
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 1107–1116,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Very Deep Convolutional Networks
for Text Classification

Alexis Conneau

Facebook AI Research

aconneau@fb.com

Holger Schwenk

Facebook AI Research

schwenk@fb.com

Yann Le Cun

Facebook AI Research

yann@fb.com

Loı̈c Barrault

LIUM, University of Le Mans, France

loic.barrault@univ-lemans.fr

Abstract

The dominant approach for many NLP

tasks are recurrent neural networks, in par-

ticular LSTMs, and convolutional neural

networks. However, these architectures

are rather shallow in comparison to the

deep convolutional networks which have

pushed the state-of-the-art in computer vi-

sion. We present a new architecture (VD-

CNN) for text processing which operates

directly at the character level and uses

only small convolutions and pooling oper-

ations. We are able to show that the per-

formance of this model increases with the

depth: using up to 29 convolutional layers,

we report improvements over the state-of-

the-art on several public text classification

tasks. To the best of our knowledge, this is

the first time that very deep convolutional

nets have been applied to text processing.

1 Introduction

The goal of natural language processing (NLP) is

to process text with computers in order to analyze

it, to extract information and eventually to rep-

resent the same information differently. We may

want to associate categories to parts of the text

(e.g. POS tagging or sentiment analysis), struc-

ture text differently (e.g. parsing), or convert it

to some other form which preserves all or part of

the content (e.g. machine translation, summariza-

tion). The level of granularity of this processing

can range from individual characters to subword

units (Sennrich et al., 2016) or words up to whole

sentences or even paragraphs.

After a couple of pioneer works (Bengio et al.

(2001), Collobert and Weston (2008), Collobert et

al. (2011) among others), the use of neural net-

works for NLP applications is attracting huge in-

terest in the research community and they are sys-

tematically applied to all NLP tasks. However,

while the use of (deep) neural networks in NLP

has shown very good results for many tasks, it

seems that they have not yet reached the level to

outperform the state-of-the-art by a large margin,

as it was observed in computer vision and speech

recognition.

Convolutional neural networks, in short Con-

vNets, are very successful in computer vision. In

early approaches to computer vision, handcrafted

features were used, for instance “scale-invariant

feature transform (SIFT)”(Lowe, 2004), followed

by some classifier. The fundamental idea of Con-

vNets(LeCun et al., 1998) is to consider feature

extraction and classification as one jointly trained

task. This idea has been improved over the years,

in particular by using many layers of convolutions

and pooling to sequentially extract a hierarchical

representation(Zeiler and Fergus, 2014) of the in-

put. The best networks are using more than 150

layers as in (He et al., 2016a; He et al., 2016b).

Many NLP approaches consider words as ba-

sic units. An important step was the introduction

of continuous representations of words(Bengio et

al., 2003). These word embeddings are now the

state-of-the-art in NLP. However, it is less clear

how we should best represent a sequence of words,

e.g. a whole sentence, which has complicated syn-

tactic and semantic relations. In general, in the

same sentence, we may be faced with local and

long-range dependencies. Currently, the main-

stream approach is to consider a sentence as a se-

quence of tokens (characters or words) and to pro-

cess them with a recurrent neural network (RNN).

Tokens are usually processed in sequential order,

from left to right, and the RNN is expected to

“memorize” the whole sequence in its internal

states. The most popular and successful RNN vari-

ant are certainly LSTMs(Hochreiter and Schmid-
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Dataset Label Sample

Yelp P. +1 Been going to Dr. Goldberg for over 10 years. I think I was one of his 1st

patients when he started at MHMG. Hes been great over the years and is really

all about the big picture. [...]

Amz P. 3(/5) I love this show, however, there are 14 episodes in the first season and this DVD

only shows the first eight. [...]. I hope the BBC will release another DVD that

contains all the episodes, but for now this one is still somewhat enjoyable.

Sogou ”Sports” ju4 xi1n hua2 she4 5 yue4 3 ri4 , be3i ji1ng 2008 a4o yu4n hui4 huo3 ju4 jie1

li4 ji1ng guo4 shi4 jie4 wu3 da4 zho1u 21 ge4 che2ng shi4

Yah. A. ”Computer,

Internet”

”What should I look for when buying a laptop? What is the best brand and

what’s reliable?”,”Weight and dimensions are important if you’re planning to

travel with the laptop. Get something with at least 512 mb of RAM. [..] is a

good brand, and has an easy to use site where you can build a custom laptop.”

