
Very Large-Scale Linear Programming: 

A Case Study in Combining 
Interior Point and Simplex Methods 

R.E. Bixby J. W. Gregory 
I.J. Lustig R.E. Marsten 

D.F. Shanno 

May, 1991 

TR91-11 





Very Large-Scale Linear Programming: A Case 
Study in Combining Interior Point and Simplex 

Methods 

Robert E. Bixby1 John W. Gregory2 Irvin J. Lustig3 

Roy E. Marsten4 David F. Shanno5 

May, 19916 

1 Department of Mathematical Sciences, Rice University, Houston, TX 77251. Research of this 
author is partially supported by NSF Grant CCR-8815914 and the Air Force Office of Scientific 
Research under Grant AFOSR-90-0273. 

2Industry, Science and Technology Department, Cray Research, Inc., 655-E Lone Oak Drive, 
Eagan, MN 55121 

3 Department of Civil Engineering and Operations Research, Princeton University, Princeton, 
NJ 08544, currently Visiting Scholar, Center for Research in Parallel Computation, Rice University, 
Houston, TX 77251 

4 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 
30332. Research of this author is partially supported by the Office of Naval Research under Grant 
N09014-88-16-0104. 

5 Rutgers Center for Operations Research, Rutgers University, New Brunswick, NJ 08903. Re­
search of this author is partially supported by the Air Force Office of Scientific Research, Air Force 
System Command under Grant AFOSR-87-0215. 

6The United States Government is authorized to reproduce and distribute reprints for govern­
mental purposes notwithstanding any copyright notations thereon. 





Abstract 

Experience with solving a 12,753,313 variable linear program is described. This problem 
is the linear programming relaxation of a set partitioning problem arising from an airline 
crew scheduling application. A scheme is described that requires successive solutions of 
small subproblems, yielding a procedure that has little growth in solution time in terms of 
the number of variables. Experience using the simplex method as implemented in CPLEX, 
an interior point method as implemented in OBl, and a hybrid interior point/simplex ap­
proach is reported. The resulting procedure illustrates the power of an interior point/simplex 
combination for solving very large-scale linear programs. 





Very Large Scale Optimization: A Case Study 1 

1 Introduction 

Recent improvements in implementations of the simplex method as well as developments in 
interior point methods have changed our concept of large-scale linear programming. In this 
study, experience in solving the linear programming relaxation of a large set partitioning 
problem on a CRAY Y-MP1 supercomputer is reported. The linear program has 837 rows 
with 12,753,313 columns and 99,845,826 nonzeros and arises from airline crew scheduling. 
Using a number of techniques, the solution time is reduced to approximately 4 minutes with 
a 3.5 minute preprocessing time. 

The basic procedure ( called sifting) is a kind of "column generation" method. Its appli­
cation for airline crew scheduling was proposed by John Forrest [4], but in principle, it can be 
applied to many problem classes. Computational experience is reported for this procedure 
using two different methods to solve the linear programs that are generated: CPLEX, 2 an 
implementation of the simplex method by Bixby [3], and OBI, an implementation of the 
primal-dual predictor-corrector interior point method by Lustig, Marsten and Shanno [9]. In 
addition, a hybrid interior point-simplex implementation is explored. 

In Section 2, the characteristics of the set partitioning problems are discussed and in 
Section 3, the sifting procedure is described. Section 3.2 describes a new pricing rule. Sec­
tions 4 and 5 describe our experience with the sifting procedure using the simplex method 
and an interior point method, respectively. This experience led to the development of a hy­
brid scheme, using both the interior point method and the simplex method. It is described 
in Section 6. This hybrid scheme illustrates how interior point methods and the simplex 
method can be effectively combined, exploiting the relative advantages of each method. 

2 A Set Partitioning Problem 

Set partitioning models have the form [14]: 

mm1m1ze 

subject to 

CTX 

Ax 

X > 
X 

e, (1) 
0, 

integer. 

where A E {O, l}mxn, e = (l, 1, ... , If E ~m, and c E ~n. In the problems studied, c > 0. 
The impetus for this work was the "American Airlines Challenge." American Airlines uses a 
set partitioning model of the flight crew scheduling problem [6]. (For a recent discussion of 
crew scheduling, see Barutt and Hull [2].) In order to stimulate fresh thinking on the solution 
of such models, American generated an instance with 837 rows and approximately 12,750,000 
columns. They then made the data available to researchers. The ultimate challenge is to 
obtain an optimal integer solution. As a step toward that goal, the sifting procedure was 

1 CRAY and CRAY Y-MP are trademarks of Cray Research, Inc. 
2CPLEX is a trademark of CPLEX Optimization Inc. 



Very Large Scale Optimization: A Case Study 

Number of Nonduplicate CRAY CPU 
Columns n Columns Method Iterations Time (secs) 

25,000 17,937 CPLEX Dual SE 302 1.4 
25,000 17,937 CPLEX Primal SE 1768 22.6 
25,000 17,937 OBl 16 17.3 
50,000 35,331 CPLEX Dual SE 509 4.8 
50,000 35,331 CPLEX Primal SE 8233 179.7 
50,000 35,331 OBl 18 22.9 

100,000 68,428 CPLEX Dual SE 1215 27.3 
100,000 68,428 OBl 21 34.1 
200,000 134,556 CPLEX Dual SE 2549 116.6 
200,000 134,556 OBl 30 67.7 

Table 1: Direct solution of problems with CPLEX and OBl (SE is Steepest 
Edge). Problems are generated by taking the first n columns from the input 
file, where n = (25000, 50000, 100000, 200000). 

2 

developed and used to solve the associated linear programming relaxation ( obtained by 
dropping integrality in (1)). 

