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Very High Accuracy Chebyshev Expansions for the

Basic Trigonometric Functions

By J. L. Schonfelder

Abstract.   Chebyshev expansion coefficients, accurate to forty decimal places, for

the functions sine, cosine, and tangent, are tabulated.   The methods used to gener-

ate the expansions are outlined and the ways in which accuracy of the tabulated

coefficients were checked are noted.

1. Introduction.   Sets of Chebyshev expansion coefficients for a number of func-

tions have been available in the literature for some time.  The most notable such pub-

lished compilations are those due to Clenshaw [1] and Luke [2], both of which in-

clude expansions for the elementary trigonometric functions to be considered here.

Most of these published sets of coefficients are for accuracies of up to twenty decimal

places.  Although this precision is adequate for most purposes, there are in existence a

number of machines with floating-point systems which work to significantly higher

accuracies; for instance double precision on ICL 1900 (22D) and CDC 6000 and 7000

(28D) and extended precision on IBM 370 and ICL 2900 (35D). Also, a number of

micro-codable mini machines exist which for special applications may have floating-

point arithmetics provided for accuracies higher than 20D. It was, therefore, considered

desirable that some of the more basic expansions should be updated to provide for

higher precisions.  In this paper we present Chebyshev expansions for the basic trigo-

nometric functions, sine(x), cosine(x) and tangent(x) for accuracies up to 40D.

In the next sections we present tables of the coefficients for the Chebyshev ex-

pansions for these functions, and the methods by which the expansions were generated

and checked will be outlined.  The results presented here arose out of the work being

done by the author on the provision of transportable special function routines for the

NAG library [3].

2. The Expansions.  Five expansions will be tabulated, two each for sine and co-

sine and one for tangent.
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238 J. L. SCHONFELDER

(i)  Cos(Ö) = 2,L0 arTr(t)* - tt/2 < 0 < tt/2, t = 2(2ö/tt)2 - 1

V = C0S(X)   » = ((;,PI/2)   T=2(2X/PI)»2   -1
K«X.0Bt>.    16 KAX.ACf.       4fl

0 +9. ¿400243153646953489533677574500192472851-1
1 - 4.994C32582704C708740U91362811966985733858-1
2 +2.7992079617547617512295 29518577064254038-2
3 -5.9669 5196 548846499275 3518 467530715589*-*
4 +6.704394869916840150086488 22996830988-6
5 -4.65 322958973195290109 2964414475958-8
6 +2.1934576 589567331746 541210814368-10
7 -7.48164870103364 5762 2637231408-13
8 +1.93 229784586332758206818908-15
9 -3.91017U12163259033488488-18

10 +6.36704011583380047588-21
11 -8.52288604173263398-2*
12 +9.54466303*05768-27
13 -9.07**812*528-30
14 +7.415916*8-33
15 -5.26538-36
16 +3.38-39

(ii)  Sin(0) = 0 S;=0 arTrit), -tt/2 < 0 < tt/2, t = 2(20/tt)2 - 1

V=SIN(X)/X X=(0,PI/2> T=2(2X/PI>+2 -1

MAX.OPD. 16    MAX.ACC.  40
0 +1.6 2 50C88 45 044 1268 2416IIÜ80720Ü2267653632008+U
1 -1.816C3155 2 37 2502 018638303161580U4754 25318-1
2 +5.8C47092745986 335 5942 7341722 8 5792Ü96018-3
3 -8.695 431177934 075711321231635 317814038-5
4 +7.5 4370148 08885148100683992702958778-7
5 -4.2671296 6 5 05 5 961107126 82990591338-9
6 +1. 69?042?94548816818 18 24792013UR-11

7 -5.01205788899618709295242P558-14
8 +1.14101026680010675628,25208-16
9 -2.0643750442478313395358-19

10 +3.039695959.1870577668-22
11 -3.71Í577Í41565809R-25
12 +3.8248612324658-28
13 -'.3662263448-31
14 +2.5607298-34
15 -1.7018-37
16 +1.08-.40

*The notation 2^_0 is used for the summation with the zeroth order coefficient divided by

