
Data Min Knowl Disc (2015) 29:168–202
DOI 10.1007/s10618-013-0340-z

Very fast decision rules for classification in data streams

Petr Kosina · João Gama

Received: 31 July 2012 / Accepted: 11 November 2013 / Published online: 3 December 2013
© The Author(s) 2013

Abstract Data stream mining is the process of extracting knowledge structures from
continuous, rapid data records. Many decision tasks can be formulated as stream min-
ing problems and therefore many new algorithms for data streams are being proposed.
Decision rules are one of the most interpretable and flexible models for predictive data
mining. Nevertheless, few algorithms have been proposed in the literature to learn rule
models for time-changing and high-speed flows of data. In this paper we present the
very fast decision rules (VFDR) algorithm and discuss interesting extensions to the base
version. All the proposed versions are one-pass and any-time algorithms. They work
on-line and learn ordered or unordered rule sets. Algorithms designed to work with
data streams should be able to detect changes and quickly adapt the decision model.
In order to manage these situations we also present the adaptive extension (AVFDR)
to detect changes in the process generating data and adapt the decision model. Detect-
ing local drifts takes advantage of the modularity of the rule sets. In AVFDR, each
individual rule monitors the evolution of performance metrics to detect concept drift.
AVFDR prunes rules whenever a drift is signaled. This explicit change detection mech-
anism provides useful information about the dynamics of the process generating data,
faster adaptation to changes and generates more compact rule sets. The experimental
evaluation demonstrates that algorithms achieve competitive results in comparison to

Responsible editor: Johannes Fürnkranz.

P. Kosina · J. Gama (B)
LIAAD - INESC TEC, Porto, Portugal
e-mail: jgama@fep.up.pt

P. Kosina
Faculty of Informatics, Masaryk University, Brno, Czech Republic

J. Gama
Faculty of Economics, University of Porto, Porto, Portugal

123

Very fast decision rules 169

alternative methods and the adaptive methods are able to learn fast and compact rule
sets from evolving streams.

Keywords Data streams · Classification · Rule learning · Concept drift

1 Introduction

With the increasing role of computers in our everyday life we obtain more and more
potentially useful information that can aid us in tasks such as supporting key decisions,
finding interesting patterns, and discovering anomalies. The human brain can hardly
match the capacities of computers in processing all the available information, which
brings new challenges for machine learning. Therefore, computers are trained for
tasks such as recognizing Spam, helping with medical diagnosis, predicting electricity
consumption, and discovering frauds.

Recently, machine learning has undergone a change in the focus and application
of its techniques. More and more attention shifts from off-line mining of static data
towards ubiquitous mining and real-time applications dealing with data represented
by streams. Data streams refer to a process where instances arrive continuously and
possibly infinitely over time. Therefore, we might not have all the data available at
once and consequently the data require sequential access rather that random access.
New approaches and stream extensions to off-line methods emerge in order to improve
performance under constraints given by the stream environment. The approaches for
streams need to possess special characteristics such as to be able to produce a model
while scanning the data only once, the model must be available at any point of time,
must be up-to-date, and all must be able to run under computational and memory
constraints (Gama 2010).

A common behavior in streaming data is that it evolves over time with unknown
dynamics. This evolving nature of data might change the functional mapping between
attributes and classes, a phenomenon known as concept drift. This is an issue that
up-to-date streaming learning system must take into account. Almost everything in
this world changes and so can the concepts in data, whenever they are being observed
for long enough time. The influence of seasonal change, economic change, health
conditions or wear of machinery can be the cause of decreasing quality of the models
built based on previous observations. Therefore, fast model adaptation is an advantage
for decision learning in most real world problems.

In machine learning, and especially in the classification tasks, various types of deci-
sion trees are among the most popular tools that are widely used. They are hierarchical
structures with decisions in nodes and labels in leaves. Not only do they provide very
good predictive capabilities, but also evince high degree of interpretability due to their
comprehensible visualization. Consequently, the paths from root of the tree to the
leaves can be rewritten into set of unordered IF-THEN rules. Those rules capture the
main characteristics of the decision problem and its relevant features. Moreover, each
unordered rule can be handled independently of the others in the set. A common and
straightforward approach is to generate decision rules from decision trees. Another
way to obtain the rule set is to induce them directly from data, similarly as when
learning the tree.

123

170 P. Kosina, J. Gama

Indeed, the popularity, quality and interpretability of decision trees are preserved
in the stream mining scenarios. Among the best known and most used models for
data stream classification are the algorithms based on Hoeffding trees (Domingos and
Hulten 2000) (HT). These incremental algorithms automatically adapt to concept drift
just by expanding the tree. The adaptation of HT, however, is rather slow. Faster adap-
tation might be achieved by employing explicit drift detection methods (Gama et al.
2004; Baena-Garcia et al. 2006; Hinkley 1970). Nevertheless, using explicit detection
usually requires rebuilding the current tree, which could be computationally expen-
sive. The aforementioned rule sets did not attract much attention from the community
in the context of stream mining as opposed to the trees. Yet they have the advantage
of having individual rules that can be managed independently. Therefore, in decision
rules the implicit adaptation feature of the trees remains. Moreover, the set of rules can
be altered more easily. Instead of rebuilding the classifier from scratch or executing a
complicated change of the structure in the tree, individual rules which are considered
outdated can be simply removed. The explicit change detection of individual rules can
provide much faster adaptation mechanisms to changes and can also serve as rule set
pruning mechanism.

This article is based on three conference papers. The first two introduced the
algorithm for learning decision rules from data streams (Gama and Kosina 2011)
and proposed a modification to the algorithm (Kosina and Gama 2012b). The work
presented a classifier with different evaluation criteria and it was redesigned to be
able to learn rules for each class. These algorithms were not specifically designed
for time changing data and were not tested under such conditions. The adaptation
of the rule learning algorithm to a time changing data was the aim of the third
paper (Kosina and Gama 2012a). This work summarizes previous versions, pro-
poses another modification of the algorithm, and provides more extensive and in-depth
evaluation.

The paper is organized as follows. Section 2 discusses the related work in rule
learning and handling time changing data. The VFDR algorithm and its extensions are
presented in Sect. 3. The proposed algorithms are evaluated and compared to other
stream classification algorithms in Sect. 4. The lessons learned and future work are
discussed in Sect. 5.

2 Related work

This section presents the related works in the stream classification, the rule learning
algorithms and their different approaches to multi-class problems, and the last part
focuses on drift detection in time-changing data.

2.1 Stream classification algorithms

One of the most influential algorithms for classification in data streams was proposed
by Domingos and Hulten (2000). His work presented what is known as very fast
decision tree (VFDT), an on-line version of a decision tree classifier appropriate for
data stream processing. VFDT is learned by recursively replacing leaves with decision

123

Very fast decision rules 171

nodes. Each leaf stores the sufficient statistics about attribute-values. The sufficient
statistics are required by a heuristic function that evaluates the merit of split-tests
based on the attribute-values. When an example is available it traverses the tree from
the root to a leaf evaluating the corresponding attribute at each node, and following the
branch according to the attribute’s value of the example. When the example reaches
a leaf the sufficient statistics are updated. The tree replaces leaves with test nodes
when the Hoeffding bound condition is satisfied. The popularity of VFDT attracted
a lot of attention and different extensions and improvements were proposed. Hulten
et al. (2001) presented CVFDT, a decision tree learner for mining data streams with
non-stationary distributions. CVFDT learns a model consistent with a sliding window
of recent examples. When the concept is changing and a split that was previously
selected would no longer be the best, the CVFDT algorithm starts learning an alternate
subtree with a new best attribute as its root. The subtree replaces the original one
when it becomes more accurate. The algorithm keeps the model up-to-date when there
are large and frequent changes in a concept. Gama et al. (2003) introduced VFDTc
algorithm that extended the base incremental tree learning algorithm in two ways.
The first extension was to equip leaves with binary search trees in order to handle
numerical attributes. The second improvement introduced the use, in the leaves of
the tree, of Naive Bayes (NB) classifiers trained on the examples that fall into the
leaf. This functionality significantly improves the predictive accuracy of the tree. The
possible weakness that the statistics kept within the node using the binary tree can
be relatively large when the examples have many unique values for the numerical
attribute.

A recent system called IBLStreams proposed by Shaker and Hüllermeier (2012)
introduces instance based learning classifier for data streams. Instance based learning
is inherently incremental. This is a memory based (or lazy) approach to learning that
consists of adding or removing instances from the model. IBLStream selects the
case base (instances that form the classifier) based on temporal relevance, spatial
relevance, and consistency. The idea is that the most recent examples are the most
relevant; it aims to have more or less uniform coverage of the instance space, and
to remove data that seem to be inconsistent with the current concept. New examples
are added to the case base and the redundant (neighboring) examples are checked
for removal. The neighborhood is given by kcand nearest neighbors. The most recent
are excluded from the candidates for removal, because it is difficult to distinguish
between noise and examples of potentially new concept. The classifier used a drift
detection technique (statistical process control, SPC, described later in this paper)
computed over last 100 training instances to detect abrupt changes. If a change is
detected IBLStream removes larger number of instances from the base. The extent
of the change (%) is estimated by the difference of minimum classification error
over last 100 training instances and the error over last 20 training instances. The
examples to be removed are then chosen at random according to a distribution which
is spatially uniform but temporally skewed. The advantage of IBLStream are the
flexibility of the learner and the adaptation capabilities with very good accuracy. The
weakness of the classifier can be the classification time and interpretability of the
model.

123

172 P. Kosina, J. Gama

2.2 Rule learning

A widely used strategy for learning rules consists of deriving rules from decision
trees, as it is done in Quinlan (1993). Any decision tree can be easily transformed into
a collection of rules. Each rule corresponds to the path from the root to a leaf, and
there are as many rules as leaves. This process generates a set of rules with the same
complexity as the decision tree. However, it has been shown that the antecedents of
individual rules may contain irrelevant conditions. C4.5rules (Quinlan 1993) uses an
optimization procedure to simplify conditions. Previous empirical studies (Quinlan
1993) have demonstrated that the set of rules is both simpler and more accurate than
the initial tree. Frank and Witten (1998) present a method for generating rules from
decision trees without using global optimization. The basic idea is to generate a deci-
sion tree in a breadth-first order, select the best rule, remove the examples covered by
the rule and iteratively induce further rules for the remaining instances.

