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Very fast discrete Fourier transform,
using number theoretic transform

Wan-chi Siu, AP(HK), M.Phil., C.Eng., M.I.E.R.E., Mem.I.E.E.E., and
A.G. Constantinides, B.Sc(Eng.), Ph.D., C.Eng., M.I.E.E., Sen.Mem.I.E.E.E.

Indexing terms: Mathematical techniques, Transforms

Abstract: It is shown that number theoretic transforms (NTT) can be used to compute discrete Fourier
transform (DFT) very efficiently. By noting some simple properties of number theory and the DFT, the total
number of real multiplications for a length-P DFT is reduced to (P — 1). This requires less than one real
multiplication per point. For a proper choice of transform length and NTT, the number of shift adds per point
is approximately the same as the number of additions required for FFT algorithms.

1 Introduction

Direct computation of length-iV discrete Fourier transform
[1] (DFT) requires N

2 multiplications. The number of
multiplications reduces to \N log2 N if the fast Fourier
transform algorithm [2] (FFT) is used. Winograd [3]
showed that the minimum number of multiplications
required to compute the circular convolution of two
length-TV sequences is 2N — K, where K is the number of
divisors of TV including 1 and N. Agarwal and Cooley [4],
Winograd [5] and Kolba and Parks [6] made use of
Rader's theorem [7] on DFT with prime transform length
to construct their algorithms for the computation of DFT.
Compared to conventional FFT method, the Winograd
Fourier transform algorithms reduce the number of multi-
plications by a factor of two to three, with a slightly large
number of additions. Reed and Truong [8] proposed a
technique for the computation of discrete Fourier trans-
forms, based on Winograd's method in combination with
Mersenne prime number-theoretic transforms. This hybrid
algorithm requires fewer multiplications than either the
standard FFT or Winograd's more conventional algo-
rithm. However, a very large number of additions are
required and the number of multiplications per point is
still relatively large (about 1.33 to 3.49 multiplications per
point). Recently, Nussbaumer [9] first defined a type of
polynomial transform over the field of polynomials which
could be used to compute 2-dimensional convolutions effi-
ciently. This leads to the development of fast algorithms
for the computation of multidimensional DFT [10, 11].
The number of multiplications in this case reduces to just
two or three per point for sequences even longer than 1000
points.

In this paper, it is shown that the number of multiplica-
tions can be reduced further by using number theoretic
transforms [12-15] to evaluate the DFT, and this forms a
very efficient method of calculating the DFT.

2 Theory

Let the residue of the number g" modulo P be written as
<0">p> where g is a primitive root that generates all
nonzero elements inside the field modulo P. Consider now
an N-point discrete Fourier transform

(1)

Paper 2680G, first received 4th February and in revised form 6th May 1983

The authors are with the Department of Electrical Engineering, Imperial College of

Science & Technology, London SW7 2BT, England. Mr. Siu is on leave from the

Department of Electronic Engineering, Hong Kong Polytechnic, Hong Kong

IEE PROCEEDINGS, Vol. 130, Pt. G, No. 5, OCTOBER 1983

where k = 0, 1, . . . , TV - 1 and

Wo = e~
j(2nlN)

If N is a prime number P, then eqn. 1 can be reordered [7]
in the following form:

Y(0) = Y ^ ) (
2
)

n = O

and

Y«gkyP) = x(0) +
 Pf x^g-"

n=l

We can write eqn. 3 as

Y«gkyP) = x(0)

where

x«gk>P) =
 P

X>

f o r / e = 1, 2, . . . , P - 1 (3)

(4)

1>' (5)

for k = 1, 2, ...,P- 1

Eqn. 5 represents a backward circular convolution of
length (P - 1). That is,

W%\...,W%p-2-] (6)

where 0 means circular convolution and the subscripts
and indices are modulo P.

