
VeryVote: A Voter Verifiable Code Voting

System�

Rui Joaquim1, Carlos Ribeiro2, and Paulo Ferreira2

1 ISEL, Polytechnic Institute of Lisbon
Rua Conselheiro Emı́dio Navarro 1, 1959-007 Lisboa, Portugal

rjoaquim@cc.isel.ipl.pt
2 INESC-ID, Intituto Superior Técnico

Rua Alves Redol 9 - 6 andar, 1000-029 Lisboa, Portugal
carlos.ribeiro@ist.utl.pt, paulo.ferreira@inesc-id.pt

Abstract. Code voting is a technique used to address the secure plat-
form problem of remote voting. A code voting system consists in secretly
sending, e.g. by mail, code sheets to voters that map their choices to en-
try codes in their ballot. While voting, the voter uses the code sheet to
know what code to enter in order to vote for a particular candidate. In
effect, the voter does the vote encryption and, since no malicious software
on the PC has access to the code sheet it is not able to change the voter’s
intention. However, without compromising the voter’s privacy, the vote
codes are not enough to prove that the vote is recorded and counted as
cast by the election server.

We present a voter verifiable code voting solution which, without re-
vealing the voter’s vote, allows the voter to verify, at the end of the
election, that her vote was cast and counted as intended by just per-
forming the match of a few small strings. Moreover, w.r.t. a general code
voting system, our solution comes with only a minor change in the voting
interaction.

Keywords: Code voting, Internet voting, election integrity.

1 Introduction

The secure platform problem [1] of remote voting, i.e. the use of unreliable/not
trustworthy client platforms such as the voter’s computer and the Internet in-
frastructure connecting it to the election server, is one of the major problems
that prevents the spread of electronic remote elections, e.g. Internet Voting.

Code voting [2, 3] is a technique that addresses the secure platform problem
establishing a secure connection between the voter and the election server by
means of codes printed in a code sheet previously and anonymously delivered to
the voter. As explained in Sec. 2.1, this general approach only confirms that the

� This work was supported by the Portuguese Foundation for Science and Technology
grants SFRH/BD/47786/2008 and PTDC/EIA/65588/2006.

P.Y.A. Ryan and B. Schoenmakers (Eds.): VOTE-ID 2009, LNCS 5767, pp. 106–121, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



VeryVote: A Voter Verifiable Code Voting System 107

election server receives the right vote code. It does not prove that the candidate
selected by the vote code really receives the voter’s vote.

However, to guarantee the election integrity a fully (end-to-end) verifiable
election system is needed. Therefore, we need to verify that the votes are cast-as-
intended and counted-as-cast [4]. Cast-as-intended means that the recorded vote
represents the voter’s intention, and counted-as-cast means that tally correctly
reflects the sum of the recorded votes. In a general code voting system we have
none of these properties.

VeryVote addresses the secure platform problem in an end-to-end verifiable
way. We achieve this end-to-end verifiability by adapting the MarkPledge cryp-
tographic receipts technique [5] to a general code voting system. In the process
of making a code voting system end-to-end verifiable we have compromised some
of the voter’s privacy to the election server, as described in Sec. 6.3. On the other
hand, we provide verification mechanisms that allow an universal verification of
the tally and also a simple voter verification that her vote was recorded as cast,
while still protecting the voter’s privacy from the general public. Additionally,
our solution also simplifies the code sheet creation and distribution processes.

In the next section we present the related work, followed by and overview
of VeryVote on Sec. 3. Then, in Sec. 4 we present the building blocks of our
vote protocol and on Sec. 5 we describe the vote protocol. Finally, we evaluate
VeryVote in Sec. 6 and conclude in Sec. 7.

2 Related Work

In this section we first present an overview of code voting systems. Then, we
present the MarkPledge technique that we have adapted in order to provide
the cast-as-intended and counted-as-cast properties to a generic code voting
protocol.

2.1 Code Voting Systems

The first code voting implementation we are aware of was proposed in 2001 by
Chaum [2], the SureVote system. Since then the code voting approach was used in
the UK on some pilots of Internet, SMS and telephone voting [6,7]. In [8,9,10] you
can find an analysis and some solution proposals to the vote selling problematic
in a general code voting system. Oppliger and Schwenk present in [11] a proposal
to improve the user friendliness of code voting by using CAPTCHAs. A different
approach was used in [12], where the code sheets are generated by the voter with
the help of a secure token, which in the voting phase translates the vote code to
an encrypted vote in order to provide a verifiable vote tally. On the other hand,
this last approach requires trust in the secure token, which can undetectably
manipulate the voter’s vote.

Generally, a code voting system addresses the insecure platform problem of
remote voting by means of a vote protocol based on a code sheet. This approach
consists in secretly sending, e.g. by mail, code sheets to voters that map their



108 R. Joaquim, C. Ribeiro, and P. Ferreira

choices to entry codes in their ballot. While voting, the voter uses the code
sheet to know what code to enter in order to vote for a particular candidate. In
response, the election server sends back to the voter a confirmation code, which is
associated with the vote code in the voter’s code sheet. If the confirmation code is
right the voter knows that her vote code has reached the election server. However,
a correct confirmation code does not imply the use of the voter’s selection by
the election server when computing the election tally.