2.   The Chebyshev polynomials denoted by T (t) are defined on the range - 1 < t < +1 such that

Tr(t) = Cos[r arccos(f)].   The polynomials defined on 0 < t < 1 are denoted by T*(t), however

this form has not been used except in passing.   The two forms are related T* (f) = 7^(2 f— 1).   It

should be noted that in each case the function actually expanded is an even function of 0 and so

as a polynomial in 8 the expansions involve only even powers.   In order to avoid using the zero

odd order coefficients the expansion variable r has been used such that t = 2(0)    — 1.   This map-

ping is suggested by the relations T2r(6) = T*(62) = Tr(282 - 1).   It should also be noted that in

the case of sine and tangent which are odd functions the zero at 0 = 0 is extracted explicitly by

use of an auxiliary function of 0.   This enables relative accuracy to be preserved for very small

arguments.
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HIGH ACCURACY CHEBYSHEV EXPANSIONS 239

(iii) Cos(0) = S;=0 ar Trit), - tt/4 < 0 < tt/4, t = 2(40/tt)2 - 1

Y=C0S(X) X=(0,PI/4) T=2(4X/PI)*2 -1
MAX.OR». 13    MAX.ACC.  ¿C

0 +1.7C32638 274 09616 02 5 40081203012185213640068+0
1 -1.464 366443 908 368 633 20796 36 0139 99 324968928-1
2 +1.9 2144931181464679690714543745 079416508-3
3 -9.96 4968 4898 29300068 6691O618423658398-6
4 +2.757659560718739518643839'53017988-8
5 -4.739949808164844037 44 2295103218-11
6 +5.549 54 85 4148 5182 74 08 27264168-14
7 -4.709704906517 55 59 56603858-17
8 +3.029897608079373133898-20
9 -1.528414934214615348-23

10 +6.20745154357838-27
11 -2.07333072308-30
12 +5.7953858-34
13 -1.3768-37

(iv)  Sin(0) = 0 S^o «rW» - ir/4 < 0 < tt/4, í = 2(40h)2 - 1

Y=SIN(X)/X   X=(0,PI/4)   T=2(4X/PI)»2   -1
MAX.ORD.   13 MAX.ACC.      40

0 +1 .8995 4088 313748955273653822645148783086038+0
1 -4.9840411337C3666401492983618964244477068-2
2 +3.8771343615 28 27309028667663 82 776 348598-4
3 -1.43C58009193208963350475510075733618-6
4 +3.073651155 44856723967730393351278-9
5 -4.31836 5974 22905892 03 2432448928-12
6 +4.27 56499 5 05 7781106694051888-15
7 -3.14360719958006941446658-18
8 +1.78399682964586130808-21
9 -8.0505140257439678-25

10 +2.9578185388458-28
11 -9.019320358-32
12 +2.319218-35
13 -5.18-39

These expansions may be used to obtain values for the functions for any argument by

use of the following range reductions.  In the case of expansions (i) and (ii) we may

calculate Cos(x) or Sin(x) by letting x = Nn + 0, where N is an integer and - tt/2 <

0 < jr/2.  That is N = ROUND(x/tt)** and 0 = x - Nit. ***  Thus,

Cos(x) = Cos(Mr)Cos(0) - Sin(Mr)Sin(0) = (-l^CosiJ?),

Sin(x) = Sin(Mr)Cos(0) 4- Cos(AV)Sin(0) = (- l^Sin^).

For expansions (iii), (iv), and (v), use a similar technique but with a smaller final range.

**The operation ROUND(A) is used in the Algol 68 sense meaning the nearest integer to X

(the method of breaking ties is not important but is usually round up).

*** These steps are critical in preserving accuracy for x outside the primary range (N = 0).

See W. J. Cody and W. M. Waite, Argonne National Laboratory Report TM-321 (1977).
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240 J. L. SCHONFELDER

(v) tan(0) = 0 S^o arTrit), -tt/4 < 0 < ir/4, t = 2(40)/w)2 - 1

Y=TAN(X)/X      X=(0,PI/4)   T=32*X*X/PISQ-1

MAX.ORD.   35 NAX.ACC.      40
0 +2.2538¿169854514100295594751085294457882198+0
1 +1.3592332341164079340020901741155361182998-1
2 +9.6 5892 451927736936*080020579 35**3170028-3
3 +6.928 5 92490004 78964052 25771090983834948-4
4 +4.974C846576329239906236827005*4636928-5
5 +3.571202820568 56430188224092401716418-6
6 +2.5640062114631155 23187713982*088538-7
7 +1.840873490919409256632901085067818-8
8 +1.32168769102702*7*921296805901868-9
9 +9.*892906728768062801*7*25567288-11