Airline crew scheduling problems exhibit a number of interesting characteristics. Due 
to the way the columns are generated [6], the matrix A contains many duplicate columns. 
Duplicate columns are columns that have nonzeros in exactly the same rows, but possibly 
different cost coefficients. Eliminating all but one of these columns can significantly reduce 
the size of the problem without affecting the optimal solution. 

In typical airline crew scheduling problems there are an average of about 10 ones per 
column, with a maximum of 18 in the instance provided by American. The cost coefficients 
c are highly variable (in the range from zero to 10,000 in the instance provided). On the 
other hand, the right-hand-side is constant. Thus, (1) is typically highly degenerate, but its 
dual is not. This fact plays a significant role in the solution strategies used. 

Primarily because of degeneracy, but also because of slow convergence even when objec­
tive function progress is being made, relaxations of set partitioning problems have long been 
considered difficult. Even small numbers of columns can result in a problem that is trouble­
some for standard implementations of the primal simplex method. Recent developments of 
dual simplex methods and interior point methods have largely eliminated that difficulty, at 
least for moderate sized instances. As Table 2 shows, these approaches achieve substantial 
improvements over even a rather strong version of primal simplex using steepest-edge pric­
ing. However, the growth of solution times in Table 2 with problem size also demonstrates 
quite clearly that direct application of even these latter approaches is not sufficient to deal 
with the full 12. 75 million variable problem. This is especially true since solving the integer 
program will require multiple solutions of the linear programming relaxation. 

Fortunately, set-partitioning models have an important property that allows them to be 
solved by non-direct methods. Let W C { 1, ... , n} be a subset of columns such that the 



Very Large Scale Optimization: A Case Study 

linear program 

mm1m1ze 

subject to e, 

Xw > 0, 

3 

(2) 

is feasible. Then this problem is an instance of (1), since columns in Aw have the same 
structure as all columns in A. It is this property along with the fact that n is significantly 
larger than m that makes "sifting" natural for (1), and also makes sifting natural for a 
number of other problems such as the traveling salesman problem and path formulations of 
appropriate multicommodity flow problems. 

3 Sifting 

As noted in the introduction, the sifting procedure applied here was suggested by Forrest [4], 
who termed it sprint. 

Consider the general linear program 

subject to Ax b, (3) 
X > 0, 

with A E ~mxn, c E ~n, b E ~m. The dual of (3) is 

max1m1ze bTy 

subject to ATy ::; C. (4) 

The sifting procedure begins by taking a "working set" of columns W C {1, ... , n} such 
that 

mm1m1ze 

subject to b, 
Xw > 0, 

is feasible. (This assumption is not essential.) Let 1r* be an optimal solution to 

subject to AT,.,. < w" - Cw, 

(5) 

(6) 

the dual of (5), and let x~ be an optimal solution of (5). Then the vector xT = ((x~?, 0) E 
~n is optimal for (3) if 

c - AT1r* 2:: 0. (7) 

The sifting procedure suggested by these observations may be summarized as follows: 



Very Large Scale Optimization: A Case Study 

Given the linear program (3) and a set W such that (5) is feasible: 
Solve (5) obtaining x* and 1r*. 
while (c - AT1r* i.. 0) do 

Choose P C { 1, ... , n} \ W. 
Set W +--Wu P. 
(Optionally) If W is too big, 

reduce the size of W. 
Solve (5) obtaining x* and 1r*. 

end while 

(major iteration) 
(price) 

(augment problem) 

(purge) 
(solve) 

4 

In the following sections, the key ideas in implementing the above procedure are discussed: 

1. The efficient computation of AT1r* given 1r* is discussed in Section 3.1. 

2. Choosing a good set of candidates for Pis discussed in Section 3.2, where a new method 
for normalizing reduced costs is introduced. 

3. Controlling the size of W via control of the size of P and purges of W is discussed in 
Section 3.3. 

4. Finally, the specific algorithms used to solve (5) are treated. That discussion is broken 
into three parts, the simplex method (Section 4), an interior point method (Section 5), 
and a hybrid interior point/simplex approach (Section 6). These three sections are 
preceded by a discussion (Section 3.4) of a number of issues applicable to each of the 
three solution methods. 

3.1 Vectorization of the Pricing Operation 

For each major iteration of the sifting procedure, the values AT1r* are computed. However, 
on a vector supercomputer, the usual direct procedure to compute AT1r* can exhibit poor 
performance if most of the columns in A are short. To get effective vectorization, the 
algorithm described by Forrest and Tomlin [5) is used. 

Let f j represent the number of nonzeros in column j. Since fi :s; m, a simple bucket 
sort ( using 0( n) time) can be used to sort the columns according to increasing column 
length. Given this ordering, let nR. represent the number of columns with f nonzeros and let 
jR. represent the first column (in the new ordering) with f nonzeros. Then it follows that 
columns jR.,jR. + 1, ... ,jR. + nR. -1 all have the same column length. To compute dj = Af1r*, 
for jR. :s; j :s; jR. + nR. - 1 and a fixed value of C, the following procedure is used, where ikj 

represents the row number of the kth nonzero in column j: 

for k = 1 to l do 
for j = jR. to jR. + nR. - 1 do 

di = di + 1rti Aikii 



Very Large Scale Optimization: A Case Study 5 

This loop is repeated for each value off. The loop vectorizes well if the nonzeros of each 
column and the row indices ikj are stored consecutively. This happens when the values 
n£ are large as compared to the maximum value of f j. This procedure was found to be 
approximately ten times faster than the usual direct procedure for computing dj by 

(8) 

The inner loop of the new procedure is making a calculation with a large vector of aver­
age length nl/10, as opposed to the small vectors of average length 10 used in the direct 
procedure. 