2.2 MarkPledge Cryptographic Receipts

The goal of the Andrew Neff’s MarkPledge cryptographic receipts [5] is to prove
that a particular vote encryption is an encryption of a vote for the selected
candidate. The proof is based on a special form of vote encryption, formally
described in [5]. For sake of simplicity we present here a more informal description
based on [13, 4].

The MarkPledge technique starts by a special encoding of each candidate in
the ballot. A vote is formed by a sequence of numbers, one for each voting option.
Each number is a special encoding of a 0 or a 1: 1 for the selected candidate
and 0 for every other candidate. In consequence of this special vote encoding it
is possible to encrypt the vote and then verify the encryption without disclosing
the encrypted vote.

Follows a more detailed explanation of the encoding, encryption and verifica-
tion of a MarkPledge vote.

Special Bit Encoding and Encryption – The encrypted vote is formed by
a special bit encryption for each candidate, which we denote BitEnc. For the
selected candidate it is encrypted a 1, BitEnc(1), and for all other candidates
it is encrypted a 0, BitEnc(0).

Consider α as the security parameter that defines the soundness of the Mark-
Pledge technique as 1 − 1

2α . Then, the BitEnc of a bit b, BitEnc(b), is an
α-length sequence of Ballot Mark Pairs (BMPs). Each BMP is composed of two
independent El Gamal ciphertexts (BMP = [li, ri]). Each ciphertext that forms
a BMP is either an encryption of a 1 (Enc(1)) or a 0 (Enc(0)).1 The BitEnc(b)
is defined as follows:

– If b = 1, then all BMPs are of the form [Enc(0), Enc(0)] or [Enc(1), Enc(1)].
– If b = 0, then all BMPs are of the form [Enc(0), Enc(1)] or [Enc(1), Enc(0)].

A vote verification is based on the proof that the particular BitEnc(b) of the
selected candidate is a BitEnc(1). Due to the special type of encryption used it
is possible to prove in zero knowledge and with soundness 1− 1

2α that a particular
encryption c = BitEnc(1). We describe a variation to the original verification
scheme [13, 5], as it is more suitable for our CodeVoting adaptation goals. The
1 Recall that in normal El Gamal encryption [14] the value 0 is not part of the plain-

text domain. Therefore, what we really have are two values v0, v1, chosen from the
plaintext domain, which respectively represent value 0 and value 1.



VeryVote: A Voter Verifiable Code Voting System 109

verification process of this variation is based on a random challenge (chal) to
BitEnc(b). Follows the details of the verification steps between a Prover P and
a Verifier V :

1. V sends commit(chal) to P , e.g. hash(chal).
At this point it is necessary to commit to chal in order to prevent an easy
vote selling/coercion attack. On the other hand, it is necessary to keep the
chal secret to prevent the construction of a fake BitEnc(1).

2. P sends c = BitEnc(b) and a bit string (ChosenString) to V , where bit i
of ChosenString corresponds to the bit encrypted within both elements of
BMPi. Therefore, ChosenString is α bits long. Recall that only a BitEnc(1)
is composed of BMPs encoding two ones or two zeros.

3. V sends an α bits long random challenge (chal) to P , which must match
commit(chal).

4. For each bit i of chal, P reveals the randomness2 used for BMPi element
li if chali = 0, or for element ri if chali = 1. This reveals OpenBitEnc(b),
an α-length bit string that results from the concatenation of the decrypted
bits, one for each BMP within c.

5. V checks that this string matches ChosenString.

The soundness of this protocol derives from the randomness of chal, which en-
sures that, if b = 0, then P must guess the single α-length bit string that will
be revealed by chal.

The proof is zero knowledge since V “cannot” use the results to prove to a
third party that c = BitEnc(1). V can only reveal one (already chosen) element
of each BMP, i.e. she cannot open the BitEnc for any other value of chal.
Therefore, V has only a success chance of 1

2α in an attempt to prove to a third
party that c = BitEnc(1), i.e. the third party must choose exactly the same
challenge chosen by V .

Vote Encryption and Verification – The main idea of the vote encryption
and verification steps is quite simple: i) the Voting Machine (V M) creates an
encrypted ballot composed of a BitEnc(0) for all candidates except for the
chosen one, which will have a BitEnc(1), and ii) the voter runs the verification
protocol that will prove that there is a BitEnc(1) associated to the chosen
candidate.

We assume that the ballot is well formed, i.e. it contains only one BitEnc(1).
There are techniques to verify that the ballot is well formed but they are outside
the scope of this paper (e.g. Neff in [5] suggests the use of techniques presented
in [15, 16]).

The voter interaction protocol is thus:

1. Alice, our voter, enters her candidate choice (j) and the commit(chal).

2 Revealing the randomness allows for the ElGamal encryption reconstruction of the
BMP element, and thus for the verification of the encrypted value.