There are several algorithms in the literature for learning decision lists1 (Rivest
1987; Clark and Niblett 1989; Cohen 1995; Domingos 1996; Weiss and Indurkhya
1998) with different capabilities and approaches to handle multi-class problems. CN2
(Clark and Niblett 1989) is one of the first rule learning systems. It uses a top-down,
general to specific approach. CN2 evaluates every possible complex, i.e., conjunc-
tion of attribute tests (if-conditions) of a rule, based on information-theoretic entropy
measure. This classifier is able to learn multiple class-problems. Each rule predicts
the most common class of the examples covered by the rule. In its improved version,
presented in Clark and Boswell (1991), the main loop of rule set algorithm learn a
model (a rule set) for each class separately. In each iteration, the examples of one
class are chosen as positive and all the others are labeled as negative examples. Only
positive examples that satisfy a learned rule are removed from the training set for
next iteration of the rule search. Similarly, RIPPER (Cohen 1995) decomposes the
problem in one vs. all fashion. The classes are ordered in increasing order of their
frequency in the training set. After learning rules that separate the minority class,
covered examples are removed and the algorithm proceeds with the next class. This
process stops when a last single class remains which is then assigned as default class.
Another technique to reduce multi-class problem is pairwise classification or round-
robin (Fürnkranz 2001). The idea is to learn a classifier for each pair of classes thus
transforming the original c-class problem into c(c−1)

2 two-class problems. All binary
classifiers are used to classify test examples. The predictions are aggregated using uni-
form voting. The predictions of the classifiers learned on the true class of an example
are expected to outweigh those that were trained to recognize examples of different
classes. If rule learning algorithm is not class-symmetric (i.e., problem of discrimi-
nating class i from class j is different than discriminating j from i), the authors sug-
gest double round robin approach. The classifiers are learned for both problems thus
obtaining in total c(c−1) classifiers. The recent book (Fürnkranz et al. 2012) presents
a comprehensive description of the most relevant issues and works in rule learning
system.

1 Note that decision lists are ordered rule sets.

123

Very fast decision rules 173

Former incremental rule learners include STAGGER (Schlimmer and Granger
1986), the first system designed expressly for coping with concept drift, the FLORA
family of algorithms (Widmer and Kubat 1996) with FLORA3 being the first system
able to deal with recurring contexts, and the AQ-PM family (Maloof and Michalski
2004). All these systems are able to incorporate new information, but they need to
maintain in memory previous examples and cannot deal with high-speed data streams.
The first rule learner designed for processing data streams is the systemFacil (Ferrer
et al. 2005). Facil uses a bottom-up, specific to general, search strategy, similar to
AQ-PM. The decision model consists of a set of rules and, for each rule, a set of positive
and negative examples that define the borders of the rule. The core of this approach
is that rules may be inconsistent by storing positive and negative examples which are
very near one another (border examples). This approach is similar to the AQ11-PM
system (Kolter and Maloof 2003; Maloof and Michalski 2004), which selects positive
examples from the boundaries of its rules (hyper-rectangles) and stores them in mem-
ory. When new examples arrive,AQ11-PM combines them with those held in memory,
applies the AQ11 algorithm to modify the current set of rules, and selects new posi-
tive examples from the corners, edges, or surfaces of such hyper-rectangles (extreme
examples). The idea of creating new rules based on border examples is similar to the
double induction approach introduced by Lindgren and Boström (2004). Instead of
using frequency based or NB based decision, when more rules predict different labels
for an example, they proposed to induce a new set of rules from the examples covered
by the conflicting rules. Then the new rules are used to classify the examples that
are covered by the conflicting rules. Facil uses a forgetting mechanism that can be
either explicit or implicit. Explicit forgetting takes place when the examples are older
than a user defined threshold. Implicit forgetting is performed by removing examples
that are no longer relevant as they do not enforce any concept description boundary.
Facil

2.3 Adaptive methods

The stream mining community has already introduced many different approaches to
deal with the phenomenon of concept drift. Approaches such as sliding windows and
example weights (Klinkenberg 2004) are widely used to maintain a classifier consistent
to the most recent data. Bifet and Gavalda (2009) proposed the ADWIN algorithm, a
detector and estimator which automatically adapts to current rate of change by keeping
the window of recent examples of variable length. It employs Hoeffding bound to
guarantee that the window has maximal length without a change inside the window.
Other methods can explicitly detect change-points or small time-windows where the
concept to learn has changed. A classifier can be equipped with such drift detection
method, e.g., based on error rate (Gama et al. 2004) or distance between classification
errors (Baena-Garcia et al. 2006), and forgetting mechanism.

As pointed out by Wang et al. (2003), a drawback of decision trees is that even a
slight drift of the target function may trigger several changes in the model and severely
compromise learning efficiency. On the other hand, ensemble methods avoid expensive
revisions by weighting the members, but may run the risk of building unnecessary
learners when virtual drifts are present in data. Bifet et al. (2009) presented two new

123

174 P. Kosina, J. Gama

decision tree ensemble methods: ADWIN bagging and adaptive-size Hoeffding tree
bagging. The former extends on-line bagging (Oza and Russell 2001) with ADWIN
change detector, which works as an estimator for the weights of the boosting method.
The worst performing classifier is removed from the ensemble when change is detected
and it is replaced by a new one. The latter uses HT of different maximum sizes since
smaller trees adapt faster to changes and larger work better for long periods with little
or no change.

3 Very fast decision rules algorithm

In this section we present the classification rule learning system for data streams—very
fast decision rules VFDR and variants. The rule learning algorithm strives to provide
a flexible classifier for data streams that would produce output easy to interpret and
that could adapt quickly to changes in the underlying concept.

As in many other systems a rule in VFDR is an implication of the form A ⇒ C .
The A part of a rule is a conjunction of literals, that is, conditions based on attribute
values. For numerical attributes, each literal is of the form Xi > v, or Xi ≤ v

for some feature Xi and some constant v. For categorical attributes VFDR produces
literals of the form Xi = v j where v j is a value in the domain of Xi . The C part
of a rule r is not a constant as in most of rule based systems, but the class is given
by a function—either majority class or NB. This is the most distinctive feature of
VFDR.

In the first part of this section we describe the base algorithmVFDR-Base. The fol-
lowing subsections describe modifications for multi-class problems and time evolving
data streams.

3.1 The basic algorithm

The VFDR-Base algorithm is designed for high-speed data streams. It learns ordered
or unordered rule sets. It needs only one scan of data and is able to provide any-time
classifications.

3.1.1 Growing a set of rules

The algorithm begins with an empty rule set (RS) and a de f ault rule {} → L,
where L is initialized to NU L L . L is a data structure that contains information used
to classify the test instances, and the sufficient statistics needed to expand the rule.

As already said, each learned rule (r) is a conjunction of literals, that are conditions
based on attribute values, and an Lr . If all the literals are true for a given example, then
the example is said to be covered by the rule. The labeled examples covered by a rule
r are used to update Lr . A rule is expanded with the literal that has the highest gain
measure of the examples covered by the rule. Lr accumulates the sufficient statistics
to compute the gain measure of all possible literals. Lr is a data structure that contains:
an integer that stores the number of examples covered by the rule; a vector to compute
p(ck), i.e., the probability of observing examples of class ck ; a matrix p(Xi = v j |ck)

to compute the probability of observing value v j of a nominal attribute Xi per class;

123

Very fast decision rules 175

and a binary search tree to compute the probability of observing values greater than
v j of continuous attribute Xi , p(Xi > v j |ck), per class. The information maintained
in Lr is similar to the sufficient statistics used by Gama et al. (2006).

The number of observations, after which a rule can be expanded or new rule can be
induced, is determined by the Hoeffding bound. It guarantees that, with probability at
least 1− δ, the true mean of a random variable x with a range R will not differ from
the sample mean of size N by more than:

ε =
√

R2 ln(1/δ)

2N
.

It is not efficient to check for the sufficient number of examples with every incoming
example, therefore this is done only after every Nmin observations.

The set of rules (RS) is learned in parallel as described in Algorithm 4. We consider
two cases: learning ordered or unordered set of rules. In the former, every labeled
example updates statistics of the first rule that covers it. In the latter, every labeled
example updates statistics of all the rules that cover it. If a labeled example is not
covered by any rule, the default rule is updated.

The expansion of a rule is done using Algorithm 2 that employs the aforementioned
Hoeffding bound. For each attribute Xi the value of split evaluation function G is
computed for each attribute value v j . The best and the second best literal merit named
as gbest and g2best respectively are used for the Hoeffding bound condition. If the
best merit is better the second best with given confidence, i.e. satisfies condition
gbest − g2best > ε, the rule is expanded with condition Xa = v j and the class of the
rule is assigned according to the majority class of observations of Xa = v j .

Algorithm 1: VFDR: Rule Learning Algorithm.
input : S: Stream of examples

ordered_set : boolean flag
δ: user defined confidence level

output: RS: Set of Decision Rules
begin

Let RS← {}
Let de f aultrule L← ∅
foreach example (x, yk) ∈ S do

foreach Rule r ∈ RS do
if r covers the example then

Update sufficient statistics of r
RS← RS − {r}
RS← RS ∪ Expand Rule(r, δ)
if ordered_set then

BREAK

if none of the rules in RS covered example then
Update sufficient statistics of the de f ault rule
RS← RS ∪ ExpandRule(default rule,δ)

123

176 P. Kosina, J. Gama

Algorithm 2: ExpandRule-BASE: Rule Expansion.
input : r : One Rule

δ: user defined confidence level
output: r : Expanded Rule
begin

Compute ε =
√

R2ln(1/δ)
2N (Hoeffding bound)

Find the best gbest and second best g2best attribute merit
if (gbest − g2best > ε) then

Extend r with a new condition based on the best attribute Xa = v j
Reinitialize sufficient statistics of Lr
r ← r ∪ {Xa = v j }

return r

3.1.2 Classification strategies

Assume that a rule r covers a test example. The example will be classified using the
information in Lr of that rule. The simplest strategy uses the distribution of the classes
stored in Lr , and classify the example in the class with maximum estimated p(ck).
This strategy only uses the information about class distributions and does not look for
the attribute-values; therefore it uses only a small part of the available information. In
a more informed strategy, a test example is classified with the class that maximizes the
posteriori probability given by Bayes rule assuming the independence of the attributes
given the class. There is a simple motivation for this option. L stores information
about the distribution of the attributes given the class usually for hundreds or even
thousands of examples, before expanding the rule and re-initializing the counters. NB
takes into account not only the prior distribution of the classes, but also the conditional
probabilities of the attribute-values given the class. The information available in each
rule is therefore better utilized. Given the example x = (x1, . . . , x j) and applying
Bayes theorem, we obtain:

P(ck |x) ∝ P(ck)
∏

P(x j |ck).

UsingNB inVFDT like classification algorithms is a well-known technique since it was
introduced in Gama et al. (2003). One of its greatest advantages is the boost in any-
time learning property because even though the learned rule set might not be robust
enough or the individual rules might not provide sufficient information for expert
interpretation (not being specialized enough, i.e., having only one or few conditions),
it may already be able of highly informed predictions based on NB classification.

There are different ways to determine and rank the predictions and their associated
confidences from the rule set in case multiple rules fire. The set of rules learned by
VFDR-Base can employ three different classification strategies as defined in PMML
(Data Mining Group 2011): First Hit, Weighted Sum, and Weighted Max.