3.2 A New Pricing Rule 

The initial experiments with solving the full problem used the following procedure that 
chooses a target number t of columns j with small reduced cost Cj - Af 1r*: 

procedure standard_price: 
Step 1. Compute c = c - AT1r*. 

Step 2. Find P = {j : Cj < O}. 
Step 3. If P has more than t columns, then sort (in ascending order) the 

values Cj for j E P to find the t columns to keep in P with the most 
negative values of Cj. 

Step 1 was carried out as described in Section 3.1. Step 2 used the CRAY subroutine WHENFLE 
and the sort in step 3 was done by using the CRAY ORDERS routine. The set P determined 
by standard_price was added to the current working set W. 

For the particular set partitioning problems considered, this pricing procedure produced 
adequate performance. However, in working directly with small versions of these problems, it 
was observed that the steepest-edge pricing rule [7] with the simplex method produced much 
better results than simply using reduced costs. However, the steepest-edge rule is inherently 
based on the simplex method. Our desire was to use a column selection strategy that is as 
independent as possible of the algorithm used to solve the subproblem. An analysis of the 
problem yielded a new pricing rule that performed well for these problems. 

Given an optimal solution 1r* to the dual (6) of (5), let 

, • { Cj AT* } " = m_1n AT * : j 1r > 0 . 
l~J~n j7r 

(9) 

Then, since c 2:: 0, it is clear that ,\ 2:: 1 if and only if Cj = Cj - Af1r* 2:: 0 for all j. Further, 
if Af1r* ~ 0 for all j, then y = 1r* is optimal for the dual problem ( 4). It follows from the 
definition of,\ that AT(,\1r*) ::; c, so that the vector ,\1r* provides a feasible solution y = ,\1r* 
to 

max1m1ze 

subject to (10) 



Very Large Scale Optimization: A Case Study 6 

Problem Major Iterations 
Name standard_price lambda_price 

1mil 12 9 
2mil 11 9 
4mil 10 11 
8mil 15 12 
13mil 17 12 

Table 2: Major Iterations for 2 Pricing Rules 

the dual of the linear programming relaxation of (1 ). In fact, the value .AeT1r* provides a 
lower bound on the objective value for the full primal linear programming relaxation of (1). 
This bound may be useful in other procedures that use column generation on classes of linear 
programs with nonnegative costs. 

Intuitively, the constraints in (10) yielding the smallest values of Cj / Af1r* are most likely 
to be active at the optimal solution. This idea suggests the following procedure for selecting 
a target t number of columns: 

procedure lambda_price: 

Step 1. Computed= AT1r*. 

Step 2. Compute c = c - d. 

Step 3. Find P = {j : ci < O}. 

Step 4. If P has t or less columns, then exit. 

Step 5. Compute Aj = ci/di for columns j E P. 

Step 6. Sort (in ascending order) the values Aj for j E P. 

Step 7. Set P to the t columns with the lowest values of Aj. 

Note that if j E P, then Cj - Af1r* < 0 which implies that Aj < 1 and Af1r* > 0 so that 
the above steps are well defined. This pricing rule should prefer columns with low absolute 
cost as well as columns with more nonzeros. Experimentation with the initial pricing rule 
indicated that these columns should be preferred as these types of columns are predominant 
in the optimal solution. 

As compared to the standard_price procedure, there is a small amount of extra work 
represented by step 5 in lambda_price. This step vectorizes well and only added a small 
cost to the pricing procedure. This cost was small compared to the savings generated by 
the reduction in the number of outer iterations. The new pricing procedure generally seems 
to pick better columns for the sifting procedure. Table 2 indicates the number of major 
iterations of the sifting procedure using the two different pricing procedures. CPLEX was 
used to solve the subproblems. The different problems are defined in Section 3.4. 



Very Large Scale Optimization: A Case Study 7 

Degeneracy and Multiple Dual Optimality 

It is well known that the linear programming relaxations of set partitioning problems exhibit 
massive primal degeneracy. For the sifting procedure, the most important implication is the 
presence of multiple dual optimal solutions. The particular choice of optimal dual solution 
influences the selection of new columns. 

If the subproblem (5) is solved by the simplex method, the optimal basis chosen is 
essentially random, changing the qualitative nature of an optimal dual solution. If the 
subproblem (5) is solved by an interior point method, the solution will be in the relative 
interior of the face of optimal dual solutions. The particular dual solution 1r* chosen depends 
on the initial interior point used by the solution algorithm. 

3.3 Problem Size Control 

One of the most difficult decisions in implementing the sifting procedure is control of the 
cardinality of W. We chose to specify a sequence ( t1 , t 2 , • •• ) of target values, such that the 
cardinaltiy of P is restricted to be smaller than tk on the kth iteration of the sifting procedure. 
In addition, it is important to occasionally purge columns from W as an additional control 
on the size of the subproblems. The details of these procedures for each of the three solution 
methods are discussed in the appropriate sections. Unfortunately, one of the weaknesses of 
the algorithm as implemented is that these sequences were determined by experimentation 
for the specific problem being studied. However, once a reasonable sequence was determined, 
it was applied unchanged to all problem instances. Thus, although the largest problem solved 
has approximately 12. 75 million columns, we would choose exactly the same sequence for a 
problem of larger size. 

It may seem more natural to simply build the subproblems by including in P all columns 
with negative reduced cost. That approach is simply impractical. For example, 10 percent 
of the columns have negative reduced costs on the first iteration. 

3.4 Engineering the Problem 

Our experiments were run on one processor of a CRAY Y-MP computer with 128 megawords 
of memory running UNICOS 6.0.11 with the cft77 Fortran compiler version 5.0.0 and the 
sec C compiler version 3.0.0. At most 28 megawords were required to solve any of the 
problems. In attempting to solve such a linear program, a number of tasks are required to 
prepare the problem for solution. 