Table 1: Examples of text samples and their labels.

huber, 1997) – there are many works which have

shown the ability of LSTMs to model long-range

dependencies in NLP applications, e.g. (Sunder-

meyer et al., 2012; Sutskever et al., 2014) to name

just a few. However, we argue that LSTMs are

generic learning machines for sequence process-

ing which are lacking task-specific structure.

We propose the following analogy. It is well

known that a fully connected one hidden layer

neural network can in principle learn any real-

valued function, but much better results can be

obtained with a deep problem-specific architec-

ture which develops hierarchical representations.

By these means, the search space is heavily con-

strained and efficient solutions can be learned with

gradient descent. ConvNets are namely adapted

for computer vision because of the compositional

structure of an image. Texts have similar proper-

ties : characters combine to form n-grams, stems,

words, phrase, sentences etc.

We believe that a challenge in NLP is to develop

deep architectures which are able to learn hierar-

chical representations of whole sentences, jointly

with the task. In this paper, we propose to use deep

architectures of many convolutional layers to ap-

proach this goal, using up to 29 layers. The design

of our architecture is inspired by recent progress

in computer vision, in particular (Simonyan and

Zisserman, 2015; He et al., 2016a).

This paper is structured as follows. There have

been previous attempts to use ConvNets for text

processing. We summarize the previous works in

the next section and discuss the relations and dif-

ferences. Our architecture is described in detail

in section 3. We have evaluated our approach on

several sentence classification tasks, initially pro-

posed by (Zhang et al., 2015). These tasks and

our experimental results are detailed in section 4.

The proposed deep convolutional network shows

significantly better results than previous ConvNets

approach. The paper concludes with a discus-

sion of future research directions for very deep ap-

proach in NLP.

2 Related work

There is a large body of research on sentiment

analysis, or more generally on sentence classifica-

tion tasks. Initial approaches followed the clas-

sical two stage scheme of extraction of (hand-

crafted) features, followed by a classification

stage. Typical features include bag-of-words or n-

grams, and their TF-IDF. These techniques have

been compared with ConvNets by (Zhang et al.,

2015; Zhang and LeCun, 2015). We use the

same corpora for our experiments. More recently,

words or characters, have been projected into a

low-dimensional space, and these embeddings are

combined to obtain a fixed size representation of

the input sentence, which then serves as input for

the classifier. The simplest combination is the

element-wise mean. This usually performs badly

since all notion of token order is disregarded.

Another class of approaches are recursive neu-

ral networks. The main idea is to use an ex-

ternal tool, namely a parser, which specifies the

order in which the word embeddings are com-

bined. At each node, the left and right context are

combined using weights which are shared for all

nodes (Socher et al., 2011). The state of the top

node is fed to the classifier. A recurrent neural net-
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work (RNN) could be considered as a special case

of a recursive NN: the combination is performed

sequentially, usually from left to right. The last

state of the RNN is used as fixed-sized representa-

tion of the sentence, or eventually a combination

of all the hidden states.

First works using convolutional neural networks

for NLP appeared in (Collobert and Weston, 2008;

Collobert et al., 2011). They have been subse-

quently applied to sentence classification (Kim,

2014; Kalchbrenner et al., 2014; Zhang et al.,

2015). We will discuss these techniques in more

detail below. If not otherwise stated, all ap-

proaches operate on words which are projected

into a high-dimensional space.

A rather shallow neural net was proposed

in (Kim, 2014): one convolutional layer (using

multiple widths and filters) followed by a max

pooling layer over time. The final classifier uses

one fully connected layer with drop-out. Results

are reported on six data sets, in particular Stanford

Sentiment Treebank (SST). A similar system was

proposed in (Kalchbrenner et al., 2014), but us-

ing five convolutional layers. An important differ-

ence is also the introduction of multiple temporal

k-max pooling layers. This allows to detect the k

most important features in a sentence, independent

of their specific position, preserving their relative

order. The value of k depends on the length of

the sentence and the position of this layer in the

network. (Zhang et al., 2015) were the first to per-

form sentiment analysis entirely at the character

level. Their systems use up to six convolutional

layers, followed by three fully connected classifi-

cation layers. Convolutional kernels of size 3 and

7 are used, as well as simple max-pooling layers.

