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Very long-chain fatty acids (VLCFAs) are fatty acids
(FAs) with a chain-length of �22 carbons. Mammals
have a variety of VLCFAs differing in chain-length and
the number of double bonds. Each VLCFA exhibits
certain functions, for example in skin barrier forma-
tion, liver homeostasis, myelin maintenance, spermato-
genesis, retinal function and anti-inflammation. These
functions are elicited not by free VLCFAs themselves,
but through their influences as components of mem-
brane lipids (sphingolipids and glycerophospholipids)
or precursors of inflammation-resolving lipid mediators.
VLCFAs are synthesized by endoplasmic reticulum
membrane-embedded enzymes through a four-step
cycle. The most important enzymes determining the
tissue distribution of VLCFAs are FA elongases,
which catalyze the first, rate-limiting step of the FA
elongation cycle. Mammals have seven elongases
(ELOVL1�7), each exhibiting a characteristic sub-
strate specificity. Several inherited disorders
are caused by mutations in genes involved in VLCFA
synthesis or degradation. In this review, I describe the
molecular mechanism of FA elongation and the respon-
sible enzymes in mammals and yeast, as well as
VLCFA-related disorders in human.
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very long-chain fatty acid.

Abbreviations: ARVD, arrhythmogenic right ven-
tricular dysplasia; AOX, acyl-CoA oxigenase; DBP,
D-bifunctional protein; DHA, docosahexaenoic acid;
EPA, eicosapentaenoic acid; ER, endoplasmic reticu-
lum; FA, fatty acid; LCFA, long-chain FA; LOX,
lipoxygenase; MUFA, monounsaturated FA;
NADPH, nicotinamide adenine dinucleotide phos-
phate; PC, phosphatidylcholine; PUFA, polyunsatur-
ated FA; SFA, saturated FA; STGD3, Stargardt
disease type 3; VLCFA, very long-chain FA; X-ALD,
X-link adrenoleukodystrophy.

Classification of Cellular Fatty Acids

Fatty acids (FAs) are components of most cellular
lipids, such as glycerolipids, sphingolipids and choles-
terol esters. Major FA species include long-chain FAs

(LCFAs) with carbon (C) chain lengths of 12�20, al-
though very long-chain FAs (VLCFAs) with C� 22
also exist. The definition of VLCFAs differs among
researchers and can include FAs with C� 20, C� 24
and C� 26; in this review, I will refer to FAs with
C� 22. Any of these VLCFAs have important func-
tions that cannot be substituted for by LCFAs, such as
functions in skin barrier formation, retinal functions,
resolution of inflammation, maintenance of myelin,
sperm development and maturation and liver
homeostasis.

FAs are classified into saturated FAs (SFAs), mono-
unsaturated FAs (MUFAs) and polyunsaturated FAs
(PUFAs), depending on the number of double bonds
(Fig. 1). PUFAs are further divided into n� 6 (o6) and
n� 3 (o3) series, based on a particular double bond.
The nomenclature n� x (ox) denotes a double bond
between the x and xþ 1 positions as counted from the
carbon on the terminus opposite that of the carboxyl
group, whereas �y represents a double bond between
the y and yþ 1 positions as counted from the carbon in
carboxyl group. Palmitic acid (C16:0) synthesized
de novo by FA synthase, or dietary FAs can be con-
verted intracellularly to other FA species by elong-
ation, desaturation or b-oxidation (Fig. 1). FAs are
elongated by the addition of two carbons to the car-
boxylic acid side, resulting in an increase in the �y
number to �yþ 2. However, the n�x (ox) number
remains unchanged by FA elongation. Therefore, rep-
resentation of certain FA elongation pathways by
n�x (ox) is useful.