The data was provided in 7 ASCII (machine independent format) files. Each line of each 
file corresponds to one column in the constraint matrix. A simple preprocessor was used 
to read in this file in 250,000 column sections and write out 51 binary files consisting of 
a slightly modified image of the original data. Because of the nature of the ASCII files, 
39 sections had exactly 250,000 columns, 10 sections had 250,302 columns, 1 section had 
249,998 columns and 1 section had 250,297 columns. This process of converting the data to 
a binary format is essentially a required input step. Moreover, it is reasonable to assume 
that the data could be provided in this binary format initially. In fact, the time to read 



Very Large Scale Optimization: A Case Study 8 

Problem Original Nonduplicate Number of Optimal 
Name Columns Columns Sections s Objective 

1mil 1,000,000 673,310 4 54325.363 
2mil 1,999,998 1,341,904 8 51725.598 
4mil 3,999,998 2,682,175 16 50413.578 
8mil 7,999,998 5,374,005 32 48994.020 
13mil 12,753,313 8,549,879 51 48400.129 

Table 3: Problem Statistics 

in the 7 ASCII files (approximately 1400 CRAY Y-MP CPU seconds) exceeds the solution 
time! The particular format of these binary files stored each section of data as 3 vectors, a 
cost vector, the vector f of nonzero counts per column, and a vector of the indices of rows 
with nonzeros. These three vectors are written to each file as separate binary vectors in 
order to enhance vectorization. 

For the problem that was provided, the first 1000 columns constitute an initial feasible 
solution. This set of columns was used as the initial W for all solution methods. The 
performance of the sifting method on this model is very insensitive to the size of this initial 
feasible set. 

To reduce the cost of computing AT1r* on each iteration, duplicate columns were removed 
from each of the 51 sections. Let S C {1, ... , n} denote the columns within some particular 
section. Given S, all of the nonduplicate columns in S are found before sorting the columns 
of S by the number of nonzeros per column, as described in Section 3.1. Note that this step 
does not remove all nonduplicates from A, as duplicate columns may still exist across section 
boundaries. Because of this, duplicate columns were eliminated among W on each major 
iteration of the sifting procedure before the subproblem (5) was optimized. 

For the 12,753,313 column problem provided by American, duplicates were removed from 
each of the 51 sections reducing the size of each section to an average size of 167,645 columns. 
This process consumed 212 CRAY Y-MP CPU seconds, plus an estimated 103 additional 
overhead seconds for input of the binary data files and output of the binary non-duplicate 
files, as described below. Table 3 presents statistics for the sequence of 5 problems generated 
from the initial data that were used for the tests in this study and the names we assigned for 
reference to each problem. The value s is the number of sections used to solve the problem. 
Note that the sizes of the problems are not exact multiples of 1,000,000 because of the way 
the original data sets were provided. In particular, one of the original files contained only 
1,999,998 columns, rather than the expected 2,000,000. 

The size of each section was chosen large enough to get good vectorization performance 
during the pricing operation and small enough so as not to consume too much memory 
when loaded from external storage. Each section of nonduplicate columns is stored in an 
external file. On the CRAY Y-MP, experiments were conducted with three choices for the 
locations of the external files. The first choice was a UNICOS 5.0 file system, the second a 
UNI COS 6.0 file system, and the third a solid-state storage device (SSD) that essentially is 



Very Large Scale Optimization: A Case Study 9 

a RAM-disk. It was found that using SSD to store the external files produced a negligible 
overhead for the sifting procedure, and hence all further results are reported assuming SSD 
usage. Each section of nonduplicate files is stored as a binary file on the SSD. The values 
nc, ikj (Section 3.1) and the cost vector care stored as binary vectors in these files. 

There is one final issue to discuss in connection with nonduplicates. Since no dupli­
cates were initially found across section boundaries, duplicate columns were removed from 
W before the problem (5) was solved. Hence, the effective number of columns added is 
unpredictable and decreases as s increases. As a consequence, the following instrumentation 
was added. On the first iteration of the sifting procedure, t 1 

/ s columns are chosen from 
each section. Duplicate columns are removed from 'P and the number of new nonduplicate 
columns added, p1

, is computed. The value r = p1 /t1 is then determined. Successive target 
sizes tk fork> 1 are then adjusted to new values [k = tk Jr to regulate the growth in W. On 
each further iteration, [k / s columns are then chosen from each section using the procedure 
described in Section 3.2. 

4 Using CPLEX 

To test the application of the simplex method in the sifting procedure, the CPLEX op­
timizer [3], version 2.0, was used. Much effort has been put into CPLEX to get good 
vectorization performance from various aspects of the code. Some modifications of CPLEX 
were made for this application. To conserve approximately 6 percent of CPU time, routines 
accessing the matrix Aw assumed that nonzeroes in the matrix had the value 1. In addition, 
because the bases of the problem have extremely dense factorizations, the refactorization 
interval was set at 175. 

Extensive experimentation with CPLEX on various versions of these problems reveal 
that steepest-edge pricing is more appropriate than standard reduced-cost pricing for both 
the primal and dual simplex methods. At the beginning of the sifting procedure, the initial 
feasible solution consisting of the first 1000 columns is highly degenerate and no starting 
basis is available. However, the basis consisting of the m artificial variables is dual feasible, 
making the dual simplex method effective for solving the first few subproblems. Since a 
large number of columns are added on these initial iterations, using an advanced starting 
basis with the dual simplex method is not appropriate due to the large dual infeasibility 
incurred by the addition of the new columns. After the initial degenerate feasible point is 
passed by the sifting procedure, the optimal bases found by solving (5) are less degenerate, 
and a primal simplex method using the previously optimal basis works well. Note that this 
procedure is unstable on smaller instances of the problem since the initial degenerate point 
may not be passed. In this case, (5) is reoptimized from an artificial start each time, and 
the pricing information varies due to multiple dual optimality, as discussed in Section 3.2. 