– First Hit uses the first firing rule to determine the predicted class, and the confidence
is the weight of that rule.

123

Very fast decision rules 177

– Weighted Sum calculates the total weight for each class by summing the weights
for each firing rule. The prediction with the highest total weight is then selected.
The confidence is the total weight of the winning class divided by the number of
firing rules.

– Weighted Max selects the firing rule with the highest weight. The confidence
returned is the confidence of the selected rule.

If two firing rules have the same weight (Weighted Max), or two or more classes are
assigned the same weight (Weighted Sum) the winner is chosen alphabetically. As
in Clark and Boswell (1991), the ordered rules use the First Hit strategy, while the
unordered rules use the Weighted Sum strategy2.

3.2 One versus all rule learning

This modified version of the base VFDR-Base employs one vs. all strategy for multi-
class learning (VFDR-OA). In this strategy, the examples of class ck ∈ C are positive
and ∀cl ∈ C, cl �= ck are negative. It considers a rule expansion for each class c ∈ Cr ,
where Cr is the set of classes observed at rule r . This version is able to produce more
rules in one call of ExpandRule. The number of rules induced from one rule r in
RS in such a call is at most |Cr |.

The process to select new conditions for a rule works as follows. For each attribute
Xi the value of gain function G = Gain(r ′, r) adopted from FOIL (Quinlan 1991) is
computed. The change in gain between rule r and a candidate rule after adding a new
condition r ′ is defined as:

Gain(r ′, r) = s ×
(

log2
N ′+
N ′
− log2

N+
N

)

where N is the number of examples covered by r and N+ is the number of positive
examples in them, N ′+ and N ′ represent the same for r ′, and s is the number of true
positives in r that are still true positives in r ′, which in this case corresponds to N ′+.

We are interested only in positive gain, therefore we consider the minimum of the

gain function as zero and the maximum for a given rule is N+ ×
(
− log2

N+
N

)
. We

can then normalize the positive gain as:

GainNorm(r ′, r) = Gain(r ′, r)

N+ ×
(
− log2

N+
N

) .

In the case of expanding a non-default rule, that is a rule which already contains
conditions, the algorithm works as follows. The rule was induced for a certain class
that was considered as positive. To keep this class of interest in the rule set, the class
is maintained as positive for the next computation of the merit. More specifically the

2 Weighted Max generally did not produce results much different from the Weighted Sum therefore we
opted for not including this setting in the results.

123

178 P. Kosina, J. Gama

difference is that an ordered set, in Algorithm 7, considers only the positive class. The
unordered rule set in Algorithm 8 additionally computes the merits of other classes
considered as the positive and can expand the rule also with the best condition for
such classes. The additional expansions are allowed only when the rule has already
been expanded with the original class at that call of ExpandRule. The default rule
does not have any previous class considered as positive thus the search for new rules
proceeds until the merit for all possible classes are checked.

In other words, the process creates multiple rules for different classes marked as
positive, but not necessarily for all the available classes in one call. The advantage is
that the algorithm is able to learn more rules and more specialized (complex) rules
from fewer examples. As a result it can achieve higher accuracy at the possible cost
of producing larger sets.

The search for the best and second best values considers the value of GainNorm for a
given class. If gk

best is the true best gain measure, i.e., satisfies condition gck
best−gck

2best >

ε for a given class ck , the rule is expanded with condition Xa = v j ⇒ ck .

Algorithm 3: ExpandRule-OA-OR: Expanding Ordered Rule.
input : r : One Rule;

δ: user defined confidence level
τ : Constant to solve ties

output: N R: New Rules Set;
begin

Let NR← {r}
Let c be the class of rule r

Compute ε =
√

R2ln(1/δ)
2N (Hoeffding bound)

Let cr be class of r
Find the best gbest and second best g2best attribute merit for cr

if gcr
2best − gcr

best > ε or ε < τ then
Extend r with a new condition based on the best attribute Xa = v j
Reinitialize sufficient statistics of r

return NR

3.2.1 Classifier with multiple sets

Another modification further develops the one vs. all approach in rule stream learning.
While the previously described version computed the merit for each class in one vs.
all fashion, the following learner creates a separate rule set for each of the classes in
data. Consequently the learning and prediction phase reflect certain differences. This
modification is denoted as VFDR-MS (multiple sets). The aim of these modifications
is to have rules for all classes with less exhaustive expansion search.

Learning phase The classifier contains multiple rule sets, i.e., rule subsets and one
default rule. For each class in data there is a subset characterized by it (subset class)
The rule subset distinguishes between its subset class, which is considered as a positive
class, and all the other classes that are considered as a negative class, i.e., each Lr

of a rule r in a subset contains information about a two-class problem. When a new

123

Very fast decision rules 179

Algorithm 4: ExpandRule-OA-UN: Expanding Unordered Rule.
input : r : One Rule;

δ: user defined confidence level
τ : Constant to solve ties

output: NR: New Rules Set;
begin

Let NR← {r}
Compute ε =

√
R2ln(1/δ)

2N (Hoeffding bound)
/* Expand rule for the original class */
Let cr be class of r
Find the best gbest and second best g2best attribute merit for cr

if gcr
best − gcr

2best > ε or ε < τ then
Extend r with a new condition based on the best attribute Xa = v j
/* Expand rule for other classes */
foreach class ck �= cr do

Find the best gbest and second best g2best attribute merit for ck

if g
ck
best − g

ck
2best > ε or ε < τ then

create new r ′ by extending r with a new condition Xa = v j and class ck
NR← NR ∪ {r ′}

Reinitialize sufficient statistics of r

return NR

example arrives, it updates statistics of rules that cover the example in all the subsets.
If the class of the example is the same as the subset class the example is used as is.
If the classes differ, the class of the example for learning such a rule is changed to
negative class label. Therefore, a rule grows only when the statistics for the subset
class indicate the expansion.

The default rule of the classifier keeps sufficient statistics covering all classes, i.e.,
{} → L stores summarized information about a multi-class problem. A new rule can
be induced for multiple subsets at one time. More specifically, every time default
rule observes Nmin examples, the classifier computes the FOIL gain for each class as
positive and the others as negative so that each subset can possibly obtain a new rule.

This approach represents a balanced strategy. In general, the rule set grows larger
with fewer examples than the basic algorithm, but not as large as theVFDR-OA version.
Prediction phase The rule learner with multiple sets uses slightly modified approach
to obtain predictions. Similarly to previous versions the individual rules from each
of the rule subsets can use either majority class (MC) prediction or NB prediction.
When the class predicted by (MC) or (NB) does not correspond to the subset class
the weight of such firing rule is not considered that is it is treated as if the rule did
not cover the example. In other words, if the class predicted by the individual rule
is the negative class, it indicates that the rule is not appropriate to predict the class
of a given example. The rule subset itself then provides prediction of its subset class
supported by the weight given by the rules that covered the example. Subset weights
are determined based on the three strategies for rule learning: First Hit, Weighted Max,
or Weighted Sum. Then the final prediction of the classifier is selected by using the
subset class with maximum weight. If none of the rules from any of the rule subsets

123

180 P. Kosina, J. Gama

provide weight, i.e., there was no rule that would cover the example and predicted the
class of its subset, then default rule provides the prediction based on MC or NB.

3.3 Adaptive very fast decision rules

In this section we present an extension to VFDR that can be applied to any of the
previously described versions of the classifier. The aim of the AVFDR (adaptive VFDR)
extension is the adaptation of the rule learner to the phenomenon of concept drift.

3.3.1 Rule adaptation in the presence of drift

Data streams are characterized by their evolving nature. The ability to detect and
react to concept drift is crucial when modeling continuous flows of data generated by
processes with unknown dynamics.

Adaptation in rule models is facilitated due to their modularity. As opposed to
decision trees the set of rules offer the possibility to remove individual rules without
the need for rebuilding the entire model. This characteristic is very important for
incremental learning from evolving data, because it allows faster adaptation of the
model.

The previous algorithms were adapting only implicitly by inferring new rules and
specializing the existing ones.AVFDR extension embeds an explicit drift detection into
the learning process as presented in Algorithm 9. In addition to Lr , a drift detection
mechanism tracks performance of each rule r during learning. The method employed
in AVFDR is the SPC (Gama et al. 2004) (Statistical Process Control) described in
Algorithm 10. With every labeled training example covered by a rule, the rule makes
prediction and updates its error rate. SPC monitors the error rate and manages two
registers during training: pmin and smin , where p is error rate and s is SD. Every time
a new example i is covered by the rule those values are updated when

pi + si < pmin + smin .

The learning process of a given rule can be in one of the following 3 states: In-Control,
Out-of-Control, or in Warning. We follow the 3-sigma rule (Grant and Leavenworth
1996):

pi + si ≥ pmin + α × smin,

where α = 2 changes the state to Warning and α = 3 signals that the Out-of-Control
state is reached.

In the warning state, the rule stops learning until the status of the rule becomes
again In-Control. The default rule stores the examples during warning in a short-
term memory. If the rule reaches Out-of-Control it implies that the performance of
the particular rule has degraded significantly and can negatively influence the quality
of predictions of the classifier therefore it is removed from the rule set. This control
enables to keep the rule set up-to-date and prevent the rule set from excessive growth.
The default rule’s statistic is re-initialized with the examples from short-term memory
if it reaches the Out-of-Control state.

123

Very fast decision rules 181

Algorithm 5: AVFDR: Rule Learning Algorithm.
input : S: Stream of examples

δ: user defined confidence level
ordered_set : boolean flag

output: RS: Set of Decision Rules
begin

Let RS← {}
Let default rule L← ∅
foreach example (x, y) ∈ S do

foreach Rule r ∈ RS do
if r covers the example then

/* Estimate Rule Status */
Status← SPC(r , x, y)
if Status == Out − of − Control then

RS← RS − {r}
else

if Status == In− Control then
Update sufficient statistics of r
RS← RS − {r}
RS← RS ∪ ExpandRule(r, δ)
if ordered_set then

BREAK

if none of the rules in RS covered example then
Update sufficient statistics of the default rule
RS← RS ∪ ExpandRule(default rule, δ)

3.4 Illustrative example

In this section we present the functionalities of theVFDR on a simple example for better
understanding of the whole process. The illustrative problem is an artificial dataset with
class given by the logical rule (A ∧ B)∨ (C ∧ D), where the attributes A, B, C, D ∈
{true, f alse} are randomly generated. The number of examples is 1,500.

The learned rule sets are presented in Tables 1 and 2 for unordered and ordered rule
sets respectively. The different VFDR variants produce different rule sets due to the
different search strategies for the best conditions.