Mechanism of FA Elongation

FAs are elongated by endoplasmic reticulum (ER)
membrane-embedded enzymes following their conver-
sion to acyl-CoAs. FA elongation occurs by cycling
through a four-step process (condensation, reduction,
dehydration and reduction) (1, 2). In the first,
rate-limiting step, acyl-CoA is condensed with
malonyl-CoA to produce 3-ketoacyl-CoA (Fig. 2).
This reaction is catalyzed by an FA elongase.
Mammals have seven FA elongases (ELOVL1�7)
(Table I), and each exhibits a characteristic substrate
specificity (discussed later) (2, 3). The FA elongation
reactions and responsible enzymes are conserved
among eukaryotes, and the yeast Saccharomyces cere-
visiae possesses three FA elongases (Elo1, Fen1/Elo2
and Sur4/Elo3) (4) (Table I). In the second step,
3-ketoacyl-CoA is reduced to 3-hydroxyacyl-CoA
by a 3-ketoacyl-CoA reductase (KAR in mammals
and Ybr159w in yeast) (5, 6) (Fig. 2 and Table I).
Nicotinamide adenine dinucleotide phosphate
(NADPH) is used as a reducing agent in this
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reaction. 3-Hydroxyacyl-CoA is then dehydrated
by 3-hydroxyacyl-CoA dehydratase, generating
2,3-trans-enoyl-CoA. Mammals have four isozymes
(HACD1�4) as their 3-hydroxyacyl-CoA dehydra-
tases, whereas the yeast has only one (Phs1) (7, 8)
(Table I). Finally, 3-hydroxyacyl-CoA is reduced to
an acyl-CoA having two more carbon chain units
than the original acyl-CoA (Fig. 2). A 2,3-trans-
enoyl-CoA reductase (TER in mammals and Tsc13
in yeast) catalyzes this reaction using NADPH as a
reductant (6, 9) (Table I). The enzymes responsible
for the FA elongation cycle can interact with each
other and form elongase complex(es) (7, 8, 10, 11).

The FA elongases ELOVL1-7 exhibit characteristic
substrate specificities towards acyl-CoAs (2, 3) (Fig. 1).
ELOVL1, 3, 4, 6 and 7 are involved in the elongation
of SFAs and MUFAs. ELOVL6 is responsible for the
elongation of C16:0-CoA or shorter, saturated
acyl-CoAs. ELOVL3 and ELOVL7 elongate both
saturated and unsaturated C16�C22 acyl-CoAs with
the highest activities towards C18-CoAs (3, 12).
ELOVL1 elongates saturated C18:0�C26:0 and mono-
unsaturated C20:1n� 9 and C22:1n� 9 acyl-CoAs (3).
In mammalian cells, relatively high amounts of
sphingolipids having C24:0 or C24:1n� 9 FAs exist;
ELOVL1 is the major FA elongase responsible for

Fig. 1 FA elongation pathways in human. Human FA elongation pathways and the ELOVLs involved in each pathway are illustrated. Neither
�12 nor �15 desaturase exists in humans, so n� 6 and n� 3 FAs are not synthesized de novo. Ex and �x represent ELOVLx and �x desaturase,
respectively, where x denotes the enzyme number. Parentheses indicate ELOVLs having weak activities in the indicated reactions.

Fig. 2 FA elongation cycle. The FA elongation cycle and the mammalian and yeast enzymes involved in each step are illustrated. Acyl-CoA is
elongated to have two more carbon units in each elongation cycle, which consists of four steps (condensation, reduction, dehydration and
reduction).
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the production of C24 sphingolipids (3). ELOVL4 is
responsible for extremely long SFAs, such as 4C26
FAs found in skin, as well as4C26 PUFAs found in
brain, retina and spermatozoa (13). In contrast to these
five enzymes active towards SFAs and MUFAs,
ELOVL2 and ELOVL5 are strictly PUFA-specific
elongases. ELOVL2 prefers longer acyl-CoAs than
ELOVL5. ELOVL2 and ELOVL5 elongate
C22-CoAs and C18-CoAs, respectively, and both can
elongate intermediate C20-CoAs (3).

Each ELOVL exhibits a characteristic tissue distri-
bution pattern (3) and differences in FA composition
among tissues can be explained, at least partly, by the
differential expression of ELOVLs. For example,
ELOVL1, 5 and 6 mRNAs are widely expressed
among tissues, consistent with ubiquitously observed
products or derivatives thereof (ELOVL1, C24
sphingolipids; ELOVL5, arachidonic acid
(C20:4n� 6); ELOVL6, stearic acid (C18:0)). On the
other hand, the expression of ELOVL4 is restricted
to tissues where extremely long FAs exist. ELOVL4
mRNA is expressed highest in retina, followed by
skin, brain and testis (14, 15).

