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Abstract—Satellite remote sensing has been providing passive
microwave soil moisture (SM) retrievals of a global spatial coverage
and a high revisit frequency for research and applications in earth
and environmental sciences, specifically after the soil moisture
active and passive (SMAP) was launched in 2015. But, the spatial
resolution of SM data is restricted to tens of kilometers, which is
insufficient for regional or watershed scale studies. In this article,
an SM downscaling algorithm was developed based on the vegeta-
tion modulated apparent thermal inertia relationship between SM
and changes in land surface temperature (LST). The algorithm
used data sets from the North America Land Data Assimilation
System Noah model outputs and the advanced very high resolution
radiometer data of the long term data record from 1981 to 2018.
Here, the downscaling model was applied to visible/infred LST data
from the visible infrared imaging radiometer suite at 400-m and the
moderate resolution imaging spectroradiometer at 1 km to down-
scale the L2 radiometer half-orbit 9 km SMAP SM from 2018 to
2019 for the contiguous United States. The 400-m/1-km downscaled
SM products were validated using 125 in situ SM ground measure-
ments acquired from the International Soil Moisture Network. The
validation results summarized by SM network show that the overall
unbiased RMSE for 400-m of the improved/original downscaling
algorithms and 1-km SM outperform 9-km SM by 0.01, 0.007, and
0.012 m3/m3 volumetric soil moisture, respectively, which indicates
a fairly good performance of the downscaling algorithm. It is also
found that precipitation has an impact on the 9-km SMAP SM.

Index Terms—Downscaling algorithm, moderate resolution
imaging spectroradiometer (MODIS), North America Land Data
Assimilation System (NLDAS), soil moisture active and passive
(SMAP), visible infrared imaging radiometer suite (VIIRS).

I. INTRODUCTION

S
OIL moisture is described as the water content of the soil

layer and generally in the case of remote sensing, this is
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restricted to the top few centimeters of depth. Soil moisture

is an important variable for studying land surface processes,

water and heat flux exchanges and interactions between land

and atmosphere. It is also a key input variable in land surface

models (LSMs) for numerous studies in hydrology, agriculture,

climatology, weather forecasting, and ecology. Remote sensing

techniques have been providing global coverage soil moisture

(SM) retrievals from passive microwave satellite sensor obser-

vations in recent decades [1]–[3]. Compared with the traditional

methods of measuring SM from ground networks or field sur-

veys, remotely sensed SM can provide regularly available (on

the order of 1-2 days revisit), higher spatial/temporal resolutions

(as ground observations are sparse) with reliable quality [4]–[6].

The satellites which have retrieved SM measurements from

passive microwave frequency brightness temperature (TB) ob-

servations include: Advanced Microwave Scanning Radiometer

for the Earth Observing System onboard National Aeronautics

and Space Administration’s (NASA) Aqua satellite [7]–[9], Ad-

vanced Microwave Scanning Radiometer 2 (AMSR2) onboard

Japan Aerospace Exploration Agency’s (JAXA) Global Change

Observation Mission - Water (GCOM-W1) satellite [10]–[13],

European Space Agency’s soil moisture and ocean salinity satel-

lite [14]–[16], NASA’s Soil Moisture Active/Passive (SMAP)

[17]–[20], and aquarius sensor onboard Argentine Satelite de

Aplicaciones Cientificas-D spacecraft [21], [22]. The L-band

microwave TB observations are favored to provide top surface

SM retrievals (0–5 cm depth) with reliable accuracy [23]–[26].

Specifically, the radio frequency interference effect on L-band

observations can be effectively mitigated through various ap-

proaches when the SMAP data are available [27]–[29]. In this

article, the SMAP SM were produced by the single channel

algorithm (SCA), which used TB observations at both horizontal

and vertical polarizations [1].