The use of an artificial variable basis to start the dual simplex algorithm provides some 
insight about the dual variables 1r when using the simplex algorithm to solve the subproblems. 
For these problems, it was found that the optimal bases tended to have a large number of 
artificial variables, which are degenerate. (For the largest problem ( 13rnil), 96 artificial 
variables are basic at the optimal solution.) Artificial variables also affect the prices for the 



Very Large Scale Optimization: A Case Study 10 

Problem Size of W Major CPLEX CPU Time (secs) 
Name Max. Final Its. Its. Misc. Price Optim. Total 

1mil 24,637 7,778 9 11,411 1.3 3.0 176.0 179.0 
2mil 24,911 7,579 9 12,617 1.4 5.8 199.7 205.5 
4mil 25,275 14,256 11 16,769 2.3 13.5 293.0 308.8 
8mil 26,539 6,826 12 20,297 1.9 31.3 325.6 358.8 

13mil 26,637 7,556 12 19,396 2.2 47.4 333.9 383.5 

Table 4: Results with CPLEX 

sifting procedure. If the artificial variable on row i is basic, it is easy to see that 7rj = 0 
and hence row i contributes nothing to the selection of new columns. Thus, it is worth 
considering the assignment of a penalty M as the cost of each artificial variable, as in the 
OBl runs (Section 5). In this case, the artificial variable may still remain basic with ?ri = M. 
For the simplex method, no difference was found in the performance of the sifting procedure 
when a penalty M was used as compared to no penalty. 

With CPLEX, the deletion strategy aimed at keeping the subproblems relatively small. A 
large number of columns requires more simplex iterations as well as more work per iteration 
since full pricing is being used. The size of a problem was limited to 33,000 columns. If 
a problem exceeded that size, then all columns j E W with a reduced cost Cj > 100 were 
deleted. (For example, in Table 5 on the third major iteration, 18,666 colums were added to 
a problem of size 18,977. Then 17,843 columns were removed because the problem was too 
large. This was followed by the removal of 8,884 duplicate columns.) Furthermore, as soon 
as an optimal solution to (5) was found with a smaller objective value than the initial feasible 
solution, columns were purged (using the same rule). Since the sifting algorithm used the 
primal simplex algorithm with steepest-edge pricing after this point, the philosophy is to 
keep the subproblems small. 

4.1 CPLEX: Computational Results 

The sequence (t 1
, t 2

, •.. , t 10
) was taken to be (16000, 16000, 8000, 8000, 4000, 2000, 2000, 1000, 

1000, 500), with tk = 1000 for k > 10. After removal of duplicates, the first linear program 
solved in each case had 851 columns. Table 4 contains the summary of the results with 
CPLEX. The columns indicating the size of W represent the maximum and final sizes of 
the linear programs (5) that were solved. The number of major iterations is the number of 
iterations in the sifting procedure. The number of CPLEX iterations is the total number of 
simplex iterations needed to solve each subproblem. CPU Time represents the CRAY Y-MP 
time to solve the problem, broken into miscellaneous time (for example, the time to remove 
duplicates from each subproblem), pricing time and optimization time. The pricing time 
includes the time required to add the columns in P to the CPLEX data structures. 

Table 5 contains an iteration log for solving the problem 13mil. The second column 
indicates the size of W on each iteration. The CPLEX algorithm is the dual simplex or 



Very Large Scale Optimization: A Case Study 11 

Major Cols CPLEX CPLEX Optim. Price Cols Cols Dups 
Iter in Prob Alg. iters Objval time time added purg. del. 

1 851 Dual 108 57448.000 0.190 5.960 15963 0 9122 
2 7692 Dual 346 57448.000 1.500 4.581 37332 7080 18967 
3 18977 Dual 1654 57448.000 21.497 4.625 18666 17843 8884 
4 10916 Dual 1544 57448.000 16.993 4.795 18666 0 8595 
5 20987 Dual 3981 57448.000 69.532 3.888 9333 0 3683 
6 26637 Dual 6218 52035.965 129.514 3.584 4641 24725 2267 
7 4286 Primal 1829 49835.305 26.073 3.529 4641 0 2272 
8 6655 Primal 1876 48856.961 35.269 3.500 2049 0 1309 
9 7395 Primal 1356 48438.438 23.684 3.466 300 0 158 

10 7537 Primal 432 48400.691 7.333 3.288 34 0 17 
11 7554 Primal 50 48400.129 1.455 3.100 2 0 0 
12 7556 Primal 2 48400.129 0.839 3.076 0 0 0 

Table 5: Iteration log for CPLEX on 13mil 

primal simplex method, each with steepest-edge pricing. The number of CPLEX iterations 
is the total number of iterations to solve the corresponding subproblems. The objective value 
is the final objective value of the subproblem (5). The optimization time is the time required 
by CPLEX to solve each subproblem, while the pricing time is the time required to price all 
12. 75 million columns and add columns to the CPLEX data structure. 

5 Using OBl 

The implementation of OBl [9] of the primal-dual predictor-corrector interior point method 
used for these experiments was modified to take advantage of the special characteristics of 
the problem. In each iteration of the interior point method, it is necessary to compute 7rT Aw 
twice. To do this efficiently, each subproblem was preprocessed to order the columns by 
column count, using the same method as described in section 3.1. In addition, all references 
in the code to specific nonzero values in Aw were eliminated, since the problem is assumed 
to have all nonzero values in Aw equal to 1. 