110 R. Joaquim, C. Ribeiro, and P. Ferreira

Fig. 1. MarkPledge vote encryption and verification. The vote encryption represents a
vote for candidate B (BitEnc(1)). The values inside the circles form the strings(i) and
correspond to the bits of the OpenBitEncs(bi), which are revealed accordingly with
the value of the challenge.

2. The V M outputs the encrypted vote and displays the ChosenString, which
matches the encrypted string for cj = BitEncj(bj), the bit encryption cor-
responding to Alice choice j. (c.f. lines B - BitEnc(1) and ChosenString in
Fig. 1).

3. Alice enters chal, which must match commit(chal).
4. The V M completes the proof that bj = 1, and uses the same chal to simulate

the same proof for all others bi, i.e. it uses chal to create a OpenBitEnc(bi)
for each i �= j.

As a result of this operation the V M outputs a vote receipt containing a
text string for each index/candidate (string(i)). The string(i) represent an
encoding of the α-length bit string that results from the OpenBitEnc(bi)
(in our example we use the original binary encoding).

5. Alice verifies that the ChosenString appears next to her candidate of choice,
i.e. it matches string(j). Additionally, Alice must verify that the text strings
present in the receipt match the encrypted vote, i.e. they match the corre-
sponding OpenBitEncs. However this process can be leveraged using a third
party organization that verifies the correctness of the vote encryption [13].

Note that, the receipt does not reveal which of string(i) was the real Chosen-
String displayed by the V M to Alice. Alice also cannot convincingly prove which
string is the real one.

It is also important to emphasize that the MarkPledge verification technique
only works if Alice does not reveal her chal prior to the V M commitment to
the encrypted vote. If V M knows the chal in advance it can freely manipulate
Alice’s vote. This vulnerability can be exploited by message reordering and social
engineering attacks [4].



VeryVote: A Voter Verifiable Code Voting System 111

Fig. 2. In step (1) the voter uses the vote code 38WN to vote for the candidate Bob.
Then, in step (2) the voter gets a MarkPledge receipt for her vote, therefore the vote
confirmation code (the ChosenString of BitEnc(1)) appears next to the candidate
Bob.

3 VeryVote Overview

As explained in Sec.2.1, the simple verification that the election server (ES)
replies with the right reply code is no proof that the ES will use the correspond-
ing candidate when performing the election tally. The reply code only serves to
prove that the right vote code has reached the ES and nothing else.

VeryVote uses a generic code voting interaction between the voter and the ES.
However, it also produces an encrypted vote (and a cryptographic vote receipt)
based on the received vote code. The vote encryption allows the publication of
the link between the encrypted votes and the voters who casted them.

The publication of the encrypted vote/voter association allows voters to verify
their votes using the cryptographic receipts produced by the ES. Additionally, a
cryptographic vote tallying protocol can be used to provide proofs that the tally
is computed correctly. The cryptographic vote encryption and tally verification
makes VeryVote end-to-end verifiable.

To provide the end-to-end verifiable property and to allow the correction of
any detected error, it is necessary for the ES to know who is casting the votes, c.f.
6.2. Therefore, the code sheet generation and delivery process can be significantly
simplified. Which means that, in opposition to a traditional code voting system,
in VeryVote the code sheet delivery is not anonymous, although it needs to be
secret, i.e. only known to the ES and the voter. Therefore, the ES creates the
code sheets, seals them, e.g. puts them inside a sealed envelop and/or adds a
scratch surface to the code sheet, and then sends the code sheets to each voter,
e.g. by mail. This procedure allows the ES to easily associate each code sheet
to a particular voter on election day.

The code sheet produced by the ES contains a vote code for each candidate
and one confirmation code that works similarly to the reply code in a traditional
code voting system. However, at the voting phase, the voter besides receiving
just the reply code, receives a MarkPledge cryptographic vote receipt with the
confirmation code associated with the selected candidate, cf. Fig. 2.

After the election end, there is a claiming period where a voter can verify that
her vote was recorded as casted. The check performed by the voter is simply a



112 R. Joaquim, C. Ribeiro, and P. Ferreira

match of her MarkPledge receipt with the one published by the ES. Neverthe-
less, the political parties and other third party organizations must verify the
correctness of the published receipts, c.f. Sec.2.2. By using this two step verifi-
cation of the MarkPledge technique it is possible to split the verification process
between the voter and some other organization. The voter performs the simple
verification step, leaving the more complex part of the verification to organiza-
tions with much more resources than an average voter.

During the claiming period, and if any error is detected in the verification
process, a voter should be allowed to invalidate her vote. We also suggest to
allow the revoking of the Internet vote at the voter’s wishes to mitigate two
problems with the VeryVote system: first, since VeryVote is an Internet voting
system the voter may not have the desired privacy while voting, and therefore
may have been exposed to some kind of coercion/vote selling; and second, the
voter may not have completely understood the voting process and therefore may
have doubts about the casted vote. Therefore, we argue that a secondary voting
channel should be available.3 The invalidation of the Internet vote is simple
because the encrypted votes are not anonymous.

After the claiming stage, any vote that was not invalidated is included in the
tally process, which is also cryptographically verifiable. Therefore, anyone can
assert on the validity of the tally.