Another interesting aspect of this paper is the in-

troduction of several large-scale data sets for text

classification. We use the same experimental set-

ting (see section 4.1). The use of character level

information was also proposed by (Dos Santos and

Gatti, 2014): all the character embeddings of one

word are combined by a max operation and they

are then jointly used with the word embedding in-

formation in a shallow architecture. In parallel to

our work, (Yang et al., 2016) proposed a based hi-

erarchical attention network for document classi-

fication that perform an attention first on the sen-

tences in the document, and on the words in the

sentence. Their architecture performs very well

on datasets whose samples contain multiple sen-

tences.

In the computer vision community, the com-

bination of recurrent and convolutional networks

in one architecture has also been investigated,

with the goal to “get the best of both worlds”,

e.g. (Pinheiro and Collobert, 2014). The same

idea was recently applied to sentence classifica-

tion (Xiao and Cho, 2016). A convolutional net-

work with up to five layers is used to learn high-

level features which serve as input for an LSTM.

The initial motivation of the authors was to ob-

tain the same performance as (Zhang et al., 2015)

with networks which have significantly fewer pa-

rameters. They report results very close to those

of (Zhang et al., 2015) or even outperform Con-

vNets for some data sets.

In summary, we are not aware of any work

that uses VGG-like or ResNet-like architecture

to go deeper than than six convolutional layers

(Zhang et al., 2015) for sentence classification.

Deeper networks were not tried or they were re-

ported to not improve performance. This is in

sharp contrast to the current trend in computer vi-

sion where significant improvements have been re-

ported using much deeper networks(Krizhevsky et

al., 2012), namely 19 layers (Simonyan and Zis-

serman, 2015), or even up to 152 layers (He et al.,

2016a). In the remainder of this paper, we describe

our very deep convolutional architecture and re-

port results on the same corpora than (Zhang et

al., 2015). We were able to show that performance

improves with increased depth, using up to 29 con-

volutional layers.

3 VDCNN Architecture

The overall architecture of our network is shown

in Figure 1. Our model begins with a look-up ta-

ble that generates a 2D tensor of size (f0, s) that

contain the embeddings of the s characters. s is

fixed to 1024, and f0 can be seen as the ”RGB”

dimension of the input text.

We first apply one layer of 64 convolutions of

size 3, followed by a stack of temporal “convolu-

tional blocks”. Inspired by the philosophy of VGG

and ResNets we apply these two design rules: (i)

for the same output temporal resolution, the layers

have the same number of feature maps, (ii) when

the temporal resolution is halved, the number of

feature maps is doubled. This helps reduce the

memory footprint of the network. The networks

contains 3 pooling operations (halving the tempo-

1109



Text

Lookup table, 16

Convolutional Block, 3, 64

Convolutional Block, 3, 128

Convolutional Block, 3, 256

Convolutional Block, 3, 512

3, Temp Conv, 64

k-max pooling, k=8

input :  1 x s

output: 512 x k

fc(4096, 2048), ReLU

output: 16 x s

output: 64 x s

fc(2048, 2048), ReLU

fc(2048, nClasses)

Convolutional Block, 3, 128

output: 128 x s/2

Convolutional Block, 3, 256Convolutional Block, 3, 256

output: 256 x s/4

Convolutional Block, 3, 512

output: 512 x s/8

pool/2

Convolutional Block, 3, 64

pool/2

pool/2

optional

shortcut

optional

shortcut

optional

shortcut

optional

shortcut

optional

shortcut

optional

shortcut

optional

shortcut

Figure 1: VDCNN architecture.

ral resolution each time by 2), resulting in 3 levels

of 128, 256 and 512 feature maps (see Figure 1).