Presently, due to the limitation of antenna diameter size, the

spatial resolution of all available microwave radiometer SM

retrievals is only on the order of tens of kilometers, which

cannot satisfy the requirement of hydrological or agricultural

studies at finer scales [2], [30]. To solve this problem, many

studies focused on developing approaches to improve the spa-

tial resolution of SM products [31], [32]. These downscaling

algorithms can be summarized as three main types: Integrate

satellite observations from multiple platforms. Some of the stud-

ies utilized the high-resolution data from optical/thermal bands
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[33]–[38] or radar sensors [39]–[44] to downscale microwave

SM retrievals. Use other SM related geophysical variable data

of high resolution, such as topography, soil surface properties

or vegetation properties [45]–[52]. Use mathematical modeling.

There are many studies that developed downscaling algorithms

based on statistical approaches or data assimilation technique

[53]–[57].

In this article, an ATI principle-based SM downscaling algo-

rithm was built and implemented to downscale the enhanced 9-

km SMAP radiometer only SM product from 2018 to 2019 in the

CONUS, by using high resolution visible/infred (VIS/IR) data

of visible infrared imaging radiometer suite (VIIRS) (400 m)

and moderate resolution imaging spectroradiometer (MODIS)

(1 km). The downscaled SMAP SM were validated by in situ

SM ground measurements from three observational networks.

The detailed description of this downscaling algorithm is intro-

duced in the article by [35]. The original algorithm referred

to the universal triangle relationship between SM, LST, and

vegetation and was developed based on the vegetation modu-

lated relationship between SM and change in LST [58]–[64]. A

major improvement of this algorithm was also conducted, which

applied downscaling of the SMAP SM on an extended 33-km

domain, instead of the original 9-km grid. This algorithm can

efficiently produce routinely available, high spatial resolution

and wide coverage SMAP SM products by only utilizing the

VIS/IR band products from VIIRS/MODIS [65]–[69].

The original contributions of this article include the following.

1) The new algorithm improves the downscaling step on the

extended grid at 33 km for minimizing the sharp edge

effect presented in the downscaled SM products.

2) For the first time, the SM downscaling algorithm was

applied on the VIIRS LST and leaf area index (LAI)

data to produce the downscaled SM data of higher spatial

resolution at 400 m than that of the previous downscaled

SM products.

3) We also compared, analyzed, and discussed the SM data

and validation results of different scales at 400 m, 1 km,

as well as 9 km in CONUS.

II. METHOD

The 400-m/1-km resolution SM products were derived from

the downscaling algorithm [35], which is based on the ATI

relationship between SM and LST change. An assumption was

made that the there is a negative correlation between SM of

top-soil surface and LST change rate during a given time period

[70]. This correlation is higher in spring/summer months (April–

September) in Northern Hemisphere, when the evapotranspira-

tion is high. Hence, the maximal diurnal LST differences can

be approximated by the LST differences between two VIIRS or

Aqua MODIS overpasses 1:30 P.M. and 1:30 A.M., which corre-

spond to the average times of maximum and minimum temper-

atures in a day, respectively. The LST differences between 1:30

A.M./P.M. also correspond to SMAP overpasses 6:00 A.M./P.M.

To build the downscaling algorithm, the long-term relationship

between two NLDAS Noah model output variables: surface skin

temperature differences ∆Ts between 1:30 A.M./P.M. and SM θ
of 0–10 cm soil layer at 6:00 A.M./P.M. from 1981–2018 was

modeled using linear regression equation, as

θ (i, j) = a0 + a1∆Ts (i, j) (1)

where, a0 and a1 are the linear regression coefficients for the

modeled θ −∆Ts relationship of MODIS/VIIRS grid (i, j),
respectively.

Additionally, the VIIRS LAI and long term data record

(LTDR) normalized difference vegetation index (NDVI), which

normally range between 0 and 1, were indexed to ten classes

with an interval of 0.1. The ∆Ts and θ within any NLDAS grid

were classified into ten classes, based on their corresponding

NDVI indices. Therefore, ten modeled θ −∆Ts relationship

equations could be generated corresponding to each NLDAS

grid. All the MODIS/VIIRS grids of ∆Ts, which were included

by one NLDAS grid would be applied to the proper equations

determined by the corresponding LAI/NDVI values to calculate

SM at 400 m/1 km. There was an assumption made that the

θ −∆Ts equation of any NLDAS grid could summarize and

represent the ATI relationship of all VIIRS/MODIS grids within

that NLDAS grid. A past study showed the spatially averaged

ATI and soil water indicators were highly related at the water-

shed scale [71]. In addition to this, the following downscaling

step will correct the biases of the θ −∆Ts model outputs, which

are induced by the assumption.

