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Fig. 1: Sample of the reconstruction result obtained by our system.

Abstract— Volumetric methods provide efficient, flexible and simple ways of integrating multiple depth images into a full 3D model.
They provide dense and photorealistic 3D reconstructions, and parallelised implementations on GPUs achieve real-time performance
on modern graphics hardware. To run such methods on mobile devices, providing users with freedom of movement and instantaneous
reconstruction feedback, remains challenging however. In this paper we present a range of modifications to existing volumetric
integration methods based on voxel block hashing, considerably improving their performance and making them applicable to tablet
computer applications. We present (i) optimisations for the basic data structure, and its allocation and integration; (ii) a highly
optimised raycasting pipeline; and (iii) extensions to the camera tracker to incorporate IMU data. In total, our system thus achieves
frame rates up 47 Hz on a Nvidia Shield Tablet and 910 Hz on a Nvidia GTX Titan X GPU, or even beyond 1.1 kHz without visualisation.

Index Terms—3D modelling, volumetric, real-time, mobile devices, camera tracking, Kinect

1 INTRODUCTION

Volumetric representations have been established as a powerful
method for computing dense, photorealistic 3D models from image
observations [14, 8]. The main advantages are their computational
efficiency, topological flexibility and algorithmic simplicity. Accord-
ingly, a large number of publications based on volumetric representa-
tions has appeared in recent years, as we will discuss in Section 1.1.

For some time, one of the main disadvantages of volumetric rep-
resentations has been their large memory footprint, as the required
memory grows linearly with the overall space that is represented rather
than with the surface area. This important issue has been addressed
in recent years by sparse volumetric representations like [28, 2, 24]
and [16]. As their key idea, they only represent parts of the 3D space
near the observed surface, discard the empty space further away, and
address the allocated voxels using octrees or hash functions.

While volumetric methods therefore provide high quality, large
scale 3D models in real-time for desktop and workstation applica-
tions, their computational efficiency is mostly owed to the fact that the
operations on individual voxels can be parallelised on modern GPU
hardware. Since such GPU hardware is only available to a limited
extent on mobile devices, volumetric reconstruction methods are not
directly suited for untethered live scanning or augmented reality appli-
cations with immediate feedback in mobile environments. Factors like
portability, battery life and heat dissipation inherently set a limit on
the available computational resources, and without these resources it
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remains challenging to provide the freedom of movement and instan-
taneous feedback of results that is crucial for fully immersive applica-
tions and augmented reality.

Rather than completely overhauling or even abandoning the previ-
ous works on volumetric reconstruction methods, we therefore present
ways of optimising them. We show that our extensions enable a
speedup by an order of magnitude over previous methods [14, 16]
and allow us to run them in real-time on commodity mobile hardware,
opening up a whole new range of applications. This requires a num-
ber of design choices early on to pick an efficient data structure along
with ideas to perform individual processing steps more efficiently and
last but not least some low-level refinements to the implementation.
Taking all of these together we achieve a system for tracking and in-
tegrating IMU augmented 320 x 240 depth images at up to 47 Hz on
a Nvidia Shield Tablet and 20 Hz on an Apple iPad Air 2. Inciden-
tally, the same implementation achieves a framerate up to 910 Hz on
a Nvidia GTX Titan X GPU or even beyond 1.1 kHz if visualisation
is not required. Our complete and highly optimised implementation is
available online at http://www.infinitam. org, and we aim to
present the design choices that went into it throughout the paper.

1.1 Previous Works

The original ideas of volumetric 3D reconstruction from depth images
date back to [3]. Later the advent of inexpensive depth cameras like
the Microsoft Kinect and massively parallel processors in GPUs led
to the seminal Kinect Fusion system [14, 8], which has been reimple-
mented a number of times [20, 1, 21] and inspired a wide range of
further work [6, 12, 5]. The insights have also been applied to 3D re-
construction from monocular cameras [13, 17]. While we keep such
monocular applications in mind, we focus on depth cameras as input
in this work.

One of the major limitations of volumetric approaches is the large
memory footprint, and the aforementioned early works can therefore
only handle small scenes. Various ideas have been investigated to
overcome this limitation. One of the first was the use of a mov-
ing volume, where only the current view frustum of the camera is
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Fig. 2: Overview of the three main processing stages of the proposed
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kept in the active memory and other parts get swapped out and con-
verted to a more memory efficient triangle mesh [22, 4, 27]. Other
approaches try to model the scene with several blocks of volumes, that
are aligned with dominant planes [7], or as a bump map representing
heights above planes [26]. A third line of approaches uses dense vol-
umes only in blocks around the actual surface and not for the empty
space in between. To index and address the allocated blocks, both oc-
trees [28, 2, 24] and hash tables [16, 18] have been used successfully.

While all of the above methods show good or real-time performance
on workstation machines with powerful GPUs, mobile devices with
limited processing power are not considered in any of them. However,
mobile cameras and handheld scanners provide significant advantages
over tethered ones, and allow a whole new range of novel applications
particularly in the domain of mixed and augmented reality. Dense,
photorealistic models of small scale 3D objects have been obtained on
mobile devices before in [19], and also at a slightly larger scale and in-
teractive framerates in [25, 9, 23]. Large-scale modelling with the help
of depth cameras has so far not been addressed. This is exactly what
the present work is about, optimising the wide range of dense volu-
metric 3D reconstruction methods from depth cameras and bringing
them to mobile devices with their flexibility.