From Table 1 we conclude that all the rules are consistent with the target concept.
In this simple example, the basic approach differs only in one rule from VFDR-MS,
although the rule was induced in slightly different way. VFDR-OA requires fewer
examples to produce rule sets with larger coverage. Therefore, VFDR-OA on the same
dataset generated larger rule set with more specialized rules, which is an advantage in
more difficult tasks.

Table 2 presents ordered rule sets learned on the illustrative dataset. Note that when
interpreting the ordered sets, special care needs to be taken because each rule implicitly
includes the negation of the previous rules. All the sets are again consistent with the
concept of learning data. VFDR-OA creates only two rules that describe the class True
(T). The two rules are sufficient because the rest of the cases are treated by default rule

123

182 P. Kosina, J. Gama

Algorithm 6: The SPC Algorithm

Input : r j : rule

/* i th example covered by rule r j */
Current example: x, y

Output: Status ∈ {In-Control, Warning, Out-of-Control}
begin

Let ŷ← r j (x)

Let error j
i ← L(ŷ, y)

Compute the mean of the error p j
i and variance s j

i

if p j
i + s j

i < p j
min + s j

min then

p j
min ← p j

i

s j
min ← s j

i

if p j
i + s j

i < p j
min + 2× s j

min then
/* In-Control */
Status← ’In-Control’

else

if p j
i + s j

i < p j
min + 3× s j

min then
/* Warning Zone */
Status← ’Warning’

else
/* Out-of-Control */
Status← ’Out-of-Control’

Return: Status

Table 1 Unordered rule sets generated by different versions of VFDR

VFDR-Base VFDR-OA VFDR-MS

A = T ∧ B = T → T A = T ∧ B = T → T A = T ∧ B = T → T

C = T ∧ D = T → T B = F ∧ D = F → F C = T ∧ D = T → T

B = F ∧ C = F → F B = F ∧ C = T ∧ D = T → T B = F ∧ D = F → F

A = F ∧ C = F → F B = F ∧ C = F ∧ D = T → F A = F ∧ C = F → F

A = F ∧ B = T ∧ C = F → F

A = F ∧ B = T ∧ C = T ∧ D = T → T

A = F ∧ B = T ∧ C = T ∧ D = F → F

as F. Nevertheless, VFDR-MS searches for rules explaining all classes and that is why
there are the two rules for T, but also two rules for F, leaving nothing to be resolved
by the default rule.

In order to provide an illustration of VFDR learning process, we examine the growth
of a rule set over time. The example shown in Table 3 presents the unordered rules
learned byVFDR-MS. The upper part of the table corresponds to the stationary dataset.
Each column represents a state of the rule set during the learning process. The rows
labeled with numbers represent a time stamp specified by the number of training
examples processed by the learner at the point when the rule set evolved—it either

123

Very fast decision rules 183

Table 2 Ordered rule sets generated by different versions of VFDR

VFDR-Base VFDR-OA VFDR-MS

1.B = F ∧ C = F → F 1.A = T ∧ B = T → T 1.A = T ∧ B = T → T

2.A = T ∧ B = T → T 2.C = T ∧ D = T → T 2.C = T ∧ D = T → T

3.C = F → F 1.B = F ∧ D = F → F

4.D = T → T 2.A = F ∧ C = F → F

added a new rule, specialized existing one or removed a rule. At each presented point,
new rules or rules that added a literal at that point are highlighted in bold. Note that
the learner creates one rule for each class. Since the data set represents a two class
problem and the attributes have only two values, new rules are added to both rule
subsets and have the opposite values.

In our illustrative example we can proceed to a non-stationary data test. In order
to illustrate the learning process on a non-stationary dataset we extend the learning
dataset used above by adding another 1,500 examples for which the rule defining the
target concept is (A ∧ ¬B) ∨ (C ∧ D). The evolution of the rule set after the first
stationary 1,500 examples corresponds to the bottom part of the Table 3. When the
drift appears, we can observe the process of reaction to the drift by removing incorrect
rules and inducing new ones. Note that the rules describing the part of the space
unaffected by the drift are kept in the rule set. Therefore, the rule set learner reveals
the local changes. The comparison of prequential error-rate in Fig. 1 illustrates the
faster adaptation of AVFDR even in this simple example, where the change in data is
easily handled also by further growth of the rule set.

4 Experimental evaluation

In this section we analyze the performance of the proposed rule learning algorithms
for data streams. We would like to answer following research questions:

– What is the behavior of the VFDR variants?
– How does the rule algorithm perform compared to stream classification algorithms

on stationary datasets?
– What is the performance on non-stationary datasets compared to the data stream

classifiers?

Since there are many combinations of the various versions, we first analyze the behav-
ior of the different versions of VFDR. We chose one version as the best representative
of the group and compare it to the streaming classifiers in further experiments.

Next, we compare the selected version of decision rules from Sect. 3, with and
without explicit drift detection, against standard stream classifiers: a decision tree
classifier VFDTc (Gama et al. 2003), a NB, and an instance based classifier IBLStream
(IBLS), recently proposed by Shaker and Hüllermeier (2012). These experiments
answer the research questions.

The following subsections provide information about experimental methodology
and results from the experiments.

123

184 P. Kosina, J. Gama

Ta
bl

e
3

Il
lu

st
ra

tiv
e

ex
am

pl
e

of
th

e
ru

le
se

tg
ro

w
th

us
in

g
V
F
D
R
-
M
S

E
vo

lu
tio

n
of

th
e

ru
le

se
ti

n
th

e
fir

st
pa

rt
(s

ta
tio

na
ry

)
of

th
e

st
re

am
20

0
24

4
31

4
31

8
39

3
73

1

B
=

T
→

T
B
=

T
→

T
A
=

T
∧B
=

T
→

T
A
=

T
∧

B
=

T
→

T
A
=

T
∧

B
=

T
→

T
A
=

T
∧

B
=

T
→

T

C
=

T
→

T
C
=

T
∧D
=

T
→

T
C
=

T
∧

D
=

T
→

T

B
=

F
→

F
B
=

F
∧D
=

F
→

F
B
=

F
∧

D
=

F
→

F
B
=

F
∧

D
=

F
→

F
B
=

F
∧

D
=

F
→

F
B
=

F
∧

D
=

F
→

F

C
=

F
→

F
C
=

F
→

F
A
=

F
∧C
=

F
→

F

E
vo

lu
tio

n
of

th
e

ru
le

se
ta

ft
er

th
e

ch
an

ge

1,
51

1
1,

56
6

1,
64

7
1,

77
1

2,
03

6

A
=

T
∧

B
=

T
→

T
B
=

F
→

T
A
=

T
∧B
=

F
→

T
A
=

T
∧

B
=

T
→

T

C
=

T
∧

D
=

T
→

T
C
=

T
∧

D
=

T
→

T
C
=

T
∧

D
=

T
→

T
C
=

T
∧

D
=

T
→

T
C
=

T
∧

D
=

T
→

T

B
=

T
→

F
B
=

T
→

F
B
=

T
∧C
=

F
→

F

A
=

F
∧C
=

F
→

F
A
=

F
∧C
=

F
→

F
A
=

F
∧C
=

F
→

F
A
=

F
∧C
=

F
→

F
A
=

F
∧C
=

F
→

F

N
ew

ru
le

s
or

ex
pa

nd
ed

ru
le

s
ar

e
in

bo
ld

123

Very fast decision rules 185

Fig. 1 Prequential error of VFDR-MS and AVDFR-MS classifiers in illustrative dataset. Adaptive version
reacts faster to a change

4.1 Experimental methodology

We will present two sets of experiments. The first set of experiments aim to select the
best representative from the VFDR algorithms. The main focus is on the second set
of experiments, where the selected rule learning algorithm is compared to standard
streaming algorithms.

4.1.1 Datasets

In order to compare the classifiers we use large scale artificial and real world datasets.
The real world datasets were previously used in other works when testing on-line
learning algorithms as they represent large datasets and may contain drifts. The main
characteristics of the datasets are summarized in Table 4. A more detailed description
of the datasets appears in the Appendix 1. The artificial datasets can be generated with
or without a concept drift; therefore they can be used for evaluation on stationary and
non-stationary data.

4.1.2 Algorithms

We use the notation VFDR and AVFDR for the version without drift detection and
adaptive version respectively. The suffixes -Base, -OA, and -MS refer to the base
version, the one vs. all and multiple class versions, and suffixes -UN and -OR refer to
unordered and ordered respectively. VFDTc+SPC and NB+SPC stand for the decision
tree and NB classifiers with SPC drift detection method respectively. All algorithms
were implemented in Java as an extension for KNIME (Berthold et al. 2009) except for
IBLS, which is implemented in MOA framework. The common parameters for VFDR
and VFDTc are confidence δ = 0.000001, tie breaking constant τ = 0.05, Nmin =
200 and the functional leaves use NB after observing at least one example. These
parameters are selected based on default values in MOA. IBLS is used with default
parameters except for using AdaptK parameter.

123

186 P. Kosina, J. Gama

Table 4 Overview of the datasets

Dataset # Examples # Attributes Attribute types Noise # Classes

Hyperplane 100,000 10 Continuous Yes (5 %) 2

LED 200,000 24 Categorical Yes (10 %) 10

SEA 60,000 3 Continuous Yes (10 %) 2

RBF 100,000 10 Continuous No 2

Waveform 100,000 21 Continuous Yes 3

Airlines 539,383 7 Mixed NA 2

Bank 45,211 16 Mixed NA 2

Connect-4 67,557 42 Categorical No 3

Elec 45,312 8 Mixed NA 2

ForestCovtype 581,012 54 Mixed NA 7

Intrusion 4,898,431 41 Mixed NA 5

Pokerhand 829,201 10 Categorical No 10

Spam 9,324 500 Categorical NA 2

4.1.3 Performance metrics

The evaluation method in the experiments is the predictive sequential (prequential)
method (Gama et al. 2009). In prequential evaluation whenever a training example is
available, the classifier first makes a prediction. After, the prediction is compared to the
class of the example and the error-rate is updated. Finally, the classifier is trained with
the example. We report the error and SD in the tables. The best results are presented
in bold.

The significance of the observed differences is tested with Friedman (1937, 1940)
test to compare multiple classifiers on multiple datasets based on average ranks as
suggested by Demšar (2006). When the null hypothesis is rejected, we use the post-
hoc Nemenyi test (Nemenyi 1963). We also use two-tailed paired t test to demonstrate
differences between classifiers with and without drift detection.

The size of the classifiers is presented in a following way. Each rule is closely related
to a leaf in the decision tree, because they contain almost the same information and
the same functionality. Thus the size of the classifiers can be compared by considering
the number of rules in a set and number of leaves in a tree.

We compare the learning times of the classifiers in prequential evaluation in CPU
time seconds running on Intel i5-3210M 3.1GHz DC, 8GB DDR3, Ubuntu 13.04.