In order to remove the inconsistency between the SMAP

radiometer SM, and VIIRS/MODIS ∆Ts data calculated SM,

which were derived from TB observations of different satellite

sensors and spectral bands: microwave L-band radiometer and

VIS/IR spectroradiometer, the downscaling equation was ap-

plied. The difference between any single 9-km SMAP SM grid

and VIIRS/MODIS grids of calculated SM corresponding to that

SMAP grid, was calculated to correct the SM calculated from

(1), as

θc (i, j) = θ (i, j) +

[
Θ−

1

n

∑
θn

]
(2)

where θc is the adjusted SMAP SM of MODIS/VIIRS grid (i, j),
Θ is the 9-km SMAP SM grid. θn are the n of MODIS/VIIRS

grids of calculated SM corresponding to Θ at a 33-km domain,

which is extended from the original 9-km resolution.

This step can include more MODIS/VIIRS grids within the

boundaries of the 33-km grid and it can efficiently smooth the

sharp edge issue induced by SMAP or NLDAS grid boundaries.

It can be considered as a major improvement of the original

algorithm.

III. DATASETS

Details of the datasets used in this study for building, imple-

menting and validating the SM downscaling algorithm are given

in Table I.

A. Soil Moisture Active and Passive (SMAP)

The SMAP is a near-polar sun synchronous orbit satellite

which has an L-band radiometer (1.41 GHz). It was developed

and launched by NASA in January 2015. The SMAP has a

2-3 day revisit frequency and two overpasses at local time 6

A.M./6 P.M. The SMAP SM are retrieved from the radiometer
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TABLE I
DESCRIPTIONS OF THE DATASETS USED FOR BUILDING, IMPLEMENTING, AND VALIDATING THE SM DOWNSCALING ALGORITHM

TB observations through the SCA [1]. The SMAP SM retrievals

were produced at a native spatial resolution of ∼33–40-km and

represent SM of top 0–5 cm soil layer when the vegetation water

content ≤ 5 kg/m2 [17]. In this article, the enhanced level-2

half orbit 9-km SM product (SPL2SMP_E)1 for implementing

the downscaling model. This product applies Gilbert optimal

interpolation technique to integrate the antenna temperature data

and the SMAP Level 1B TB data, and generate SM retrievals in

9 km equal area scalable earth grid [19].

B. North America Land Data Assimilation System (NLDAS)

The NLDAS is a system which is composed of LSM datasets

from best available observations and harmonized by controlling

data quality and spatial/temporal consistency. The NLDAS-2

data is at an hourly temporal interval and a 12.5-km spatial

resolution and covers the time period from January 1979 to

present. In this study, the Noah LSM level-4 variables: surface

skin temperature and SM of 0–10 cm depth soil layer2 and used

to construct the downscaling model. The NLDAS Noah model

was developed as a land component of the National Centers for

Environmental Prediction (NCEP) mesoscale Eta model. The

previous studies validated and discussed the accuracy of the

NLDAS Noah model data, including [72]–[76].

C. Moderate Resolution Imaging Spectroradiometer

The MODIS is an important instrument onboard NASA’s

satellites Terra (launched in 1999) and Aqua (launched in

2002). It acquires earth’s land surface observations from 36

spectral bands in a global coverage and a 1-2 day revisit, and

its resolutions range in 250 m–1 km [77]–[79]. In this article,

the Aqua MODIS products: 1-km daily LST (MYD11A1) and

1-km biweekly NDVI (MYD13A2)3 for producing the 1-km

downscaled SM.

