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Abstract—Due to the inherent uncertainty involved in renew-
able energy forecasting, uncertainty quantification is a key input
to maintain acceptable levels of reliability and profitability in
power system operation. A proposal is formulated and evaluated
here for the case of solar power generation, when only power
and meteorological measurements are available, without sky-
imaging and information about cloud passages. Our empirical
investigation reveals that the distribution of forecast errors do
not follow any of the common parametric densities. This therefore
motivates the proposal of a nonparametric approach to generate
very short-term predictive densities, i.e., for lead times between a
few minutes to one hour ahead, with fast frequency updates. We
rely on an Extreme Learning Machine (ELM) as a fast regression
model, trained in varied ways to obtain both point and quantile
forecasts of solar power generation. Four probabilistic methods
are implemented as benchmarks. Rival approaches are evaluated
based on a number of test cases for two solar power generation
sites in different climatic regions, allowing us to show that our
approach results in generation of skilful and reliable probabilistic
forecasts in a computationally efficient manner.

Index Terms—Solar power, forecasting, uncertainty quantifi-
cation, quantile regression, Extreme Machine Learning.

I. INTRODUCTION

FORECASTING is of utmost importance in both integra-

tion and trading of intermittent renewable energy gener-

ation. The variability and limited predictability of intermittent

generation pose new challenges in power system operations

and electricity markets, such as the need for additional an-

cillary services [1], as well as an increase in voltage and

frequency fluctuations [2], among others.

Improving photovoltaic power (abbreviated PV) forecasting

methods, as an essential component to mitigating PV power

intermittency, has attracted increased attention over the last

few years. The online short-term PV forecasting using a clear

sky model described in [3] comprises a notable example of a

relevant approach.

Perez et. al. [4] have investigated the correlation between

irradiance variability in neighboring sites as a function of their

distances. The same authors have looked into the predictabil-

ity of sub-hourly variability of solar resources using hourly

satellite-derived insolation data in [5]. In [6], it has been shown

that by considering multiple PV fleets comparing to a single

one, the total relative power output variability drops quasi-

exponentially as a function of dispersion factor of the PV fleets

and can be further decreased if they are optimally-spaced.

Intra-hour solar irradiance forecasting is performed by pre-

dicting cloud motions and locations in [7]. Cloud locations are

predicted for 5 minutes ahead and simulations showed that

for coastal areas, cloud forecast error increases as the fore-

cast horizon increases. A neural network-based reforecasting

method is developed in [8] to improve forecast accuracy of (1)

a physical model based on cloud tracking, (2) auto regressive

moving average and (3) k-th nearest neighbor methods for

forecast horizons of 15 minutes and less. A recent review of

the state-of-the-art can be found in [9].

Nearly all previous works focused on single-valued (or

point) forecasts, similar to the case of wind power forecast-

ing [10]. However, point forecasts can only be helpful in cases

where the loss function of decision-makers is truly quadratic,

or when no significant uncertainty is involved, since it fails to

dispense a full picture of all potential future outcomes [11].

On the other hand, this is the aim of probabilistic predictions

to provide decision-making under uncertainty with the full

information.

Indeed in recent years, there has been a surge of inter-

est in stochastic optimization approaches to cover different

uncertainties in power systems and electricity markets. Var-

ious problems have been analysed, e.g., stochastic security-

constrained unit commitment [12], probabilistic optimal power

flow [13] and market participation for renewables [14]. For a

recent overview on uncertainty quantification and its integra-

tion in various decision-making problems related to electricity

markets, the reader is referred to [15]. It is often assumed

that the random variables involved have known parametric

distributions. However, even in cases where observations form

a known and well-behaved marginal distribution, there is no

guarantee that conditional predictive densities (or distributions

of forecast errors) follow that same distribution. Wrong distri-

butional assumptions may directly yield biases in analyses and

results. Stochastic optimization therefore calls for a thorough

design and evaluation of probabilistic forecasting approaches.

As a relevant parallel, there has been comprehensive work

carried out for the case of probabilistic forecasting of wind

power generation. In [16], a hybrid intelligent algorithm

(named HIA) is proposed to find nonparametric prediction

intervals for wind generation. However, the evaluation criteria

and objective function proposed by this paper verify only the

coverage and the width of the prediction intervals. The quality

of quantiles which is essential for any reliable probabilistic

forecast is ignored. An Extreme Learning Machine (ELM)-

Bootstrap (named BELM) method is developed in [17] to

estimate the statistical properties of the wind generation and

predict intervals for three forecast horizons. This method

stands on the normality assumption for distribution of forecast

errors. In applications where the distribution of forecast errors

does not have a normal shape, its accuracy should be verified.

In contrast to this vast amount of work on probabilistic

wind power forecasting, one can hardly find proposals and
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empirical investigations for the solar energy case. Lorenz et.

al. [18] proposed a method to obtain 95% prediction interval

for global horizontal irradiance (GHI) based on standard error

as a function of solar zenith angle and clear sky index. Two

assumptions are made in their work, standard error follows

normal distributions and the prediction interval is central

on point forecasts. In [19], a hybrid method is developed

to provide prediction intervals for one-minute average direct

normal irradiance for three intra-hour horizons. Prediction

intervals with three coverage rates are obtained and com-

pared with those given by bootstrap-ANN and persistence

methods. A heuristic formulation is used to evaluate and

compare prediction intervals. Moreover, prediction intervals

are obtained independent of central quantiles and the quality

of the quantiles is not checked and concerned. A proposal

for a geostrophic wind dependent probabilistic solar irradiance

forecasts can be found in [20]. By post-processing NWP and

comparing the North American Mesoscale model with the

California Irrigation Management Information System obser-

vations and SolarAnywhere data, the model generates intervals

for global horizontal solar irradiance. In the mentioned paper,

only 95% prediction interval is sought and is compared with

few methods including the method proposed in [18] to check

if it can provide narrower intervals. Probabilistic skill scores

are not calculated and the evaluation of intervals includes

width and reliability metrics separately where the width of

the intervals is compared visually.