Saturated VLCFAs and Sphingolipids

Most saturated and monounsaturated VLCFAs in
mammals are found as constituents of sphingolipids.
Widely conserved in eukaryotes, sphingolipids are
abundant in the outer leaflet of the plasma membrane.
Ceramide, the backbone of sphingolipids, is composed
of two amide-linked hydrophobic chains, a long-chain
base and an FA (16) (Fig. 3). In mammals, the polar
head group of each sphingolipid is phosphocholine
(sphingomyelin) or a sugar (glycosphingolipids), and
hundreds of glycosphingolipids exist, differing in spe-
cies, number and linkage position of sugars.

In mammals, the major FAs in sphingolipids are
C16:0 FA (palmitic acid) and C24 FAs (C24:0 ligno-
ceric acid and C24:1 nervonic acid) (Fig. 3), although
in some tissues, such as brain and skeletal muscle,
the content of C18:0 stearic acid in sphingolipids is
unusually high (16). Generally, the ratio of C24
sphingolipids to total sphingolipids varies among tis-
sues. For example in mice, C24 sphingomyelin reflects
�25% of the total sphingomyelin in brain, �15% in
testis, �15% in skeletal muscle, �45% in kidney and
�60% in liver (17).

Ceramide synthesis is catalyzed by ceramide syn-
thases, of which mammals have six (CerS1�6). Each
ceramide synthase exhibits a characteristic substrate
specificity towards an acyl-CoA (CerS1, C18; CerS2,
C22 and C24; CerS3, �C26; CerS4, C20; CerS5, C16;

and CerS6, C16) (18). The difference in the tissue-
specific expression pattern of each ceramide synthase
may partly account for the tissue distribution patterns
of sphingolipids with certain acyl-chains. For example,
the abundance of C24 sphingomyelin in liver and
kidney correlates with high expression of CerS2
mRNA (17). Similarly, the expression levels of CerS1
are high in brain and skeletal muscle, tissues in which
the CerS1 products, C18 sphingolipids, are abundant
(17), whereas the ceramide synthase CerS3 is expressed
at high levels in skin and testis, where sphingolipids
with �C26 FAs are found (17, 19).

C24 sphingolipids exhibit unique physical properties
that differ completely from those of C16 sphingolipids
or glycerophospholipids. These properties include
unique abilities to interdigitate with the opposing leaf-
let of a lipid bilayer and to cluster with other lipids
to form lipid microdomains (20). Moreover, the long
FA portion of C24 sphingolipids can alter the thick-
ness of the plasma membrane locally. Such C24
sphingolipid-containing lipid microdomains are im-
portant as signalling platforms for certain proteins.
For example, C24 lactosylceramides (glycosphingoli-
pids containing glucose and galactose) are important
for the activation of the Src family kinase Lyn and for
cell signalling in neutrophils (20). In HeLa cells, a shift
in sphingolipid composition from C24 to C16 by
knockdown of either ELOVL1 or CerS2 causes a
change in cell membrane properties and increases cel-
lular susceptibility to apoptosis (21). Recent studies
using CerS2-deficient mice having grossly reduced
C24 sphingolipid levels revealed a requirement for
C24 sphingolipids in liver homeostasis and myelin
maintenance (22, 23). Myelin normally contains high
levels of galactocylceramides and sulfatides with C24
and C22 VLCFAs, but in the CerS2-deficient mice,
both are reduced (22).

In the stratum corneum of the epidermis, the extra-
cellular spaces of corneocytes are filled with a hydro-
phobic lipid mixture organized into multi-lamellar
membranous structures known as lipid lamellae,
which play a pivotal function in skin barrier formation
(18, 24). Ceramide is a major lipid component of lipid
lamellae, and the ceramide species in epidermis is quite
unique. Unusually long FAs, even4C30, are found in
epidermis ceramides (25). Moreover, some ceramides
are o-hydroxylated at the FA portion and esterified
with linoleic acid (C18:2n� 6) (Fig. 3) or with envelope
proteins (24). The importance of ceramides with ex-
tremely long FA and o-acyl-ceramides in skin barrier
function was revealed by studies in Elovl4 mutant mice
(26, 27). Elovl4 mutant mice exhibit a neonatal lethal
phenotype due to a skin barrier defect. In these mice,

Table I. Enzymes involved in FA elongation, their human and yeast genes and related disorders.