D. Long Term Data Record

The LTDR contains several data sets such as global

surface climate data record, including NOAA satellites

1Online. [Available]: https://nsidc.org/data/SPL2SMP_E
2Online. [Available]: http://ldas.gsfc.nasa.gov/nldas/
3Online. [Available]: https://lpdaac.usgs.gov/

N07∼N19 advanced very high resolution radiometer (AVHRR)

(AVH13C1) and Terra/Aqua MODIS and the time period from

1981-present [80]. A previous study showed that the NDVI

derived from MODIS and AVHRR had a high overall correlation

of 0.87, which implied that the MODIS NDVI can be used as a

continuation of AVHRR NDVI historical data [81]. The LDTR

NDVI is a daily gridded data set at 0.05o resolution climate

modeling grid. In this article, the AVHRR/MODIS NDVI data

of LTDR version 4,4 and were upscaled to 12.5-km which is

same as the resolution of NLDAS θ and ∆Ts grids.

E. Visible Infrared Imaging Radiometer Suite

The VIIRS instrument is onboard the Suomi NPP satellite,

which was launched in 2011, and it has 22 visible and infrared

bands for producing global monitoring observations [82]. The

VIIRS products include many environmental variables, such as

vegetation, fire, snow and ice, clouds and aerosols. The VIIRS is

considered as an improvement of the measurements by several

previous satellite sensors: AVHRR and MODIS, in terms of

providing higher spatial resolution and better accurate obser-

vations. In this study, the VIIRS derived LST and LAI products

at 400-m resolution were used to implement the downscaling

model. The LST were retrieved using the 375-m resolution I5

band (10.5–12.4 µm) by the VIIRS land surface temperature

and emissivity algorithm and a single channel atmospheric

correction model, and the LAI were retrieved by the MODIS

LAI/FPAR operational algorithm, [83]–[85]. The atmospheric

profiles (temperature and moisture) needed by the atmospheric

correction were from the climate forecast system reanalysis [86].

F. Global Precipitation Mission (GPM)

The GPM is an international satellite mission developed for

providing rain and snowfall observations of a new standard.

The satellite was launched in February 2014 and it has two

instruments onboard: dual-frequency precipitation radar and

GPM microwave imager as an extension of the measurement

range of the tropical rainfall measuring mission [87]–[88]. We

used the Integrated multisatellite retrievals for GPM (IMERG)

precipitation data5 to compare with SMAP SM time series for

evaluating the impact of precipitation.

4Online. [Available]: https://ltdr.nascom.nasa.gov/
5Online. [Available]: https://pmm.nasa.gov/data-access/downloads/gpm

https://nsidc.org/data/SPL2SMP_E
http://ldas.gsfc.nasa.gov/nldas/
https://lpdaac.usgs.gov/
https://ltdr.nascom.nasa.gov/
https://pmm.nasa.gov/data-access/downloads/gpm
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Fig. 1. Map of locations for the 125 SM ground stations from 3 networks acquired from the ISMN website, including COSMOS, SCAN, and USCRN.

G. International Soil Moisture Network (ISMN)

The ISMN is developed for calibrating and validating the

data accuracy of remote sensing SM retrievals, as well as

improving the performance of SM retrieval algorithms. The

ISMN website: https://ismn.geo.tuwien.ac.at/ provides a global

covered repository of in situ SM ground measurements from

more than 1400 stations of 35 international SM networks, since

1952 [89]–[91]. There have been numerous publications focused

on evaluating and discussing the data quality of SM networks

by ISMN [92]–[97].

In this article, we selected 125 SM ground stations from three

SM networks in the CONUS for validating the downscaled SM

data from 2018 to 2019. These stations were selected with the cri-

teria of relatively complete records of in situ SM measurements

along the time scale, and they cover regions of different climate

zones, soil and vegetation types, which are useful for studying

their impacts on SM data accuracy. Fig. 1 shows locations of the

SM stations. The corresponding SM networks include: cosmic-

ray soil moisture observation system (COSMOS), soil climate

analysis network (SCAN), and U.S. climate reference network

(USCRN). The specifications of the three SM networks are given

in Table II(a). Table 2(b) shows the names, SM networks and

land cover types of the SM stations. It can be summarized that

the SM stations are covered by grassland, mixed leaf type forest,

scrubland, cropland, or bare areas.