Let us now define

1>p) (7)

Wn = W<«n>r (8)

xn = xKg-{n+1)>p) (9)

for k = 0, 1, . . . , P - 2; n = 0, 1, . . . , P - 2

Hence, eqns. 5 and 6 become

for/c = 0 , l , . . . , P -

and

( x 0 , x l t . . . , x P _ 2 ) 0 (Wo, Wlt..., WP_2)

(10)

(11)

The number theoretic transform can now be applied to
find the cyclic convolution sum of these two sequences.
Thus we can write

/
Y> — / V V Tv""

1

M

(12)
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and

P - 2

form = 0, 1, . . . , P - 2 (13)
M

where a = a root of unity of order (P — 1) and M = base
for modulo arithmetic.

The results can then be obtained by the inverse trans-
form of the products, X'm W'm. That is,

, — mk

M

for/c = 0, 1, . . . , P - 2 (14)

Recall that all Wms are complex numbers; hence appar-
ently the total number of multiplications for a real
sequence of length P (to find all X'm W'm) for this method is
2 ( P - 1). However, the sequence {W

9
0°, W%\ . . . , W%

P
'
2
)

can actually be written as [5]

where * denotes complex conjugates.
Therefore, the sequence (Wo, Wlf ..., WP_2) can be

written as

{WQ, Wlt . . . , ] - ! , W*o, W*, . . . ,

Notice also that Real (Wn) = Real (W*) and Imag (Wn) =

— Imag (W*). Hence,

Real {W[n+(P^)m} = Real (Wn)

Imag {W[n+{P_1)/2]} = - I m a g (Wn)

for n = 0, 1, . . . ,

(15)

(16)

In view of these relationships, eqn. 13 can be written as

' - l ) / 2 ] - l P - 2 \

vV (x -\- ? vV oc )n ~ La n
n = 0 n = [(P- l)/2] / M

+ z
n = 0

M

and, since a[(p 1)/2] = — 1, we can write

/ - l ) / 2 ] - l

W'm=( Z ^ n ^ "

On combining eqns. 15-17, it is clear that

/ / [(P-D/2J-1

Real (WJ = Real (2 £ ^«
m n

\ \ n = 0 / Af.

a m n ) (17)
M

= 0

Imag (W'J = 0

for m = even

for m = odd (18)

for m = even

= Imag ( ( 2
n = 0 / Af/

for w = odd (19)

Eqns. 18 and 19 are very important in practical implemen-
tations, and this is not primarily because the number of
shift (a multiplication if a is a simple combination of power
of two) adds reduces by a factor of two for the calculation
of W'm, since all W'm should be precalculated for hardware
implementation; but because, however, the total number of
real multiplications forming X'm W'm reduces from (2P — 2)
to (P — 1). This gives less than one [actually 1 — (1/P)]
multiplication per point for the DFT of a real sequence of
length P.

The number of additions required in this technique is
evaluated below. The shift adds required by computing
W'm are not counted, since these quantities can be precal-
culated and stored in ROM for hardware implementation
or stored in program for software implementation. The
total number of shift adds required for transforming (x0,
xlt . . . , xP_2) to (X'o, X\, . . . , X'P_2) is ( P - 1 K P - 2 ) .
However, if we choose (P — 1) to be highly composite, an
FFT-type algorithm can be applied to effect the transform-
ation. In particular, if (P — 1) is a power of two, the
number of shift adds is approximately equal to (P — 1)
log2(P — 1). Since the results are complex, two inverse
transformations, one real and one imaginary, are required.
Owing to the symmetry property of the DFT, only the first
half of the length-(P — 1) inverse transform is necessary to
compute. The other half of the inverse transform can be
obtained by taking the conjugate of the first half of the
inverse transform. Furthermore, both real and imaginary
parts of the sequences (X'm W'm, m = 0, 1, . . . , P — 2) are
alternately zero, a length-(P — 1) inverse transformation
can be formed by two length-[(P — l)/2] inverse trans-
forms. Hence, the number of shift-adds for the inverse
transformation is

2 J\ 2

in general, or is

Iog2

202

= (P - l)[log2(P - 1) -

if (P — 1) is a power of two. The total number of shift adds
for (P — 1) being a power of two is (P — 1)[2 log2(P — 1)
— 1]. Therefore, the overall number of shift adds including

the additions of x(0) and the additions for 7(0) becomes

(P - 1)[2 log2(P - 1) - 1 + 2]

= (P - 1)[2 log2(P - 1) + 1]

This figure of shift adds is approximately equal to the
number of real additions for FFT. Hence, the number of
operations is significantly less than the number of oper-
ations reported in Reference 8.