In spite of basic similarities in wind and PV power forecasts,

there are substantial differences in the stochastic process dy-

namics, the influential variables, as well as in the relationship

between meteorological variables and the resulting PV power

generation. According to the empirical investigation conducted

here, where cloud passages forecast is not available (a common

situation), forecast errors do not obey any known parametric

distributions. Hence, in order to avoid restrictive assumptions

on the shape of predictive distributions, we propose a frame-

work to generate nonparametric density forecasts. These are

assembled by predicting their quantiles for various nominal

levels, in a quantile regression framework. The ELM [21] is

used as a regression solver while a gradient-free optimization

algorithm serves for parameter estimation, based on a suitable

objective function that accounts for feasibility, reliability and,

sharpness of predictive densities.

ELM is a recently proposed learning algorithm and is

selected due to its good generalization performance with very

fast learning mechanism, which makes it thousands of times

faster than the traditional learning algorithms such as back-

propagation. We compared its performance with that of more

classical linear regression models, AutoRegressive (AR) with

the same explanatory variables. It was found that the ELM

led to the best accuracy with satisfactory computational costs,

therefore motivating us to focus on using it in PV generation

forecasts. For more information about the performance of the

ELM with respect to its competitors, the reader is referred

to [21].

II. EXPERIMENTAL FRAMEWORK

As a basis for our empirical investigation, the time series

with solar power generation at two sites with different cli-

matic regions are used. Their temporal resolution is of one

minute. Site A is the St Lucia PV site at the University

Fig. 1. PV power variability for a typical day at Site A in March 2013

of Queensland (433kWp), with latitude and longitude of

27.498°S and 153.013°E respectively and 28m elevation above

the sea level. To have a consistent forecasting duration for

all days throughout a year, daytime data from 5:00 am to

7:00 pm is considered. Site B is a 1kWp PV system at

Nanyang Technological University (NTU), Singapore, with

latitude and longitude of 1.345°N and 103.681°E respectively

and 41m elevation above the sea level. NTU is located in a

tropical region with mostly cloudy days all year round. The

diurnal time for this case is assumed to be 7:00 am to 6:50

pm. Therefore, each day contains 710 data points. For both

sites, the data from 2012 is used for training, while that for

2013 is used for genuine forecast evaluation. Fig. 1 illustrates

PV generation for a typical day at Site A, showing its high

variability and consequent forecast uncertainty. At such small

temporal resolution and lead times, cloud passages are the

main reason for PV power fluctuations, commonly causing

60% drop in the installed capacity [22].

The lack of inertia in PV systems, high ramp rates due

to cloud passages, and switching in power generation dy-

namics pose challenges at different time scales. Very short-

term fluctuations in PV output have an impact on power

quality (e.g., voltage flicker), generation-load imbalance, and

regulation cost. Since increasing regulation reserve to com-

pensate PV fluctuations is a costly option, using high-quality

forecasts to preventively deal with potential imbalances is

indispensable [2], [22]. For instance, a part of imbalances

can be adjusted through re-dispatch rather than limited and

expensive frequency regulation control. This motivates us to

focus on very short-term and high frequency forecasting, in a

probabilistic forecasting framework. We refer to “very short-

term” as lead times up to one hour ahead. In general, a

more accurate forecast can bring several benefits to the power

systems. Better prediction of solar power generation will help

system operators to better manage the dispatchable generators

and the generation-load balance such that system production

cost is minimized to the best extent possible. Moreover,

accurate forecasts help firm up the frequency regulation and

reserve markets by reducing the uncertainty associated with

variable generation resources. This will avoid paying for extra

generation in the frequency regulation market that will not be

needed with more accurate forecast from solar units.

III. NON-PARAMETRIC PROBABILISTIC FORECASTS

Let Yt be the random variable for PV power generation at

time t. ft and Ft are its probability density function (PDF)

and cumulative distribution function (CDF). The quantile qαi

t

with level αi can be defined as

qαi

t = F−1
t (αi) (1)
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A quantile forecast q̂αi

t+k|t is consequently the estimate of

qαi

t+k issued at time t for lead time t+k based on information

available at that time. A single quantile forecast provides only

limited information on forecast uncertainties. This motivates

the joint consideration of m number of quantile predictions,

with increasing nominal levels αi, i = 1, . . . ,m, then yielding

a nonparametric density forecast f̂t+k|t, i.e.,

f̂t+k|t = {q̂αi

t+k|t; 0 ≤ α1 ≤ α2 ≤ . . . ≤ αm ≤ 1} (2)

with the full continuous density obtained by linear or nonlinear

interpolation through these defined quantile forecasts.

Once quantile forecasts and predictive densities are gen-

erated, prediction intervals are a natural by-product allowing

easing visualization of forecast uncertainties. This is because

they represent a range of potential values in which the future

observation yt+k may lie within a certain probability. Consid-

ering two quantiles forecasts whose nominal proportions are

α and α, central prediction intervals with nominal coverage

(1− γ) are defined by

Î1−γ
t+k|t =

[

q̂αt+k|t, q̂
α
t+k|t

]

(3)

where nominal levels of the quantile forecasts are centered

around the median, i.e.

α− α = 1− γ (4)

The central prediction interval will serve as a basis for the

illustration of our nonparametric probabilistic forecasts of

solar power generation.

A. Performance Evaluation

1) Reliability: High reliability is one of the major require-

ments for probabilistic forecasts, as lack of reliability will most

likely result in a systematic bias in decision-making. Since

f̂t+k|t is composed of a set of quantile forecasts, the evaluation

of forecast reliability also focuses on these quantiles. As a

basis, let ξ
(.)
t,k be an indicator variable

ξαi

t,k = 1{yt+k|t ≤ q̂αi

t+k|t} =

{

1, if yt+k|t ≤ q̂αi

t+k|t

0, otherwise
(5)

The empirical level α̂i of a quantile forecast with nominal

proportion αi is then

α̂i =
1

N

N
∑

t=1

ξαi

t,k (6)

Reliability is eventually assessed visually through the use of

reliability diagrams, showing empirical vs. nominal levels of

the defining quantile forecasts, i = 1, . . . ,m [23]. Besides, the

absolute deviation (denoted Dev) from the nominal proportion

is a factor to assess overall reliability: quantile forecasts with

a lower Dev are to be seen as more reliable. The metric Dev
can be formulated as

Devi = |αi − α̂i| (7)

2) Skill Score: As for point prediction, forecast users are

keen on using a unique score which is able to summarize the

performance of rival probabilistic forecasting while accounting

for their reliability and sharpness. Reliability evaluation alone

does not allow us to do so, since probabilistic forecasts with

very bad skill, can easily be made probabilistically reliable.