1.2 System Outline

In line with many of the previous works, we model the world using a
signed distance function, that we represent volumetrically. We adopt
the concept of voxel block hashing as introduced by [16] to store the
volumetric data efficiently. However, in this work we have adapted
and redesigned the data structure to allow for much faster read and
write operations, as we will show in Section 2.

Based on this representation we develop our SLAM system for
dense mapping, which consists of three stages, as shown in Figure 2:
(i) a tracking stage to localise incoming new images, (ii) a fusion stage
to integrate new data into the existing 3D world model and swap data
between the compute device (e.g. GPU) and long term storage (e.g.
host memory or disk), and (iii) a rendering stage to extract the in-
formation from the world model that is relevant for the next tracking
step. These stages are outlined respectively in Sections 5, 3 and 4. At
a coarse level our system therefore follows the well established dense
SLAM pipeline of e.g. [14]. Each of the stages however has been
heavily optimised to allow for very high frame rates and mobile de-
vice operation. We will briefly summarise implementation details in
Section 6 and present experimental evaluations in Section 7. Finally
we conclude our paper in Section 8.

2 WORLD REPRESENTATION

As in many previous works such as e.g. [14], we model the world using
a truncated signed distance function (T-SDF) D, that maps each 3D
point to a distance from the nearest surface. Being truncated, points
with distances outside the truncation band [—u...u| are mapped to a
value indicating out-of-range. The surface S of the observed scene is
captured implicitly as the zero level set of this T-SDF, i.e.:

S = {X|D(X) = 0}. )

The function values of the T-SDF D are stored volumetrically by sam-
pling with a regular grid.

Since large parts of the world are outside the truncation band p,
most of the grid points will be set to the out-of-range value indicating
empty space. A considerable reduction in memory usage is therefore
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achieved by using a sparse volumetric representation. In our case we
use small blocks of usually 8 x 8 x 8 voxels that only represent the
scene parts inside the truncation band densely. The management and
indexing of these blocks can be done using an octree as in [28, 2, 24] or
a hash table [16]. As tree based approaches require lots of branching
to traverse the full depth of the trees, we decided to use the hash table
approach in our work. This promises constant lookup times in case of
no hash collisions and only little overhead to resolve such collisions.
The logical structure of this representation is illustrated in Figure 3.
Each 3D location in world coordinates falls into one block of 8 x 8 x 8
voxels. The 3D voxel block location is obtained by dividing the voxel
coordinates with the block size along each axis. We then employ a
hash function to associate 3D block coordinates with entries in a hash
table, which in our current implementation is the same as in [16] i.e.:

h=((bxx P) & (by x P,)® (b, x P3)) mod K, )

where mod and @ are the modulo and logical XOR operators,
(bx,by,b;) are the block coordinates, (Py,P,,P;) are the prime num-
bers (73856093, 19349669,83492791), K is the number of buckets in
the hash table, and £ is the resulting hash table index. At the corre-
sponding bucket in the hash table, we store an entry with a pointer to
the location in a large voxel block array, where the T-SDF data of all
the 8 x 8 x 8 blocks is serially stored.

The hash function will inevitably map multiple different 3D voxel
block locations to the same bucket in the hash table. Such collisions
cannot be avoided in practice, and we use a so called chained table
with list head cells to deal with them. This means that the entries in
the hash table not only contain the pointer to the voxel block array, but
also the 3D block position and an index pointing to the next entry in a
linked list of excess entries. In Figure 3 the list head cells and the ex-
cess list entries are labelled as the ordered and unordered parts of the
hash table, respectively. This structure is in stark contrast with [16],
where two or more entries of each bucket are explicitly stored in the
hash table and collisions are resolved with open addressing, storing
the excess entries in neighbouring buckets. The reasoning behind our
design choice, and we experimentally investigate this in Section 7.3, is
that the additional storage space invested into two or more entries per
bucket is better spent on creating a hash table with two or more times
the number of buckets, hence reducing the number of hash collisions
and improving the overall system performance. Also the code for ac-
cessing the hash table and excess list is significantly simplified, which
pays off at the many random access reads required during raycasting.

The main operations for working with the above hash table are (i)
the retrieval of voxel blocks, (ii) the allocation and insertion of new
voxel blocks and (iii) the deletion of hash table entries. We provide
details of these operations in the following.

2.1 Retrieval

The retrieval function first computes the hash index / using the hash
function from equation 2. Starting from the head entry of the hash
bucket, all elements within the linked list are checked for a match with
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Fig. 4: Outline of the individual processing steps in the fusion stage of
the system.

the desired voxel block. Once found, the corresponding voxel block is
returned. Depending on the number of hash collisions, this operation
generally has constant complexity, unless the load factor of the hash
table is disproportionally high, as investigated in Section 7.3.

2.2 Allocation

In the fusion step new information is incorporated into the existing T-
SDF, and the above data structure has to be modified to ensure that
all blocks observed in the new depth image are allocated. We break
this step down into two parts, both of which are trivially parallelisable,
require only a minimal amount of atomic operations and do not need
any critical sections with nested atomics. This design allows us to
achieve optimum performance on parallel processors.