The output of these convolutional blocks is a ten-

sor of size 512 × sd, where sd = s

2p with p = 3
the number of down-sampling operations. At this

level of the convolutional network, the resulting

tensor can be seen as a high-level representation

of the input text. Since we deal with padded in-

put text of fixed size, sd is constant. However,

in the case of variable size input, the convolu-

tional encoder provides a representation of the in-

put text that depends on its initial length s. Repre-

sentations of a text as a set of vectors of variable

size can be valuable namely for neural machine

translation, in particular when combined with an

attention model. In Figure 1, temporal convolu-

tions with kernel size 3 and X feature maps are

denoted ”3, Temp Conv, X”, fully connected

layers which are linear projections (matrix of size

I × O) are denoted ”fc(I, O)” and ”3-max

pooling, stride 2” means temporal max-

pooling with kernel size 3 and stride 2.

Most of the previous applications of ConvNets

to NLP use an architecture which is rather shal-

low (up to 6 convolutional layers) and combines

convolutions of different sizes, e.g. spanning 3, 5

and 7 tokens. This was motivated by the fact that

convolutions extract n-gram features over tokens

and that different n-gram lengths are needed to

model short- and long-span relations. In this work,

we propose to create instead an architecture which

uses many layers of small convolutions (size 3).

Stacking 4 layers of such convolutions results in a

span of 9 tokens, but the network can learn by it-

self how to best combine these different “3-gram

features” in a deep hierarchical manner. Our ar-

chitecture can be in fact seen as a temporal adap-

tation of the VGG network (Simonyan and Zisser-

man, 2015). We have also investigated the same

kind of “ResNet shortcut” connections as in (He

et al., 2016a), namely identity and 1 × 1 convolu-

tions (see Figure 1).

For the classification tasks in this work, the tem-

poral resolution of the output of the convolution

blocks is first down-sampled to a fixed dimension

using k-max pooling. By these means, the net-

work extracts the k most important features, inde-

pendently of the position they appear in the sen-

tence. The 512 × k resulting features are trans-

formed into a single vector which is the input to

a three layer fully connected classifier with ReLU
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Figure 2: Convolutional block.

hidden units and softmax outputs. The number of

output neurons depends on the classification task,

the number of hidden units is set to 2048, and k

to 8 in all experiments. We do not use drop-out

with the fully connected layers, but only temporal

batch normalization after convolutional layers to

regularize our network.

Convolutional Block

Each convolutional block (see Figure 2) is a se-

quence of two convolutional layers, each one

followed by a temporal BatchNorm (Ioffe and

Szegedy, 2015) layer and an ReLU activation. The

kernel size of all the temporal convolutions is 3,

with padding such that the temporal resolution is

preserved (or halved in the case of the convolu-

tional pooling with stride 2, see below). Steadily

increasing the depth of the network by adding

more convolutional layers is feasible thanks to the

limited number of parameters of very small con-

volutional filters in all layers. Different depths

of the overall architecture are obtained by vary-

ing the number of convolutional blocks in between

the pooling layers (see table 2). Temporal batch

normalization applies the same kind of regulariza-

tion as batch normalization except that the activa-

tions in a mini-batch are jointly normalized over

temporal (instead of spatial) locations. So, for a

mini-batch of size m and feature maps of tempo-

ral size s, the sum and the standard deviations re-

lated to the BatchNorm algorithm are taken over

|B| = m · s terms.

We explore three types of down-sampling be-

tween blocks Ki and Ki+1 (Figure 1) :

(i) The first convolutional layer of Ki+1 has

stride 2 (ResNet-like).

Depth: 9 17 29 49

conv block 512 2 4 4 6

conv block 256 2 4 4 10

conv block 128 2 4 10 16

conv block 64 2 4 10 16

First conv. layer 1 1 1 1

#params [in M] 2.2 4.3 4.6 7.8

Table 2: Number of conv. layers per depth.

(ii) Ki is followed by a k-max pooling layer

where k is such that the resolution is halved

(Kalchbrenner et al., 2014).

(iii) Ki is followed by max-pooling with kernel

size 3 and stride 2 (VGG-like).

All these types of pooling reduce the temporal res-

olution by a factor 2. At the final convolutional

layer, the resolution is thus sd.