At time t + k, for a single forecast-observation pair, the

score

Sc(f̂t+k|t, yt+k|t) = −

m
∑

i=1

(

ξαi

t,k − αi

)(

yt+k|t − q̂αi

t+k|t

)

(8)
is to be seen as a proper skill score [24], hence allowing to

objectively sort rival forecasting approaches. However, both

reliability and sharpness should also be examined separately

and visually via reliability diagrams and quantiles’ plots to

make sure there is a reasonable balance between these two

attributes. Skill score values for a given lead time are obtained

by averaging the score in the above equation over all forecast-

observation pairs. Score values are positive, with lower score

values meaning higher skill.

Probabilistic forecasts are a crucial input for decision-

making problems which involve uncertainty. In such problems,

traditionally point forecasts have been deployed. More recently

in stochastic optimization, several assumptions are made to

build a distribution for uncertain variables. For example, in

interval optimization, intervals of the random variables are

mostly assumed to be a certain percentages lower or upper the

point predictions. In Monte Carlo or scenario based methods,

the scenarios are extracted from an assumed distribution,

usually normal. Therefore, the accuracy of the probabilistic

approaches is highly dependent on how much those assump-

tions match the reality. In this proposal, instead of making

assumptions to define the uncertainty of a random variable,

a forecast density is predicted for each time point in the

future. This can help the decision maker to get a better insight

of the uncertainties involved in prediction and make more

pragmatic decisions. In [25], as an example to demonstrate the

benefits and necessities of the probabilistic forecasts, a bidding

strategy in a pool based electricity market is investigated and

mathematically it has been proved that the optimal bidding

amount is equal to a special quantile produced by wind power

probabilistic forecasts.

IV. FROM POINT PREDICTIONS TO NONPARAMETRIC

PROBABILISTIC FORECASTS

The ELM is employed as a regression model which can

allow to generate both point and quantile forecasts, depending

on the training criterion. For point predictions, the goal is

to minimize the error between predictions and measurements.

This can be translated to a least-square solution for parameters

of the regression model. However, in probabilistic forecasting,

the targets of the model are quantiles which should cover a

certain proportion of the measurements over a defined time. In

this case, a pure regression framework which tries to mimic

the measurements based on least-square methods cannot be

employed. Therefore, new criteria and formulation should be

devised to train the model.

After introducing the overall ELM approach, the procedure

for designing ELMs to directly generate predictive densities

is explained in the following sections.

A. Extreme Learning Machine (ELM)

For an ELM, parameters for the hidden layer are randomly

selected while they do not need to be tuned through the

training process. The output weights are analytically calculated

at once without going through a lengthy iterative training [26].
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Due to high scalability and very low computational burden,

ELM not only unifies different widely used learning methods

but also offers a unified approach for different practical

applications.

Given a dataset of N samples {(xj , gj)}
N
j=1 with xj ∈ Rn

as input and gj ∈ Rm as output, for a single-hidden layer

feed-forward neural network (SLFN) with Ñ hidden neurons

and ϕ(.) as an activation function, the relationship between

inputs and outputs is defined by

Ñ
∑

i=1

βiϕ (ai.xj + bi) = gj , j = 1, ..., N (9)

where ai = [ai1, ai2, ..., ain]
⊤ is the weight vector which

connects input neurons to the neurons in the hidden layer;

ai.xj represents the inner product of ai and xj and βi =
[βi1, βi2, ..., βim]⊤ denotes the vector of weights of output

nodes. The set of equations in (9) can be compacted as

Hβ = G (10)
where

H(a1, . . . , aÑ , b1, . . . , bÑ , x1, . . . , xN ) =






ϕ (a1.x1 + b1) · · · ϕ (aÑ .x1 + bÑ )
... . . .

...

ϕ (a1.xN + b1) · · · ϕ (aÑ .xN + bÑ )







N×Ñ

(11)

β =







β⊤
1
...

β⊤
Ñ







Ñ×m

G =







g⊤1
...

g⊤N







N×m

(12)

If N = Ñ and the activation function is infinitely differen-

tiable, ELM can train the SLFN with exactly zero error [27].

Once the parameters of the hidden layer are randomly as-

signed, the hidden layer matrix can be uniquely determined.

Following (10), β can be calculated by

β = H†G (13)

where H† is the Moore-Penrose generalized inverse of H and

it is generally derived by singular value decomposition [27].

B. Optimization Formulation

The optimization methodology proposed in this paper aims

at adjusting the ELM parameters in order to make them

optimal in view of the skill score given in Section III-A,

for the evaluation of predictive densities while satisfying the

problem’s constraints. The predicted quantiles should be non-

crossing and lie in a feasible range of the PV generation. The

proposed objective function is

minF = −1
NTm

NT
∑

t=1

m
∑

i=1

(

γ1 ×
(

(ξαi

t,k − αi)(yt+k|t − q̂αi

t,k)
)

+γ2 × ξ
′αi

t,k +γ3 × ξ
′′αi

t,k

)

(14)

where NT is the number of samples over the training period

and m is the number of quantiles. γ1 is a coefficient which

represents the importance of the skill score in the objective

function. γ2 and γ3 are penalty factors for violations from the

problem constraints i.e. contravening the feasible range and

crossing quantiles respectively. ξ
′αi

t,k is an indicator variable

which examines if a solution has violated from the feasible

range 0 ≤ [G]N×m ≤ 1 and is defined by

ξ
′αi

t,k =

{

1, if
(

q̂αi

t,k > 1
)

or
(

q̂αi

t,k < 0
)

0, otherwise
(15)

To ensure that a quantile with a higher ratio encapsulates the

one with a lower ratio, ξ
′′αi

t,k as defined in (16) is added to the

objective function which checks if a violation has happened.