All interior point methods for linear programming form a matrix of the form (A0AT) 
on each iteration, where 0 is some diagonal matrix. This step is followed by a Cholesky 
factorization. For better vectorization performance, it was found that reordering Aw to 
increase the sparsity of the Cholesky factor L was not worth the effort as (Aw0A~) is 
almost totally dense. Hence, reordering was not used, and a special version of a Cholesky 
factorization that assumed a dense matrix replaced the default sparse factorization routines. 
This factorization routine achieved an average performance on the CRAY Y-MP of 240 
Megaflops (Millions of Floating Point Operations per Second) on a single processor capable 
of a theoretical maximum of 333 Megaflops. 



Very Large Scale Optimization: A Case Study 12 

An analysis of the performance of OBl solving the subproblems revealed that the forma­
tion of (Aw0A~) was requiring a significant amount of the processor time. An analysis of 
this computation led to an algorithm that vectorizes well for this task. For this discussion, 
let n represent the number of variables in the linear program (5) and let A= Aw. Then 

(11) 

Note that the nonzero components of (AjA]) are exactly equal to one. The matrix (A0AT) 
is symmetric so that only the diagonal and the lower triangular part needs to be computed. 
Suppose Aj has /!,j nonzeros at positions i 1j, i 2j, ... , ie;j· The diagonal D E ?J?m of (A0AT) 
is computed as follows: 

procedure compute_diagonal: 
D t--0. 
for j = 1 to n do 

for k = 1 to /!,j do 
Dik; t- Dik; + 0i 

The inner loop of this procedure vectorizes ( although with short vector lengths, adversely 
affecting peak performance) since the values i 1j, i 2j, ... , ie;j are unique. 

To efficiently compute the lower triangular part of (A0AT), an address list similar to the 
one described by Adler, et.al. [1] is used. However, the nature of the matrix dictates that 
the "elementary products" are easier to store since each is equal to 1.0. To achieve the best 
possible vectorization, the address list is computed in a special way. Let Q E ~mxm be a 
two-dimensional lower triangular matrix with a zero diagonal. For i 1 > i 2 , define Qi1 i2 to 
be the number of columns in A containing both i 1 and i 2 . It is easy to see that the lower 
triangle of Q is equal to the lower triangle in the matrix (AAT). Let 

Q = max { Qi1i2 : 1 ~ i2 < i1 ~ m}, (12) 

so that Q is the maximum element in Q. Define Tq, for 1 ~ q ~ Q, by 

(13) 

where I is an indicator function defined by 

I(Q ) { 1 if Qi1i2 ~ q; 
ii i2 ~ q = 0 otherwise. (14) 

Hence Tq is a count of the number of elements in Q greater than or equal to q. 
The address list R consists of Q sections, each with Tq ordered triples, 1 ~ q ~ Q. The 

ordered triples (ir, kr, ir) in section Rq, 1 ~ r ~ Tq, are defined by an inductive rule such 
that (ir, kr, ir) E Rq if and only if the following three conditions are satisfied: 



Very Large Scale Optimization: A Case Study 13 

Hence, R1 is a list of all of the nonzero positions in Q, with each element of Q having one of 
the columns Jr that contribute to it. The list R2 is a list of all of the nonzero positions that 
have 2 or more columns contributing to Q, using a different column from the one present in 
R1. 

Given the address lists, it is easy to then compute the lower triangular part of (.A.0.AT) 
using the following procedure: 

procedure compute_AAT: 
A AT 

(A0A )i1 i2 +- 0 for 1 :s; i2 < i1 :s; m. 

for q = 1 to Q do 
for r = 1 to Tq do 

(.A_0.A_T) · k +- (A_0.A_T) · k + 0 · Ir r tr r Jr 

The inner loop of this procedure vectorizes well and substantially reduces the time it takes to 
compute (.A.0.A_T). Note that this matrix is actually stored as a vector and that the location 
of element (ir, kr) is easily computed since (A.0.AT) is assumed to be dense and is stored as 
a long vector. In fact, the address list stores this location. If W has n columns, then the 
length of the address list ( the size of R) is expected to be l 2n /2, where l is the average of 
I\, £2, ... , Rn. 

When using the interior point method within sifting, it was found that deleting columns 
was not beneficial. Deleting many columns caused most of those columns to re-enter the 
problem on a later iteration. Hence, growth in the size of W was allowed and controlled. 
It seems that the dual solution 1r* generated on a particular iteration k yielded important 
information regarding the dual feasibility of the problem. Discarding columns that forced 
this dual feasibility to be maintained was not useful due to the fact that the dual solution is 
in the relative interior of a dual face of the subproblem. This contrasts to using the simplex 
method, where the extreme point nature of the dual solution seemed to allow column deletion 
without any difficulty. 

The predictor-corrector interior point method was started with a primal solution of Xj = 
100.0 for each j E W, with a dual feasible solution of 1r = 0 and z = cw. The large value of Xj 

improves the performance of the predictor-corrector method. No attempts at implementing 
a restart strategy along the lines of Lustig, et.al. [10] or Mitchell [13] were successful. This 
is viewed as an avenue for future research. 

Since these problems are highly rank deficient, a set of m artificial columns with a cost 
of 10,000 were included in the problems solved by OBl on each iteration of the sifting pro­
cedure. While the presence of these columns assists in keeping (A.0.AT) better conditioned, 
these columns also influence the pricing information obtained by OBI. As remarked earlier, 
the presence of these columns did not affect the performance of the sifting procedure with 
CPLEX. 



Very Large Scale Optimization: A Case Study 14 

Problem Final Size Major OBl CPU Time (secs) 
Name ofW Its. Its. Misc. Price Optim. Total 

1rnil 28,211 8 197 1.5 3.6 230.2 235.3 
2rnil 32,541 8 210 1.7 7.0 257.8 266.5 
4rnil 36,415 8 204 1.9 14.3 251.6 267.9 
8rnil 41,680 9 242 2.4 29.5 306.6 338.5 

13rnil 52,368 9 239 3.0 48.8 326.7 378.5 

Table 6: Results with OBl 

Major Cols OBl Optim. Price Cols Dups 
Iter in Prob iters Objval time time added del. 