In the first of the two steps we iterate through each pixel in the
depth image. For each of the measured depths d we create a segment
on the line of sight in the range of the T-SDF truncation band d — u to
d + 1. We take the block coordinates of voxels on this line segment,
compute their hash values, and check whether the block has already
been allocated. If it has not, we simply mark the location in the hash
table as “fo be allocated with this specific new block”. We do not syn-
chronise the write operations for this marking and if multiple threads
require allocations at the same bucket in the hash table, only one of
them is selected at random, depending on the execution order. This
corresponds to a hash collision within the newly allocated blocks of a
single frame, which is exceptionally rare in normal operation, but does
happen at the very beginning of the processing, where large parts of
the scene suddenly have to be allocated at once. Such intra-frame hash
collisions still do not cause lasting artefacts, as the missing blocks are
usually cleaned up in the next frame. Should problems ever arise, a
trivial workaround would be to to run the allocation twice for the same
frame, but for normal operation this is not necessary. The complete
elimination of all synchronisation efforts leads to a significantly better
runtime performance and also simplifies the second step of the alloca-
tion, which can now be parallelised equally trivially.

In the second step we go through the previously created list of
marked hash entries that need allocating and update the hash table
accordingly. Atomic operations are only required (i) to update a list of
available entries in the voxel block array, which we maintain to deal
with fragmentation, and (ii) if a new entry has to be allocated in the
excess list dealing with hash collisions. Unlike in [16], no critical sec-
tions of nested atomic operations are required.

2.3 Deletion

Sometimes entries have to be removed from the hash table and voxel
block array. This is the case, for example, when swapping data out of
the active list of voxel blocks to a long term storage. Whenever an ele-
ment has to be removed we simply mark the corresponding hash entry
as “removed” and add the respective voxel block array pointer to the
list of unallocated entries in the voxel block array. Note therefore that
(i) we do not reorganise the linked list, thus again avoiding the need
for critical sections and (ii) we only require a single atomic operation
to update the list of available entries in the voxel block array.

3 FUSION STAGE

At the fusion stage we are given a new depth image along with the
corresponding camera pose from the tracker, and we update our model
of the 3D world to incorporate the novel information. An outline of
the required operations is illustrated in Figure 4, and these steps are:

e Allocation: Creates new entries in the hash table and voxel block
array.

e Visible list update: Maintains a list of voxel blocks that are cur-
rently visible.

e Camera data integration: Incorporates the new camera data into
each of the visible voxel blocks.

e Swapping: Optionally swaps in data from a long storage into the
active memory and swaps out blocks that are no longer visible.

The allocation step has already been presented in Section 2.2. In
the following we discuss the other three steps.

3.1 Visible List Update

At any given time, a large portion of the world map is far from the
camera and outside the current field of view. As noted by [16], this
can be used to considerably reduce the workload of the integration
and rendering stages. Naively, the visible parts of the scene can be
identified by directly projecting the eight corners of all allocated voxel
blocks into the current camera viewpoint and checking their visibility.
This guarantees that all visible blocks will be found, but the processing
time increases linearly with the number of allocated voxel blocks.

In our work we therefore build and maintain the list of visible blocks
incrementally. We assume that voxel blocks can only be visible in a
frame, if they were either visible at the previous frame or if they are
observed in the current depth frame. The observations at the current
frame are already evaluated in the allocation step, and so we only run
the visibility check for the voxel blocks that were visible at the previ-
ous frame and have not been marked by the allocation stage. This way
the list of visible blocks is obtained with very little extra computation
and the extra computations are independent of the scene size.

3.2 Camera Data Integration

The camera data integration step now essentially performs the same
computations as in the original Kinect Fusion system and its predeces-
sors [14, 3]. Each voxel X maintains running averages of the T-SDF
value D(X) and optionally of the RGB values C(X), which are stored
in the voxel block array. The voxel location is transformed into the
depth camera coordinate system as X; = R;X +t;, using the known
camera pose R; and t;. It is then projected into the depth image I;
using the intrinsic parameters K, and we compute:

N =IL(n(K X)) - X, 3)

where 7 computes inhomogeneous 2D coordinates from the homoge-
neous ones and the superscript (z) selects the Z-component of X. If
n > —u, the SDF value is updated as:

D(X) « <W(X)D(X) +min <1, E)) JwX)+1), @

where w is a field counting the number of observations in the running
average, which is simultaneously updated and capped to a fixed maxi-
mum value. If desired and available, the field of RGB values C(X) is
similarly updated by projection into an RGB image.

As in [16], only voxels in blocks that are currently visible have to
be considered. This means a significant reduction in the computational
complexity compared to systems like [14].

3.3 Swapping

Sparse volumetric representations enable a very efficient use of mem-
ory. While this allows for room-size reconstructions to be kept within
the graphics card memory or RAM of a tablet processor, larger scale
maps still might not fit. One established approach for dealing with this
problem [16, 2] is to swap data between the limited device memory
and some much larger long term storage, which could be some host
(CPU) memory, or the disk or memory card of a tablet.

We adopt a similar approach and while in general, the active and
long term memories can reside on a device (GPU) and host (CPU) with
separate memory spaces, the same pattern can be applied to unified
memory architectures and long term storage on disk. In our system we
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use transfer buffers of fixed size. This allows us to set upper bounds on
the time spent on data transfers at each frame and implicitly ensures
that the data swap does not add a substantial lag, irrespective of the
speed of the long term storage device.

‘We configure the long term storage as a voxel block array with a size
equal to the number of buckets in the hash table. Therefore, to check
if a hash entry has a corresponding voxel block in the host memory,
we only transfer and check the hash table index. The host does not
need to perform any further computations, as it would have to do if
a separate host hash table was used. Furthermore, whenever a voxel
block is deallocated from device memory, its corresponding hash en-
try is not deleted, but rather marked as unavailable in active memory,
and, implicitly, available in the long term storage. This (i) helps main-
tain consistency between active hash table and long term voxel block
storage and (ii) enables a fast visibility check for the parts of the map
stored only in the long term storage.