4 Protocol Building Blocks

We use some well known constructions as building blocks of our vote protocol.
Therefore, and before entering into the details of our vote protocol, we present
a short description of the building blocks used.

Threshold encryption scheme – We need a threshold encryption scheme to
enable a vote and tally verification without compromising the voters’ privacy. In
a threshold encryption scheme the secret key s is shared among several author-
ities, the trustees T . To recover a message encrypted with the public key it is
required the cooperation of t (a configurable threshold) trustees.

Our protocol specification relies on the El Gamal encryption scheme [14].
More precisely, a variant described by Cramer et al. [16].

Mix Net – To provide an anonymous and verifiable tally we propose the use
of a mix net [18]. Namely, we propose the use of a verifiable re-encryption mix
net such as the one proposed by Neff in [19].

BitEnc Implementation – As in the original MarkPledge scheme [5], we use
the BitEnc construction based on El Gamal encryption (cf. section 2.2).

3 A possible solution to allow the voter to cast a new vote is the one used in Estonia
[17], where on election day any voter who casts a paper ballot automatically revokes
the Internet vote.



VeryVote: A Voter Verifiable Code Voting System 113

Public Bulletin Board – To enable public verification of the election’s in-
tegrity all non private data should be public, for which we use the usual public
bulletin board construction [13, 16]. All data in the bulletin board is authenti-
cated by means of digital signatures.

Shared Random Number Generation Protocol – In our protocol we need
a random number generation by a set of trustees T . We propose the use of a
simple two round protocol to generate the shared random number:

1. In the first step each trustee ti of T secretly generates a random number rti

and commits to it by publishing a signed hash of the random number.
2. After the commitment of all trustees, each trustee reveals its random number.

Then, all trustees verify the correctness of the commitments published in
the first step. If all commitments are correct, the shared random number is
computed by applying a bitwise exclusive or to all the random numbers rti

generated by the trustees.

5 Vote Protocol

In this section we specify the vote protocol. Here we explain in detail how to
securely generate a MarkPledge cryptographic vote receipt on top of a traditional
code voting solution.

5.1 Protocol Notation

V ,Vid - respectively the voter and the voter’s identifier.
CS - code sheet containing a vote code (vc) for each candidate and a vote

confirmation code (vcc) used to verify the MarkPledge receipt.
ES - election server. After the election end it works like a public bulletin board

publishing the encrypted votes, the final results, and all the verification data.
APP - vote client application running at the voter’s PC.
T - the trustees. The trustees can be representatives of political parties and/or

representatives of independent organizations.
Esk - election threshold shared private key.
Epk - election threshold generated public key.
{M}A - digital signature of message M with the private key of entity A. More

precisely, digital signature on the result of an hash function to message M .
A → B : M - message M sent from entity A to entity B.
A → B → C : M - message M sent from entity A to entity C using the capa-

bilities of entity B.
BitEnc(b)Epk

- the BitEnc construction for bit b using the election public key.
MPV enc - MarkPledge vote encryption composed by a BitEnc(1)Epk

for the
voter’s chosen candidate and BitEnc(0)Epk

encryptions for all other candi-
dates.

chal - challenge which determines the elements of BitEnc(b)Epk
to be open.



114 R. Joaquim, C. Ribeiro, and P. Ferreira

O(MPV enc, chal) - open MarkPledge vote encryption accordingly with the chal,
i.e. the MarkPledge receipt.

SO(MPV enc, chal) - the strings associated with each candidate that results from
opening MPV enc, i.e. the strings that represent the OpenBitEncs.

5.2 Election Setup

Some time before the election day the ES creates the code sheets, seals them,
e.g. using a special type of envelop or a scratch surface on the code sheet, and
sends them to each voter, e.g. by mail. The seal and delivery process must ensure
that the code sheet remains secret to anyone but the ES and the voter.

Also some time before the election day, the trustees T generate the threshold
election key pair. The key pair should be generated in a way that only the
cooperation of t trustees is able to decrypt a message encrypted with the election
public key.

The ES then uses the election public key to generate all the BitEncs(b)Epk

that will form the MarkPledge vote encryptions for all voters. Then, the ES
publishes all the generated BitEncs(b)Epk

and commits to them by means of a
digital signature. Being n the number of candidates, the ES generates for each
voter (n − 1) BitEnc(0)Epk

and one BitEnc(1)Epk
. The BitEnc(1)Epk

must
correspond to the vcc of the voter’s CS. Only the ES knows which BitEnc(b)Epk

is the BitEnc(1)Epk
.

Our protocol is independent of the authentication method used. Therefore,
we assume that sometime before the election day the voters receive their voting
credentials, e.g. a username/password or an electronic voter ID card able to
authenticate the voter.

Just before the election start, and after the ES commitment to all the
BitEncs(b)Epk

, the trustees create a shared random election value srev using
the shared random number generation protocol. The srev will be used during
the election to facilitate the creation of a random and unpredictable challenge
to the MarkPledge vote encryption. Therefore, it is crucial for the vote proto-
col security that the srev creation occurs only after the publication of the ES
commitment to the BitEncs(b).