4.2 Comparison of VFDR algorithms

4.2.1 Stationary data

First, we focus on comparing the different modifications of VFDR classifiers as well
as their respective ordered and unordered versions. The goal is to select the most
promising classifier so that it is used in further comparisons. Table 5 presents the
prequential error rates of the classifiers tested on the artificial stationary datasets.

123

Very fast decision rules 187

Ta
bl

e
5

T
he

pr
eq

ue
nt

ia
le

rr
or

of
th

e
or

de
re

d
an

d
un

or
de

re
d
V
F
D
R

cl
as

si
fie

rs
on

st
at

io
na

ry
da

ta

D
at

as
et

V
FD

R
-B

as
e-

U
N

V
FD

R
-B

as
e-

O
R

V
FD

R
-M

S-
U

N
V

FD
R

-M
S-

O
R

V
FD

R
-O

A
-U

N
V

FD
R

-O
A

-O
R

H
yp

er
pl

an
e

14
.7

2
(0

.0
7)

14
.9

5
(0

.1
2)

15
.6

5
(0

.5
4)

14
.6

2
(0

.1
9)

13
.2

5
(0

.5
9)

16
.0

6
(0

.6
3)

L
E

D
41

.6
7

(3
.1

1)
26

.4
6

(0
.0

5)
26

.6
0

(0
.1

4)
26

.6
1

(0
.1

9)
26

.2
2

(0
.0

9)
27

.4
3

(0
.0

9)

SE
A

15
.3

3
(0

.0
4)

15
.5

4
(0

.0
9)

14
.7

5
(0

.3
3)

13
.7

7
(0

.1
9)

12
.1

0
(0

.1
7)

13
.4

8
(0

.4
0)

R
B

F
22

.2
3

(1
.8

8)
24

.4
2

(0
.2

3)
19

.5
6

(3
.2

9)
22

.8
2

(4
.8

6)
18

.9
8

(3
.5

2)
22

.2
0

(4
.2

8)

W
av

ef
or

m
19

.0
9

(0
.3

1)
19

.8
4

(0
.0

9)
16

.4
9

(0
.1

9)
17

.3
5

(0
.2

0)
16

.3
5

(0
.2

5)
20

.6
3

(0
.7

9)

A
ve

ra
ge

ra
nk

4.
4

4.
6

3.
2

3.
4

1
4.

4

T
he

be
st

re
su

lts
ar

e
pr

es
en

te
d

in
bo

ld

123

188 P. Kosina, J. Gama

Table 6 Number of rules of the ordered and unordered VFDR classifiers on stationary data

Dataset VFDR-
Base-UN

VFDR-
Base-OR

VFDR-MS-
UN

VFDR-MS-
OR

VFDR-OA-
UN

VFDR-OA-
OR

Hyperplane 34 26 19 7 53 12

LED 18 12 90 31 4,910 32

SEA 29 22 19 7 44 13

RBF 51 27 17 4 71 13

Waveform 13 12 17 3 218 14

Average rank 4 3 3.8 1.4 6 2.8

Table 7 The learning times in seconds in prequential evaluation of the ordered and unordered VFDR
classifiers on stationary data

Dataset VFDR-
Base-UN

VFDR-
Base-OR

VFDR-MS-
UN

VFDR-MS-
OR

VFDR-OA-
UN

VFDR-OA-
OR

Hyperplane 8 6 15 11 12 7

LED 39 25 53 34 105 22

SEA 2 1 4 3 3 2

RBF 12 6 12 9 14 7

Waveform 30 20 34 20 86 15

Average rank 3.6 1.5 5.3 3.4 5.5 1.7

Comparing the respective variants of ordered and unordered classifiers using paired
t test we obtain that the unordered is significantly better on three of the five datasets
in the base version of the algorithm (VFDR-Base-UN) and significantly worse in
one case. The VFDR-MS-UN version is also better in three cases, but worse in the
remaining two. The unordered VFDR-OA-UN is significantly better in all five datasets
and also achieves the best average results from all the variants on all the datasets.
We can conclude that the unordered rule sets generally achieve better results and
furthermore, they are considered more flexible and more interpretable. Since they
are not dependent on other rules in the set, they are better suited for the adaptive
extension of the rule learning algorithm. Comparing the average ranks with Friedman
test, we obtain χ2

F = 13.11 and FF = 4.41 with critical value F(5, 20) = 2.711
and so we reject the null hypothesis. The result of post-hoc Nemenyi test with critical
distance C D = 3.372 is thatVFDR-OA-UN is significantly better thanVFDR-OA-OR,
VFDR-Base-UN, and VFDR-Base-OR.

The size of the ordered classifiers is smaller than the size of unordered sets in Table 6.
The differences between VFDR-Base-UN and VFDR-Base-OR are smaller than in
the case of VFDR-MS, VFDR-OA, which is expected since both create multiple rules
in their respective unordered variants.

The learning times, Table 7, in the prequential evaluation of ordered rule set classi-
fiers are smaller because when learning or predicting, the classifiers generally execute
less tests whether a rule covers an example. Firstly they usually have smaller sets and
secondly once a rule that covers the example is found, the search stops.

123

Very fast decision rules 189

Table 8 The prequential error of the AVFDR classifiers on non-stationary data

Dataset AVFDR-
Base-UN

AVFDR-
MS-UN

AVFDR-
OA-UN

VFDR-
Base-UN

VFDR-
MS-UN

VFDR-
OA-UN

Hyperplane 14.27 (0.38) 15.27 (1.39) 13.75 (1.49) 14.51 (0.68) 16.05 (2.07) 15.05 (2.27)

LED 27.48 (0.02) 30.62 (0.70) 27.43 (0.17) 28.41 (0.14) 30.60 (0.61) 28.00 (0.35)

SEA 15.96 (0.12) 16.46 (0.44) 13.86 (0.27) 15.87 (0.27) 16.08 (0.43) 14.93 (0.44)

RBF 27.24 (0.92) 28.82 (1.72) 24.61 (1.75) 25.14 (0.67) 28.45 (2.15) 22.29 (2.09)

Waveform 19.55 (0.14) 21.10 (1.22) 17.14 (0.28) 20.17 (0.23) 20.88 (1.10) 17.04 (0.25)

Average rank 3 5.8 1.4 3.4 5.2 2.2

The best results are presented in bold

Table 9 Number of rules of the AVFDR classifiers on non-stationary data

Dataset AVFDR-
Base-UN

AVFDR-
MS-UN

AVFDR-
OA-UN

VFDR-
Base-UN

VFDR-MS-
UN

VFDR-OA-
UN

Hyperplane 16 4 50 43 32 124

LED 9 41 5,435 15 85 15,378

SEA 16 8 26 29 21 54

RBF 9 2 13 49 22 113

Waveform 7 4 146 14 18 316

Average rank 1.8 1.4 4.4 3.8 3.6 6

4.2.2 Non-stationary data

The main interest when using streaming algorithm is in the situation when data is non-
stationary. We focus on the unordered rule sets and their adaptive variants. Table 8
presents the prequential error of the classifiers. VFDR-OA-UN and AVFDR-OA-UN
variants achieve the best average results. The average rank comparison demonstrates
that for α = 0.05, the χ2

F = 20.77 and FF = 19.64 with critical value F(5, 20) =
2.711, AVFDR-OA-UN is better than AVFDR-MS-UN and VFDR-MS-UN. With the
critical distance C D = 3.372 for the post-hoc test VFDR-OA-UN is also better than
AVFDR-MS-UN.

The adaptive versions remove rules thus it is expected that the sizes of the adaptive
classifiers are smaller than the sizes of the classifiers without drift detection as can be
observed in Table 9. Consequently the classifiers with drift detection are faster in the
prequential evaluation (Table 10).

Based on the results from this and the previous section, we select AVFDR-OA-UN
and VFDR-OA-UN classifiers as the most promising classifiers and compare them to
other streaming classifiers.

4.3 Comparison between streaming classification algorithms

In this section, we compare the VFDR-OA-UN and AVFDR-OA-UN classifiers with
standard streaming classification algorithms. In the first part we evaluate the per-

123

190 P. Kosina, J. Gama

Table 10 The learning times in seconds in prequential evaluation of theAVFDR classifiers on non-stationary
data

Dataset AVFDR-
Base-UN

AVFDR-
MS-UN

AVFDR-
OA-UN

VFDR-
Base-UN

VFDR-MS-
UN

VFDR-OA-
UN

Hyperplane 8 10 16 8 18 21

LED 50 42 1,687 38 45 9,873

SEA 2 3 3 2 4 3

RBF 6 9 25 8 12 38

Waveform 25 23 90 23 31 192

Average rank 2.2 2.7 4.6 1.5 4.4 5.6

formance on stationary datasets. The main focus of the proposed classifiers is non-
stationary data, which is evaluated in the second part of this section.

4.3.1 Stationary data

The Table 11 presents results from five runs on the artificial data sets generated with-
out drift. Among the classifiers which do not employ any explicit drift detection
method, VFDR-OA-UN ranks as the top classifier. Moreover, comparing the VFDTc
and VFDR-OA-UN algorithms, which have similar learning approach, VFDR-OA-UN
exhibits better performance. We notice that NB can learn the hyperplane concept much
better than the other classifiers.

In the next experiment we compare the algorithms equipped with a drift detection
method. Because the datasets do not incorporate drifts, the results of the classifiers
with drift detection method are very similar to those without it. The small differ-
ences are caused mostly by incorrect drift detections in some cases. Note that RBF
is devised so that it is not easy to capture the concept with a decision tree model.
Therefore, neither VFDTc nor VFDR-OA-UN achieves the performance of IBLS. On
average VFDR-OA-UN ranked the best followed by IBLS, however they did not rank
significantly better than the other algorithms.

We anticipate that the real world data contain concept drift therefore the order of
examples is important. For illustration, we can shuffle the order of examples using
random seeds. It is expected that the possible concept drift is removed and the perfor-
mance of classifiers with and without drift detection is not different. The tables with
results can be found in Appendix 2. The p values of the respective paired t tests of
classifiers with and without drift detection demonstrates that for α = 0.05, the only sig-
nificant difference is on bank data and intrusion. The performance of AVFDR-OA-UN
compared to VFDR-OA-UN generally does not differ on stationary datasets and real
world datasets. The main difference is in the number of rules the two algorithms pro-
duce. VFDR-OA-UN produces larger models than VFDR-OA-UN. While the num-
ber of rules in AVFDR-OA-UN still exceeds the number of leaves in VFDTc in
many cases, the size of the model is reduced by removing the rules with decreasing
performance.

123

Very fast decision rules 191

Ta
bl

e
11

Pr
eq

ue
nt

ia
le

rr
or

of
cl

as
si

fie
rs

w
ith

ou
td

ri
ft

de
te

ct
io

n
on

st
at

io
na

ry
da

ta

D
at

as
et

V
FD

R
-O

A
-U

N
V

FD
T

c
N

B
A

V
FD

R
-O

A
-U

N
V

FD
T

+
SP

C
N

B
+

SP
C

IB
L

S

H
yp

er
pl

an
e

11
.6

7
(0

.1
8)

11
.4

4
(0

.1
6)

7.
22

(0
.2

3)
11

.8
2

(0
.2

)
11

.5
6

(0
.3

2)
7.