Enzyme Human gene Yeast gene Disorder

FA elongase ELOVL1�7 ELO1, FEN1, SUR4 STGD3 and ichthyosis (human ELOVL4)
3-Ketoacyl-CoA reductase KAR Ybr159w, AYR1
3-Hydroxyacyl-CoA dehydratase HACD1�4 PHS1 Centronuclear myopathy (dog HACD1)
2,3-Trans-enoyl-CoA reductase TER TSC13 Non-syndromic mental retardation (human TER)
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the levels of ceramides/glucosylceramides with �C28
are greatly reduced, and acyl-ceramides are absent.
Among the Cer synthases, CerS3 is responsible for
the production of ceramides with extremely long chain
FAs (�C26) (28). It is not surprising, then, that CerS3
knockout mice exhibit a skin barrier defect similar
to that in Elovl4 mutant mice and die shortly after
birth (28).

Very Long-Chain PUFAs

In humans, palmitic acid (C16:0) and stearic acid
(C18:0) can be converted to palmitoleic acid
(C16:1n� 7) and oleic acid (C18:1n� 9), respectively,
by �9 desaturase (stearoyl-CoA desaturase). However,
neither �12 desaturase, which produces linoleic acid
(C18:2n� 6) from oleic acid, nor �15 desaturase,
which converts linoleic acid to a-linolenic acid
(C18:3n� 3), exists in humans (Fig. 1), so linoleic
acid and a-linolenic acid must be consumed through
food. Dietary linoleic acid and a-linolenic acid can be
converted to other n� 6 and n� 3 FAs, respectively
(Fig. 1). For example, a-linolenic acid is metabolized
to eicosapentaenoic acid (EPA; C20:4n� 3) via desat-
uration by �6 desaturase and subsequent elongation.
EPA is further converted to the well-known very
long-chain PUFA (VLC-PUFA) docosahexaenoic
acid (DHA; C22:6n� 3) by two successive elongation
cycles, desaturation by �6 desaturase and b-oxidation
in a peroxisome (Fig. 1). DHA is abundant in glycer-
olipids found in the grey matter of the brain and is
important in the functional development of the brain
(29). High levels of DHA also exist in glycerolipids
found in the retinal photoreceptor outer segment mem-
branes, where it may function in regulating photo-
transduction (30).

DHA also functions as a precursor of the recently
identified lipid mediators active in resolving the inflam-
matory response, such as D-series resolvins (resolvin
D1�D4), protectin D1 and maresin 1 (31). Conversion
of DHA to 17S-hydroperoxy-DHA by
15-lipoxygenase (LOX), and subsequent conversion
of 17S-hydroperoxy-DHA by 5-LOX or 15-LOX pro-
duces D-series resolvins or protectin D1, respectively
(31). On the other hand, conversion of DHA to 14S-
hydroperoxy-DHA by 12-LOX, which is present in
macrophages and platelets, and subsequent enzymatic
epoxidation and hydrolysis produces maresin 1 (32).
Resolvin D exerts anti-inflammatory actions by redu-
cing neutrophil migration and infiltration (31, 33).
Protectin, named for its tissue-protective effects on
the brain, the immune system and retina, displays
potent anti-inflammatory activity and activates the
resolution of inflammation, in addition to its
cell-protective activity (31). Maresin 1 reduces neutro-
phil migration and stimulates phagocytosis by macro-
phages (32).

VLC-PUFAs with4C24 uniquely exist in mamma-
lian brain, retina, testis and spermatozoa (13). In
brain, phosphatidylcholine (PC) contains n� 3 or
n� 6 series VLC-PUFAs having up to C38 and four
to six double bonds at the sn� 1 position (13, 34). In
the brains of peroxisome-deficient Zellweger’s syn-
drome patients, increased levels of n� 6 PUFAs
having up to C40 with 5 and 6 double bonds have
been observed (34), suggesting a role for VLC-
PUFAs in brain physiology.