5.3 Vote Procedure

The vote procedure starts when the V opens the APP . Then, the following takes
place:

1. V → APP → ES : Vid The V authenticates herself to the ES. For simplicity,
we only show a message containing Vid. However, in practice a message
containing a username/password would be exchanged or, in the case of strong
authentication by means of digital signatures, a strong mutual authentication
protocol should be used, e.g. the X.509 three-pass authentication.

2. V → APP → ES : vcf After a successful authentication, the voter votes by
looking into her CS and typing the vote code associated with her favorite
candidate vcf , which is then sent by the APP to the ES.



VeryVote: A Voter Verifiable Code Voting System 115

3. ES → APP : O(MPV enc, chal), {O(MPV enc, chal)}ES After receiving the
vote code selected by the voter vcf , the ES prepares a MarkPledge encryp-
tion (MPV enc) and the corresponding receipt (O(MPV enc, chal)):

(a) The ES builds a MPV enc with the previously committed BitEncs(b)Epk
.

The MPV enc is composed by the committed BitEnc(1)Epk
for the selected

candidate and a random selection of the committed BitEncs(0)Epk
for

each other candidate.
(b) To prove the correction of the vote encryption to the voter, the ES

then generates a random challenge to the MPV enc. The challenge chal
is simply the hash of the concatenation of the MPV enc with the srev.
Since the srev value was not known to the ES at the time of the CS
creation and distribution, this process of challenge generation results in
a kind of Fiat-Shamir heuristic [20] making possible a non interactive
proof of the MPV enc correction.

(c) Finally, the ES creates the MarkPledge receipt O(MPV enc, chal) by
opening the MPV enc accordingly with the generated chal.

The MarkPledge signed receipt is then sent to the APP .
4. APP → V : SO(MPV enc, chal) The APP then verifies the signature and

the correctness of the O(MPV enc, chal). If the verification is successful it
presents to the voter a vote receipt composed of the strings (OpenBitEncs
encodings) that result from O(MPV enc, chal). The voter then performs a
first receipt check and confirms that the vcc appears associated with the
selected candidate in the SO(MPV enc, chal), cf. Fig. 2.

The vote receipt can also be printed in order to facilitate a second, and
stronger, verification at the claiming stage.

5. (optional) APP → ES : {O(MPV enc, chal)}V If a strong authentication
mechanism is used to authenticate the voters, e.g. a digital signature per-
formed by an electronic voter ID card, then a last message validating the vote
is sent to the ES. This message consists in a signature on the MarkPledge
receipt.

5.4 Claiming Stage

When the election ends there is a small time period, that we call the claiming
stage, where a voter can check and revoke her vote.

Right after the election end the ES publishes all the generated O(MPV enc,
chal), the SO(MPV enc, chal) and the identification of the voter who “owns” that
vote. At this point anyone can verify the correctness of the O(MPV enc, chal)
by checking: i) the BitEncs(b) used in its construction, ii) the correctness of
the value of chal, and iii) the correctness of the SO(MPV enc, chal). Since this
validation process is somewhat complex we only assume that the political parties
and/or independent organizations perform this validation. Additionally, these
third party organizations should also verify that all the MPV enc are well-formed,
c.f. sec. 2.2.



116 R. Joaquim, C. Ribeiro, and P. Ferreira

If the SO(MPV enc, chal) is validated by a third party the voter only has to
check that the receipt matches the one published in her name. A match means
that with a (1 − 1

2α ) probability the encrypted vote represents the voter choice.

5.5 Tallying the Votes

Publishing the election’s tally is straightforward because the ES knows the exact
contents of each vote; however, to prove the correctness of the tally it is necessary
to perform some additional steps.

After the claiming stage all votes that were not revoked by the voters are
considered valid for the tally. Then, the validated votes go through a verifiable
mix-net protocol [21, 19]. At the end of the anonymization process, the trustees
decrypt and publish the votes in a shared and verifiable way [16]. The published
vote decryption allows the political parties and other interested entities to ver-
ify the correctness of the vote decryption. With the validated vote decryption
everyone can use the clear votes to perform/validate the tally.

Note that the mixing and decryption of the votes can not be performed over
the BitEnc(b) constructions of the encrypted vote. The reason why is the fol-
lowing: if the individual elements of the BitEnc(b) construction were decrypted,
even after mixing, it would be trivial to correlate a decrypted vote with the cor-
responding encrypted vote, therefore loosing all vote anonymity. To solve this
problem an additional standard El Gamal bit encryption for each BitEnc(b)
must be added to the MPV enc [22]. It is then proved that the each single stan-
dart bit encryption corresponds to the bit encrypted within the corresponding
BitEnc construction. Finally, the mixing and decryption processes take as in-
put these new bit encryptions instead of the BitEnc constructions, therefore
protecting the voter’s privacy. These new bit encryptions do not change the
voter interaction in any way. The validation of the new bit encryptions is part
of validation of the MPV enc well-formedness.