ξ
′′αi

t,k =

{

1, if (αi > αm) and
(

q̂αi

t,k < q̂αm

t,k

)

0, otherwise
(16)

In order to keep the values of three terms of the ob-

jective function in a roughly similar range, firstly γ1, γ2
and γ3 are set to 1 and the problem is solved. Sec-

ondly, the calculated values for c2 = −1
NTm

NT
∑

t=1

m
∑

i=1

ξ
′αi

t,k and

c3 = −1
NTm

NT
∑

t=1

m
∑

i=1

ξ
′′αi

t,k are compared with those for c1 =

−1
NTm

NT
∑

t=1

m
∑

i=1

(ξαi

t,k − αi)(yt+k|t − q̂αi

t,k). Then, γ1 is kept equal

to 1 and γj (j = 2, 3) is set to 1/aj where aj = cj/c1 (j = 2, 3).
An optimization algorithm is developed and customized to

optimize the proposed objective function. In the modelled op-

timization algorithm, the optimization procedure is performed

through two updating methods. The first one is inspired by the

Particle Swarm Optimization (PSO) and is defined by

β1
χ = β

′1
χ +W × Ωχ + C1 × (Ωχ − P b

χ) + C2 × (Ωχ − P g)
(17)

where χ is the particles index; P g is the global best solution

found by the population and P b
χ is the best solution found by

the particle χ so far. β
′1
χ is the solution found by particle χ in

the previous iteration and β1
χ is the new solution for particle

χ following the updating method in (17). Ω is a repository

which keeps a portion of the best solutions found by the whole

population using two updating methods (17) and (18). Its size

has been considered two times the population size. W , C1 and

C2 are three random numbers between 0 and 1.

The second updating formula tries to increase diversity

among solutions and is defined by

β2
χ
= Ωn1

+ r1 × (Ωn2
− Ωn3

) + r2 × (Ωn4
− Ωn5

) (18)

where β2
χ

is the updated solution using (18) and r1 and r2 are

two random numbers between 0 and 1. Ωi (i = 1, ..., 5) are

five randomly selected members from the repository.

For this specific optimization problem, if instead of search-

ing within the repository, one searches the unconstrained

search space; as the number of iterations increases, the number

of infeasible solutions increases. This happens due to the fact

that in this problem, the design variables are the output weight

of the ELM ([β]Ñ×m ) while the constraints are on the output

of the ELM ([G]N×m ) as the quantiles of PV generations.

There is no straightforward method to limit the search space

of [β]Ñ×m based on the [G] limitations.

We developed the above optimization algorithm and called it

Repository-based PSO or RPSO, because several optimization

functions in R programming and Matlab failed to provide

satisfactory results for the problem formulated in this paper.
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We tried “constrOptim”, “optim” and “optimx” and “GenSA”

in R and “fmincon”, “fminunc” and “simulannealbnd” in

Matlab. The mentioned methods resulted in long simulation

time, trapping in local optima or infeasible solutions.

C. Optimization Procedure

The optimization procedure can be described as follows:

Step 1) To initialize the optimal forecast density model, a set

of training samples is defined as {(xt,j , gt+k|t,j)}
NT

j=1 where

gt+k|t,j is composed of a set of m quantiles as

gt+k|t,j = {q̂α1

t+k|t,j , . . . , q̂
αi

t+k|t,j , . . . , q̂
αm

t+k|t,j} (19)

for j = 1, . . . , NT , and

q̂αi

t+k|t,j = (αi + round(αi))yt+k (20)

where round(αi) is a function which rounds αi to the nearest

integer (0 or 1). Other forms of initialization could be seen as

relevant, like using the climatology method.

Initial values of β are computed by following (13). The

subsequent optimization phase then explores the search space

to find better values for β, i.e., yielding a set of quantile

forecasts with a better skill score value.

Step 2) Initialize the population by randomly generating NP

particles around the initial β.

Step 3) Once the NP output weights β are positioned using

the proposed optimisation approach in subsection IV-B, their

corresponding estimated quantiles and fitness values can be

calculated according to (10) and (14), respectively.

Step 4) The iterative optimization procedure is carried

out until the maximum number of iterations is reached or

the convergence criterion is met. At each iteration, for each

potential solution {βp}
Np

p=1, the outputs of ELM are calculated

by (10) and the corresponding objective function is computed

using (14).

Step 5) The final β is retained, and then used to generate

predictive densities out of the samples.

V. BENCHMARK METHODS
A. HIA

HIA is formulated in [16] to directly find prediction inter-

vals. Prediction intervals with associated confidence levels are

estimated through an optimization procedure when the ELM

serves as the regression model. The objective function of the

optimization approach takes care of coverage and sharpness of

intervals only, regardless of the quality of quantile forecasts.

In HIA, calibration of intervals is evaluated by

A1−γi

t = P̂C
1−γi

t − (1− γi) (21)

where P̂C
1−γi

t denotes the proportion of the observations

lying within the interval with nominal coverage 1 − γi. The

objective function is defined as

minF =

m′

∑

i=1

|A1−γi

t |+|S1−γi

t | (22)

where S1−γi

t measures the width of the intervals and m′ is

the number of intervals.

HIA is compared with the climatology, constant, persis-

tence, exponential smoothing method (ESM), and quantile

regression (QR) approaches and found to be superior for

datasets used in [16].

B. BELM

A bootstrap-based method is proposed in [17] to predict

uncertainties involved in prediction. ELM serves as the regres-

sion model and a number of ELMs are trained with resampled

training data. Two kinds of uncertainties are modelled, uncer-

tainty related to the noise in data σ2
ǫ and uncertainty in the

ELM model σ2
ŷ . These two uncertainties are assumed to be

Gaussian, independent of each other and dependent on the

inputs of the regression model. Total variance of prediction

for time t and xj denoted by σ2
t (xj) is calculated by

σ2
t (xj) = σ2

ŷ(xj) + σ2
ε(xj) (23)

BM training datasets are generated by resampling with

replacement from the original training dataset {(xj , gj)}
N
j=1

and a separate ELM is trained for each of the bootstrapped

datasets. With ŷl(xj) as the output of the lth bootstrapped

ELM, the mean of the distribution of the predictions is

calculated by

ŷ(xj) =
1

BM

BM
∑

l=1

ŷl(xj) (24)

σ2
ŷ is regarded as the variance of the outputs of BM

bootstrapped ELMs {ŷl(xj)}
BM

l=1 .

