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Abstract. – Flexible membranes which are in contact with dispersed nanoparticles or colloids
are theoretically studied. For closed vesicles, the membrane/particle interactions change the
“spontaneous” curvature of the membrane provided the surrounding solution contains more
than one species of particles. If the membrane/particle interactions are repulsive, the membrane
curves toward the larger particles. If the membrane/particle interactions are attractive, the
membrane curves away from the adsorption layers of small particles but wraps itself around
large particles which become completely encapsulated.

Several chemical procedures have been used in order to grow nanoparticles or colloids
in vesicles and liposomes composed of lipid bilayers or other amphiphilic membranes, see,
e.g., [1-3]. The particles can grow inside or outside the vesicles or at the vesicle surfaces, and
their size can vary from the subnano range up to many tens of nanometers. This has to be
compared with the membrane thickness which is typically ' 4 nm and with the size of the
vesicles which is often many micrometers [4]. Thus, the particles can be smaller or larger than
the membrane thickness but they are usually much smaller than the vesicle size.

In this paper, we study the behavior of membranes and vesicles in contact with such
dispersed particles from the theoretical point of view. In fact, our arguments apply to any
“particle” which i) is rigid and ii) cannot permeate the membrane on the experimentally
relevant time scales. Thus, the two surfaces of the membrane act as flexible but impenetrable
walls for the dispersed particles. In addition, these surfaces may exert repulsive or attractive
forces onto these particles.

It is shown below that, in addition to the usual osmotic effects, the dispersed particles
induce a “spontaneous” curvature of the vesicle membrane provided the solution contains
more than one species of particles. Furthermore, this “spontaneous” curvature depends on the
particle size Rpa and thus can be controlled by varying Rpa. We will distinguish three cases:
i) if all particles species are non-adhesive, the membrane curves toward the larger particles, see
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Fig. 1. – “Spontaneous” curvature of a membrane segment which is in contact with dispersed particles:
(a) two non-adhesive particle species; (b) one adhesive and one non-adhesive species; and (c) two
adhesive species.

fig. 1(a). In this case, the “spontaneous” curvatureMsp increases with increasing sizeRpa of the
particles; ii) if all particle species are adhesive and small compared to the membrane thickness
lme, the membrane curves away from the more strongly adsorbed particles, see fig. 1(c), and
Msp decreases with increasing Rpa; and iii) finally, for adhesive particles which are large
compared to lme (but small compared to the vesicle size), the vesicle membrane typically
encapsulates the particles completely.

A membrane curvature can also be induced by electrolytes [5-7] and by anchored poly-
mers [8-10]. In all cases, the curvature effects are accessible to experimental studies of vesicles
since one can deduce the “spontaneous” curvature of the vesicle membrane from observations
of the vesicle shape via optical microscopy [11]. Recently, we have used this approach for
vesicles in solutions of glucose and raffinose, as will be described elsewhere [12].

To proceed, consider a vesicle membrane which divides space into an interior (in) and an
exterior (ex) compartment with volumes V in ∼ R3

ve and Vex, respectively. Both compartments
may contain different particle species labeled by j. For dilute solutions, the osmotic pres-
sure ∆P across the membrane is given by ∆P = T (N ex −N in) with Nα ≡

∑
j N

α
j , where

Nα
j is the number density of j-particles per unit volume with α = in, ex. This osmotic-pressure

difference is balanced by the bending rigidity κ of the bilayer membrane [13] which leads to
N exV in = (N inV in + cPκ/T ). In principle, this is a nonlinear equation for V in since the
dimensionless coefficient cP depends on the shape and thus on V in. However, one usually has
N inV in � κ/T , which leads to

∑
j

∆Nj ≡
∑
j

(N ex
j −N

in
j ) ' 0 , (1)

where we have ignored terms of order κ/TV in ∼ κ/TR3
ve.

We now envisage the membrane as a thin film which is bounded by the ex- and in-surface in
contact with the exterior and interior solution, respectively. These two surfaces exert attractive
or repulsive forces onto the dispersed particles. The resulting adsorption or depletion layers
contribute to the excess free energies or interfacial tensions σex and σin. If these interfacial
tensions are different, they will induce a “spontaneous” curvature of the membrane [14].

When the neutral surface of the curved membrane segment has area A and mean curvature
M , the areas Ain and Aex of the in- and the ex-surface are given by Aex ≈ (1 + lmeM)A
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and Ain ≈ (1 − lmeM)A, respectively, where lme denotes the membrane thickness. For both
surfaces, we will use normal vectors which point into the adjacent solution which implies
Mα ≈ ±M where the plus and the minus sign correspond to α = ex and α = in, respectively.