In human retina, PC can have FAs with up to C36
and three to six double bonds at the sn� 1 position
and DHA at the sn� 2 position (13, 30, 35).
Stargardt disease type 3 (STGD3) is a juvenile-onset

Fig. 3 Ceramide species in mammals and yeast. Structures of ceramides found in mammals and yeast are illustrated. C16 ceramide and C24
ceramide with C24:0 or C24:1 FA exist ubiquitously in mammalian tissues, although the ratio of C16 ceramide to C24 ceramide varies among
tissues. In contrast, C18:0 ceramide levels are unusually high in brain and skeletal muscle. Acyl-ceramide is specific to skin, and polyunsaturated
ceramide exists only in the testis germ cells and spermatozoa. The FA of yeast ceramide is C26:0 with or without a-hydroxylation. Cer, ceramide.
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macular dystrophy characterized by gradual vision
loss, lipofuscin accumulation and window defects in
the macula (13, 36). STGD3 is caused by dominant
mutations in the ELOVL4 gene (discussed later);
ELOVL4 is responsible for the elongation of 4C26
FAs. Stgd3-knockin mice that carry the human patho-
genic 5-bp deletion in the mouse Elovl4 gene (an animal
model of STGD3) are defective in the production of
PC having C32-C36 VLC-PUFAs (37). These findings
suggest that these extremely long VLC-PUFAs, in add-
ition to DHA, are important for the maintenance of
normal retinal function.

Although the FA moieties of sphingolipids are usu-
ally saturated or monounsaturated, there are unique
sphingolipids present in testis germ cells and sperma-
tozoa that contain VLC-PUFAs with C26�32 and
4�6 double bonds at n� 6 and n� 3 (38) (Fig. 3).
These VLC-PUFA-containing sphingolipids include
sphingomyelin and a class of fucosylated gangliosides
(glycosphingolipids containing sialic acid). In testis,
spermatogenesis proceeds as spermatogonia differenti-
ate into primary spermatocytes and undergo meiosis,
generating spermatids that maturate into spermatozoa.
Sphingolipids containing VLC-PUFA first appear
at the pachytene spermatocyte stage, one of the pro-
phase substages of the first meiotic division (39).
VLC-PUFA-containing sphingomyelin are abundant
in the head of spermatozoa. During capacitation (the
destabilization of the sperm head membrane that is the
penultimate step in the maturation of mammalian
spermatozoa and is required to render them competent
for oocyte fertilization), VLC-PUFA sphingomyelin
is converted to VLC-PUFA ceramide (40). From
these results, VLC-PUFA-containing sphingolipids
are thought to function in spermatogenesis and
capacitation.

Disorders Associated with Mutations in
VLCFA-Related Genes

Several inherited diseases are related to VLCFAs. As
described earlier, STGD3 is one such disorder caused
by mutations in the ELOVL4 gene (Table I). To date,
three distinctELOVL4mutations have been reported to
cause STGD3, all resulting in a frameshift that leads to
the production of C-terminally truncated proteins (13,
36). The loss of the C-terminal region of the protein
abolishes its enzymatic activity and results in its mislo-
calization to aggresomes or the Golgi, because this
region contains a C-terminal ER retention signal (13,
36). Moreover, the mutant protein forms oligomers
with wild type ELOVL4 and with components of the
elongase complex, causing mislocalization and/or in-
activation of the interacting proteins (10, 36). Such
oligomerization is assumed to be the basis for the auto-
somal, dominant mode of inheritance of the STGD3.
Although no patients with a homozygous STGD3 mu-
tation have been reported so far, individuals carrying
recessive ELOVL4 mutations different from the
STGD3 mutations have recently been found (41). Two
patients with these mutations display a neurocutaneous
disorder of ichthyosis, seizures, mental retardation and

spasticity (41). Considering information obtained in stu-
dies of the Elovl4 mutant mice, VLC-ceramides and
acyl-ceramides in the epidermis of the homozygous
ELOVL4 patients may be affected.

Mutations in the ABCA12 gene, which encodes a
member of the ATP-binding cassette transporters,
also cause ichthyosis (42). The ABCA12 protein is
expressed in granular layer keratinocytes and is
involved in the transport of glucosylceramides into
the inner side of lamellar granules. Most ceramides,
including acyl-ceramides, in the lipid lamella of stra-
tum corneum are derived from glucosylceramides (24).
Glucosylceramides in lamellar granules are released in
the stratum corneum and hydrolyzed to ceramides.