In this work, we have explored four depths for

our networks: 9, 17, 29 and 49, which we de-

fine as being the number of convolutional lay-

ers. The depth of a network is obtained by sum-

ming the number of blocks with 64, 128, 256 and

512 filters, with each block containing two con-

volutional layers. In Figure 1, the network has

2 blocks of each type, resulting in a depth of

2 × (2 + 2 + 2 + 2) = 16. Adding the very first

convolutional layer, this sums to a depth of 17 con-

volutional layers. The depth can thus be increased

or decreased by adding or removing convolutional

blocks with a certain number of filters. The best

configurations we observed for depths 9, 17, 29

and 49 are described in Table 2. We also give the

number of parameters of all convolutional layers.

4 Experimental evaluation

4.1 Tasks and data

In the computer vision community, the availabil-

ity of large data sets for object detection and im-

age classification has fueled the development of

new architectures. In particular, this made it pos-

sible to compare many different architectures and

to show the benefit of very deep convolutional net-

works. We present our results on eight freely avail-

able large-scale data sets introduced by (Zhang et

al., 2015) which cover several classification tasks

such as sentiment analysis, topic classification or

news categorization (see Table 3). The number of

training examples varies from 120k up to 3.6M,

and the number of classes is comprised between 2
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Data set #Train #Test #Classes Classification Task

AG’s news 120k 7.6k 4 English news categorization

Sogou news 450k 60k 5 Chinese news categorization

DBPedia 560k 70k 14 Ontology classification

Yelp Review Polarity 560k 38k 2 Sentiment analysis

Yelp Review Full 650k 50k 5 Sentiment analysis

Yahoo! Answers 1 400k 60k 10 Topic classification

Amazon Review Full 3 000k 650k 5 Sentiment analysis

Amazon Review Polarity 3 600k 400k 2 Sentiment analysis

Table 3: Large-scale text classification data sets used in our experiments. See (Zhang et al., 2015) for a

detailed description.

and 14. This is considerably lower than in com-

puter vision (e.g. 1 000 classes for ImageNet).

This has the consequence that each example in-

duces less gradient information which may make

it harder to train large architectures. It should be

also noted that some of the tasks are very ambigu-

ous, in particular sentiment analysis for which it

is difficult to clearly associate fine grained labels.

There are equal numbers of examples in each class

for both training and test sets. The reader is re-

ferred to (Zhang et al., 2015) for more details on

the construction of the data sets. Table 4 summa-

rizes the best published results on these corpora

we are aware of. We do not use “Thesaurus data

augmentation” or any other preprocessing, except

lower-casing. Nevertheless, we still outperform

the best convolutional neural networks of (Zhang

et al., 2015) for all data sets. The main goal of our

work is to show that it is possible and beneficial

to train very deep convolutional networks as text

encoders. Data augmentation may improve our re-

sults even further. We will investigate this in future

research.

4.2 Common model settings

The following settings have been used in all

our experiments. They were found to be best

in initial experiments. Following (Zhang et

al., 2015), all processing is done at the char-

acter level which is the atomic representation

of a sentence, same as pixels for images. The

dictionary consists of the following characters

”abcdefghijklmnopqrstuvwxyz0123456

789-,;.!?:’"/| #$%ˆ&*˜‘+=<>()[]{}”

plus a special padding, space and unknown token

which add up to a total of 69 tokens. The input

text is padded to a fixed size of 1014, larger

text are truncated. The character embedding is

of size 16. Training is performed with SGD,

using a mini-batch of size 128, an initial learning

rate of 0.01 and momentum of 0.9. We follow

the same training procedure as in (Zhang et al.,

2015). We initialize our convolutional layers

following (He et al., 2015). One epoch took from

24 minutes to 2h45 for depth 9, and from 50

minutes to 7h (on the largest datasets) for depth

29. It took between 10 to 15 epoches to converge.

The implementation is done using Torch 7. All

experiments are performed on a single NVidia

K40 GPU. Unlike previous research on the use

of ConvNets for text processing, we use temporal

batch norm without dropout.

4.3 Experimental results

In this section, we evaluate several configurations

of our model, namely three different depths and

three different pooling types (see Section 3). Our

main contribution is a thorough evaluation of net-

works of increasing depth using an architecture

with small temporal convolution filters with dif-

ferent types of pooling, which shows that a signif-

icant improvement on the state-of-the-art configu-

rations can be achieved on text classification tasks

by pushing the depth to 29 convolutional layers.