In the absence of dispersed particles, the interfacial tensions of the two membrane surfaces
are given by σα = σαW with α = ex, in. In this situation, the membrane is taken to have zero
spontaneous curvature which implies σex

W = σin
W . In general, one has σα = σαW +

∑
j σ

α
j , where

the tensions σαj vanish in the limit of small particle densities Nα
j .

Non-adhesive particles. – First, let us consider particles which are repelled from the
membrane surfaces. The depletion of the particles increases the interfacial free energy of these
surfaces [15]. Recently, this depletion effect was calculated for solutions of ideal polymers [10]
and of hard rods [16].

In the following, the particles are taken to be essentially spherical and thus characterized by
a single length scale. For one particle species j with radius Rpa = Rj , the excluded volume Ωαj
in front of the α-surface behaves as Ωαj ≈ A

αRj(1 + RjM
α + 1

3R
2
jG) with α = in, ex up to

second order in the curvatures, where G is the Gaussian curvature.
For dilute solutions, one may ignore the interactions between the particles and treat them

as an ideal gas in a confined geometry. In the limit of large particle numbers, one then obtains
the interfacial tensions

σαj = TNα
j Ωαj /A

α ≈ TNα
j Rj(1 +RjM

α) for small Mα . (2)

The total interfacial free energy is now given by Aex
∑
j σ

ex
j + Ain

∑
j σ

in
j . If one substracts

the interfacial free energy of the flat membrane and balances the resulting excess free energy
with the bending energy 2κM2A, one arrives at the “spontaneous” curvature [17]

Msp = −
T

4κ

∑
j

∆NjRj(lme +Rj) . (3)

This expression applies to membrane segments which are large compared to the mean distance
of the dispersed particles.

For a closed vesicle, osmotic equilibrium implies
∑

∆Nj ' 0 as in (1). Thus, for a solution
with a single species, the “spontaneous” curvature as given by (3) vanishes. If one includes
the correction terms neglected in (1), one has ∆N1 ∼ κ/TR3

ve and Msp ∼ R1(lme +R1)/R3
ve �

1/Rve, which shows that the approximation used in (1) is indeed justified.
For a binary solution with two particle species j = 1 and j = 2, the osmotic balance (1)

leads to ∆N2 = −∆N1. When inserted into (3), one obtains the “spontaneous” curvature
Msp = (T/4κ)∆N1(R2 − R1)(lme + R1 + R2), which is proportional to the size difference
R2 −R1. Since ∆N1 = N ex

1 −N
in
1 , the membrane segment curves toward the larger particles,

see fig. 1(a). For a lipid bilayer with (T/4κ) ' 0.01, the parameter values ∆N1 ' 10 mM and
R2 = 2R1 = 2 nm lead to Msp ' 0.42/µm.

In some systems, the densities Nj may change with time. For example, one may simply add
particles to the exterior solution and observe the subsequent relaxation processes. Another
example is provided by the growth processes mentioned in the introduction for which the
mean particle size increases with time. In general, one then has a time-dependent contribution
to Msp.

Small adhesive particles. – Next, consider small spherical particles with radii Rj < lme

which are attracted toward the membrane. In order to simplify the notation, we will now
suppress the index α = in, ex. The j-coverage Γj of a flat membrane surface is given by the
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Gibbs adsorption equation Γj = −(∂σ/∂µj)T . For dilute solutions, the chemical potentials
µj = µj0 + T ln(Nj/

∑
j Nj) and Γj = −(Nj/T )(∂σ/∂Nj)T . In order to go beyond this

thermodynamic relation, one must consider a more specific adsorption model. In the following,
we will use a simple Langmuir-type model for monolayer adsorption [18].

The simplest version of this model is obtained if all particle species are taken to have
the same size, Rpa. Each flat membrane surface then provides the same maximal number of
adsorption sites, nad = A/cadR

2
pa, where cad is a dimensionsless coefficient of order one. For

a densely packed layer of spheres, one has cad = 2
√

3. The number of those sites which are
occupied by particles of species j is denoted by nj . The coverage by j-particles is then given
by Γj = nj/A, and the Langmuir adsorption isotherm leads to the interfacial free energy

σ = −(T/cadR
2
pa) ln

1 +
∑
j

kjNj

 ≈ −(T/cadR
2
pa)
∑
j

kjNj (4)

for small Nj with Langmuir constants kj which are small and large for weak and strong
j-adsorption, respectively.