1 1688 9 57448.000 8.528 7.191 16983 10934 
2 7737 13 57448.000 13.317 6.104 16269 7453 
3 16553 18 57448.000 19.467 6.378 30855 13898 
4 33510 32 52316.105 41.113 5.745 30855 12791 
5 51574 34 48815.031 48.720 5.662 1747 1044 
6 52277 33 48431.762 48.084 5.620 244 169 
7 52352 33 48400.703 50.498 4.160 26 15 
8 52363 32 48400.129 46.224 4.752 37 32 
9 52368 35 48400.129 50.736 3.196 0 0 

Table 7: Iteration Log for OBl solving 13rnil 

5.1 0B1: Computational Results 

In this section, computational results are presented for the sifting procedure using OBl to 
solve the subproblems. The values used were t 1 = 17,000, t 2 = 5800 and tk = 11000 for 
k ~ 3. Table 6 presents the results for the sifting procedure using the interior point method 
to solve the subproblems. The final size of W is also the maximum size since no deletions 
were done on any of the problems. The number of major iterations remained essentially 
constant. The times represent similar values as in Section 4.1. 

Table 7 illustrates the iteration log for solving the problem 13rnil using OBl as the 
solver. It is interesting to note that the sifting procedure with OBl requires fewer iterations 
to get past the objective value corresponding to the initial point. The prices obtained by 
OBl are insensitive to the degeneracy of the initial problem, although they are sensitive to 
the initial interior point used by the primal-dual algorithm. The time to solve each problem 
rises with the number of columns and is fairly predictable. The pricing time per iteration 
for this method is higher due to a higher overhead required to add columns to the OBl data 
structures than the CPLEX data structures. 



Very Large Scale Optimization: A Case Study 15 

6 A Hybrid Method 

A careful examination of the above computational results reveals that the interior point 
method spends a predictable amount of time solving each subproblem. It performs quite 
well in the beginning, but towards the end, the same amount of time is spent to solve a 
new subproblem when only a few columns are added. In contrast, the simplex method has 
difficulty making progress away from the initial highly degenerate solution, but as fewer 
columns are added after this point is passed, the simplex method spends little time re­
optimizing the new problem starting from an optimal basis for the previous subproblem. 
This led to the development of a hybrid procedure, where the interior point method solves 
5 linear programs and is then followed by the application of the simplex method. In effect, 
OBl is being used to find a good starting point for the simplex method. 

A difficulty with this method is the identification of a starting basis for the simplex 
method from an interior point solution. If all columns with Xj > t (where t is a suitably 
chosen tolerance) are selected to be basic columns, and the dual solution is ignored, too much 
information is lost. Essentially, the solution provided by the interior point method indicates 
something about the dual feasibility of all the columns in W, and discarding columns for 
which dual feasibility is attained does not work well. 

Therefore, the procedure described by Megiddo [12] was used to identify an optimal 
basis. The implementation of this procedure is described by Lustig [8]. First, the procedure 
identifies a crash basis, leaving all nonbasic variables at the value determined by the interior 
point method. This solution is purified to a primal optimal solution by lowering each positive 
nonbasic x j to its bound. The work per iteration of this method is equivalent to the work 
per iteration of the primal simplex method. The second part of the procedure maintains the 
dual feasibility of the interior point method by doing a similar procedure to the dual linear 
program. Each of these iterations is equivalent to a step of the dual simplex method. The 
procedure is guaranteed to converge in at most m pivots. For the results reported here, the 
routines implemented by Lustig [8], using XMP [11] and LA05 [15], were employed. Both 
of these codes are not suitable for good vectorization. Better results would be obtained by 
implementing this crossover algorithm within CPLEX. 

Purifying the primal and dual optimal solutions in this way maintained dual feasibility 
relative to the columns already in W. All columns with Cj :'.S 100, j E W, were then passed 
to the simplex method, effectively paring the problem down to an acceptable size. This 
procedure worked well and substantially reduced the total computation time. 

6.1 OBI and CPLEX: Computational Results 

In this section, computational results are presented for the hybrid scheme described above. 
For each problem solved, OBl was used to solve the first 5 subproblems, with t1 = 25,500 
and tk = 11,000 for 2 :'.S k :'.S 4. (Note that these target values differ from those used in 
Section 5.1, where total problem growth is a more serious consideration.) After the fifth linear 
program was solved, the crossover scheme was invoked followed by one solve of a small linear 
program via CPLEX to get an initial factorization. After this initial solve, t6 = t7 = 800 
and tk = 400 for k 2". 8. Note that t 5 is considered irrelevant due to the crossover scheme. 