As mentioned, we want to accommodate long term storage systems,
that are considerably slower than the online reconstruction. To enable
stable tracking and maintain overall reconstruction accuracy, the on-
line system therefore constantly integrates new live depth data even
for parts of the scene that are known to have data in the long term
storage that is not yet in the active memory. This ensures that we can
always track the camera, at least relative to a temporary model that
we build in the active memory. By the time the transfer from the long
term storage is complete, some voxel blocks might however already
hold new data integrated by the online system. Instead of discarding
either source of information, we run a secondary integration after the
swapping and fuse the transferred voxel block data from the long term
storage with the active online data. Effectively we treat the long term
storage simply as a secondary source of information.

The overall outline of our swapping operations is shown in Figure 5.
This takes place at each frame, but incurs only little speed penalty on
the overall integration, as the data transfer is limited to a small size
transfer buffer. The list of voxel blocks that needs to be swapped in
is built in the same fashion and at the same time as we update the
visible list. A voxel block will be swapped in if it projects within a
pre-defined distance from the boundaries of the currently tracked live
frame and swapped out once it projects outside the same boundaries.

An example for swapping in a single block is given in Figure 6.
The indices of the hash entries that need to be swapped in are stored
in the device transfer buffer, filling it up to its capacity. Next, this list
is transferred to the host transfer buffer. There the indices are used as
addresses inside the long term voxel block array and the target blocks
are copied to the host transfer buffer. Finally, the host transfer buffer is
copied to the device memory, where a single kernel integrates directly
from the transfer buffer into the active voxel block memory.

An example for the step of swapping out a single voxel block is
shown in Figure 7. The indices and voxel blocks that are selected for

Active Voxel Memory

H ‘ Hash Table

Transfer Buffer

L HIH4H~H|[’HIH 1171 Hlﬂ Long Term Storage

Fig. 6: Swapping in: The hash table entry at address 1 is copied into
the device transfer buffer at address 2 (arrow a). This is copied to
address 3 in the host transfer buffer (arrow b) and used as an address
inside the host voxel block array, pointing to the block at address 4
(arrow ¢). This block is copied back to location 7 (arrow f) inside
the device voxel block array, passing through the host transfer buffer
(location 5, arrow d) and the device transfer buffer (location 6, arrow

e).
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Fig. 7: Swapping Out. The hash table entry 1 and the voxel block 3 are
copied into the device transfer buffer locations 2 and 4, respectively
(arrows a). The entire transfer buffer is then copied to the host, to
location 5 (arrows b), and the hash entry index is used to copy the
voxel block into location 7 inside the host voxel block array (arrow c).
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swapping are copied to the device transfer buffer. This is then copied
to the host transfer buffer and then to the long term voxel memory.

4 RENDERING STAGE

Extracting information from the implicit representation as a T-SDF is a
crucial step that we perform at the rendering stage. We will essentially
determine the part of the zero level set S from Equation 1 that is visible
from a given camera viewpoint. In normal operation, this is required
primarily to extract information for the tracking stage, but it will also
be a fundamental prerequisite for visualisation in a user interface.

The basic operation for extracting the surface information from the
T-SDF is raycasting [14]. Given the desired output camera parameters,
we cast aray into the scene for each pixel of the output image and once
we found the first intersection of the ray with the surface, we render
this point. In our implementation there are four distinct aspects of the
rendering stage that we will elaborate in the following:

e Raycasting range: Given the voxel block structure, we determine
minimum and maximum ray lengths for each pixel;

e Raycasting: This is the central step, which finds the intersection
of each ray with the 3D surface;

o Surface normal: These have to be extracted for some tracking
applications and for realistic shading of the rendering;

e Forward projection and other considerations: Raycasting is not
always necessary, optionally sacrificing accuracy for speed.

4.1 Raycasting Range

As noted in [16] and in contrast to the original Kinect Fusion
works [14], the sparse representation with voxel blocks has a tremen-
dous advantage in the raycasting stage: it allows us to determine
the minimum and maximum search range for the rays in each pixel.



Initialise ray and voxel position
from range image

J Read nearest

" | neighbour T-SDF value
Jump t?y Voxel position allocated?]
block size NO

Voxel position inside
truncation band?

YES

Jump by width of
truncation band

| | Jump by Small T-SDF value at
T-SDF value voxel position?
NO
JYES
Read interpolated
T-SDF value
Jump by
 interpolated T-SDF value < 0? ]
T-SDF value | NO lYES
Found zero level of
T-SDF

Fig. 8: Flow chart of the raycasting procedure.

In [16], triangle meshes for the boxes around all visible blocks are cre-
ated and projected into a modified Z-buffer image, which maintains for
each pixel the minimum and maximum observed depths. Outside of
these bounds the T-SDF contains no information. As we will explain
in the following, we modify this approach in two ways to improve the
performance. First, we avoid triangle meshes. Second we only com-
pute the raycasting range at a much coarser resolution than the final
raycast.