This Langmuir model can be generalized to a curved surface if one takes into account that
the centers of the adsorbed particles have a distance Rpa from the membrane surfaces. This
implies that the ex- and the in-surface have different effective adsorption areas in the curved
state. In this way, one finds the interfacial free-energy difference per unit area as given by

∆F/A ≈ −(T/cadR
2
pa)
∑
j

kj∆Nj(lme + 2Rpa)M . (5)

If this interfacial free energy is again balanced against the bending energy of the membrane,
one now obtains the “spontaneous” curvature

Msp = +
T

4κ

∑
j

kj∆Nj
lme + 2Rpa

cadR2
pa

. (6)

which increases monotonically with decreasing particle size (a lower cut-off is provided by the
molecular roughness of the membrane surface).

A single species of adhesive particles has again no effect on the spontaneous curvature.
For a binary solution with two species j = 1 and j = 2 of adhesive particles, on the other
hand, the “spontaneous” curvature as given by (6) becomes Msp = (T/4κ)(k1−k2)∆N1(lme +
2Rpa)/cadR

2
pa. Thus, the membrane curves away from the more strongly adsorbed particles

characterized by a larger k-value as shown in fig. 1(c), where the two particle species have the
same size as assumed.

In general, the different species of adhesive molecules will also differ in their size. Now,
consider a solution of two adhesive species j = 1 and j = 2 with different radii R1 and
R2, respectively. In order to stay within the simple Langmuir-type model discussed here,
let us focus on the special case in which the exterior and the interior compartment contains
only particles of species j = 1 and j = 2, respectively. In this case, the maximal number
of adsorption sites per unit area is given by 1/cadR

2
1 and 1/cadR

2
2 for the ex- and the in-

surface, respectively. Osmotic balance now implies that N ex
1 = N in

2 ≡ N and the above
adsorption model leads to the “spontaneous” curvature Msp = (T/4κ)N [g(R1)k1 − g(R2)k2]
with g(x) ≡ (lme + 2x)/cadx

2. For k1 = k2, i.e. if both species have the same adsorption
strength, this relation implies that the membrane curves towards the larger particles as in the
non-adhesive case.



r. lipowsky et al.: vesicles in contact with nanoparticles and colloids 223

Within the same approximation scheme, one may also consider dilute solutions containing
one non-adhesive species and one adhesive species; in the latter case the membrane curves
away from the adhesive particles and toward the non-adhesive ones as shown in fig. 1(b).

In the above estimates for Langmuir-type adsorption, it was tacitly assumed that the
membrane structure is not strongly perturbed by the adhesive particles. If these particles are
as small as or smaller than the head groups of the membrane molecules, they may intercalate
between these head groups and, in this way, expand the area of the membrane surfaces. This
area expansion will increase with the number of intercalated particles. If two different particle
species intercalate on both sides of the membrane, one has an additional bending moment
which curves the membrane away from the more strongly adsorbed particles and thus exhibits
the same tendency as the contribution from the Langmuir-type adsorption.

Large adhesive particles. – For adhesive particles with Rpa � lme, the attractive interaction
between the membrane and the particle surface will be characterized by the adhesion energy
per unit area, W < 0. If the membrane segment is essentially tensionless, this adhesion energy
is balanced by the bending energy of the membrane.

If the membrane covers a certain fraction X of the surface of a spherical particle, its contact
area is given by Aca = X4πR2

pa, its adhesion enery is Ead = −Aca|W |, and the bending energy
of the adhering membrane segment is Ebe = Aca2κ/R2

pa. The state of lowest energy then
corresponds to complete encapsulation with X = 1 as soon as [19]

Rpa > R∗ ≡ [2κ/|W |]1/2 , (7)

and to complete detachment with X = 0 for Rpa < R∗. For 0 < X < 1, the deformation of
the membrane along the contact line will contribute an additional bending energy term to the
contact line energy Ecl which acts as an energy barrier for the encapsulation process [20]. This
process resembles domain-induced budding, another transformation of the membrane shape
arising from intramembrane domains [21].

For attractive van der Waals forces between the bilayer membrane and the particle, the
adhesion energy W per unit area is typically of the order of T/a2

‖, where a‖ represents a
molecular length scale. For lipid bilayers κ ' 20T , this leads to the estimate R∗ ' 6a‖. If a‖
is comparable to the size of the lipid head group, one has a‖ ' 0.8 nm and thus R∗ ' 5 nm
which must be compared with the bilayer thickness lme ' 4 nm.

The encapsulation of a single particle with Rpa > R∗ leads to the energy gain ∆Eep =
−|W |4π(R2

pa − R
2
∗). For attractive van der Waals forces with |W | ' T/a2

‖, one has ∆Eep '

−T4π(R2
pa−R

2
∗)/a

2
‖. Thus, as soon as R2

pa−R
2
∗ . a2

‖, the energy gain ∆Eep is large compared
to T . Thus, the encapsulation of large particles with Rpa � lme is irreversible in contrast to
the reversible adsorption of small particles with Rpa � lme.