To estimate uncertainty related to noise of data, by replacing

the targets {gj}
N
j=1 with {(ŷ(xj) − gj)}

N
j=1, a transformed

dataset is designed as

Dε = {xj , (ŷ(xj)− gj)}
N
j=1 (25)

Resampling with replacements is carried out to generate

BN number of resampled datasets from Dε. The output of lth

bootstrapped ELM is denoted by r̂l(xj). For the transformed

training data, again a share of uncertainty is related to the

ELM model. Estimated variance of noise σ̂2
ε(xj) and variance

attached to the ELM model σ2
r̂(xj) can be calculated by

σ̂2
ε(xj) = r̂(xj) =

1

BN

BN
∑

l=1

r̂l(xj) (26)

σ2
r̂(xj) =

1

1−BN

BN
∑

l=1

(r̂l(xj)− r̂(xj)) (27)

The total variance of data noise can be obtained by

σ2
ε(xj) = σ̂2

ε(xj) + σ2
r̂(xj) (28)

Finally, the lower and upper bounds of interval predictions

are obtained by

q̂αt+k|t = ŷ(xj) + z1−α/2

√

σ2
t (xj) (29)

q̂
α
t+k|t = ŷ(xj)− z1−α/2

√

σ2
t (xj) (30)

with z1−α/2 as the critical value of standard Gaussian distri-

bution dependent on the coverage level of prediction interval

1− γ.
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VI. EMPIRICAL INVESTIGATION

Our empirical investigation aims at evaluating the feasibility

of our approach for the solar power application, while evalu-

ating it against a number of relevant benchmarks, namely the

persistence [16], climatology [28], HIA [16] and BELM [17].

Persistence is a benchmark that is difficult to outperform

when considering very short lead times, especially if issuing

point forecasts only [29]. Climatology is the most widely

used benchmark in probabilistic forecasting for weather and

weather-related processes. It is not a dynamic forecast since

it ignores recent power values. It is based on all available

power measurements, though not making any distributional as-

sumption (like Gaussian in the above) for predictive densities.

HIA [16] and BELM [17] are also implemented as state-of-

the-art methods to verify the comparative performance of the

proposed method.

A. ELM Tuning

For our ELM-based predictive densities, three case studies

are considered:

Case 1: Focus is given to Site A and the lead time is

of 10 minutes ahead. The predictors for this case

are past solar power observations up to lag n time

intervals, clear sky solar irradiance [30], [31], lag

values for air temperature, wind speed, humidity, and

solar insolation. Therefore, in this case the number

of predictors is n+ 5. Air temperature, wind speed,

humidity are measured by Vaisala WXT520 Weather

Transmitter and solar irradiance by Kipp & Zonen

CMP11. The optimal value for n is determined using

10-fold cross validation and forecasts frequency and

resolution is of one minute.

Case 2: Focus is given to Site B, while the model relies

on past solar power observations up to lag n time

intervals, with the same setup as for Case 1.

Case 3: Focus is given to Site A except that the lead time

of one hour is considered.

For all forecasting approaches, the relevant training window

sizes n for the proposed method, np for the persistence and

nc for the climatology are between 10 and 120 time steps

(minutes), with 10-step increments. As an outcome of the

cross-validation procedure, n in Cases 1 and 2 is chosen to

be 10 and for Case 3, n = 30. Besides, nc is chosen equal to

30, while the best value found for np in Cases 1 and 2 is 60,

and finally 120 for Case 3. The population size and maximum

number of iterations for the optimization phase are set to 70

and 60 respectively and γ2 and γ3 are set to one-tenth of γ1.

The pattern of PV generation varies significantly daily and

seasonally. In order to assess the effectiveness and applicability

of the proposed method in an computationally efficient manner

and present results rationally, the dataset for each year is

divided into quarters or so-called seasons. For Case 1 and

Case 3, the definition of seasons in Southern hemisphere is

used and for Case 2, the Northern hemisphere seasons are

considered. For each season, a separate model is trained by

using the archived data of the previous year for the same

season. It should be noted that the diurnal hours are as

described in Section II and the night-time hours are ex-

cluded in the study. For example, in Case 1 approximately

3 (months) × 30 (days) × 840 (5 am to 7 pm) = 75, 600

time instances are taken into account for each season. All PV

generation data is normalized by the nominal capacity of their

respective sites.

The simulation results for two forecast horizons, 10-minute

(Cases 1 and 2) and 1-hour (Case 3) lead-times are analysed.

The 10-minute look-ahead time is one of the most important

forecast horizons due to its significant influence on imbalances

in power systems. Moreover, the 1-hour lead time forecast

has a notable role to play in several operation problems and

PV power trading. We have performed one-minute forecast

to ensure the applicability and effectiveness of the method

for applications which require forecasts with high frequency

and time resolution. System operators can deploy the proposed

methodologies with their most preferred forecast frequency for

their specific applications.

B. Analysis of Forecast Error Distributions

To obtain the empirical PDF of the forecast errors, they

are considered conditional on their corresponding predicted

values. In principle, like for wind power, the conditional mean

(i.e., the point forecasts) is expected to be the most important

variable conditioning the prediction intervals or conditional

PDFs [32].

The deterministic ELM trained with quadratic criterion is

used to generate forecast time series. The data is paired as

[forecast, error] where errors εt+k|t for a given time and lead

time are calculated as

εt+k|t = yt+k − ŷt+k|t (31)

with ŷt+k|t the PV power forecast for lead time t+k and yt+k

the corresponding observation.

The pairs are then sorted by their predicted values and di-

vided into 20 bins with 0.05 pu width each. Figs. 2 and 3 show

kernel density estimates of forecast errors in all 20 bins for

the predicted power values in Case 1 and Case 2 respectively.

It is clear that PV forecast errors cannot be assumed to be

Gaussian, Beta or following common parametric distributions.

The same experiment was conducted for forecast errors for the

persistence benchmark, yielding similar conclusions. Without

using additional explanatory variables, e.g., from sky imaging,

it is unlikely that these distributions could look much different.

Fig. 4 illustrates the overall kernel density of bins altogether

versus fitted Normal distribution to the same data in Case

1 and Case 2 respectively. In the same figure, empirical

CDF as well as fitted Normal CDF to the all forecasted

errors are shown. From the figure, it is obvious that the

overall distribution of the errors is not Normal. To support

this argument, One-sample Kolmogorov-Smirnov (KS) test is

conducted. Null hypothesis is defined as “the forecasted errors

come from a Normal distribution” where mean and standard

deviation of that distribution are calculated by fitting a normal

distribution to the data. For both Case 1 and Case 2, KS

test rejects the null hypothesis at the 5% significance level.

The test repeated for t-location-scale and Logistic distributions

and again KS test rejects the null hypothesis. Rayleigh, Beta,

Gamma and Weibull distributions are ignored as they support

only positive values. KS test also is conducted for each of

the 40 bins illustrated in Figs. 2 and 3 with null hypotheses

explained above. In all cases, the hypothesis is rejected.