22
(0

.4
8)

14
.4

2
(0

.4
6)

L
E

D
26

.2
3

(0
.0

1)
26

.2
3

(0
.0

1)
26

.0
7

(0
.0

1)
26

.2
8

(0
.1

)
26

.4
7

(0
.3

3)
26

.0
7

(0
.0

1)
31

.3
8

(2
.5

1)

SE
A

11
.9

5
(0

.0
4)

12
.2

9
(0

.0
7)

11
.9

9
(0

.0
4)

11
.9

4
(0

.2
4)

13
.0

7
(0

.7
6)

12
.0

1
(0

.2
)

11
.8

0
(0

.1
)

R
B

F
14

.5
5

(9
.1

1)
15

.5
5

(7
.3

5)
26

.5
0

(4
7.

47
)

14
.9

7
(2

.9
4)

15
.6

3
(2

.8
1)

26
.7

1
(7

.2
7)

5.
55

(1
.3

0)

W
av

ef
or

m
18

.4
8

(0
.2

4)
19

.2
4

(0
.0

9)
19

.5
4

(0
.0

1)
18

.1
6

(0
.6

6)
19

.3
1

(0
.4

5)
19

.5
4

(0
.1

)
17

.5
0

(0
.3

)

A
ve

ra
ge

ra
nk

3.
3

4.
1

3.
9

3.
6

5.
4

4.
3

3.
4

T
he

be
st

re
su

lts
ar

e
pr

es
en

te
d

in
bo

ld

123

192 P. Kosina, J. Gama

4.3.2 Evaluation on non-stationary and real world data

Most of the current problems concerning mining data streams are treated as data with
a non-stationary distribution, because if a phenomenon is observed for long enough
time, it is highly probable that some change will appear. Therefore it is important to
analyze the behavior under such conditions. Apart from the artificial data generated
with drifts, this section includes large real world data, in which the presence of concept
drift is not known but can be expected. We separately analyze the results obtained from
the experiments on artificial datasets and on real world data as they represent more
challenging problems.

Examining the results on the artificial data from the first part of Table 12 we can
observe that VFDR-OA-UN performs very well since it adapts very fast even without
the drift detection. Also in the real world datasets, the VFDR-OA-UN outperforms NB,
and achieves slightly better results than VFDTc.

The right part of Table 12 presents results of classifiers with drift detection. The
upper part shows thatVFDR-OA-UN has the best average rank, but theIBLS algorithm
also works well on the artificial datasets. Again the most noticeable difference is in RBF
datasets. Comparing the average ranks of classifiers with drift detection on artificial
datasets we obtain χ2

F = 1.32 and FF = 1.32, while the critical value for α = 0.05 is
3.49. Therefore the null-hypothesis is not rejected.

The variability of real world datasets shows that each of the classifiers for time
changing data has different strengths and weaknesses. Overall the AVFDR-OA-UN
achieves the best average rank. The IBLS achieves best result in forestCovtype. The
NB+SPC and VDFTc+SPC perform similarly since often the tree does not grow very
much before the drift is detected thus the NB in the the root (functional leaf) is respon-
sible for the prediction for many examples. The statistical tests for comparison of
classifiers with drift detection on real world data achieve value of χ2

F = 10.05 and
FF = 5.04 with critical value F(3, 21) = 3.072 and so we reject the null hypoth-
esis. The post-hoc Nemenyi test with critical distance C D = 1.658 suggests that
AVFDR-OA-UN is significantly better than IBLS.

We can analyse the differences between AVFDR-OA-UN and VFDR-OA-UN. The
artificial datasets can be randomly generated to contain drift and therefore provide a
suitable data for the analysis. Using t test we get the p value = 0.048 for hyper-
plane datasets, which signals that there is a statistical evidence for rejecting the
null-hypothesis that they have the same accuracy. The p value for SEA datasets is
0.0002 and we can reject the null-hypothesis, and also in LED, where the p value
= 0.0099 The null-hypothesis is not rejected in waveform datasets because the p
value = 0.2573. Finally, the p value in RBF is 0.0002 and we can reject the null-
hypothesis. The conclusion is thatAVFDR-OA-UNmostly performs better or the same
in the presence of concept drift with the benefit of producing less rules and learning
faster.

Testing the differences between the two algorithms on the real datasets, we get mean
difference of 0.9363 with SD of 4.2445. The p value for the t test is 0.5525, therefore
we cannot reject that the two classifiers achieve the same error. The advantages of
AVFDR-OA-UN are the smaller classifier models (in term s of number of rules) and
faster learning times.

123

Very fast decision rules 193

Ta
bl

e
12

Pr
eq

ue
nt

ia
le

rr
or

ra
te

s
of

cl
as

si
fie

rs
on

no
n-

st
at

io
na

ry
an

d
re

al
-w

or
ld

da
ta

se
ts

D
at

as
et

V
FD

R
-O

A
-U

N
V

FD
T

c
N

B
A

V
FD

R
-O

A
-U

N
V

FD
T

c+
SP

C
N

B
+

SP
C

IB
L

S

A
rt

ifi
ci

al
H

yp
er

pl
an

e
15

.0
5

(2
.2

7)
17

.2
2

(4
.0

7)
22

.7
9

(7
.9

8)
13

.7
5

(1
.4

9)
14

.1
9

(1
.6

8)
13

.4
2

(0
.9

6)
16

.1
9

(1
.2

1)

L
E

D
28

.0
0

(0
.3

5)
27

.8
3

(0
.5

6)
47

.5
1

(0
.0

1)
27

.4
3

(0
.1

7)
26

.9
1

(0
.1

6)
26

.6
7

(0
.1

1)
44

.0
6

(1
.2

4)

SE
A

14
.9

3
(0

.4
4)

15
.6

7
(0

.2
5)

17
.5

6
(0

.2
2)

13
.8

6
(0

.2
7)

14
.3

9
(0

.3
3)

14
.7

8
(0

.3
3)

13
.3

0
(0

.2
8)

R
B

F
22

.2
9

(2
.0

9)
26

.6
0

(1
.8

6)
40

.4
3

(3
.3

1)
24

.6
1

(1
.7

5)
27

.0
8

(1
.3

6)
37

.1
5

(5
.3

9)
7.

22
(1

.3
7)

W
av

ef
or

m
17

.0
4

(0
.2

5)
18

.9
2

(0
.6

3)
19

.1
9

(0
.5

7)
17

.1
4

(0
.2

8)
18

.4
8

(0
.3

7)
19

.0
6

(0
.9

6)
17

.7
8

(0
.1

8)

A
ve

ra
ge

ra
nk

1.
2

1.
8

3
2

2.
8

2.
8

2.
4

R
ea

lw
or

ld

A
ir

lin
es

32
.7

8
33

.6
8

35
.4

4
33

.2
0

33
.7

6
34

.0
2

36
.1

4

B
an

k
10

.3
1

10
.9

6
10

.9
0

10
.2

0
10

.3
5

10
.3

2
11

.1
1

C
on

ne
ct

-4
24

.6
8

26
.4

4
30

.7
8

24
.9

1
26

.0
3

26
.0

2
27

.1
0

E
le

c
19

.9
0

19
.1

3
26

.6
5

15
.1

3
16

.0
5

15
.9

8
17

.9
6

Fo
re

st
C

ov
ty

pe
11

.3
9

15
.7

7
39

.4
7

11
.7

8
13

.0
0

12
.1

5
7.

80

In
tr

us
io

n
0.

02
0.

03
7.

61
0.

02
0.

02
0.

02
0.

05

Po
ke

rh
an

d
10

.1
2

24
.2

6
40

.4
4

20
.5

7
27

.7
8

25
.0

0
24

.7
2

Sp
am

8.
67

6.
26

8.
85

9.
55

8.
70

9.
58

20
.8

6

A
ve

ra
ge

ra
nk

1.
25

1.
87

5
2.

87
5

1.
35

2.
75

2.
5

3.
37

5

T
he

be
st

re
su

lts
ar

e
pr

es
en

te
d

in
bo

ld

123

194 P. Kosina, J. Gama

Table 13 Hyperplane varying the noise level

Error rate No. of rules
VFDR-OA-UN AVFDR-OA-UN VFDR-OA-UN AVFDR-OA-UN

Noise 5 % 11.67 (0.18) 11.82 (0.04) 56 48

Noise 10 % 15.61 (0.03) 15.97 (0.13) 56 55

Noise 15 % 20.22 (0.11) 20.12 (0.11) 46 39

Noise 20 % 24.86 (0.09) 24.93 (0.08) 42 41

Fig. 2 Varying noise in hyperplane dataset

In order to examine the robustness to noise we introduced various levels of artificial
noise in the hyperplane dataset. The hyperplane is chosen for being numerical and
not being as ‘simple’ as SEA dataset, and the generator itself provides the option to
choose arbitrary noise level. In the Table 13 we observe that increasing the noise level
does not have a strong influence on the number of the rules neither in VFDR-OA-UN
nor in AVFDR-OA-UN. The noise also did not deteriorate the performance of the
AVFDR-OA-UN compared to VFDR-OA-UN and the number of removed rules does
not increase with the increasing noise. Figure 2 shows the influence of varying noise
in hyperplane dataset on the accuracy of the classifiers. The robustness to noise is
very similar for VFDTc+SPC and AVFDR-OA-UN algorithms. It is confirmed by the
comparison of the two algorithms on three artificial datasets with varying noise plotted
in Fig. 3.

Since AVFDRs adapt to changes within their rules the detections are more frequent
than in classifiers tracking the changes in the performance of the whole classifier. Thus
the change in data can affect many rules. All those rules that model the feature space
under change. In order to have the idea of the process, we plot bars for each drift
detected by AVFDRs and standard stream classifiers with SPC.

123

Very fast decision rules 195

Fig. 3 Comparison of noise robustness of AVFDT-OA-UN and VFDTc+SPC

Fig. 4 Drift detections in SEA dataset

In the SEA dataset it is known that the change occurs exactly after every 15,000
examples and therefore we can examine the behavior of classifiers with drift detection
mechanisms on Fig. 4.NB+SPC reacts exactly to each of the drifts with detection delay
depending on the severity of the drift.AVFDR-MS-UN did not detect any change when
first drift occurred, but it reacted even faster than NB+SPC for the next two changes.
AVFDR-OA-UN induces more rules and thus it is expected there would be more
changes detected (more rules influenced by the change). This is confirmed by the
experiment. The closer to the change point the more frequently the drift detections in
the rules occur. Some detections appear also later (some rules cover smaller space and
are updated infrequently), nevertheless the occurrences are sparser.