Our deep architecture works well on big data

sets in particular, even for small depths. Table

5 shows the test errors for depths 9, 17 and 29 and

for each type of pooling : convolution with stride

2, k-max pooling and temporal max-pooling. For

the smallest depth we use (9 convolutional layers),

we see that our model already performs better than

Zhang’s convolutional baselines (which includes

6 convolutional layers and has a different archi-

tecture) on the biggest data sets : Yelp Full, Ya-

hoo Answers and Amazon Full and Polarity. The

most important decrease in classification error can
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Corpus: AG Sogou DBP. Yelp P. Yelp F. Yah. A. Amz. F. Amz. P.

Method n-TFIDF n-TFIDF n-TFIDF ngrams Conv Conv+RNN Conv Conv

Author [Zhang] [Zhang] [Zhang] [Zhang] [Zhang] [Xiao] [Zhang] [Zhang]

Error 7.64 2.81 1.31 4.36 37.95∗ 28.26 40.43∗ 4.93∗

[Yang] - - - - - 24.2 36.4 -

Table 4: Best published results from previous work. Zhang et al. (2015) best results use a Thesaurus data

augmentation technique (marked with an ∗). Yang et al. (2016)’s hierarchical methods is particularly

adapted to datasets whose samples contain multiple sentences.

Depth Pooling AG Sogou DBP. Yelp P. Yelp F. Yah. A. Amz. F. Amz. P.

9 Convolution 10.17 4.22 1.64 5.01 37.63 28.10 38.52 4.94

9 KMaxPooling 9.83 3.58 1.56 5.27 38.04 28.24 39.19 5.69

9 MaxPooling 9.17 3.70 1.35 4.88 36.73 27.60 37.95 4.70

17 Convolution 9.29 3.94 1.42 4.96 36.10 27.35 37.50 4.53

17 KMaxPooling 9.39 3.51 1.61 5.05 37.41 28.25 38.81 5.43

17 MaxPooling 8.88 3.54 1.40 4.50 36.07 27.51 37.39 4.41

29 Convolution 9.36 3.61 1.36 4.35 35.28 27.17 37.58 4.28

29 KMaxPooling 8.67 3.18 1.41 4.63 37.00 27.16 38.39 4.94

29 MaxPooling 8.73 3.36 1.29 4.28 35.74 26.57 37.00 4.31

Table 5: Testing error of our models on the 8 data sets. No data preprocessing or augmentation is used.

be observed on the largest data set Amazon Full

which has more than 3 Million training samples.

We also observe that for a small depth, temporal

max-pooling works best on all data sets.

Depth improves performance. As we increase

the network depth to 17 and 29, the test errors

decrease on all data sets, for all types of pooling

(with 2 exceptions for 48 comparisons). Going

from depth 9 to 17 and 29 for Amazon Full re-

duces the error rate by 1% absolute. Since the

test is composed of 650K samples, 6.5K more

test samples have been classified correctly. These

improvements, especially on large data sets, are

significant and show that increasing the depth is

useful for text processing. Overall, compared

to previous state-of-the-art, our best architecture

with depth 29 and max-pooling has a test error of

37.0 compared to 40.43%. This represents a gain

of 3.43% absolute accuracy. The significant im-

provements which we obtain on all data sets com-

pared to Zhang’s convolutional models do not in-

clude any data augmentation technique.

Max-pooling performs better than other pool-

ing types. In terms of pooling, we can also see

that max-pooling performs best overall, very close

to convolutions with stride 2, but both are signifi-

cantly superior to k-max pooling.

Both pooling mechanisms perform a max oper-

ation which is local and limited to three consec-

utive tokens, while k-max polling considers the

whole sentence at once. According to our exper-

iments, it seems to hurt performance to perform

this type of max operation at intermediate layers

(with the exception of the smallest data sets).