The solar power generation process is nonlinear and

bounded between zero and nominal capacity. Furthermore,
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Fig. 2. Kernel smoothing density estimate of distribution of errors in forecasted values, each bin defines a range for point predictions of solar power values,
for which all forecast errors are collected to illustrate their conditional empirical distributions (Case 1)
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Fig. 3. Kernel smoothing density estimate of distribution of errors in forecasted values, each bin defines a range for point predictions of solar power values,
for which all forecast errors are collected to illustrate their conditional empirical distributions (Case 2)
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its upper bound is actually given by the clear sky model for

each and every time (for instance at night, the upper bound is

zero). Similar to the case of wind power, this very nature of

the process leads to the observed characteristics of the PDFs.

When predicting power close to the upper bound, the potential

realization can only get lower (hence a long lower tail), and

when predicting close to zero, the power output can only

get higher (hence a long upper tail). Besides, the bimodality

is due to cloud passages, that can be regularly missed by

the forecasting approach. When predicting, the method could

inform that there are two “most probable states” for future

power generation: one if no cloud is coming, and another one

if cloud is coming. The presence of this bimodality depends on

the local climate, and how much cloud passages may influence

short-term variations in power production.

One could possibly envisage proposing mixtures of paramet-

ric distributions in the future, based on a hidden regime se-

quences. Here, emphasis is placed on obtaining highly-skilled

nonparametric predictive distributions that accommodate these

peculiar characteristics.

C. Nonparametric Quantile Forecast Results

To describe predictive densities, 18 quantiles with nominal

levels from 0.05 to 0.95, at increments of 0.05, except for the

median (0.5), are issued. These quantiles form a set of 9 central

prediction intervals, with nominal coverage rates from 10 to
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Fig. 5. Predictive densities as a set of prediction intervals for five successive days in January 2013 (Case 1)
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Fig. 6. Predictive densities as a set of prediction intervals for five successive days in August 2013 (Case 2)
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Fig. 7. Predictive densities as a set of prediction intervals for two successive
days in January 2013 (Case 3)

90%. All quantiles in this study are censored such that PV

generation is bounded between zero and the nominal capacity

of PV at the respective sites.

It is to be noted that the most important attributes of

good probabilistic forecasts are reliability and sharpness. The

reliability diagram gives information on how well the predicted

probabilities of an event correspond to their observed frequen-

cies. However, the probabilistic forecasts models cannot be

judged only on their reliability. Considering both sharpness

and reliability are required to benchmark methods. Those can

be offered by the discussed skill score in subsection III-A2

which examines both mentioned attributes. Both reliability and

sharpness should also be examined separately and visually via

reliability and sharpness diagrams as well as the quantiles’

plots. This helps to check if there is a reasonable balance

between these two attributes. Some methods tend to provide

too sharp quantiles that may result in good skill scores but if

the reliability is too low, the efficiency is questionable.

Figs. 5, 6 and 7 depict example episodes with probabilistic

forecasts generated for Cases 1, 2 and 3, respectively. They

cover five successive days in Cases 1, 2 and two days

(the same last two days shown in Fig. 5) in Cases 3 to

provide a view of the high diurnal diversity in PV generation

patterns. These plots illustrate how the proposed forecasting

approach reacts to the high intermittency and variability in
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Fig. 8. BELM predictive densities as a set of prediction intervals for one day
in March 2013 (Case 3)

PV generation for different days. At first sight, the coverage

of the prediction intervals appears reasonable. Besides, these

intervals are not symmetric around the point forecasts. This

is to be expected since point predictions correspond to the

mean value of the distributions whereas prediction intervals

are centered on the median.

Scores, maximum absolute deviation from nominal pro-

portion, and the sum of the absolute deviations for all 18

quantiles are given in Tables I, II and III for Cases 1, 2

and 3 respectively. From the tables, the persistence and the

BELM quantiles show acceptable performance in terms of

skill score but they have very low reliability. The maximum

deviations from perfect reliability using the BELM can be as

high as 20%. This undermines its efficiency and reliability in

practical applications. On the other hand, climatology provides

the worst overall performance. This is of course reasonable

since climatology is an unconditional forecast and ignores the

heteroscedasticity of PV generation series. The HIA method

also presents poor performance in terms of both reliability and

sharpness. The poorly calibrated quantiles given by the HIA

are the consequence of the evaluation criteria defined for this

method in which only the calibration of intervals is taken into

account and the quality of quantiles is neglected. The BELM

method tends to provide very narrow and sharp quantiles

which result in good skill scores. However, there should be
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TABLE I
SCORES, MAXIMUM AND SUM OF COVERAGE DEVIATION OF ESTIMATED QUANTILES GIVEN BY DIFFERENT METHODS IN PERCENT FORM (%), Case 1

Case 1
Proposed Method Climatology Persistence HIA BELM

Score Max Sum Score Max Sum Score Max Sum Score Max Sum Score Max Sum

Spring 2.92 4.52 28.71 4.63 10.47 75.87 2.96 6.77 57.07 4.51 10.23 82.41 2.34 19.88 127.55

Summer 3.30 5.99 35.81 5 4.82 36.8 3.63 8.8 53.71 4.21 8.43 61.21 3.31 6.21 61.51

Fall 3.12 3.74 26.94 3.79 11.08 93.34 3.67 9.92 79.48 4.35 9.54 67.54 2.78 13.77 111.46

Winter 2.10 3.44 30.98 2.67 9.26 95.01 2.23 8.38 49.81 2.91 11.21 75.43 1.53 19.81 182.82

TABLE II
SCORES, MAXIMUM AND SUM OF COVERAGE DEVIATION OF QUANTILES GIVEN BY DIFFERENT METHODS IN PERCENT FORM (%), Case 2

Case 2
Proposed Method Climatology Persistence HIA BELM

Score Max Sum Score Max Sum Score Max Sum Score Max Sum Score Max Sum

Spring 2.39 3.71 14.22 4.7 4.62 36.49 2.66 10.05 85.79 2.97 9.18 82.67 2.98 13.81 152.23

Summer 2.41 3.80 22.10 4.6 6.60 50.93 2.6 10.23 66.98 3.45 7.52 63.45 2.62 8.93 79.93

Fall 2.78 8.00 56.93 4.9 4.77 57.08 3.13 10.17 66.13 3.21 6.33 69.52 2.53 9.71 88.44

Winter 2.51 5.36 41.03 4.68 13.76 167.6 3.23 9.87 82.67 3.15 8.42 78.43 2.48 13.03 113.68

a reasonable balance between sharpness and calibration. By

looking at large deviations from the nominal proportions of

the BELM quantiles, it can be concluded that the BELM gives

more weight to sharpness which leads to unreliable quantiles.