Table 14 presents the number of rules of unordered sets and the number of leaves of
the tree (the average number in case of the artificial datasets). As previously mentioned,

123

196 P. Kosina, J. Gama

Table 14 Number of rules of
rule classifiers and leaves of
VFDTc on non-stationary data

Dataset VFDR-OA-UN AVFDR-OA-UN VFDTc

Artificial

Hyperplane 124 50 48

LED 15,378 5,435 7

SEA 54 26 31

RBF 113 13 55

Waveform 316 146 12

Average rank 3 1.6 1.4

Real world

Airlines 543 52 1,055

Bank 55 12 49

Connect-4 72 13 31

Elec 55 7 30

ForestCovtype 1,834 49 402

Intrusion 249 47 624

Pokerhand 6,106 225 314

Spam 12 3 14

Average rank 2.6 1 2.4

VFDR-OA-UN generally produces large number of rules. In most of the cases the
number is higher than number of leaves of VFDTc. We can observe that the highest
number of rules appears in large sets with many classes since the algorithm allows the
rules to expand for each class. The obvious benefit of using AVFDR-OA-UN is in the
noticeable reduction of the size. With the exception of artificial LED dataset, the size
of the AVFDR-OA-UN is not much different from the tree consequently the memory
consumption is very similar. Moreover, it is possible to set the maximum number of
rules in the set and choose an appropriate strategy for the rule replacement in order to
limit the requirements for computational resources or limit the maximum number of
classes for which one rule can expand.

Another dimension of analyses is the learning times. Table 15 presents the learning
times (in CPU time seconds) of prequential evaluation of the classifiers. The IBLS
algorithm has the highest learning times with prequential evaluation, but note that it
is implemented in a different framework.

We can conclude that the times of VFDR-OA-UN are higher than the learning times
of VFDTc and NB, but still sufficient for processing thousands of examples. The time
complexity in comparison to trees increases with the number of rules which need
to be checked if they cover the train/test example. The highest running times are on
datasets with many classes, consequently the classifier generates many rules for each
of the classes. It is desired to keep the rule set reasonably small so that the increase
is negligible. In our case it is done by the use of the adaptive version. We can clearly
observe that the advantage of AVFDR-OA-UN is that it removes potentially incorrect
rules thus keeps the set smaller and consequently the learning and prediction times are
reduced. Other possibility could be to have the limit the maximum number of rules in
the set.

123

Very fast decision rules 197

Table 15 Learning times of classifiers in seconds

Dataset VFDR-OA-UN VFDTc NB AVFDR-OA-UN VFDTc+SPC NB+SPC IBLS

Artificial

Hyperplane 21 8 4 16 9 4 870

LED 9,873 25 20 1,687 28 34 3,271

SEA 3 6 1 3 6 1 24

RBF 38 23 8 25 22 12 1,113

Waveform 192 36 7 90 34 11 1,210

Average rank 5.7 3.7 1.2 4.7 3.7 2.2 6.8

Real world

Airlines 120 53 11 34 40 14 2,574

Bank 14 7 4 13 8 8 161

Connect-4 11 6 4 9 6 7 95

Elec 3 2 1 2 3 1 42

ForestCovtype 819 76 83 209 60 79 5,364

Intrusion 5,383 1,438 1,412 2,095 877 785 17,037

Pokerhand 6,548 108 100 337 71 90 1,978

Spam 14 12 18 17 13 18 59

Average rank 5.7 3 2.6 4.4 2.9 2.7 6.9

5 Conclusions

In this paper we present the VFDR system, an on-line, any-time and one-pass algo-
rithms for learning decision rules in data streams. We present a base version, and
two modifications to the basic algorithm, which focus on learning specialized rules
for each class. The extended algorithms exhibit better results compared to baseline
algorithm. Moreover, we describe an adaptive extension for the rule learning classifier
AVFDR. In this extension each rule is equipped with explicit drift detection method,
which is able to react to changes in data. The detection technique serves not only as
a faster adaptation method, but also as a rule pruning mechanism. It allows keeping
high performance when learning from evolving data and reduces the size by reducing
the number of rules of the classifier. The detection method can provide relevant infor-
mation about the structural changes in the process generating data. The rule learning
algorithms we present generate highly flexible models with comparable performance
against the standard stream mining techniques. The decision rules presented in this
paper offer an interesting, interpretable and modular alternative to well-known and
widely used techniques, like decision trees.

Acknowledgments The authors would like to express their gratitude to the reviewers of previous versions
of the paper. This work is partially funded by FCT - Fundao para a Ciłncia e a Tecnologia/MEC - Ministrio da
Educao e Ciłncia through National Funds (PIDDAC) and the ERDF - European Regional Development Fund
through ON2 North Portugal Regional Operational Programme within the projects Knowledge Discovery
from Ubiquitous Data Streams FCT-KDUS(PTDC/EIA/098355/2008), NORTE-07-0124-FEDER-000059.
Authors also acknowledge the support of the European Commission through the project MAESTRA (Grant

123

198 P. Kosina, J. Gama

Number ICT-2013-612944). Petr Kosina also acknowledges the support of Faculty of Informatics, MU,
Brno.

Appendix 1: Datasets

In this section we describe the datasets that are used in the experiments. We have used
large scale artificial and real world datasets. The real world datasets were previously
used in other works when testing on-line learning algorithms as they represent large
datasets and it is likely that they contain drifts, but their presence and nature is not
known.

Artificial datasets

The artificial datasets are obtained using generators proposed by Bifet et al. (2010),
each generator was used to produce five datasets with different random seeds. The
hyperplane dataset is generated such that the class is given by rotating hyperplane
(Hulten et al. 2001). A hyperplane in d-dimensional space is set of points x that satisfy∑d

i=1 wi xi = w0 where xi is the i th coordinate of x.
∑d

i=1 wi xi ≥ w0 then represents
the positive and

∑d
i=1 wi xi < w0 the negative concept. This set with 100,000 examples

has two classes, ten attributes and five of them changing at speed 0.01 with 5 % noise
(probability for each instance to have its class inverted).

Another artificial dataset is SEA concepts (Street and Kim 2001) and is com-
monly used in stream mining tasks that require time changing qualities of data. It is a
two-class problem, defined by three attributes (two relevant) and 10 % of noise (the
same as previous). The domain of the attributes is: xi ∈ [0, 10], where i = 1, 2, 3.
The target concept is x1 + x2 ≤ β, where here β ∈ {7, 8, 9, 9.5}. There are four
concepts; the size of each is 15,000 examples, with a total 60,000 for the whole
dataset.

LED is formed by examples (Breiman et al. 1984) with {0, 1} values of each attribute
signaling whether given LED is off or on. Only seven out of 24 are relevant. Class
label reflects the number (0–9) displayed by the diodes. There is 10 % of noise added
to this dataset (probability for each attribute that it would have its value inverted). The
generated set size is 200,000 instances. The drift in this dataset is caused by changing
relevant attributes with irrelevant.

The goal in the Waveform dataset is to recognize three different classes of
waveform. The waveforms are generated from a combination of two or three
base waves. The optimal Bayes classification rate is known to be 86 %. The
dataset has 21 numeric attributes, all of which include noise, and consists of
100,000 examples. The drift switches the positions (attributes) of the generated
attribute-values.

The radial basis function (RBF) generates a fixed number of random centroids. Each
center has a random position, a single SD, class label and weight. A new example is
generated by a randomly selected center. The weights are considered and centers with
higher weight are more likely to be chosen. Then a random direction is chosen to
offset the attribute values from the central point. The displacement length is randomly

123

Very fast decision rules 199

drawn from a Gaussian distribution with SD determined by the chosen centroid. The
chosen centroid also determines the class label of the example. The generated RBF
datasets have ten numerical attributes and 50 centers with two classes. The number of
examples is 100,000, the speed of change of centroids is 0.0001, and the number of
centroids with drift is 50.

Real-world datasets

The real-world datasets are large datasets, which are used with the ordering of examples
the way they were collected as it is likely that they contain drift. The intrusion detection
from KDDCUP 99 obtained from the UCI repository (Frank and Asuncion 2010), is
a data set describing connections which are labeled either as normal or one of four
categories of attack. The dataset consists of 4,898,431 instances.

The next dataset is forestCovtype also from the UCI repository (Frank and Asuncion
2010), which has 54 cartographic attributes, continuous and categorical. The goal is
to predict the forest cover type for given area. The dataset contains 581,012 instances.

The elec dataset (Harries 1999) contains data collected from electricity market of
New South Wales, Australia. It has 45,312 instances.

The task of Airlines dataset based on data from Data Expo (2009) is to predict
whether a flight will be delayed given the information of the scheduled departure in
seven attributes. It consists of 539,383 instances.

The connect-4 dataset from the UCI repository (Frank and Asuncion 2010) consists
of 42 categorical attributes and contains 67,557 examples.

The pokerhand (Frank and Asuncion 2010) consists of 829,201 instances and
ten predictive attributes. Each example represents a hand consisting of five play-
ing cards drawn from a standard deck of 52. Each card is described using two
attributes (suit and rank). The class describes the poker hand. This dataset was
modified so that the cards are sorted by rank and suit and the duplicates were
removed.

The bank dataset (Moro et al. 2011) is related with direct marketing campaigns of
a Portuguese bank institution. The marketing campaigns were based on phone calls.
Often, more than one contact to the same client was required in order to access if the
product (bank term deposit) would be (or not) subscribed. The classification task is to
predict if the client will subscribe a term deposit. The full dataset has 45,211 examples
with 16 attributes.

Katakis et al. (2009) presented the spam dataset, a real world text data stream that
is chronologically ordered to represent the evolution of Spam messages over time.
There are two classes, legitimate and Spam messages, and 9,324 examples with 500
attributes.

Appendix 2: Results from tests on shuffled real world datasets

See Appendix Tables 16, 17 and 18.

