for a round of the encryption
processing. Therefore, it takes 16 cycles for a round of the encryption processing;
in total 328 and 224 clock cycles are required for encryption and key setup,
respectively. In compensation for the increase of many cycle counts, several 8-
bit inputs of MUXes together with 8 XOR, gates for secret key chunks can be
removed.

4 Supporting Decryption

Any encryption-only implementation can support decryption by using the CTR,
mode. Nevertheless, if an implementation itself supports decryption, it can be
used for more applications, for example, an application requiring the CBC mode.
Accordingly, we consider the three types of hardware architectures supporting
decryption.

data_in

data_out

Data Processing Block

Key Scheduling Block

N

Fig. 6. Data path of Type-III architecture

Since the data processing part of CLEFIA employs a 4-branch Type-2 gener-
alized Feistel network [14], the directions of word rotation are different between
the encryption function and the decryption function. The encryption and de-
cryption processing of CLEFIA-128 is shown in Fig. 7 (a) and (b), respectively.
When the hardware architectures described in Sect. 3 support the decryption
processing straightforwardly, many additional multiplexers are considered to be
required due to these different directions of word rotation. For avoiding this, we
switch the positions of Fy and those of F; at even-numbered rounds as shown
in Fig. 7 (c), and then the direction of word rotation becomes the same as the
encryption processing shown in Fig. 7 (a). Thus we do not have to largely modify
the data path of the above three architectures by processing F; ahead of Fy at
even-numbered rounds. However, as the order of round keys fed into the data
processing block has been changed, the 8-bit round keys are fed from L9 when
F} is processed at even-numbered rounds and from L3y when Fj is processed at
even-numbered rounds. Accordingly, a 8-bit 3-to-1 MUX is required for selecting
the source registers of appropriate round keys including Lgg. Since the leading

Fig. 7. (a) Encryption processing, (b) Decryption processing, (¢) Modified decryption
processing. XOR operations with the part of round keys related to secret key K are
moved by an equivalent transformation, and thus RK; (0 < j < 36) denote the
remaining part of round keys.

byte of a ciphertext is stored in Rig, not R3p for encryption, at the end of de-
cryption because of the modified decryption processing, a 8-bit 2-to-1 MUX is
required for selecting data_out.

5 Implementation Results

We designed and evaluated the three types of hardware architectures presented in
Sect. 3 together with their versions supporting both encryption and decryption.
The environment of our hardware design and evaluation is as follows:

Language Verilog-HDL

Design library 0.13 pm CMOS ASIC library
Simulator VCS version 2006.06

Logic synthesis Design Compiler version 2007.03-SP3

One Gate Equivalent (GE) is equivalent to the area of a 2-way NAND with the
lowest drive strength. For synthesis, we use a clock frequency of 100 KHz, which
is widely used operating frequency for RFID applications.

Recently, scan flip-flops have been used in the low-area implementations of
blockciphers instead of combinations of D flip-flops and 2-to-1 MUZXes [8, 1, 5] to
reduce area requirements. In our evaluation, a D flip-flop and a 2-to-1 MUX cost

X =G X
' =
= By
Y — Y
4-input AND-NOR gate 4-input OR-NAND gate
with 2 inputs inverted with 2 inputs inverted

Fig. 8. 4-input AND-NOR and 4-input OR-NAND gate with 2 inputs inverted, which
correspond to XOR and XNOR gate

4.5 and 2.0 GE, respectively, while a scan flip-flop costs 6.25 GE. Thus, we can
save 0.25 GE per bit of storage. Moreover, the library we used has the 4-input
AND-NOR and 4-input OR-NAND gates with 2 inputs inverted described in
Fig. 8. The outputs of these cells are corresponding to those of XOR or XNOR
gates when the inputs X, Y are set as shown in Fig. 8. Since these cells cost 2
GE instead of 2.25 GE required for XOR or XNOR cell, we can save 0.25 GE per
XOR or XNOR gate. Clock gating logics are inserted into the design manually
by instantiating Integrated Clock Gating (ICG) cells to gate the clocks of specific
registers.

Table 1 shows the detailed implementations figures of the three types of
hardware architectures presented in Sect. 3. CON generator and selector, ICG
cells, and buffers are included in controller.

The area savings for the key scheduling block of Type-II/III implementation
over Type-I implementation are 128 GE. In the library we used, a register with
a 3-to-1 MUX costs 7.25 GE per bit; a register with a 4-to-1 MUX costs 8.25 GE
per bit. The key register of Type-I implementation consists of 120 registers with
a 3-to-1 MUX (870 GE) and 8 registers with a 4-to-1 MUX (66 GE), while the
key register of Type-II/III implementation consists of 120 scan flip-flops (750
GE) and 8 registers with a 3-to-1 MUX (58 GE). Thus, the area savings of 128
GE are achieved.