Note that, the reason we use a threshold shared election key pair instead of one
generated by the ES is that if the records of the CS creation are destroyed jointly
with the information of which BitEncs(b) are BitEncs(1) the votes become
secret even to the ES. The destruction of such data can be assured by physical
procedures under the supervision of the political parties. Therefore, at that stage
the privacy of the voters is in the hands of who has the election key, and that
is the reason why we suggest the use of a threshold election key shared among
several trustees. Nevertheless, we must point out that if such measures take place
it is also necessary to prevent subliminal channels in the randomness used by
the ES, i.e. kleptograhic attacks [23]. If there is simple a key pair generated by
the ES the tally procedure is as previously, only now the vote decryption step
is done by the ES instead of being done by the trustees.

6 Evaluation

In this section we show that VeryVote, besides addressing the uncontrolled client
platform problem of Internet voting, also gives strong overall election integrity



VeryVote: A Voter Verifiable Code Voting System 117

guarantees, while still protecting the voter’s privacy. We start by presenting the
assumptions used in our evaluation followed by the election integrity evaluation.
Finally, we present an analysis on the privacy guarantees of VeryVote.

6.1 Assumptions

We assume the following:

– The codes in the code sheets are randomly generated by the ES and secretly
delivered to the voters, i.e. only the voter and the ES know the codes in the
voter’s code sheet.

– No more than t − 1 of the trustees are dishonest.
– The cryptographic primitives and constructions used are secure and veri-

fiable: El Gamal threshold encryption, mix net and BitEnc constructions;
digital signatures and hash functions.

– The vote codes and the vote confirmation code are composed of respectively 4
and 6 alphanumeric symbols. We assume the use of 62 symbols, all uppercase
and lowercase letters and digits, which gives 624 (roughly 14.7 millions)
possible values for the vote codes and 626 (roughly 56.8 thousand millions)
possible values for the vote confirmation code.

– The voter has in her possession the printed vote receipt.
– The political parties and/or independent organizations verify the data pub-

lished by the ES.
– At the claiming stage the voter verifies her vote with the printed receipt.
– When the election ends the records of the CS creation and the information of

which BitEncs(b) are BitEncs(1) are physically destroyed or in alternative
we assume that the ES is trustworthy in what concerns the voters’ privacy.

6.2 Election Integrity

Election Integrity at the Uncontrolled Client Platform – In VeryVote the
APP running at the uncontrolled client platform has only a negligible chance to
manipulate the voter’s vote, i.e. it would need to guess a valid vote code different
from the one used by the voter. In an election with n candidates the chances
of that happening are (n − 1)/624. Only in this case the APP can change the
voters vote and produce a fake vote receipt that fools momentarily the voter,
i.e. the voter will easily detect the vote manipulation while verifying her vote
receipt at the claiming stage.

In order to prevent a simple denial of service attack by the APP , a voter
should be able to submit several vote codes at least until she submits one valid
vote code (the vote update issue will be discussed later in privacy analysis).
Therefore, measures should be taken to prevent the APP from trying a sig-
nificant amount of vote codes guesses, such as the introduction of a delay or
requiring the solution of a CAPTCHA in each try.

Nevertheless, even if the APP guesses a valid vote code the voter would catch
the misbehavior at the claiming stage, while confirming her vote receipt with
the ES published data.



118 R. Joaquim, C. Ribeiro, and P. Ferreira

Election Integrity at the Vote Record and Tallying Processes – Since we
assume the use of secure and verifiable constructions for the threshold encryption
and mix nets, we automatically have the integrity verifications of the tallying
process. What we have new in VeryVote is the possibility to verify that the vote
is recorded as cast. Therefore, we only present here an analysis on the integrity
of the vote record process.

Because the ES publishes all encrypted votes along with the vote receipts
and the association with the voter who “cast” it, it is trivial for the voter to
detect a receipt different from the one she has. Therefore, the only way the ES
can pass such verification is to give the voter a “tampered” vote receipt, i.e. a
vote receipt that shows the right association between the vcc and the candidate
selected by the voter but which in fact encrypts a vote for a different candidate.

Since the ES commits to the BitEncs(b) that form the vote before the gener-
ation of the srev, there is no possibility to known in advance what the challenge
will be. Therefore, the only possibility to construct a tampered receipt is to try
all the combinations possible for the BitEncs(b) positions in the receipt, and
hope that luck provides the correct challenge to the vote encryption.

However, if the committed BitEnc(1) corresponds to the confirmation code
on the voter’s code sheet, then in a tampered receipt there will be the same
value (the confirmation code) associated to two distinct candidates. To prevent
that from happening such type of receipts should be considered invalid, which
prevents the attack. In the case of accidental creation of an invalid receipt the
ES must create another one using another combination of the BitEncs(0).

Consequently, the only way the ES has to produce a valid tampered receipt
is to commit to a BitEnc(1) that is not related to the confirmation code in the
voter’s code sheet. However, this would not be a smart move because then the
ES only has a probability of n!/626 to create a valid (tampered or not) receipt
for the voter. For instance, if n = 10 the probability of success is less than 0.01%.