3 Example

To illustrate the idea, let us consider the DFT of the
sequence |>(0), x(l), x(2), x(3), x(4)], i.e. N = P = 5. In this
case, 2 is a primitive root which is used to generate ele-
ments inside the field modulo 5. Hence the mapping for
[x(n)] in eqns. 3 and 5 is given by

(xn: n=l,2, 3, 4) = [x«<r">M): n = 1, 2, 3, 4]

= [x(3), x(4), x(2), x(l)]

and

{W%: n = 0, 1, 2, 3) = (Wj, W
2
0, W*, W

3
0)
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Hence, eqn. 6 becomes:

[x(3), x(4), x(2), x(l)] ®

), x(4), x(2), x(l)] 0

t,
,, Wl, W

l
0*, W

2
*) (20)

This convolution sum can be computed by NTT. Now let
us use Fermat number transform (FNT) to make the calcu-
lation. Let M = F 4 = 216 + 1, a = 28 and, of course,
N = 4. Hence,

' X'o

X'

x{
.X'3.

• W ' o -

w\
w2

3 ~

= <

= <

" l

l

l

.1

-i

l

I

. i

l
28

- 1

- 2 8

1

28

- 1

- 2 8

1

- 1

- 1

- 1

1

- 2 8

- 1

28J

1

- 2 f

- 1

2 8 J

x(4)

x(2)

w
2

w
2
*}

(21)

(22)

w
w
w

.w

1

0
/
1
/
2

3J

=

where Wo = e-
J{2n/5)

.

In order to use modulo arithmetic, the WQ terms have to
be normalised to integer values. Multiplying these terms
by 90 and rounding off the results to integers, we obtain:

- 9 0 + 70
0 + J38229

202 + jO
. 0 + )26964

This expression may be compared with eqns. 18 and 19 for
agreement. Hence, for the computation of X'm W'm, m = 0,
1, 2, 3, a total number of four real multiplications is suffi-
cient. This is also the total number of multiplications
required for a 5-point DFT. The total number of real shift
adds required is 4(2 log2 4 + 1) = 20.

As we have seen, the length for the NTT is (P — 1),
where (P — 1) is always an even number. Fermat number
transforms [14], pseudo Mersenne transforms [16],
pseudo Fermat transforms [17], or any efficient transform
with even number of transform length, are suitable for the
computation. However, for some very promising NTTs,
the transform lengths may not be long enough or may not
match this requirement. For example, an excellent choice
of P is 257, which is prime, and N(= P - 1) is highly
composite, and it might be possible to use NTT to effect
the convolution. The longest transform length (with Jl as
the generator) for FNT with modulo base F6 is 256. Hence
F 6 is a possible choice for the implementation. If one
wishes to use a shorter word-length, F5 say, to make the
implementation the major problem is that the maximum
transform length for the FNT with M = F 5 = 232 - 1 is
128 for a = yjl. However, this problem may be resolved
by using multidimensional techniques for convolutions.*
Since P is a prime number, it is also possible to combine
Winograd's short DFTs to carry out the computation of
long DFTs using multidimensional formulations [18]. The
major disadvantages of the method using NTT to calculate
DFT are that special arithmetic (modulo arithmetic) and
normally relatively large word lengths may have to be used
for the major part of the calculation—a fact common to all
number theoretic transforms.

* The 1-dimensional 256-point cyclic convolution can be converted into a 2 x 128-
point 2-dimensional convolution form. The 128-point cyclic convolution can be
found by using FNT, whereas the other dimension is actually a length-2 linear
convolution which can be computed by the Lagrange interpolation formula. If
(P — 1) is equal to the product of two mutually prime integers, the 1-dimensional
cyclic convolution can be converted into a proper 2-dimensional cyclic convolution
which can be computed by two number theoretic transforms or by a combination of
the Winograd's convolution algorithm and the NTT.
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