IV. RESULTS AND DISCUSSION

A. Interpretation of SMAP SM Maps

Fig. 2 compares the downscaled 400-m/1-km SMAP SM with

the 9-km SMAP SM from August 1–16, 2019 in the CONUS.

It can be summarized that the spatial pattern of the 400-m/1-km

SM was consistent with the 9-km SM, but showed more SM

spatial features. It is also observed that the 400-m/1-km prod-

ucts had missing data, especially in south central, southeastern

and northeastern CONUS. It is mainly due to the cloud cover

issue caused absence of surface temperature retrievals from

VIIRS/MODIS. Another reason is we discarded the pixels of

LST retrievals which are labeled as missing or poorly/badly

calibrated, by the associated data quality flag of VIIRS/MODIS

data.

As a case study, Fig. 3(a)–(b) shows the comparisons between

the 400-m, 1-km, and 9-km SMAP SM at the watershed scale:

middle Snake river basin (MSRB) and upper Washita river basin

(UWRB) from August 1–24, 2019. From Fig. 3(a), the Snake

river and floodplains along the river channel can be clearly

observed only at the 400-m maps. In the northwestern MSRB, a

SM wetting trend with high spatial heterogeneity can be noted

at the 400-m/1-km maps, in the areas dominated by crop fields.

Additionally, from the 400-m/1-km maps, a region with high

SM values could be found along the south central edges of

MSRB. This region corresponds to high-elevation coniferous

forests where the SM wetting trend is observed. None of the

abovementioned features is found in the 9-km maps. On the

other hand, in Fig. 3(b), the 400-m/1-km SM show a wetting

trend from August 9–16 and then a dry-down trend from August

17–24, with greater spatial/temporal variability than 9-km SM.

The entire UWRB has a complex landcover of mixed crop-

land, forest and grassland and the easternmost UWRB has a

larger proportion of forests than the western part. The landcover

induced SM spatial pattern features are reflected on the SM

maps: The 400-m SM maps generally show greater SM spatial

heterogeneity than the 1-km/9-km maps. From the 400-m maps,

the easternmost UWRB demonstrates a SM wetting trend in

detail in time series, which is not reflected on either 1-km or

9-km maps.

B. Analyses of Validation Results

The statistical variables: R2, unbiased RMSE (ubRMSE),

bias b, and relative difference p were calculated to validate

https://ismn.geo.tuwien.ac.at/
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TABLE II
(A) SPECIFICATIONS OF SM NETWORKS ACQUIRED FROM THE ISMN WEBSITE USED FOR VALIDATION

the accuracy of the original 9-km and downscaled SMAP SM

products at 400 m/1 km, as shown

R2 = 1−

∑(
θi − θ̂i

)2

∑(
θi − θ̄

)2 (3)

ubRMSE =

√√√√
∑

n

i = 1

(
θi −

(
θ̂i − b

))2

n
(4)

b =

∑
n

i = 1

(
θi − θ̂i

)

n
(5)
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TABLE II (B)
NAMES, SM NETWORKS, AND LAND COVER TYPES OF THE SM STATIONS ACQUIRED FROM ISMN
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Fig. 2. Comparisons of 8-day SMAP SM composites between the 400-m from the improved downscaling algorithm, 1 and 9 km in the CONUS from August
1–16, 2019

p = 100%× (uΘ − uθ) /uθ (6)

Where θ is in situ SM and θ̂ is the three SMAP SM data at

400-m, 1-km and 9-km resolutions. ubRMSE is the unbiased

RMSE by removing the bias b from θ̂. p is the relative difference

of ubRMSE in percent between the original 9-km SM (uΘ) and

downscaled SM (uθ) at 400-m/1-km resolutions.

Fig. 4 shows validation metrics R2 and RMSE of the 400-m

SMAP SM from the improved downscaling algorithm, corre-

sponding to the 125 in situ stations in the CONUS. We find

that many in situ stations with relatively high R2 values (>0.6)

presented in northwestern and southeastern regions of CONUS.