Although, it is worth noticing that because of the exponential nature of the
factorial function, increasing much more the number of candidates will force the
use of a very long vote confirmation code, which makes the system unusable. On
the other hand, for a smaller number of candidates and the same probability of
success a smaller confirmation code can be used, which makes the receipt shorter
and more easily verifiable.

Another problem that could affect the election integrity verification of the vote
record is someone tampering with the CS in the distribution process. In this case
the voter will catch the misbehavior with a very high probability (1− (1/626)).
The voter can then revoke her vote a correct the problem.

The Advantages of Using MarkPledge Receipts – Saying that in a tra-
ditional code voting system the voter cannot verify that her vote is used in the
tally is not entirely true. If each code sheet is published after the election with
the corresponding selection made by the voter who used it, then the voter can
verify that her vote was correctly used. Note that this publication implies the
publication of the election tally because now anyone can sum up the casted votes.



VeryVote: A Voter Verifiable Code Voting System 119

Assuming that the code sheets were anonymously distributed to the voters,
the verification described above is anonymous. However, now a voter cannot
complain and correct her vote. Changing a vote after knowing the final results
of the election is not democratic and implies that the voter must prove that a
particular vote is hers.

Note also that, if both the code sheets distribution and the voting process
are anonymous, there is nothing that prevents the entity that created the codes
sheets to impersonate an anonymous voter and cast a vote for her. No one knows
who has voted.

Using MarkPledge receipts we allow the publication of the encrypted vote
along with the identity of the voter who “casted” the vote. Then, and before
anyone knowns the election results, every voter can verify her vote and correct it
without revealing the contents of the encrypted vote. Therefore, only validated
votes will be part of the election tally. Additionally, any attempt to introduce
votes for voters who did not voted can be identified or prevented if a strong
voter’s authentication mechanism is used.

6.3 Voter’s Privacy

VeryVote makes possible the verification that the voter’s intention is really used
in the tally. However, to allow this verification part of the voters’ privacy was
lost, namely in what concerns the ES.

In VeryVote, the ES knows each voter’s choice, at least before the destruction
of the creation records of the code sheets and BitEncs(b) by physical procedures
at the end of the election. Assuming that there are no subliminal channels, what
remains are the votes encrypted with a threshold encryption key shared among
the trustees.

The encrypted votes are then anonymized in a verifiable way by the mix. At
last the anonymized votes are decrypted by the trustees. Assuming a threshold
value of t, then only the cooperation of t trustees can decrypt the anonymized
votes. Consequently, if no more than t − 1 trustees are dishonest only the
anonymized votes are decrypted and the voters’ privacy is protected. No one,
not even the trustees known which vote belongs to which voter.

Finally, it is important to analyze the implications of the MarkPledge receipt
in the voter’s privacy. In all code voting systems the code sheet together with the
vote receipt (reply code or MarkPledge receipt in our case) can be considered
a proof of vote. Therefore, the voter plays a big role in protecting her own
privacy, i.e. a voter to protect her own privacy must keep the code sheet secret.
However, in opposition to a simple reply code, the MarkPledge receipt allows
for an anonymous verification of the vote, as described in Sec. 6.2.

Vote Buying and Coercion – As described in Sec. 6.3, the voter can build
up a receipt if she joins the MarkPledge receipt with her code sheet. Therefore,
this proof can be used to facilitate vote buying/selling or coercion.

Nevertheless, it is possible to discourage vote buying using the vote update tech-
nique [24]. VeryVote already has the vote update possibility in the claiming stage.
Since a voter must not justify why she is revoking the previous casted vote, the



120 R. Joaquim, C. Ribeiro, and P. Ferreira

vote revoke facility can be used as merely an opportunity to update a previous
casted vote. Therefore, the attacker can only confirm the vote receipt validity af-
ter the claiming stage. This late verification automatically discourages vote buy-
ing attacks: if the attacker pays in advance it can be cheated by the voter, and
if the attacker only pays after the election end, the voter can be cheated by the
attacker. Therefore, the vote update possibility and the mutual distrust between
the voter and the vote buyer should be enough to discourage such attacks.

The coercion problem is not so easily mitigated because it is more a psycholog-
ical attack, and therefore may work independently of the voting technology used.
Nonetheless, there are particular cases of coercion, e.g. family voting, that work
better in uncontrolled voting environments, e.g. vote by mail and Internet voting.
It is worth noticing that the possibility of vote update offered by VeryVote can in
some extent minimize the coercion problem but it does not solve it.

7 Conclusions

VeryVote is a code voting sytem that addresses the secure platform problem.
However, unlike other code voting systems, and due to the use of MarkPledge
vote receipts, VeryVote is end-to-end verifiable. In VeryVote the submitted votes
are encrypted and published in a non anonymous way. Therefore, a voter can
check that her vote was correctly recorded by using her MarkPledge vote receipt.
After a claiming stage where the voters can revoke and update their previously
submitted vote, the valid votes enter into a verifiable vote tally process. The
verification of both the correctness of the recorded votes and of the election
tally process makes VeryVote end-to-end verifiable.