The TER (TECR) gene encodes the 2,3-trans-
enoyl-CoA reductase, which catalyzes the fourth step
of the FA elongation cycle (6). A mutation in the
TER gene that substitutes Pro182 to Leu (P182L) in
the gene product causes autosomal recessive non-
syndromic mental retardation (43) (Table I). To date,
no other 2,3-trans-enoyl-CoA reductase gene involved
in VLCFA generation has been reported in mammals.
VLCFA production is essential for organogenesis and
embryonic survival, as revealed by the studies in
knockout mice for the KAR (HSD17B12) gene (44),
which encodes the 3-ketoacyl-CoA reductase respon-
sible for the second step of the FA elongation cycle.
Therefore, it is reasonable to consider that the
TER(P182L) mutant protein may exhibit residual but
reduced enzyme activities.

The HACD1�4 genes encode 3-hydroxyacyl-CoA
dehydratases and function in the third step of the FA
elongation cycle (8). HACD1 (PTPLA) mRNA is
highly tissue specific, and its expression is restricted
to heart and skeletal muscle (45). An insertion muta-
tion in the Labrador Retriever canine HACD1 gene
causes centronuclear myopathy (Table I), which is
characterized by skeletal muscle atrophy accompanied
by a type II fibre deficiency (46). Although involve-
ment of the HACD1 mutation in the pathogenesis of
human myopathy has not yet been reported, a point
mutation in the human HACD1 gene has been impli-
cated, but not established, in arrhythmogenic right
ventricular dysplasia (ARVD) (45). ARVD, a major
cause of sudden death in the young and in athletes,
is an inherited heart disease characterized by a gradual
loss of right ventricular myocardium and replacement
by adipose and fibrous tissue (47). A point mutation
(K64Q) was found in all affected individuals in a large
ARVD family (n¼ 10), yet the mutation was also
detected in normal control subjects (3 alleles per
100 chromosomes) (45). Biochemical analyses demon-
strated that the HACD1 (K64Q) mutant protein ex-
hibited normal enzyme activity (11). Nevertheless,
although biochemical studies did not support any
direct involvement of the HACD1 mutation in
ARVD, it is still possible that long-term accumulation
of undetectable defects of the mutant protein affects
heart function.

Defects in VLCFA degradation/b-oxidation also
have causative effects in pathogenic disorders.
VLCFAs are b-oxidized to LCFAs in peroxisomes
after being converted to VLC acyl-CoAs. Transport
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of VLC acyl-CoAs to peroxisomes involves the ABC
transporter ABCD1 (48). Mutations in the ABCD1
gene result in the accumulation of C24 and C26
VLCFAs in plasma, brain, adrenal gland and other
tissues, and cause X-link adrenoleukodystrophy
(X-ALD) (48), including the two major clinical pheno-
types of X-ALD, adrenomyeloneuropathy and the
more severe cerebral adrenoleukodystrophy.
b-oxidation of VLCFAs involves four reactions in
each cycle: dehydrogenation, hydration, dehydrogen-
ation and thiolytic cleavage (49). Peroxisomal
straight-chain acyl-CoA oxigenase (AOX) catalyzes
the first dehydrogenation reaction. Both the second
and third reactions are catalyzed by the bifunctional
enzyme D-bifunctional protein (DBP), and
3-ketoacyl-CoA thiolase is responsible for the fourth
reaction. Deficiencies in AOX cause hypotonia,
delayed motor development, sensory deafness and ret-
inopathy. Similarly, DBP deficiency leads to hypo-
tonia, craniofacial dysmorphia, neonatal seizures,
hepatomegaly and developmental delay (49). In con-
clusion, then, the homeostasis of VLCFAs is import-
ant generally for maintaining normal tissue and
cellular functions.

VLCFAs in Yeast

VLCFAs in the yeast S. cerevisiae consist almost en-
tirely of C26:0 FA with or without a-hydroxylation
(50). C26:0 FA mainly exists in sphingolipids but
also in small amounts in glycosylphosphatidylinositol
anchors (4). Although FA moieties of mammalian
sphingolipids are either long-chain (C16 or C18) or
VLC (mainly C24) (16), those of yeast sphingolipids
are exclusively C26 VLCFA (Fig. 3) (50).

Sphingolipid synthesis is essential for yeast growth.
However, a suppressor mutation in the 1-acyl-
glycerol-3-phosphate acyltransferase SLC1 gene
(SLC1-1 mutation) allows cell growth of the mutant
yeast, even though it cannot synthesize sphingolipids
(51). In this yeast, a phosphatidylinositol with an un-
usual C26:0 FA at the sn� 2 position is produced,
which partly substitutes for sphingolipids in function.
This observation suggests that the VLCFA portion of
sphingolipids has important functions in and of itself.