Very Large Scale Optimization: A Case Study 16 

Size of W 
Problem Last First Last Major OBl Crossover CPLEX 

Name OBI CPLEX CPLEX Its. Its. Its. Its. 
1mil 33,456 2457 3899 9 119 335 228 
2mil 37,185 2984 4250 9 116 421 358 
4mil 41,479 3539 4592 9 116 387 478 
8mil 42,176 4228 6774 12 126 336 1389 

13mil 45,083 5217 6980 10 111 327 1268 

Table 8: Statistics for Hybrid Scheme 

Problem CPU Time (secs) 
Name Misc. Price OBl Cross CPLEX Total 

1mil 1.3 3.1 145.4 21.1 8.7 179.6 
2mil 1.4 6.0 145.4 22.9 10.7 186.4 
4mil 1.6 12.3 146.8 24.7 13.8 199.2 
8mil 1.9 31.9 163.1 25.9 35.9 258.7 

13mil 2.0 42.6 140.3 30.5 33.6 249.0 

Table 9: CPU Times for Hybrid Scheme 

Table 8 shows various statistics for this approach, while Table 9 shows CPU time. In Table 
8, the size of the last linear program solved by OBI is given, along with sizes for the first 
and last linear programs solved by CPLEX. The total number of major iterations includes 5 
interior point iterations, followed by 1 crossover iteration, followed finally by a sequence of 
CPLEX solves. In Table 9, the miscellaneous time includes miscellaneous tasks such as the 
deletion of duplicates before each subproblem is solved. The pricing time is the time to price 
out all of the columns including the time required to add the columns to the appropriate 
data structures for OBl or CPLEX. The crossover time is the time used by the OBl/XMP 
routines to compute an optimal basis. The final CPLEX time is the time used by CPLEX 
to finish the procedure. 

Table 10 gives an iteration log for solving the problem 13mil with the hybrid scheme. 
After OBI solves the first 5 subproblems, the crossover procedure is invoked. The crossover 
requires only 327 iterations, but as previously noted, these iterations are expensive because 
of the lack of vectorization in XMP and LA05. CPLEX is then handed a small problem and 
an optimal basis. This basis is factorized and checked for optimality. CPLEX then solves 
the remainder of the subproblems. 

The computational performance of the hybrid scheme is clearly superior to the pure inte­
rior point or pure simplex procedures and could be further improved by doing the crossover 
procedure within CPLEX. Moreover, the hybrid procedure is clean and a more robust prod-



Very Large Scale Optimization: A Case Study 17 

Major Cols Optim. Price Cols Dups 
Iter in Prob Method iters Objval time time added del. 

1 1688 OBl 9 57448.000 8.549 7.262 25449 14638 
2 12499 OBl 14 57448.000 15.324 6.041 25857 12135 
3 26221 OBl 24 57448.000 28.582 6.493 25857 12774 
4 39304 OBl 33 50734.910 44.399 5.750 13018 7239 
5 45083 OBl 31 48530.461 43.398 0.000 0 0 

* I 45083 I Crossover I 327 I 48530.461 I 30.538 I 
6 5217 CPLEX 0 48530.461 3.105 3.555 1832 1000 
7 6049 CPLEX 297 48510.117 9.572 3.532 1798 1022 
8 6825 CPLEX 648 48418.199 13.754 3.571 382 238 
9 6969 CPLEX 316 48400.129 6.244 3.259 18 7 

10 6980 CPLEX 7 48400.129 0.972 3.145 0 0 

Table 10: Iteration log for problem 13mil with hybrid scheme 

uct. It is not subject to the unpredictable behavior of the simplex method in the earlier 
"degenerate" phase, and is not sensitive to the total number of iterations at the end in 
the same way as OBl, where an additional pass can cost almost 1 minute of additional 
computation time. 

References 

[l] I. ADLER, N. KARMARKAR, M. G. RESENDE, AND G. VEIGA, Data structures and 
programming techniques for the implementation of Karmarkar's algorithm, ORSA Jour­
nal on Computing, 1 (1989). 

[2] J. BAR UTT AND T. HULL, Airline crew scheduling: Supercomputers and algorithms, 
SIAM News, 23 (1990). 

[3] R. E. BIXBY, Implementing the simplex method: The initial basis, Tech. Rep. TR90-32, 
Rice University, Department of Mathematical Sciences, Houston TX, 1990. 

[4] J. J. FORREST, Mathematical programming with a library of optimization subroutines. 
Presentation, ORSA/TIMS Joint National Meeting, New York, October 1989. 

[5] J. J. FORREST AND J. A. TOMLIN, Vector processing in simplex and interior methods 
for linear programming, Annals of Operations Research, 22 (1990), pp. 71-100. 

[6] I. GERSHKOFF, Optimizing flight crew schedules, Interfaces, 19 (1989), pp. 29-43. 

[7] D. GOLDFARB AND J. K. REID, A practicable steepest-edge simplex algorithm, Math­
ematical Programming, 12 (1977), pp. 361-371. 



Very Large Scale Optimization: A Case Study 18 

[8] I. J. LUSTIG, An implementation of a strongly polynomial time algorithm for basis 
recovery. (In preparation). 

[9] I. J. LUSTIG, R. E. MARSTEN, AND D. F. SHANNO, On implementing Mehrotra's 
predictor-corrector interior point method for linear programming, Technical Report SOR 
90-3, Princeton University, Department of Civil Engineering and Operations Research, 
Princeton, NJ, 1990. To appear in SIAM Journal of Optimization. 

[10] --, Starting and restarting the primal-dual interior point method, Technical Report 
SOR 90-14, Princeton University, Department of Civil Engineering and Operations Re­
search, Princeton, NJ, 1990. 

[11] R. E. MARSTEN, The design of the XMP linear programming library, ACM Transac­
tions on Mathematical Software, 7 (1981), pp. 481-497. 

[12] N. MEGIDDO, On finding primal- and dual-optimal bases, ORSA Journal on Computing, 
3 (1991), pp. 63-65. 

[13] J. E. MITCHELL, An interior point column generation method for linear programming 
with shifted barriers, RPI Technical Report 191, Rensselaer Polytechnic Institute, De­
partment of Mathematical Sciences, Troy, NY, 1990. 

[14] G. L. NEMHAUSER AND L. A. WOLSEY, Integer and Combinatorial Optimization, 
John Wiley and Sons, New York, NY, 1988. 

[15] J. K. REID, A sparsity-exploiting variant of the bartels-golub decomposition for linear 
programming bases, Mathematical Programming, 24 (1982), pp. 55-69. 