The area savings for the data processing block of Type-III implementation
over Type-I/II implementation are 78 GE. As for the data register of Type-III
implementation 32 scan flips-flops (200 GE) is replaced with 32 D flip-flops (144
GE), which leads savings of 56 GE. 24 3-to-1 MUXes with output inverted (54
GE) can be replaced with 24 2-to-1 MUXes with output inverted (42 GE) in
the matrix multiplier, leading to savings of 12 GE. In addition, 8 XOR gates
(16 GE) for secret key XOR is merged to XOR gates in the matrix multiplier.
Therefore, the area savings of 78 GE are achieved despite the additional 6 GE
for the other MUX.

Table 2 shows the implementation results of the proposed architectures to-
gether with their versions supporting both encryption and decryption. We also
show, for comparison, the best known result of CLEFIA and low-area implemen-
tation results of AES. Our implementations supporting encryption only achieve

Table 1. Detailed implementation figures

lComponents [GE] [Type-1 | Type-II | Type-III
Data Processing Block 1392.5 1392.5 1314.5
Data Register (including MUX)| 668 668 612
S-box (including MUX) 332.5 332.5 332.5
S0 117.25 117.25 117.25
S1 201.25 201.25 201.25
Matrix Multiplier 212 212 200
Secret Key MUX 136 136 136
Secret Key XOR 16 16 0"
Round Key XOR 16 16 16
Other MUX 12 12 18
Key Scheduling Block 952 824 824
Key Register (including MUX) | 936 808 808
CON XOR 16 16 16
Controller 333 377.25 349.25
Total [GE] 2677.5 2593.75 2487.75
Encryption [cycles] 176 192 328
Key Setup [cycles] 128 128 224
Throughput @100KHz [Kbps] 73 67 39

x: Secret key XOR is merged to XOR gates in matrix multiplier

46-50% reduction of the area requirements compared to the smallest implemen-
tation [10,12] of CLEFIA. As for implementations supporting both encryption
and decryption, our implementations are 44-47% smaller. Type-IIT implementa-
tion is 4% larger than the smallest encryption-only implementation [5] of AES,
but its encryption/decryption version achieves 23% reduction of the area re-
quirements compared to the smallest encryption/decryption implementation [3]
of AES.

6 Conclusion

In this paper, we have proposed very compact hardware architectures of CLE-
FIA with 128-bit keys based on 8-bit shift registers. We showed that the data
processing part of CLEFIA-128 can be implemented in a serialized way without
any additional registers. Three types of hardware architectures were proposed
according to required cycles for one block process by adaptively applying clock
gating technique. Those architectures were implemented and synthesized using a
0.13 pm standard cell library. In our smallest implementation, the area require-
ments are only 2,488 GE, which is 50% smaller than the smallest implementa-
tion of CLEFIA-128, and competitive to the smallest AES-128 implementation.
Moreover, the area requirements for its version supporting both encryption and
decryption are only 2,604 GE, which achieve 23% reduction of area requirement
compared to the smallest encryption/decryption implementation of AES-128.

Table 2. Implementation results and comparison

. Enc/Dec |Key Setup|Area| Throughput |Tech.
Algorithm| Source | Mode [Cyéles] [cycles] |[GE]|@100KHz [Kbps]| [pm]
Type-1 Enc 176 128 2,678 73

Enc/Dec 176 128 {2,781 73
Enc 192 128 2,594 67
cLEFIA | WP e Dec T92/184 128 [2,678 67/70 0-13
TvoeIIT Enc 328 224 2,488 39
YPe-U Enc/Dec| 328/320 224 (2,604 30/40
[10,12] |Enc/Dec 36 24 4,950 356 0.09
3 Enc/Dec|1,032/1,165 - 3,400 12/11 0.35
AES 4 Enc 177 - 3,100 72 0.13
5 Enc 226 - 2,400 57 0.18

as

Future work will include the application of side-channel countermeasures such
threshold implementations [6, 7] to the proposed architectures.

References

1

10.

. C. D. Canniere, O. Dunkelman, and M. Knezevic, “KATAN and KTANTAN -

a Family of Small and Efficient Hardware-Oriented Block Ciphers”, CHES 2009,
LNCS 5747, pp. 272-278, Springer-Verlag, 2009.

J. Daemen and V. Rijmen, The Design of Rijndael: AES — The Advanced Encryp-
tion Standard (Information Security and Cryptography), Springer, 2002.

. M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, “AES Implementation on a Grain

of Sand”, IEE Proceedings Information Security, vol. 152, pp. 13—20, 2005.

P. Haméldinen, T. Alho, M. Hannik&inen, and T. Hama&ldinen, “Design and Im-
plementation of Low-Area and Low-Power AES Encryption Hardware Core”, DSD
2006, pp. 577-583, IEEE Computer Society, 2006.

A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang, “Pushing the Limits:
A Very Compact and a Threshold Implementation of AES”, FUROCRYPT 2011,
LNCS 6632, pp. 69-88, Springer-Verlag, 2011.

S. Nikova, C. Rechberger, and V. Rijmen, “Threshold Implementations against
Side-channel Attacks and Glitches”, ICICS 2006, LNCS 4307, pp. 529-545,
Springer-Verlag, 2006.

S. Nikova, V. Rijmen, and M. Schlaffer, “Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches”, ICICS 2008, LNCS 5461, pp. 218—
234, Springer-Verlag, 2008.