On the other hand, nearly ten stations with high RMSE values

(>0.15 m3/m3) can also be observed in southeastern CONUS

(Alabama, Georgia and Florida). It can be inferred that the

abovementioned stations have low variance but high bias corre-

lations with in situ SM. Besides, there are a few stations in the

Rocky mountain regions: Northern California, Utah, Colorado,

as well as New England region that have high RMSEs (>0.15

m3/m3). The RMSEs for the rest of stations in the CONUS are

generally less than 0.15 m3/m3.

Fig. 5 is the Taylor diagram of three validation metrics of the

400-m SMAP SM from the improved downscaling algorithm at

the 125 in situ stations in the CONUS. We can summarize that,

for the correlation coefficient (R), a large proportion of stations

fall within the range of 0.2–0.9. However, it is observed that a

few stations have low σ (<0.025 m3/m3) but low R (<0.2). On

the other side, standard deviation (SD) and root-mean-square

deviation (RMSD) for approximately 90% of the stations are

less than 0.09 and 0.06 m3/m3, respectively. The overall RMSD

range is close to the baseline requirement for SMAP SM (0.04

m3/m3), which implies an overall moderate good accuracy for

most of the stations.

Table III gives the validation results of the 400-m SM from the

improved and original downscaling algorithms, 1-km and 9-km

SMAP SM by SM network, while Fig. 6 shows the site-specific

validation scatterplots of the three SM networks. From Table III,

it can be summarized that ubRMSE for the 400-m SM of the im-

proved/original algorithms (0.068–0.08 m3/m3 and 0.07–0.083

m3/m3, respectively) and 1-km SM (0.07–0.081 m3/m3) all have

an improvement over the 9-km SM (0.076–0.09 m3/m3) for

all three SM networks, while bias for the 400-m SM of the

improved/original algorithms (0.01 and 0.055–0.072 m3/m3,

respectively) and 1-km SM (0.053–0.071 m3/m3) all decrease

from the 9-km SM (range 0.06–0.08 m3/m3). The ubRMSEs

decrease on average by 0.01 or 12.8% for the 400-m SM of the

improved algorithm, and decrease on average by 0.007 m3/m3

or 8.7% for the 400-m of the original algorithm, and decrease on

average by 0.012 m3/m3 or 16% for the 1-km SM, respectively,

from the 9-km SM. It is also found that the ubRMSE and bias
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Fig. 3. Comparisons of eight-day SMAP SM composites between the 400 m from the improved downscaling algorithm, 1 km and 9 km in (a) middle Snake river
basin and (b) upper Washita river basin from August 1–24, 2019.
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Fig. 4. Maps show R2 and RMSE corresponding to the 125 ISMN in situ stations in the CONUS for validating the 400-m SMAP SM from the improved
downscaling algorithm. The validation data are from three SM networks: COSMOS; SCAN; and USCRN, from 2018 to 2019.

Fig. 5. Taylor diagram shows three validation variables: correlation coeffi-
cient, RMSD, and SD for the 400-m SMAP SM from the improved downscaling
algorithm, using in situ measurements from three SM networks: COSMOS,
SCAN and USCRN from 2018 to 2019.

for the 400-m SM of the improved algorithm are generally

lower than either the 400-m SM of the original algorithm or

the 1-km SM in SCAN and USCRN. On the other hand, R2 for

the 400-m SM (0.343–0.474 and 0.35–0.487, respectively) of

the improved/original algorithms and 1-km SM (0.339–0.494)

are lower than at 9-km SM (0.422–0.51), which do not show

improvement. This result is mainly due to the high bias and low

variance tradeoff issue. More specifically, one 9-km grid value

may correspond to more in situ measurements within its bound-

aries than either the 400-m or 1-km. Consequently, the 9-km

SM validation point-pairs show less variances, but higher biases

than either the 400-m or 1-km SM point-pairs, which means

the 9-km point-pairs are higher concentrated but also higher

systematically biased. For instance, this issue can be noted from

several sites in Fig. 6: Flag Ponderosa Pine; Grantsville; and

Sandstone 6W. If we compare between different SM networks,

for the validation results of the 400-m SM from the improved

algorithms, USCRN has relatively higher R2 (0.474), but also

higher ubRMSE and bias (0.08 and 0.07 m3/m3, respectively)