Overly narrow quantiles works in case of clear sky when

no significant uncertainty is present and PV generation is

predictable with good accuracy. However, they fail to cover

most of the ramp ups and downs in cloudy days. This can

be checked in Fig. 8 where BELM quantiles for the first

day depicted in Fig. 7 are illustrated. The rational behind

too narrow prediction intervals given by BELM is related to

its formulation where the distribution of the uncertainty is

assumed to be Gaussian. However, according to investigation

discussed in subsection VI-B, for the case of PV generations,

forecast errors are not distributed Gaussian. The variances

among the output of different sets of bootstrapped ELMs

are small and cannot represent the level of uncertainty in

the measurements. Looking at Fig. 8, the centres of the

prediction intervals are very close to the point predictions.

As the prediction intervals according to (30) are centered on

the average of the outputs of the bootstrapped ELMs, it can

be concluded that the averages of forecasts by bootstrapped

ELMs are very close to the point forecasts. It is to be noted

that point predictions are generated using ELM [33] when the

original dataset is treated as the input.

To get a better understanding of the sharpness of quantile

forecasts generated by the various methods discussed, Fig.

10 is provided. Here, sharpness is examined by assessing the

average width of central prediction intervals regardless of their

similarity to the measurements. For each interval prediction,

the distance between its two boundaries are calculated for

each time and then the obtained values are averaged over the

evaluation dataset. In Fig. 10, the nominal coverage rates of

the intervals versus their average widths are depicted for four

seasons of 2013, Case 2. According to this figure, BELM

prediction intervals have the lowest width, followed by the

persistence intervals. Although for the intervals with the lower

coverage, the widths of the intervals given by the proposed

method are close to those given by BELM, for the coverage

rates of 70% and more, they are wider than those of BELM

intervals. The reason for that is the inclusion of the calibration

assessment in our proposed framework which leads to wider

intervals to meet the calibration requirements.

It should be noted that in all cases, the temporal resolution

of forecasting is one minute and the instantaneous measure-

ments, not the average values, are taken into account. Needless

to say, temporal averaging has smoothing effect on variability

and if pursued it is expected to result in sharper quantiles.

Reliability diagrams in Fig. 9, for four seasons of 2013 in

Case 1, allow for a more comprehensive evaluation of the

reliability of predictive densities. The red solid line represents

perfect reliability and reliability curves for the predictive

densities should be as close as possible to that of the ideal case.

Here, the proposed method yields satisfactory reliability, with

observed coverage close to the nominal proportions for most

nominal levels. The BELM tends to underestimate quantiles

with nominal levels below 50% while overestimating those

greater the median. Among all methods mentioned in Fig.

9, the BELM shows the worst reliability and this can be a

consequence of the normality assumption in this method as

well as high intermittent datasets used in this study. This shows

that the BELM is incapable of covering sharp ramp rates in

PV generations.

As can be in Fig. 9, the reliability performance for the

summer season is better than that of the other seasons. This

also can be noticed by comparing the sum of the deviations

from perfect reliability in Table I. Table IV provides point

forecasts accuracy by season for Case 1 in terms of root

mean score error (RMSE) and mean absolute error (MAE).

Because the same predictors are used for all seasons, the

lower RMSE can be interpreted as more predictability for

the corresponding season. Looking at the table, the summer

season has the lowest predictability among others which of

course is expected. Thunderstorms are a normal part of Bris-

bane weather condition during December to March (summer

season) and can be accompanied by hail and strong wind gusts,

making the weather very unstable. PV generation experiences

very intermittent and sharp ramps in the summer season. This

will force the climatology, BELM and persistence methods to

provide wider prediction intervals. The reason is that all the

mentioned methods work based on observed prediction errors

or PV power variations. When the ramps are sharper, these
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methods tend to widen the intervals to envelop the variations.

The low sharpness of the quantiles given by the mentioned

methods can also be concluded by comparing the scores in

Table I for different seasons. For the summer season, the worst

score is obtained. As skill scores represent both sharpness and

reliability, a better reliability with a worse skill score is an

evidence of lower sharpness or wider quantiles. For the winter,

when PV generation is more predictable, the best sharpness

and the lowest reliability are obtained.

Our approach makes a compromise between sharpness and

reliability, permitting us to obtain the best or close to best score

values while maintaining reliability in an acceptable level.

Analysing Tables I-III for Case 1, improvements with respect

to the persistence benchmark are within 4-14%. Compared

to the climatology, improvements reach 53%. Similarly from

Table II, improvements with respect to the persistence range

between 7 and 22% depending on the season of the year.

The best improvements obtained by comparing against the

climatology are up to 40%. Comparing the proposed method

with the BELM, it is outperformed by the BELM for a couple

of seasons, however, the deviations of the BELM quantiles are

too high which undermine their reliabilities. Poorly reliable

quantiles can cause systematic biases in decision making

process.

Complementing our previous discussion on reliability as-

sessment, the results in the various tables confirm the sub-

stantially better calibration of our approach. As an example,

in Spring and for Case 2, the sum of deviations from the

nominal levels for our approach is one-tenth of that for the

BELM benchmark. The ratio is one-fifth in Fall for Case 1

and one-third in Summer for Case 3.

As some of the operational problems such as state estima-

tion requires quantiles with high coverages [34], additional

tests were conducted to evaluate the capability of both persis-

tence benchmark and our approach to generate quantiles with

99.5%, 99% and 97.5% proportions for Case 2. Similarly to

less extreme quantiles, it was noticed that our approach yielded

score values improvements of 67%, 53% and 47%, for nominal

levels of 99.5%, 99% and 97.5% respectively.

In order to investigate the performance of the methodology

for times close to sunset, for Case 2, we performed point

prediction for data values between 6:05 pm to 7:05 pm using

ELM methods. We used all data for 2012 as training data and

all for 2013 as a test set. The yearly RMSE and MAE are

found to be 2.6% and 1.6% respectively. Then, we forecasted

quantiles for the same data using the proposed framework.