Our models outperform state-of-the-art Con-

vNets. We obtain state-of-the-art results for all

data sets, except AG’s news and Sogou news

which are the smallest ones. However, with our

very deep architecture, we get closer to the state-

of-the-art which are ngrams TF-IDF for these data

sets and significantly surpass convolutional mod-

els presented in (Zhang et al., 2015). As observed

in previous work, differences in accuracy between

shallow (TF-IDF) and deep (convolutional) mod-

els are more significant on large data sets, but we

still perform well on small data sets while getting

closer to the non convolutional state-of-the-art re-

sults on small data sets. The very deep models

even perform as well as ngrams and ngrams-TF-

IDF respectively on the sentiment analysis task

of Yelp Review Polarity and the ontology classi-

fication task of the DBPedia data set. Results of

Yang et al. (only on Yahoo Answers and Amazon

Full) outperform our model on the Yahoo Answers

dataset, which is probably linked to the fact that

their model is task-specific to datasets whose sam-

ples that contain multiple sentences like (question,

answer). They use a hierarchical attention mecha-
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nism that apply very well to documents (with mul-

tiple sentences).

Going even deeper degrades accuracy. Short-

cut connections help reduce the degradation.

As described in (He et al., 2016a), the gain in accu-

racy due to the the increase of the depth is limited

when using standard ConvNets. When the depth

increases too much, the accuracy of the model gets

saturated and starts degrading rapidly. This degra-

dation problem was attributed to the fact that very

deep models are harder to optimize. The gradi-

ents which are backpropagated through the very

deep networks vanish and SGD with momentum

is not able to converge to a correct minimum of

the loss function. To overcome this degradation

of the model, the ResNet model introduced short-

cut connections between convolutional blocks that

allow the gradients to flow more easily in the net-

work (He et al., 2016a).

We evaluate the impact of shortcut connections

by increasing the number of convolutions to 49

layers. We present an adaptation of the ResNet

model to the case of temporal convolutions for text

(see Figure 1). Table 6 shows the evolution of the

test errors on the Yelp Review Full data set with or

without shortcut connections. When looking at the

column “without shortcut”, we observe the same

degradation problem as in the original ResNet ar-

ticle: when going from 29 to 49 layers, the test

error rate increases from 35.28 to 37.41 (while the

training error goes up from 29.57 to 35.54). When

using shortcut connections, we observe improved

results when the network has 49 layers: both the

training and test errors go down and the network is

less prone to underfitting than it was without short-

cut connections.

While shortcut connections give better results

when the network is very deep (49 layers), we

were not able to reach state-of-the-art results with

them. We plan to further explore adaptations of

residual networks to temporal convolutions as we

think this a milestone for going deeper in NLP.

Residual units (He et al., 2016a) better adapted to

the text processing task may help for training even

deeper models for text processing, and is left for

future research.

Exploring these models on text classification

tasks with more classes sounds promising.

Note that one of the most important difference

between the classification tasks discussed in this

depth without shortcut with shortcut

9 37.63 40.27

17 36.10 39.18

29 35.28 36.01

49 37.41 36.15

Table 6: Test error on the Yelp Full data set for all

depths, with or without residual connections.

work and ImageNet is that the latter deals with

1000 classes and thus much more information is

back-propagated to the network through the gra-

dients. Exploring the impact of the depth of tem-

poral convolutional models on categorization tasks

with hundreds or thousands of classes would be an

interesting challenge and is left for future research.

5 Conclusion

We have presented a new architecture for NLP

which follows two design principles: 1) operate at

the lowest atomic representation of text, i.e. char-

acters, and 2) use a deep stack of local operations,

i.e. convolutions and max-pooling of size 3, to

learn a high-level hierarchical representation of a

sentence. This architecture has been evaluated on

eight freely available large-scale data sets and we

were able to show that increasing the depth up to

29 convolutional layers steadily improves perfor-

mance. Our models are much deeper than pre-

viously published convolutional neural networks

and they outperform those approaches on all data

sets. To the best of our knowledge, this is the first

time that the “benefit of depths” was shown for

convolutional neural networks in NLP.

Eventhough text follows human-defined rules

and images can be seen as raw signals of our en-

vironment, images and small texts have similar

properties. Texts are also compositional for many

languages. Characters combine to form n-grams,

stems, words, phrase, sentences etc. These simi-

lar properties make the comparison between com-

puter vision and natural language processing very

profitable and we believe future research should

invest into making text processing models deeper.

Our work is a first attempt towards this goal.

In this paper, we focus on the use of very deep

convolutional neural networks for sentence classi-

fication tasks. Applying similar ideas to other se-

quence processing tasks, in particular neural ma-

chine translation is left for future research. It

needs to be investigated whether these also benefit

from having deeper convolutional encoders.
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