In a first parallelised operation, we project all visible blocks into the
desired image. For each block, we compute the bounding box of the
projection of all eight corners in image space and store the minimum
and maximum Z coordinates of the block in the camera coordinate
system. Akin to typical rendering architectures, the bounding box is
then split into a grid of fragments of at most 16 x 16 pixels each, and
a list of these fragments is accumulated using a parallel prefix sum.
In a second parallelised operation, the fragments are drawn into the
modified Z-buffer image, requiring atomic minimum and maximum
operations to correctly update the stored values. Due to the subdivision
into fragments, the number of collisions in these atomic operations is
minimised.

The bounds on the raycasting range determined by projection of the
blocks is always at best an approximation. Our approximation with
the bounding box of the projection provides slightly more conservative
bounds, but is significantly less complex. Furthermore it is not neces-
sary to compute the bounds at the full resolution of the raycast, and we
get an even coarser and more conservative approximation by subsam-
pling. There is a tradeoff between spending more time on computing
tighter bounds vs. computing more steps in the raycast, and empiri-
cally we achieve best results by computing the raycasting bounds at a
resolution of 80 x 60 pixels for a typical raycast of 640 x 480 pixels.

4.2 Raycasting

In the main step of the rendering stage, we cast rays from the optical
centre through each pixel and find their first intersection with the ob-
served 3D surface. In its simplest form, this requires evaluating the
SDF along all points of the ray. However, as already stated in [14], the
values D(X) in the T-SDF give us a hint about the minimum distance
to the nearest surface and allow us to take larger steps.

Due to the further complexity of our T-SDF representation using
voxel block hashing, we employ a whole cascade of decisions to com-
pute the step length, as illustrated in Figure 8. First we try to find an
allocated voxel block, and the length of the steps we take is determined
by the block size. If we found an allocated block, but we are outside

the truncation band p, our step size is determined by the truncation
band. Once we are inside the truncation band, the values from the
SDF give us conservative step lengths. Finally, once we read a nega-
tive value from the SDF, we found the intersection with the surface.

The points along the ray will hardly coincide with the grid points of
the discretised T-SDF, hence requiring interpolation. For most of the
ray, no sophisticated interpolation is necessary, and it only becomes
important once we are close to the surface. For a standard trilinear in-
terpolation step, 8 values have to be read from the T-SDF, as opposed
to a single value for nearest neighbour interpolation, and for sake of
computational complexity, the selection of interpolation schemes has
to be considered carefully. In our implementation we have achieved
best results by using trilinear interpolation only if we have read values
in the range —0.5 < D(X) < 0.1 with a nearest neighbour interpola-
tion. The asymmetric boundaries are chosen because errors on the
negative side could cause premature termination of rays, whereas er-
rors on the positive side can be corrected at the next iteration. If the
T-SDF value is negative after such a trilinear interpolation, the surface
has indeed been found and we terminate the ray, performing one last
trilinear interpolation step for a smoother appearance.

The read operations in the raycast frequently access voxels located
within the same block. To make use of this, we cache the lookup of
the blocks, which frequently allows us to completely bypass the hash
table in consecutive reads, particularly during trilinear interpolation.

4.3 Surface Normal

Tracking with the ICP method and visualisation of the surface with
shading requires to extract a surface normal for each point in the ray-
casting result, which can be done in two principal ways: Via a 3D
gradient computation in the T-SDF, or with a gradient computation in
the raycasted image space.

The T-SDF, due to the way it is accumulated in the integration stage,
is only ever enforced to be a true SDF along the viewing rays of the
integrated depth images. In the orthogonal direction the accumulated
values are not necessarily a distance function, and hence their gradi-
ents are not necessarily a good approximation of the surface normal. In
image space, if the normal is computed with a cross product between
the 3D points in neighbouring pixels, the results are independent of
this T-SDF artefact, but they are inaccurate at depth discontinuities.

While both ways therefore have their problems, there is a clear win-
ner in terms of complexity. Evaluating the gradient of the T-SDF at
a point, that does not fall exactly onto the grid of the discretisation,
requires reading 6 interpolated T-SDF values. In image space, since
the normals are computed on a regular grid, there are only 4 uninter-
polated read operations followed by a cross-product. It is therefore
significantly faster to compute surface normals in image space, while
empirically the results differ only little.

4.4 Forward Projection and Other Considerations

As it turns out, it is not necessary to perform raycasting at every sin-
gle frame. The tracker needs 3D surface information to align incom-
ing new images, but it can also align the new images to the surface
extracted in a previous frame, as long as the viewpoints are not too
different. As an optional approximation we therefore skip the raycast
unless the camera has moved by more than a fixed threshold, or unless
the most recent raycast is more than a fixed number of e.g. 5 frames
in the past. This strategy is illustrated in Figure 9 and evaluated exper-
imentally in Section 7.5, and it turns out that this approximation does
not affect tracking accuracy.

For immediate online visualisation, if desired, a rendering of the
scene can usually be generated as a byproduct of the raycasting that is
required by the tracker. If this raycasting is switched off, as explained
above, a forward projection step of the most recent raycasting result
can be used for the visualisation, as shown in Figure 9. To this end, we
treat the extracted raycasting result as a point cloud and simply project
each point into the visualisation image. Since such a simple forward
projection of 3D points leads to holes and image areas with missing
data, a postprocessing step performs a raycast only for these gaps.



Ul Image

Forward
Projection

Forward
Projection

Full Full
Raycast cloud Raycast
Pose Pose
Pose,
Tracker ——® Tracker Tracker Tracker

frame frame frame frame

Fig. 9: Speedup by omitting raycasting: The tracker continues local-
ising incoming images relative to the point cloud extracted during the
most recent raycast. If a visualisation is desired, the point cloud is also

forward projected using the pose from the tracker.