C. Rolfes, A. Poschmann, G. Lender, and C. Paar, “Ultra-Lightweight Implemen-
tations for Smart Devices — Security for 1000 Gate Equivalents”, CARDIS 2008,
LNCS 5189, pp. 89-103, Springer-Verlag, 2008.

T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata, “The 128-bit
Blockcipher CLEFIA (Extended Abstract)”, FSE 2007, LNCS 4593, pp. 181-195,
Springer-Verlag, 2007.

T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata, “Hardware Im-
plementations of the 128-bit Blockcipher CLEFIA”, Technical Report of IEICE,
vol. 107, no. 141, ISEC2007-49, pp. 29-36, 2007 (in Japanese).

11. “The 128-bit Blockcipher CLEFIA: Algorithm Specification”, Revision 1.0, 2007,
Sony Corporation.
http://www.sony.net/Products/cryptography/clefia/download/data/
clefia-spec-1.0.pdf

12. “The 128-bit Blockcipher CLEFIA: Security and Performance Evaluations”, Revi-
sion 1.0, 2007, Sony Corporation.
http://www.sony.net/Products/cryptography/clefia/download/data/
clefia-eval-1.0.pdf

13. T. Sugawara, N. Homma, T. Aoki, and A. Satoh, “High-Performance ASIC Imple-
mentations of the 128-bit Block Cipher CLEFIA”, ISCAS 2008, pp. 2925-2928,
2008

14. Y. Zheng, T. Matsumoto, and H. Imai, “On the Construction of Block Ciphers
Provably Secure and not Relying on Any Unproved Hypotheses”, Crypto’89,
LNCS 435, pp. 461-480, Springer-Verlag, 1989.

Appendix

In this appendix, we show the detailed data flow of the registers R;; in Fig. 5
during a round of the encryption processing for Type-I architecture. Fig. 9 defines
the data structure of a round of the encryption processing. The contents of the
registers R;; (0 < i < 4) are clarified in Table 3.

Xool¥o1Prozlros xyobey 1o X0l pralras X30b31praslrs;
RK;®
Eé‘ KolKlKolK Gf’ KlKnlKolK s
V) Van)
3 4V P

YoolvorVoalvos Yionbabis Yaolailvaalyas Ysolsilaalvss

Fig. 9. A round of encryption processing

Table 3. Contents of registers R;; (0 <4,j < 4) at the I-th cycle

l 0 1 2 3 4
Roo ||Too Zo1 Zo2 Zo3 Z20
Ro1||To1 Zo2 Zo3 Z20 T21
Roz||To2 Zo3 Z20 Z21 T22
Ros||To3 Z20 Z21 T22 T23
Rio||T10 T21 22 Z23 Z30
Ri1||T11 T22 T23 30 Z31
Riz||[T12 T23 T30 31 T32
Ris||T13 T30 T31 T32 T33
Roo||z20] z13@{06}ao | 12@{04}ao®{06}a1 [x11D{02}aoD a1 P{06}ax® K1 Yoo
Roi|[z21| z12@{04}ao | 13®{06}ao®{04}a1 [z10Dao®{02}a1 B{04}az® Kso Yo1
Roz||z22| 211 ©{02}ao [r10Dao®{02}a1® Kso| 2130 {06}ag®{04}a1 B{02}az Yo2
Rosl|z2s][z10Da0 D Kso|z11 D{02}aoDa1 D Ks1|z12D{04}ao®{06}a1 Daz ® Ko Yo3
R3o |30 Z31 Z32 Z33 00 (= ¥30)
R31 |31 32 Z33 Zoo zo1 (= y31)
R32||x32 33 Zoo To1 zo2 (= ys32)
R33||x33 Zoo Zo1 To2 zo3 (= y33)
l 4 5 6 7 8
Roo ||T20 Ta1 Ta2 T23 Yoo
Ro1 ||T21 T22 Ta3 Yoo Yo1
Roz||T22 Ta3 Yoo Yo1 Yo2
Ros||T23 Yoo Yo1 Yo2 Yo3
Riol||z30 Yo1 Yo2 Yo3 20 (= Y10)
Ri1|[z31 Yo2 Yo3 Z20 221 (= y11)
Riz|[T32 Y03 Z20 o1 22 (= yi12)
Ri3||T33 20 o1 o2 23 (= y13)
Rao||yoo| z33®{0A}by | £32B{02}boD{0A}b1 | x31P{08}boDb1 B{0A} b2 D Ky1 Y20
Ra1||yo1| z326{02}bo | £33B{0A}boB{02}b1 | x30Pbo P {08}b1 B{02}b2d Kro Y21
Raz|[yoz2| 31D {08}bo [230BDboP{08}b1 B Ko | x33P{0A}boB{02}b1 H{08}bo Y22
Ra3||yos|x30Bbo P Ko | 231 B{08}boBb1 D K1 | £32P{02}boD{0A}b1 Bb2® Ki2 Y23
R30]|y30 Y30 Y30 Y30 Y30
R31||ys1 Y31 Y31 Y31 Y31
R32||ys2 Y32 Y32 Y32 Y32
R33]|ys3 Y33 Y33 Y33 Y33