Nevertheless, the end-to-end verifiability also carries more responsibility to
the voter. Now the voter can verify that her vote is counted as intended but she
must also take an active role protecting her own privacy by keeping her code
sheet secret. It is also worth noticing that in order to introduce the end-to-end
verifiability we have made the voting interaction between the voter and the ES
more complex, which may cause some usability problems.

As future work it would be interesting to study the usability of the system,
and if it is possible to eliminate the election server as a trustworthy entity with
respect to the voters’ privacy.

Acknowledgments. The authors would like to thank the valuable comments
of the anonymous reviewers.

References

1. Rivest, R.L.: Electronic voting. In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339,
pp. 243–268. Springer, Heidelberg (2001)

2. Chaum, D.: Surevote. International patent WO 01/55940 A1 (2001),
http://www.surevote.com/home.html

3. Oppliger, R.: How to address the secure platform problem for remote internet
voting. In: Erasim, E., Karagiannis, D. (eds.) 5th Conference on Sicherheit in In-
formationssystemen (SIS 2002), pp. 153–173. vdf Hochschulverlag, Vienna (2002)

http://www.surevote.com/home.html


VeryVote: A Voter Verifiable Code Voting System 121

4. Karlof, C., Sastry, N., Wagner, D.: Cryptographic voting protocols: A systems
prespective. In: 14th USENIX Security Symposium, pp. 33–50 (2005)

5. Neff, A.: Practical high certainty intent verification for encrypted votes (2004),
http://www.votehere.com/old/vhti/documentation/vsv-2.0.3638.pdf

6. UK’s Electoral Commission: Technical report on the may 2003 pilots (2003),
http://www.electoralcommission.org.uk/about-us/03pilotscheme.cfm

7. UK’s National Technical Authority for Information Assurance: e-voting security
study (2002),
http://www.ictparliament.org/CDTunisi/ict_compendium/paesi/uk/uk54.pdf

8. Helbach, J., Schwenk, J.: Secure internet voting with code sheets. In: Alkassar,
A., Volkamer, M. (eds.) VOTE-ID 2007. LNCS, vol. 4896, pp. 166–177. Springer,
Heidelberg (2007)

9. Oppliger, R., Schwenk, J., Helbach, J.: Protecting code voting against vote selling.
In: An Analytical Description of CHILL, the CCITT High Level Language. LNI,
vol. 128, pp. 193–204. GI (2008)

10. Helbach, J., Schwenk, J., Schage, S.: Code voting with linkable group signatures.
In: EVOTE 2008 (2008)

11. Oppliger, R., Schwenk, J.: Captcha-based code voting. In: EVOTE 2008 (2008)
12. Joaquim, R., Ribeiro, C.: Codevoting protection against automatic vote manipula-

tion in an uncontrolled environment. In: Alkassar, A., Volkamer, M. (eds.) VOTE-ID
2007. LNCS, vol. 4896, pp. 178–188. Springer, Heidelberg (2007)

13. Adida, B., Neff, A.: Ballot casting assurance. In: EVT 2006, Vancouver, B.C.,
Canada, USENIX/ACCURATE (2006)

14. ElGamal, T.: A public-key cryptosystem and signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory IT-31(4), 469–472 (1985)

15. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

16. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient
multi-authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

17. Estonian National Electoral Commitee: Internet voting in estonia (2007),
http://www.vvk.ee/engindex.html

18. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

19. Neff, C.A.: Verifiable mixing (shuffling) of elgamal pairs (2004)
20. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and

signature. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194.
Springer, Heidelberg (1987)

21. Jakobsson, M., Juels, A., Rivest, R.: Making mix nets robust for electronic vot-
ing by randomized partial checking. In: 2002 USENIX Security Symposium, San
Francisco, CA, USA, pp. 339–353 (2002)

22. Adida, B.: Advances in Cryptographic Voting Systems, PhD thesis. MIT (2006)
23. Gogolewski, M., Klonowski, M., Kubiak, P., Kuty�lowski, M., Lauks, A., Zagórski,

F.: Kleptographic attacks on e-election schemes with receipts. In: Müller, G. (ed.)
ETRICS 2006. LNCS, vol. 3995, pp. 494–508. Springer, Heidelberg (2006)

24. Volkamer, M., Grimm, R.: Multiple casts in online voting: Analyzing chances. In:
Robert Krimmer, R. (ed.) Electronic Voting 2006, Castle Hofen, Bregenz, Austria,
GI. LNI, vol. P-86, pp. 97–106 (2006)

http://www.votehere.com/old/vhti/documentation/vsv-2.0.3638.pdf
http://www.electoralcommission.org.uk/about-us/03pilotscheme.cfm
http://www.ictparliament.org/CDTunisi/ict_compendium/paesi/uk/uk54.pdf
http://www.vvk.ee/engindex.html

	VeryVote: A Voter Verifiable Code Voting System
	Introduction
	Related Work
	Code Voting Systems
	MarkPledge Cryptographic Receipts

	VeryVote Overview
	Protocol Building Blocks
	Vote Protocol
	Protocol Notation
	Election Setup
	Vote Procedure
	Claiming Stage
	Tallying the Votes

	Evaluation
	Assumptions
	Election Integrity
	Voter's Privacy

	Conclusions