VLCFA synthesis is also essential for yeast growth.
Of the three yeast FA elongases, Fen1 and Sur4 are
involved in VLCFA synthesis, and Elo1 is involved in
the elongation of C14 FA to C16 FA (4, 52). In a
�sur4 mutant C26 VLCFAs are absent, instead C24
and especially C22 VLCFAs are accumulated (53). In
�fen1 cells, C26 VLCFAs still exist but are largely
reduced (53). Although both the �sur4 and �fen1
single deletion mutants can grow, a double deletion
of the FEN1 and SUR4 genes is lethal (54). Similarly,
cells deficient in the YBR159w gene, which encodes the
yeast 3-ketoacyl-CoA reductase, still grow, albeit
slowly, and they still exhibit weak 3-ketoacyl-CoA re-
ductase activity (5). This residual activity has been
attributed to the Ayr1 protein, and �ybr159w �ayr1
cells are inviable (5). The PHS1 and TSC13 genes
encode the yeast 3-hydroxyacyl-CoA dehydratase and

2,3-trans-enoyl-CoA reductase, respectively, and both
are essential for viability (7, 9).

In mutants of genes involved in VLCFA synthesis,
sphingolipid formation is affected so that long-chain
bases, long-chain base 1-phosphates and ceramides are
increased, whereas complex sphingolipids are
decreased (5, 7, 9, 53, 55). Although the physiological
functions of VLCFAs still remain largely unknown,
several lines of observation suggest that they are
involved in protein transport. In a phs1 mutant, the
vacuolar alkaline phosphatase is abnormally pro-
cessed, and the mature Gas1 protein is reduced (56).
Mutation in the FEN1 or SUR4 gene suppresses the
temperature-sensitive growth, and secretion-defective
phenotypes of the snc mutant, which lacks vesicular
membrane proteins known as v-SNAREs (57). We
recently identified the VPS21 gene as a multicopy
suppressor of temperature-sensitive growth of
VLCFA-limited yeast cells. Vps21 is a Rab GTPase
involved in vesicular transport to the vacuole.
Furthermore, from studies using double yeast mutants
bearing both a �sur4 mutation and one of several mu-
tations affecting vacuolar protein sorting (vps), includ-
ing �vps21, we speculate that VLCFAs are involved in
vesicular transport at the late endosome/multivesicular
body (our unpublished results). In addition to the pro-
posed functions of VLCFAs in vesicular transport, in-
volvement of VLCFAs has also been suggested in the
maintenance of a functional nuclear envelope and in
the biogenesis of microautophagic vesicles (58, 59).
The chain length of VLCFAs allows them to span
both leaflets of the lipid bilayer, which would facilitate
generation and stabilization of highly curved mem-
branes. During vesicle budding and fusion, local gen-
eration of highly curved membranes is essential, for
example at the neck of budding vesicles and at the
contact sites of lipid mixing during vesicle fusion.
Highly curved membranes also exist around the nu-
clear pore complex. Thus, it would seem likely that
VLCFAs are involved in vesicular trafficking, mainten-
ance of a functional nuclear envelope and microauto-
phagy by stabilizing highly curved membranes.

Conclusion

The unusually long chain-length in VLCFAs confers
unique functions differing from those of LCFAs. The
highly hydrophobic nature of the ceramides with extre-
mely long FAs that are found in the epidermis imparts
a resistance on the lipid lamella towards exogenous
compounds and water loss. Moreover, the VLCFA
portions of sphingolipids can interdigitate into the op-
posite leaflet of the lipid bilayer, an activity that may
function in lipid microdomain formation and in stabi-
lizing highly curved membranes. VLC-PUFAs in gly-
cerolipids may also affect membrane functions
by altering fluidity, lipid phase properties, permeability
and clustering. Although in this review I describe
only those disorders affected by mutations in
VLCFA-related genes, VLCFA levels are also altered
in other many diseases. Furthermore, it is expected
that greater and more prominent importance will be
ascribed to VLCFAs in physiological and pathological
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processes, as future studies uncover more of their
varied and unique functions.
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