10 +6.81300417238877665 386106050978-12
11 +4.8915169169344160815217121158-13
12 +3.511951136883415 388663*38808-1*
13 +2.5214674705 8*6*72 4141576888-15
14 +1.810332193 5335 902294977148-16
15 +1.29976003 62396345 01338208-17
16 +9.3318572018992882900158-19
17 +6.699972026265944895848-20
18 +4.81036348730346244708-21
19 +3.4536855958902534198-22
20 +2.47963*69*28923*0*8-23
21 +1.780297611*67*23*8-2*
22 +1.2781961765158768-25
23 +9.17703565*80358-27
24 +6.58881515661*8-28
25 ♦*.730556**5578-29
26 +3.39638671798-30
27 +2.*38*959518-31
28 +1.750761328-32
29 +1.25699018-33
30 +9.02*788-35
31 +6.*7958-36
32 +4.6528-37
33 +3.3*8-38
3* +2.**-39
35 +2.08-*0

Let x = Nn/2 + 6, where N is an integer and -tt/4 < 0 < 7r/4.  That is, N =

ROUND(2x/tt), 0 = x - Mr/2.+ Then,

Cos(x) = Cos (n^\ Cos(0) - Sin (n *) Sin(0)

Cos(0)    as N Modulo 4 = 01

-Sin(0) 1

- Cos(0) 2

I Sin(0) 3

Sin(x) = Sin (n | Ws(0) + Cos (n*\ Sin(0)

/ Sin 0 as N modulo 4 = 0

Cos0 1

-Sin 0 2

-Cos0 3

fSee footnote
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HIGH ACCURACY CHEBYSHEV EXPANSIONS 241

tan(x) =-

1 -tan (*) m»

j tan(0) as N even (

j-l/tan(0) odd ( '

3. Generation and Checking of Expansions.  Two methods were used to gener-

ate the four expansions for sine and cosine. The first and simplest of these "economizes"

the power series, the second obtains a Chebyshev expansion solution to the appropriate

differential equation.

If we have a function yiu) which is represented to within our required accuracy

by a truncated power series (note -1 < u < +1), then the resulting simple polyno-

mial can be simply rearranged expressing it in terms of the Chebyshev polynomials.

That is, we say

(i) *«)-£ v^zV»-
r= 0 i= o

It is relatively easy to show that the Chebyshev coefficients as can be calculated from

the power series coefficients as

(2) «, =  Z brCrs,
r=s

where the factors Crs can be generated recursively from the relation

(3) Crs = ^[Cr_1<s+l +Cr_lf|l_1|],      C00 = 2.

This recursion and summation is extremely straightforward to program and provided

arithmetic working and truncation accuracies for the power series are chosen to allow

a reasonable margin for error (a few decimal places over the required accuracy)tt the

resulting as provide accurate estimates of the Chebyshev expansion coefficients.  As is

well known, the Chebyshev expansion coefficients will normally be much smaller for

large order than the corresponding power series coefficients ias ~ b ¡2S~1 or better).

Therefore, in order to represent the required function the number of terms that need to

be retained in the Chebyshev form is usually very much smaller than for the original

power series.  Turning to the actual functions in question, the actual expansion vari-

ables used were of the form t = 2(0/X)2 — 1 where 0 was allowed to range from — X

to + X.  This expansion form is used because all the functions actually expanded are

even functions of 0 and, hence, involve only even powers or orders of polynomial.  It

should be noted that

(4) Z' ar W " Z' arT*ie2ß2) = £' «,T2r(0/X).
r— 0 r= 0 r= 0

tfThe conversion of a simple polynomial to Chebyshev form is a numerically stable process

so being ultra cautious and working to accuracies and tolerances a few decimal places better than

actually required should achieve results of sufficient accuracy.
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242 J. L. SCHONFELDER

Thus taking the expansion variable u as 0/X we would obtain for Cos(0), say

i-l)rl2CK/r\y   reven |

0 rodd  [ '

This will generate a set of Chebyshev coefficients as in which the odd orders are zero

and the even, s = 2r, may be equated with the required ar in (4).  This process can be

performed for any value of X. The values used, for obvious reasons were zr/2 and 7z/4.

The whole process was programmed in Algol 68 using the facilities for multiple

length arithmetic provided by Mlaritha [4].  The working accuracy used was 48

decimal figures and the power series was truncated at TV = 50 with a truncation error

of order 10-ss for the cosine series X = rr/2.  Similar accuracy criteria were used for

the other series which follow similar patterns.  The resulting expansion coefficients

were rounded to forty decimal places and written to permanent file storage.