For a more sophisticated, offline visualisation from arbitrary view-
points, a full raycast similar to the standard approach is required. First
we determine a list of visible voxel blocks by projecting all allocated
voxel blocks into the desired image. Then the raycasting range image
is determined using the modified Z-buffer as described in Section 4.1.
Based on this the surface is computed by finding the intersections of
rays with the zero level set of the T-SDF, as in Section 4.2. Finally a
coloured or shaded rendering of the surface is trivially computed, as
desired for the visualisation.

5 TRACKING STAGE

Various strategies for tracking the camera have been proposed in the

context of T-SDF representations. In our system, we implemented an

ICP-like tracker as in [14] and a colour based direct image alignment.
In the ICP case we minimise the standard point-to-plane distance:

Y (Ro+t-VE) N () )
P

where p are the 3D points observed in the depth image Ip, (R and t)
are the rotation and translation of the camera, ¥ and N are maps of
surface points and normals, as produced by the raycasting stage, and p
are the projections of p into raycasting viewpoint.

In the colour case, we minimise:

%ch(n(RpH)) —C(p)ll, (6)

where p and C(p) are the 3D points and their colours, as extracted in
the raycasting stage, and I is the current colour image.

Either of these energy functions is minimised using the Gauss-
Newton approach, and in both cases we use resolution hierarchies. At
the coarser levels we optimise only for the rotation matrix R.

Implementing a framework to run on tablet computers has an ad-
ditional benefit, however: We can make use of the integrated inertial
measurement units (IMUs), which will cheaply provide us with the
rotational component of the pose. In this case we replace the visual
rotation optimisation in both ICP and colour-based trackers with iner-
tial sensor-based rotation obtained using the fusion algorithm of [10].
This is different from e.g. [19] or [15], where the inertial sensor is
primarily used as initialisation for the visual tracker. While this does
accelerate convergence, it does not reduce rotation drift, as it does not
change the local minima of the visual tracker energy function. Our
approach, as shown in Section 7.4, has considerably less rotation drift.

6 SYSTEM IMPLEMENTATION

We have implemented our system and all the optimisations within the
InfiniTAM framework from [18]. The framework allows us to deploy

Controlling Engine

Class Shared Code

Abstract

‘ CPU Code H GPU Code H ‘

Inline Shared Code

Fig. 10: Schematic of the InfiniTAM cross device architecture.

Device Specific

Device Agnostic

Table 1: Average computation times per frame for different devices
and visualisation strategies. Details on the full raycast, forward pro-
jection and no visualisation strategies are given in Sections 4.4 and 7.1.

(a) teddy sequence

Device full forward none [14] [16]
Nvidia Titan X 1.91ms 1.74ms 1.38ms 26.15ms 25.87ms
Nvidia Tegra K1 36.53ms 31.38ms  26.79ms - -
Apple iPad Air 2 82.60ms  65.55ms  56.10ms - -
Intel Core i7-5960X  45.28ms 46.75ms 35.40ms 502.69ms -

(b) couch sequence

Device full forward none [14] [16]
Nvidia Titan X 1.17ms 1.10ms 0.87ms 19.34ms 15.18ms
Nvidia Tegra K1 25.58ms 21.04ms 19.38ms - -
Apple iPad Air 2 56.65ms  48.43ms  41.58ms - -
Intel Core i7-5960X  23.43ms 23.38ms 19.94ms 312.86ms -

our ideas on a wide range of platforms and devices, where platforms
include Windows, Linux, MacOS, iOS and Android and devices in-
clude CPUs, multi-core CPUs supporting OpenMP, GPUs supporting
Nvidia CUDA and APUs supporting Apple Metal.

Most of the implementation is actually shared across all of these
platforms and devices, making use of the InfiniTAM cross device ar-
chitecture. As illustrated in Figure 10, the implementation is split into
three levels, an Abstract level, a Device Specific level and a Device
Agnostic level. The Abstract level provides an abstract, common in-
terface and control functions e.g. for the iterative optimisation in the
tracker. The Device Specific part executes a for loop or launches a
CUDA kernel or similar functionality to perform some computation
for example for all pixels in an image. Finally the Device Agnostic
part, which is shared as inline code on all devices, performs the actual
computations, such as evaluating an error function for a single pixel.

The source code of InfiniTAM along with our extensions and opti-
misation is available from http://www.infinitam.org.

7 EXPERIMENTS

Since our focus is real time performance on mobile devices, we first
present various experiments on the runtime in Sections 7.1 and 7.2. We
continue in Section 7.3 with a usage analysis of our hash table, which
shows that our argument for simplifying this data structure to a single
list head entry indeed holds. We next benchmark the performance
of our IMU-based tracker in Section 7.4, and finally investigate the
overall accuracy quantitatively and qualitatively in Section 7.5.

7.1 Runtime on Different Devices

As mentioned in Section 6, our system runs on a wide range of dif-
ferent devices, and in the following we compare the performance on
these different devices. We recorded two sequences, one of a desk
scene with a toy bear, called teddy in the following, and one of a
living room environment, referred to as couch. Samples of both se-
quences are shown in Figure 11. The teddy sequence consists of
colour and disparity images from a Microsoft Kinect for XBOX 360,
both recorded at 640 x 480 pixels. The couch sequence consists of
depth images from an Occipital Structure Sensor with a resolution of
320 x 240 and orientation information measured with the IMU of an
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Fig. 11: Samples of the teddy (top) and couch sequences (bottom) used in some experiments with the final reconstruction results on the right.