Skill score, maximum deviation of the quantiles’ coverage

from perfect reliability and sum of the deviations for all 18

quantiles are calculated as 0.9%, 0.42% and 3.7% respectively

and are much better than those calculated for the hours closer

to midday (Table II).

It should be noted that the proposed probabilistic forecast is

based on an offline training algorithm and it uses the historical

data to train the model and only the values for predictors are

updated in real-time. In this paper the forecasting model is

updated seasonally as it results the best performance for the

three case studies, however, the applicability of the idea is

not limited to the updating period used here. Depending on

statistical behaviour of the PV generation and methodological

variables in a specific region, the updating periods as well

as the selection of the data used as predictors may change.

Once the model is trained, it is ready to be used for online

or real-time prediction. To predict m number of quantiles

for each time instance in the future, only one simple matrix

multiplication given in (10) is required. The multiplication can

be executed in a small fraction of a second which makes the

proposed method suitable for online and real-time applications.

D. Normalization with respect to Clear Sky Power

In days with clear sky all day long, PV generations have

a more predictable pattern. Therefore, one may expect that

normalization of PV power with respect to the estimated

clear sky power potentially can improve predictability PV

generation. In [3], 85% quantile forecast of PV power is

considered as the estimated clear sky power. Measurements

are then normalized with respect to the clear sky power. The

approach has improved the forecast accuracy of the point

forecasts in terms of RMSE. In order to check the performance

of the normalization with respect to the clear sky power, here,

three definitions of clear sky power are provided. Those are

85% and 95% quantile forecasts and physical estimation of

the clear sky power. For the later one, firstly using geographic

coordinate data and elevation from the sea level, clear sky solar

irradiance is calculated according to the model given in [31].

Then, clear sky solar irradiance is converted to the PV power

according to the formulation given in [35]. We found physical

estimation of the non-overcast power and 85% quantile closer

to the measurements in days with clear sky all day. Therefore,

investigations are carried out while considering these two as

the clear sky power. In Fig. 11, normalized PV values with

respect to the 85% quantile as well as physical clear sky power

for 6 randomly selected days from the dataset for Case 2 are

shown. As can be seen in the figure, some of the measurements

in partially cloudy days exceed both the clear sky power and

85% quantile. The same problem is reported in [3]. Reflections

from the clouds and varying level of water vapor in atmosphere

are the main reasons for this phenomenon. Looking at the

figure, the normalization can help to improve stationarity in

days with clear sky and hours closer to noon time.

To verify the extent to which normalization of PV power

measurements can improve the performance of probabilistic

forecasts, quantile forecasts for normalized time series are

generated by deploying the proposed method for Case 2.

Based on the investigations carried out, the normalization

approach results in no significant improvement in probabilistic

forecasting according to the specific framework proposed in

this paper. The following points can explain the results of the

empirical investigations.

• The motivation behind the proposal of normalization of

PV power with respect to the clear sky solar power in [3]

is that in that paper classical time series methods are

used for prediction. Classical time series methods require

stationary time series as their inputs. Normalization can

potentially create more stationary time series. However,

there is no stationarity restriction for neural network

based regression methods, such as ELM.

• Because normalization with respect to the low clear sky

values for times close to sunrise and sunset leads to very

high or infinity errors, according to [3], the daytimes with

clear sky power lower than 20% of the maximum clear
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TABLE III
SCORES, MAXIMUM AND SUM OF COVERAGE DEVIATION OF ESTIMATED QUANTILES IN PERCENT FORM (%), Case 3

Case 3
Proposed Method Climatology Persistence HIA BELM

Score Max Sum Score Max Sum Score Max Sum Score Max Sum Score Max Sum

Spring 3.52 5.32 48.51 4.63 10.47 75.87 5.85 6.04 48.53 4.34 8.24 70.43 3.23 13.83 157.48

Summer 4.24 5.28 41.25 5.00 4.82 36.8 5.77 6.21 36.58 4.92 11.86 84.91 4.40 13.81 127.07

Fall 3.48 4.41 37.21 3.79 11.08 93.34 5.91 12.21 88.28 4.39 8.32 69.47 3.62 11.13 92.61

Winter 2.23 4.32 23.5 2.67 9.26 95.01 4.58 14.72 92.95 3.42 7.53 61.42 2.15 11.33 98.71

Fig. 9. Reliability diagrams for 18 quantiles with 0.05 increasing nominal proportion, Case 1 (a) Spring, (b) Summer, (c) Fall, (d) Winter

Fig. 10. Reliability diagrams for 18 quantiles with 0.05 increasing nominal proportion, Case 1 (a) Spring, (b) Summer, (c) Fall, (d) Winter

TABLE IV
POINT FORECASTS ACCURACY BY SEASON, Case 1

Season\accuracy RMSE MAE

Spring 13.26% 8.08%

Summer 16.43% 10.73%

Fall 13.85% 8.48%

Winter 7.67% 4.16%

sky power for the same day should be excluded from the

dataset. This results in exclusion of 15% to 30% of the

daytime period considered in this study (5 am to 7 pm).

Therefore, normalization is not a pragmatic approach to

improve forecasts for times close to sunrise and sunset.

• In [3], 15-min and 1-hour averaged values are used.

In this paper, the resolution of data is one minute and

both databases are from locations where most of days

of year are cloudy or partially cloudy. With 1-minute

instantaneous values, cloud passages are the main reason

of intermittency. As the movement of clouds is random,

for partially cloudy days, the clear sky power values can

no longer be representative of real measurements.

VII. CONCLUSION

Most of the previous works on PV forecasting focused

on point prediction only, hence researching on conditional

expectation of PV power output. We propose a systematic

framework for generating probabilistic forecasts for PV power

generation. The empirical investigations show that PV power

forecast errors do not follow common distributions like Gaus-

sian, Beta, etc. Therefore, to avoid restrictive assumptions on

the shape of the forecast densities, we propose a nonparametric

density forecasting method based on ELM as a regression

tool, trained with an appropriate criterion. The proposed non-

parametric method is successfully applied on two PV power

datasets with one-minute resolution and highly fluctuating

patterns. The results show that the proposed method is able

to efficiently provide reliable and sharp predictive densities

for the very short-term (10-minute and one-hour lead times).

Part of our future works will focus on demonstrating the

functionality, practicability, and value of such probabilistic

solar power forecasts in operational problems. Besides, The

approach could be extended to account for Numerical Weather

Prediction (NWP) as input when looking at further lead times,

say, more than two hours ahead.
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