than the other two networks. From Fig. 6, it can be known that

the regression fit lines for the 400-m/1-km SM are closer to the

1-1 line than for the 9-km SM from all three networks. The

point pairs of the 9-km SM are more concentrated than either
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TABLE III
STATISTICAL METRICS BY USING ISMN SM MEASUREMENTS FROM THREE SM NETWORKS FOR VALIDATING THE 400-M FROM THE ORIGINAL/IMPROVED

DOWNSCALING ALGORITHMS, 1-KM AND 9-KM SMAP SM DATA

the 400-m or 1-km SM, however, they also demonstrate a greater

systematically biased trend than the other two SM products.

Table IV gives the summarized validation results which were

classified into six geographic regions by in situ station coordi-

nates, based on the simplified U.S. climate region classification

system [98]. Similarly, both 400-m and 1-km validation results

have lower ubRMSE and bias than 9-km for all 6 regions, while

R2 of only 2 regions (the north east and south east) are improved.

Specifically, ubRMSEs are improved on average by 0.008 m3/m3

or 12.7% for the 400-m SM of the improved algorithm, and

improved on average by 0.006 m3/m3 or 9.1% for the 400-m

SM of the original algorithm, and improved by 0.008 m3/m3

or 11.3% for the 1-km SM, from the 9-km SM. With respect

to the geographical regions, the north /south central, northwest,

and southwest regions have a greater improvement of ubRMSE

or bias than the northeast and southeast regions for all 3 SM

data sets. For example, ubRMSE and bias for the 400-m SM

of the improved algorithm in the north /south central regions

(0.056–0.062 m3/m3 and 0.043–0.044 m3/m3, respectively),

or the northwest/southwest regions (0.048–0.057 m3/m3 and

0.038 m3/m3, respectively) are generally 0.05–0.06 m3/m3 lower

than the northeast/southeast regions (0.111–0.113 m3/m3 and

0.1–0.102 m3/m3, respectively). On the other hand, ubRMSE

and bias for the 400-m SM of the improved algorithm (range

0.048–0.113 m3/m3 and 0.038–0.102 m3/m3, respectively) are

overall lower than the metrics for the 400-m SM of the im-

proved algorithm (range 0.052–0.117 m3/m3 and 0.042–0.103

m3/m3, respectively), which indicates the better accuracy of the

improvement algorithm. And, ubRMSE and bias for the 400-m

SM of the improved algorithm outperform the metrics for the

1-km SM (range 0.049–0.115 m3/m3 and 0.036–0.107 m3/m3,

respectively) in four regions: North/South Central, South East

and South West.

Fig. 7 shows time series analyses of the 400-m from the

improved and original downscaling algorithms, 1-km and 9-km

SMAP SM comparing with in situ measurements and GPM

precipitation corresponding to the three networks on April–

September of 2018 and 2019. It can be summarized that the

400-m/1-km SM had a better agreement with in situ data than

9-km. Furthermore, for the stations located in arid/semi-arid

regions where have low precipitation, such as Tonzi Ranch

(COSMOS), Lind #1 (SCAN) and Tucson 11W (USCRN), a

good agreement between the three SMAP SM data sets and

in situ data can be noticed. As opposed to this, inconsistency

can be observed between all three SMAP SM data sets and in

situ SM during rainy days. This is possibly due to the negative

impacts of precipitation and cloud cover on data quality of the

9-km SMAP SM and MODIS/VIIRS LST products. Addition-

ally, precipitation generally occurred at a larger scale than the

downscaled SM data pixel size (400-m or 1-km). Therefore,
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Fig. 6. Validation scatterplots between in situ SM and the 400 m from the improved (denoted as ∗) and original downscaling algorithms, 1-km and 9-km SMAP
SM in three SM networks: (a) cosmic-ray soil moisture observation system; (b) soil climate analysis network; and (c) U.S. climate reference network, from April
to September, 2018–2019.

precipitation cannot be an indicator on the performance of

the downscaling algorithm and accuracy of the downscaled

SM is not clearly improved over the 9-km SM during rainy

days.