Apple iPad Air 2. Accordingly, the teddy sequence is representa-
tive of reconstruction applications performed at a workstation, while
the couch sequence is representative of mobile scanning applications
with tablet computers and IMU sensors.

In Table 1, we list the measured computation times per frame as av-
eraged over the whole sequences. We evaluate the times on two tablet
devices, namely the Nvidia Shield Tablet and the Apple iPad Air 2,
as well as on two workstation devices, one CPU only implementation
that partly makes use of multi-core parallelisation with OpenMP and
a GPU implementation on a Nvidia GTX Titan X. We also compare
the runtimes with full raycasting at every frame, forward projection as
in 4.4 and with the visualisation turned off completely.

The numbers show that our implementation is running well within
real time on tablet computers at 47 Hz. This is based on depth im-
ages with a resolution of 320 x 240 augmented with IMU data and ex-
ploiting our proposed forward projection. For 640 x 480 images and
without IMU, it still achieves more than 31 Hz on the same tablet hard-
ware. On workstations with a powerful GPU, even framerates beyond
1.1 kHz are possible, if visualisation is not required. With full ray-
casting at 640 x 480 resolution, the implementation still reaches 523
Hz. This is a significant speedup by a whole order of magnitude com-
pared to the previous works presented in [14] and [16]. Furthermore,
the fixed volume in the implementation of [14] still fails to capture the
entire couch scene at a volume size of 512 x 512 x 512. Reducing
the volume size of that implementation would result in a significant
speedup [12], but only at the cost of an even more reduced scene size
or a lower 3D resolution. Mobile, untethered handheld operation on
the two tested tablet computers is currently only possible with our im-
plementation.

7.2 Breakdown of Runtime

Figure 12 shows the processing time for a typical frame of the teddy
sequence, broken down into individual steps. These were measured
on a Nvidia GTX Titan X GPU, and the processing is therefore sur-
rounded by transfers of image data between host memory and GPU.

The first major part is tracking and it consists of a short preprocess-
ing step for the resolution hierarchies and a number of ICP iterations,
taking less time at coarse resolutions and more at finer levels. At each
iteration the error function is evaluated on the GPU and the results are
transferred to the CPU, where we compute the actual step and check
for convergence. Overall tracking takes usually around 1ms per frame.

The next major part is the fusion stage, which consists of allocation
and integration. Taken together, these typically take well under 0.5ms,
although at times when large new parts of the scene become visible,
allocation can occasionally take slightly longer.

The final part in Figure 12 is the rendering stage. As discussed in

Table 2: Usage of hash table for different numbers of buckets, along
with observed and expected number of collisions and load factor.

Buckets 1048576 524288 65536 32768 16384
empty 1037199 512970 55001 23178 8179
1 entry 11265 11150 9624 7928 5657
2 entries 111 166 847 1451 1959
3 entries 1 2 61 193 487
4 entries 3 14 81
> 5 entries 4 21
Collisions obs. 225 338 1889 3557 5809
Collisions exp. 125.2 249.0 1854.7 3395.5 5771.0
Load factor 0.011 0.022 0.176 0.350 0.700

Section 4.4, this does not necessarily occur at every frame and there
are three options: (i) no raycast at all, (ii) forward projection for vi-
sualisation and (iii) full raycast. The figure shows a full raycast. In a
first, negligibly fast step, the raycasting bounds are computed. This is
followed by the actual raycast, which can optionally be replaced by a
faster forward projection. Finally the surface normals are computed in
image space. Overall the rendering typically takes under 1ms.

Thanks to the efficient representation using voxel block hashing
from [16], the fusion is the least time critical stage, and thanks to our
optimisation from Section 4, the rendering is also not the major con-
cern anymore. Currently the tracking stage takes up most time, but
on typical mobile devices this can be improved by incorporating IMU
information as discussed in Section 5.

7.3 Hash Table Usage

In Section 2 we explained our rationale for using a chained hash table
with list head cells rather than the open addressing proposed in [16].
In [16], each hash bucket has two or more entries and collisions are
resolved by storing the excess entries in neighbouring buckets. Instead
we argue that the extra memory of a second entry per bucket is better
spent on a hash table with twice the number of buckets, which reduces
the overall number of hash collisions and therefore improves overall
performance. To underline this argument, we investigate the usage of
the hash table and the number of empirically observed hash collisions.

Note that according to the well known Birthday Paradox, the num-
ber of expected collisions for a hash table is

n.<1—<1—11()"_1>, ™

where n is the number of used elements and K is the overall number
of buckets in the hash table. We have listed the number of collisions
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Fig. 12: Timeline of processing for a typical frame on a Nvidia GTX Titan X GPU. The individual sections are explained in the text.

Fig. 13: Photo of the setup used for the IMU experiment.

empirically observed for the teddy sequence for hash tables of dif-
ferent sizes along with the expected number of collisions in Table 2.
We tried to cover a wide range of load factors in this experiment to
simulate different kinds of application scenarios.

As expected, the number of collisions grows significantly with high
load factors, but even at very low load factors they can not be com-
pletely avoided. The number of observed collisions is consistently
above the number of collisions expected for an ideal uniform distri-
bution of hash keys. However, the margin is acceptably small and the
hash function seems well suited for the application. As another im-
portant observation, the number of buckets with two or more entries
is small compared to the overall size of the hash table, even at a load
factor of 70%. It therefore seems justified to have no more than one
head entry for each bucket, at least if the collisions are stored in an
explicit excess list rather than with open addressing.