If the solution contains many adhesive particles with Rpa � R∗, the membrane will
encapsulate a large number of them. In order to be specific, let us consider two particle
species, j = 1 and j = 2. The particles of species j = 1 are adhesive with Rpa = R1 � lme; the
particles of species j = 2 are non-adhesive and act as a “buffer” for the osmotic equilibrium,
i.e. one has N ex

2 � N ex
1 and N in

2 � N in
1 .

Now, consider a vesicle of volume V in and surface area A. The shape of its membrane
depends on the reduced volume υ ≡ 3

√
πV in/A3/2 ≤ 1 [13]. If we ignore the excess area stored

in the shape fluctuations, the membrane can only encapsulate adhering particles for v < 1. The
encapsulation will proceed until the membrane forms a large spherical “mother” vesicle with
many spherical buds, see fig. 2. As far as this limit shape is concerned, one must distinguish
two different situations: i) for relatively slow flip flops between the two leaflets of the bilayer,
the area difference ∆A between these two leaflets is subject to another constraint [22,11]; and
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Fig. 2. – Vesicle with several encapsulated particles adsorbed (a) from the interior compartment;
(b) from both the interior and the exterior solution; and (c) from the exterior compartment. The
membrane thickness and the particle size have been exaggerated for illustrative purposes; in the
theoretical work described here, the vesicle size is assumed to be much larger than the size of the
particles.

ii) for relatively fast flip flops as present, e.g., in lipid/cholestorol bilayers, such a constraint
will not be effective.

For relatively fast flip flops, the limit shapes as shown in fig. 2 depend only on the reduced
volume v of the initial state of the vesicle without any encapsulated particles. In general, the
particle buds may point toward the exterior and interior compartment, respectively. In all
cases, the total number Nep of encapsulated particles behaves as

Nep = (1− v2/3)(Rve/R1)2 +O (Rve/R1) for large Rve/R1 . (8)

The correction term of O (Rve/R1) is positive for a majority of exterior buds as in fig. 2(a),
negative for a majority of interior buds as in fig. 2(c), and vanishes if the numbers of exterior
and interior buds are equal as in fig. 2(b). For a large vesicle with Rve ' 10 µm and
nanoparticles with Rpa = R1 ' 10 nm, the above formula leads to the estimate Nep '
(1− v2/3)106.

If flip flops are slow on the time scales which govern the encapsulation process, the constraint
on the area difference ∆A favors states as in fig. 2(b) for which the numbers of interior
and exterior buds are equal and the area difference remains essentially unchanged during
encapsulation. The asymmetric states shown in fig. 2(a) and 2(c), on the other hand, will be
suppressed by this constraint since they involve a large change in ∆A.

After the completion of this work, we became aware of two recent papers on the interaction
of vesicles with large adhesive particles. In ref. [23] by Dinsmore, Wong, Nelson and Yodh, the
depletion forces between small and large particles are studied which push the large particles
toward the membrane. The authors also discuss the possiblity that one large particle is
encapsulated by the vesicle membrane and derive a relation which is similar to our eq. (7)
above. In ref. [24] by Dietrich, Angelova and Pouligny, the interaction of large Latex particles
with vesicles is studied. The size of these particles is in the micrometer regime and is, thus,
comparable to the size of the vesicle. The constraints on the area and on the volume of the
vesicle then acts to prevent the encapsulation of the particles. In contrast, we have focussed
here on situations in which the particle size R1 is much smaller than the vesicle size Rve, see,
e.g., our eq. (8).

In summary, we have shown theoretically that dispersed nanoparticles and colloids change
the curvature of flexible membranes and that these changes depend on the membrane/particle
interactions and the particle size. One issue which deserves further study is the interaction
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of flexible membranes with growing particles. As mentioned, growing particles which are non-
adhesive will typically induce a time-dependent “spontaneous” curvature. Growing adhesive
particles, on the other hand, will become encapsulated as soon as the particle size exceeds the
critical size R∗. It seems possible to use this encapsulation process in order to interrupt the
growth process as soon as the particle size has reached the threshold value Rpa ' R∗ which
would provide a systematic method to control this size.

Finally, the curvature effects studied here should also be present for biomembranes. The
latter membranes contain many different channels, carriers and pumps which are used in order
to transport ions and larger molecules across the membrane. These transport processes change
the concentrations of the various molecular species and, thus, determine the osmotic conditions
in the two compartments which are separated by the membrane. The results reported here
imply, however, that these changes in the molecular concentrations will also contribute to the
“spontaneous” curvature of the biomembrane. It remains to be seen if this coupling between
membrane transport and curvature has some biological significance.

***

RL takes this opportunity to thank H. Horner for many stimulating discussions, much
helpful advice and some pleasant bicycle rides.
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