123

200 P. Kosina, J. Gama

Table 16 Prequential error rates of the classifiers on shuffled real world data

Dataset VFDR-
OA-UN

AVFDR-
OA-UN

VFDTc VFDTc+SPC NB NB+SPC

Airlines 37.53 (0.13) 37.68 (0.13) 35.35 (0.24) 35.25 (0.10) 36.68 (0.03) 36.69 (0.03)

Bank 13.06 (0.48) 13.49 (0.40) 12.01 (0.18) 12.70 (2.06) 15.24 (0.38) 15.13 (0.77)

Connect-4 27.25 (0.23) 27.43 (0.12) 28.71 (0.32) 31.30 (3.78) 27.98 (0.17) 29.24 (3.00)

Elec 23.83 (0.58) 24.03 (0.42) 23.81 (0.58) 30.38 (0.22) 30.37 (0.23) 23.58 (0.57)

ForestCovtype 23.38 (0.17) 23.23 (0.32) 29.77 (0.26) 29.92 (0.58) 33.01 (0.09) 33.03 (0.06)

Intrusion 0.06 (0.01) 0.08 (0.02) 0.11 (0.01) 0.11 (0.02) 7.24 (0.07) 6.01 (0.22)

Pokerhand 17.92 (0.73) 17.93 (0.73) 32.51 (0.85) 32.51 (0.85) 49.93 (0.91) 49.93 (0.91)

Spam 10.84 (0.24) 10.98 (0.50) 11.43 (1.41) 11.43 (1.41) 12.96 (0.11) 12.96 (0.11)

Average rank 2 2.7 2.7 3.7 5.1 4.8

Table 17 The p values of
paired t tests on shuffled real
world datasets

Dataset VFDR-OA-UN vs.
AVFDR-OA-UN

VFDTc vs.
VFDTc+SPC

NB vs. NB
+SPC

Airlines 0.229 0.412 0.183

Bank 0.024 0.811 0.507

Connect-4 0.235 0.385 0.176

Elec 0.551 0.388 0.477

ForestCovtype 0.595 0.613 0.388

Intrusion 0.182 0.783 0.000

Pokerhand 0.380 0.391 0.182

Spam 0.229 0.412 0.183

Table 18 Number of rules of
rule classifiers and leaves of
VFDTc on stationary data and
shuffled real world datasets

Dataset VFDR-OA-UN AVFDR-OA-UN VFDTc

Hyperplane 56 48 28

LED 938 510 3

SEA 36 34 27

RBF 60 56 34

Waveform 197 137 12

Average rank 3 2 1

Airlines 761 391 6,169

Bank 32 19 34

Connect-4 59 48 24

Elec 30 19 14

ForestCovtype 3,426 3,128 71

Intrusion 1,011 684 707

Pokerhand 11,832 11,329 64

Spam 4 3 3

Average rank 2.75 1.56 1.69

123

Very fast decision rules 201

References

Baena-Garcia M, Campo-Avila J, Fidalgo R, Bifet A, Gavalda R, Morales-Bueno R (2006) Early drift
detection method. In: Fourth international workshop on knowledge discovery from data streams. ECML-
PKDD, Berlin, pp 77–86

Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Thiel K, Wiswedel B (2009) KNIME:
the konstanz information miner: version 2.0 and beyond. SIGKDD Explor Newsl 11:26–31

Bifet A, Gavalda R (2009) Adaptive learning from evolving data streams. In: Advances in intelligent data
analysis VIII. Lecture notes in computer science, vol 5772. Springer, Berlin/Heidelberg, pp 249–260

Bifet A, Holmes G, Kirkby R, Pfahringer B (2010) MOA: massive online analysis. J Mach Learn Res
(JMLR) 11:1601–1604

Bifet A, Holmes G, Pfahringer B, Kirkby R, Gavaldà R (2009) New ensemble methods for evolving data
streams. In Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery
and data mining, KDD ’09. ACM Press, New York, pp 139–148

Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees, 1st edn. Chapman
and Hall/CRC, Boca Raton

Clark P, Boswell R (1991) Rule induction with CN2: some recent improvements. In: Proceedings of the
European working session on machine learning, EWSL ’91. Springer, London, pp 151–163

Clark P, Niblett T (1989) The CN2 induction algorithm. Mach Learn 3:261–283
Cohen W (1995) Fast effective rule induction. In: Proceedings of the 12th international conference on

machine learning, ICML’95. Morgan Kaufmann, San Francisco, pp 115–123
Data Expo (2009) ASA sections on statistical computing statistical graphics. http://stat-computing.org/

dataexpo/2009/. Accessed 1 Feb 2013
Data Mining Group (2011) Predictive model markup language (pmml 4.1). http://www.dmg.org/v4-0-1/

RuleSet.html. Accessed 1 Feb 2013
Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
Domingos P (1996) Unifying instance-based and rule-based induction. Mach Learn 24:141–168
Domingos P, Hulten G (2000) Mining high-speed data streams. In: Proceedings of the sixth ACM SIGKDD

international conference on knowledge discovery and data mining, KDD ’00. ACM Press, New York,
pp 71–80

Ferrer F, Aguilar J, Riquelme J (2005) Incremental rule learning and border examples selection from
numerical data streams. J Univ Comput Sci 11(8):1426–1439

Frank A, Asuncion A (2010) UCI machine learning repository. University of California, Irvine
Frank E, Witten IH (1998) Generating accurate rule sets without global optimization. In: Proceedings of

the 15th international conference on machine learning, ICML’98. Morgan Kaufmann, San Mateo, pp
144–151

Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of
variance. J Am Stat Assoc 32(200):675–701

Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann
Math Stat 11(1):86–92

Fürnkranz J (2001) Round robin rule learning. In: Proceedings of the 18th international conference on
machine learning, ICML’01. Morgan Kaufmann, San Mateo, pp 146–153

Fürnkranz J, Gamberger D, Lavrač N (2012) Foundations of rule learning. Springer, New York
Gama J (2010) Knowledge discovery from data streams. Chapman and Hall/CRC, Baco Raton
Gama J, Kosina P (2011) Learning decision rules from data streams. In: Proceedings of the 22nd international

joint conference on artificial intelligence. AAAI, Menlo Park, pp 1255–1260
Gama J, Rocha R, Medas P (2003) Accurate decision trees for mining high-speed data streams. In: Pro-

ceedings of the 9th ACM SIGKDD international conference on knowledge discovery and data mining,
KDD’03. ACM Press, New York, pp 523–528

Gama J, Medas P, Castillo G, Rodrigues P (2004) Learning with drift detection. In: SBIA Brazilian sym-
posium on artificial intelligence, LNCS 3171. Springer, Heidelberg, pp 286–295

Gama J, Fernandes R, Rocha R (2006) Decision trees for mining data streams. Intell Data Anal 10:23–45
Gama J, Sebastiao R, Rodrigues PP (2009) Issues in evaluation of stream learning algorithms. In: Pro-

ceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining,
KDD ’09. ACM Press, New York, pp 329–338

Grant E, Leavenworth R (1996) Statistical quality control. McGraw-Hill, New York

123

http://stat-computing.org/dataexpo/2009/
http://stat-computing.org/dataexpo/2009/
http://www.dmg.org/v4-0-1/RuleSet.html
http://www.dmg.org/v4-0-1/RuleSet.html

202 P. Kosina, J. Gama

Harries M (1999) Splice-2 comparative evaluation: electricity pricing. Technical report, The University of
New South Wales, Sydney

Hinkley D (1970) Inference about the change point from cumulative sum-tests. Biometrika 58:509–523
Hulten G, Spencer L, Domingos P (2001) Mining time-changing data streams. In: Proceedings of the 7th

ACM SIGKDD international conference on knowledge discovery and data mining. ACM Press, New
York, pp 97–106

Katakis I, Tsoumakas G, Banos E, Bassiliades N, Vlahavas I (2009) An adaptive personalized news dis-
semination system. J Intell Inf Syst 32:191–212

Klinkenberg R (2004) Learning drifting concepts: example selection vs. example weighting. Intell Data
Anal 8(3):281–300

Kolter JZ, Maloof MA (2003) Dynamic weighted majority: a new ensemble method for tracking concept
drift. In: Proceedings of the 3th international IEEE conference on data mining. IEEE Computer Society,
New York, pp 123–130

Kosina P, Gama J (2012a) Handling time changing data with adaptive very fast decision rules. In: Proceedings
of the 2012 European conference on machine learning and knowledge discovery in databases, ECML
PKDD’12, vol I. Springer, Berlin, Heidelberg, pp 827–842

Kosina P, Gama J (2012b) Very fast decision rules for multi-class problems. In: Proceedings of the 2012
ACM symposium on applied computing. ACM Press, New York, pp 795–800

Lindgren T, Boström H (2004) Resolving rule conflicts with double induction. Intell Data Anal 8(5):457–468
Maloof M, Michalski R (2004) Incremental learning with partial instance memory. Artif Intell 154:95–126
Moro S, Laureano R, Cortez P (2011) Using data mining for bank direct marketing: an application of

the crisp-dm methodology. In: Proceedings of the European simulation and modelling conference,
ESM’2011. EUROSIS, Guimaraes, pp 117–121

Nemenyi P (1963) Distribution-free multiple comparisons. PhD thesis, Princeton University
Oza NC, Russell S (2001) Online bagging and boosting. In: Artificial intelligence and statistics 2001.

Morgan Kaufmann, San Mateo, pp 105–112
Quinlan JR (1991) Determinate literals in inductive logic programming. In: Proceedings of the 12th inter-

national joint conference on artificial intelligence, IJCAI’91, vol 2. Morgan Kaufmann Publishers Inc,
San Francisco, pp 746–750

Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers, San Mateo
Rivest R (1987) Learning decision lists. Mach Learn 2:229–246
Schlimmer JC, Granger RH (1986) Incremental learning from noisy data. Mach Learn 1:317–354
Shaker A, Hüllermeier E (2012) IBLStreams: a system for instance-based classification and regression on

data streams. Evol Syst 3:235–249
Street WN, Kim Y (2001) A streaming ensemble algorithm SEA for large-scale classification. In: Proceed-

ings of the 7th ACM SIGKDD international conference on knowledge discovery and data mining, KDD
’01. ACM Press, New York, pp 377–382

Wang H, Fan W, Yu PS, Han J (2003) Mining concept-drifting data streams using ensemble classifiers.
In: Proceedings of the 9th ACM SIGKDD international conference on knowledge discovery and data
mining, KDD ’03. ACM Press, New York, pp 226–235

Weiss SM, Indurkhya N (1998) Predictive data mining: a practical guide. Morgan Kaufmann Publishers,
San Francisco

Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts. Mach Learn
23:69–101

123

	Very fast decision rules for classification in data streams
	Abstract
	1 Introduction
	2 Related work
	2.1 Stream classification algorithms
	2.2 Rule learning
	2.3 Adaptive methods

	3 Very fast decision rules algorithm
	3.1 The basic algorithm
	3.1.1 Growing a set of rules
	3.1.2 Classification strategies

	3.2 One versus all rule learning
	3.2.1 Classifier with multiple sets

	3.3 Adaptive very fast decision rules
	3.3.1 Rule adaptation in the presence of drift

	3.4 Illustrative example

	4 Experimental evaluation
	4.1 Experimental methodology
	4.1.1 Datasets
	4.1.2 Algorithms
	4.1.3 Performance metrics

	4.2 Comparison of VFDR algorithms
	4.2.1 Stationary data
	4.2.2 Non-stationary data

	4.3 Comparison between streaming classification algorithms
	4.3.1 Stationary data
	4.3.2 Evaluation on non-stationary and real world data

	5 Conclusions
	Acknowledgments
	Appendix 1: Datasets
	Artificial datasets
	Real-world datasets

	Appendix 2: Results from tests on shuffled real world datasets
	References