7.4 Inertial Sensor

Optionally and if available, our tracking stage uses the inertial sensor
to provide rotation estimates. To measure the accuracy of this ap-
proach we fixed a tablet to a swivel chair (see Figure 13).

‘We then performed a full rotation of the chair, and reconstructed the
scene on the tablet. Figure 14 shows both qualitative and quantitative
results obtained for this experiment. The ICP tracker drifts on all three
axes by as much as 23°, which leads to an incorrect reconstruction.
The IMU based tracker has a maximum drift of 0.09°, thus producing
a much more accurate result.

7.5 Quantitative and Qualitative Results

As discussed in the sections above, the runtime of system is highly op-
timised. In this section we show that this does not lead to any reduc-
tions in accuracy. We benchmark our approach on the dataset provided
by [6, 12] and list the obtained tracking errors in Tables 3 and 4. Our
system consistently outperforms the benchmark reference and the “ap-
proximate raycast”, which skips the raycast at some frames, does not
lead to a significant reduction in accuracy. Samples of the trajectories
obtained with our system using the “approximate raycast” strategy are
shown in Figure 15. Finally, a comparison between the reconstruc-
tion results is shown in Table 5. Again our method outperforms the
benchmark reference in virtually all cases.

Further to the quantitative analysis, we show examples of qualita-
tive results in Figures 1 and 16. These large scale results were obtained
using colour tracking and integration.

Table 3: Tracking accuracy results on the living room sequence
from [6]. Bold shows the best result, in all cases obtained by our
method, ITM-Full (full raycast) and ITM-ARC (approximate raycast).

system ktO-LR  ktl-LR  kt2-LR  kt3-LR
Handa - best | 0.0724  0.0054 0.0104  0.3554
ITM-Full 0.0089  0.0029 0.0088 0.041
ITM-ARC 0.0145 0.0047 0.0072 0.119

Table 4: Tracking accuracy results on the office sequence of [6]. Bold
shows the best result, in all cases obtained by our method, ITM-Full
(full raycast) and ITM-ARC (approximate raycast).

system kt0-OF  kt1-OF  kt2-OF  kt3-OF
Handa - best | 0.0216  0.3778  0.0109  0.0838
ITM-Full 0.0055  0.0277  0.0079  0.0047
ITM-ARC 0.0055  0.1008  0.0079  0.0042

8 CONCLUSION

In this work we have shown a range of ideas and design choices that
allow us to run a dense, photorealistic 3D reconstruction algorithm in
real time on a tablet computer, based on input from a depth sensor.
This requires first of all an efficient representation and data structure
and we picked up the basic idea of Voxel Block Hashing [16]. This
data structure provides a very efficient way of integrating new data,
as we have shown in Section 3. A crucial step is the extraction of
surface information for rendering, and we have provided details about
our implementation of raycasting in Section 4. Finally we have briefly
mentioned the tracker that aligns incoming new images with the stored
world representation, and in particular presented details about the in-
tegration of IMU data from mobile devices in Section 5. In a series
of experiments we then elaborated in Section 7 that (i) the various
approximations and shortcuts do not affect the state-of-the-art perfor-
mance in terms of accuracy, and (ii) that the computational complexity
allows processing at up to 47 Hz on a Nvidia Shield Tablet and up to
910 Hz on a Nvidia GTX Titan X GPU with visualisation, or even
beyond 1.1 kHz without.

While we achieve good performance in terms of accuracy and run-
time, further work is required to harness the full potential of a sys-
tem such as ours on mobile devices. Most importantly, truly large
scale reconstructions will inevitably accumulate drift and hence re-
sult in erroneous reconstructions. In some recent works this is ad-

Table 5: Reconstruction results obtained on the living room sequence
[6]. Our method obtains more accurate results in virtually all cases.

Error (m) ktO ktl kt2 kt3

Mean - Handa best 0.0114  0.0080  0.0085  0.1503
Mean - ITM 0.0060  0.0057  0.0048  0.0585
Median - Handa best | 0.0084  0.0048  0.0071  0.0124
Median - ITM 0.0060  0.0049  0.0038  0.0535
Std. - Handa best 0.0171  0.0286  0.0136  0.2745
Std. - ITM 0.0046  0.0038  0.0037  0.0415
Min - Handa best 0.0000  0.0000  0.0000  0.0000
Min - ITM 0.0000  0.0000  0.0000  0.0000
Max - Handa best 1.0377 1.0911 1.0798 1.0499
Max - ITM 0.0405  0.0261  0.0429  0.3522
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Fig. 16: Reconstruction of a large space using our approach: (a) shows overview, (b) shows surface normals and (c) and (d) are close-up results.



dressed by incorporating loop-closure detection and pose graph opti-
misation [27, 11] or similar techniques [5]. And while we do not ad-
dress this problem at all in our current implementation, the excellent
runtime performance we achieve means that there is some spare time
to accommodate such additional computations. Another major direc-
tion of future work is the use of a single RGB camera instead of depth
cameras. As shown in [13, 17], the same or very similar volumet-
ric approaches can be used for depth images computed from images
of a single, moving camera. And while depth cameras are nowadays
widely available, colour cameras are still much more ubiquitous.
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