The solution of differential equation*technique was outlined in [5]. It is easy to

show that for the cosine and sine the functions actually being expanded satisfy the follow-

ing linear differential equations in terms of the expansion variable t = 2 (0/X)2 — 1.

For cosine

(6) 2il+t)y+y+^y = 0,     yi-l) =\,yi-1) = X2/4.

For «ne

(7) 2(1 + t)y + 3y *j-y - 0,     yi-l) = l.j(-l) = - X2/12.

These differential equations can be used to find the Chebyshev expansion coefficients

for the solution v(r) in each case. The basic method is essentially that outlined in Fox

and Parker [6].  Assuming that yif) can be represented by a Chebyshev expansion,

then from the differential equation it can be shown that the coefficient ar satisfies an

infinite set of linear equations, Aa = b.  The first two rows of the matrix A and vector

b arise from the boundary conditions and the differential equation determines the sub-

sequent rows.  This set of equations may be solved approximately by assuming that all

coefficients ar with r greater than some N are negligible and, hence, may be approxi-

mated by zero.  This reduces the infinite set of equations to an easily solved finite set.

In fact, the required value of N can be determined as part of the solution process.  The

matrix A is normally diagonally dominant, except for the first few rows and a simple

Crout LU decomposition technique will provide a sufficiently accurate solution.

The LU decomposition is independent of any increase in order of the system,

and so the process can be performed iteratively.  At any order N the next partial row

and column can be formed, and the decomposition extended from order N - Wo N.

The forward substitution can also be similarly extended.  The first step of the back-

ward substitution, which is trivial, then gives an estimate of the value of the coefficient

aN included in the nonzero set.  The process can be terminated when aN is sufficiently

small; in fact, the process is normally terminated when two successive coefficients are

less than the required tolerance.  At this point the full solution set is generated by

backward substitution.

(5)
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HIGH ACCURACY CHEBYSHEV EXPANSIONS 243

This differential equation solving technique has been programmed as a general

package called CHEBEXP [7], using Algol 68 and the multiple precision arithmetic

capability provided by Mlaritha [4].  The differential systems (6) and (7) were solved

using a working accuracy of 48 decimal figures and a termination tolerance of 10_4S.

The resulting coefficients were rounded to 40D and stored in permanent file storage.

The use of these two independent methods for obtaining the same expansion

coefficients gives an excellent check on the accuracy of the final expansions. The

expansions tabulated in the previous section were those actually produced by the first

technique but in all cases the results from the differential equation method were identi-

cal. As a further check the Chebyshev expansions were summed for selected values of

t where the sum is known exactly, or at least to accuracies greater than 40D.  In all

cases the resulting sums were correct to within a few parts in the fortieth decimal place,

the error being entirely due to the effects of rounding to 40D [81.

Basically neither of the above techniques is practical for the tan(x) expansions.

The expansion function tan(0)/0 does not satisfy a simple linear differential equation

and hence the second of the two techniques is not possible.  The power series of

tan(0)/0 has coefficients which involve the Bernoulli numbers; and hence, this does

not provide a practical method owing to difficulties in obtaining accurate values for the

high order Bernoulli numbers involved.  The method actually employed made use of

the fact that we already had high accuracy values for the Chebyshev expansion coef-

ficients for Sin(0)/0 and Cos(0) for the same expansion range and variable.

If

(8) «-r^=*w-«,
then we can write

(9) Cos(0);K') = Sin0/0,

that is,

nm Z'W'M0=Z'W')>
\iK3> r=0 r=0

where Cr and Sr are the Chebyshev expansion coefficients of Cos(0) and Sin(0)/0,

respectively.  It is again easy to show that this implies that the ar satisfy an infinite

set of linear equations.  This set of equations can then be "solved" by techniques

similar to those outlined above.  This was in fact done.  The coefficients Cr and Sr

were taken from runs of the previous techniques which were designed to produce

coefficients accurate to about 50D.  The tangent expansion coefficients were then

generated using a working accuracy of 48D and termination tolerance of 10-45; and

as before, the resulting coefficients were rounded to 40D and stored.  In this case we

did not have the luxury of a second method for the expansion; but again, check sums

were calculated at selected points, and the sums were found to be correct to the ex-

pected accuracy.

Computer Centre
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