V. CONCLUSION

In this article, an improved SM downscaling algorithm which

was based on vegetation modulated ATI relationship between

LST difference and surface SM was implemented. The algo-

rithm was utilized to downscale the 9-km SMAP enhanced

L2 radiometer half-orbit SM product at 400-m/1-km resolution

in the CONUS using VIIRS/MODIS data. A major improve-

ment of the original algorithm was intended to minimize the

sharp edge effect caused by the mismatch between SMAP and

VIIRS/MODIS boundaries. The performance of the algorithm

validated by in situ SM measurements shows that the 400-m/1-

km downscaled SM display greater SM spatial and temporal



FANG et al.: VERY HIGH SPATIAL RESOLUTION DOWNSCALED SMAP RADIOMETER SOIL MOISTURE IN THE CONUS 4957

Fig. 6. Continue.

variability on watershed scale. The validation results also show

that overall ubRMSE of the 400-m/1-km SM outperform the

9-km SM at three SM networks, with both overall ubRMSE and

bias decreased. The 400-m SM of the improved downscaling

algorithm have generally lower ubRMSE and bias than either the

400-m of the original downscaling algorithm or the 1-km SM,

which indicates better data accuracy of the improved algorithm.

The validation results prove that the downscaled SM products

not only maintain a good accuracy, but also offer greater SM

information than the original SMAP SM product. On the other

hand, the algorithm performs better for the stations located in the

central and western CONUS, which correspond to arid/semi-arid

regions with low precipitation. The precipitation has an impact

on quality of the original 9-km SM data, and the downscaled

SM do not show clear improvement over the 9-km SM during

rainy days.

It is worth noting that there are limitations of this algorithm,

as follows: First, quality of the downscaled SM mostly depends

on the original SMAP SM and VIIRS/MODIS data. Studies

have shown that more uncertainties and errors enter the SMAP



4958 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 6. Continue.

SM retrievals in the regions with greater vegetation or complex

topography [18], [99]–[100]. Additionally, the VIIRS/MODIS

data are only available for clear sky conditions. The complex

terrain and cloud cover issues could cause biased retrievals

or data missing [101]. Second, the data sets used in model

building and implementation, which include the SM retrievals

and LST/vegetation indices, are from different platforms and

represent different sensing depths. Finally, in the case of val-

idation, a mismatch exists between the remotely sensed/LSM

area and point scale ground measurements. The microwave SM,

VIS/IR and NLDAS data are on a scale of kilometers, compared

to in situ SM measurements that are on a point scale [102]–[104].

The downscaled 400-m and 1-km SM represent a big step

forward use of satellite derived SM in watershed studies. Specif-

ically, the downscaled 400-m SM represents field-scale SM can

be used for smaller watersheds where individual farms need

to be characterized for land use changes and/or movement of

nutrients, sediments of other pollutants.
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Fig. 7. Time series of in situ SM comparing with the 400 -m from the improved (denoted as ∗) and original downscaling algorithms, 1 and 9 km SMAP SM, as
well as the GPM precipitation at 20 stations from three ISMN SM networks: (a) cosmic-ray soil moisture observation system; (b) soil climate analysis network;
and (c) U.S. climate reference network, from April to September, 2018–2019.
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TABLE IV
STATISTICAL METRICS FOR VALIDATING THE 400 M FROM THE ORIGINAL/IMPROVED DOWNSCALING ALGORITHMS, 1 AND 9-KM SMAP SM DATA USING ISMN

SM MEASUREMENTS. THE ISMN STATIONS WERE CLASSIFIED INTO 6 GEOGRAPHIC REGIONS BY STATION COORDNATES
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