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We consider Quid vesicles of toroidal topology. Minimization of the curvature energy at fixed volume
and area leads to three difterent branches of axisymmetric shapes. By using conformal transformations,
we identify a large region of nonaxisymmetric shapes in the phase diagram. For vanishing spontaneous
curvature, the ground state is twofold degenerate in this region and corresponds to zero pressure
diAerence across the membrane. The relation of these results to the recent observation of toroidal shapes
for partially polymerized vesicles is discussed.

PACS numbers: 82.70.—y, 02.40.+m, 46.30.—i, 68. 15.+e

Two features of fluid membranes allow their charac-
terization in terms of geometrical and topological no-
tions, which contributes essentially to their attractiveness
to physicists. First, their effective two dimensionality
arises from a natural separation of length scales. Since a
typical membrane has a thickness in the nm range and
typical lateral extensions in the pm range, the membrane
can be regarded as a two-dimensional surface embedded
in three-dimensional space. Second, fluid membranes
have no internal connectivity and, therefore, no elastic
energy associated with displacements within the surface.
The relevant energy arises solely from the bending of the
membrane, which can be translated into curvature of the
embedded shape. Closed membranes, i.e., vesicles, can
be classified most generally by their topology.

So far, vesicles of spherical topology have been inves-
tigated intensively, both experimentally and theoreti-
cally. ' Video microscopy studies reveal an amazing
variety of shapes, ' ' between which transformations can
be induced by changing the temperature or the osmotic
conditions. Thermally excited shape fluctuations around
these low-energy mean shapes have also been ana-
lyzed. Both types of experiments support the basic
theoretical idea ' ' that the essential energy is captured
by a curvature model. Large regions of the phase dia-
gram have recently been mapped out systematically. ' '

In this Letter, we investigate theoretically vesicles of
toroidaI topology, which have so far only been observed
for partially polymerized membranes, ' on which we
comment at the end. The present study shows, however,
that fluid vesicles can also be expected to form such
shapes, which should even exhibit qualitatively new fea-
tures not present for shapes of spherical topology.

Within a minimal model for symmetric bilayers, the
energy of a vesicle shape is given by

influence of a nonzero Co is discussed briefly below. )
The two bending rigidities K and ~g have the dimension
of energy. The (shape) phase diagram for prescribed to-
pology is given by the minimum of F for fixed area A
and enclosed volume V. The Gaussian curvature con-
tributes a topological constant given by F, =4trtco(1
—g), where g is the number of "handles" on the vesicle.
The "ground state" (i.e., the shape of lowest energy) is
among the solutions of the shape equation,

6(F,+ZA+PV) =0, (2)

I

(a) 0.5 .65 0.5

C3 O
(b) 0.52 0.58 0.5

which also include saddle points. Here, Z and P are
Lagrange multipliers. If a suitable parametrization for
the contour of an axisymmetric shape is chosen, this
shape equation corresponds to the same four nonlinear
first-order ordinary difI'erential equations already intro-
duced for studying vesicles of spherical topology. '"
Only the boundary conditions change in an obvious way.

As solutions to this equation, one finds three branches,
which can be characterized according to typical shapes
as (i) the sickle-shaped toroids [Fig. 1(a)], (ii) the
discoid toroids [Fig. 1(b)], and (iii) the circular toroids
[Fig. 1(c)]. Within a branch, the shape varies smoothly

F=F„+F„,= (tc/2) I)~ (2H—) dA+ tco—(I) K dA, (1)
I
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where H is the mean (extrinsic) and K is the Gaussian
(intrinsic) curvature and the integration is over the
closed surface. (Here, we have set, for the main part
of the paper, a spontaneous curvature CO=0, but the

FIG. 1. Cross sections of toroidal shapes for several values
of the reduced volume v. (a) Sickle-shaped, (b) discoid, and
(c) circular toroids. The dashed line denotes the axis of sym-
rnetry. Shapes marked with an asterisk are unstable.
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as a function of the reduced volume,
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FIG. 2. Curvature energy F as a function of the reduced
volume v. Curves a, b, and c correspond to Fig. 1. The dotted
parts are unstable. The dashed line denotes the energy of
discocyte shapes of spherical topology. Inset: The energy of
the circular toroids over a larger range. The dash-dotted line
corresponds to conformal transformations of the CliAord torus.

which is the only relevant variable because of the scale
invariance of F . In Fig. 2, the bending energy F of
these branches is displayed as a function of v.

The branch of sickle sha-ped toroids [Fig. 1(a)] exists
for 0& v & vM"=0.65. For v 0, the contours of the
sickles become half circles and the energy F approaches
the value 16zx of two perfect spheres. For v & 0, the en-

ergy of these sickle-shaped toroids decreases monotoni-
cally and reaches its minimum at the maximal volume
vM', where the branch develops a cusp. The shapes cor-
responding to the upper part of the cusp are saddle
points, i.e., they are locally unstable with respect to an
axisymmetric deformation, as can be derived quite gen-
erally by a Landau-type expansion of F in the vicinity
of the cusp. '

The discoid branch [Fig. 1(b)] exists for vc" ( v

& v~', with vp"=0.50 and UM'=0. 58, where this branch
also develops a cusp. For v v~", the inner diameter of
the toroid goes to zero and the shape approaches that of
a discocyte vesicle of spherical topology with the north
and the south poles touching. This bifurcation of shapes
with different topology suggests a mechanism for creat-
ing these shapes in the laboratory. Suppose a discocyte
vesicle is driven into the range v~ v~", e.g. , either by
changing the temperature or by osmotic deflation. To
create the discoid toroid would, then, only require the
formation of a small hole. Although such a process will
not occur spontaneously because of the large activation
energy required to rupture the membrane, it might be
produced by an external probe. '

The circular toroids exist for any 0 & v & 1. For
v~ 0, their shape becomes a torus with exact circular
cross section. In this limit, the diameter of the hole van-
ishes as 1/v and the diameter of the cross section van-

ishes as v. Consequently, F„diverges as 1/v in this lim-
it. For v =v*=3/2 i x'i =0.71, the bending energy ac-
quires its minimum along this branch with F =4m K and
the cross section is again perfectly circular. This shape,
the so-called Clifford torus, has been known in the
mathematical literature before as a solution to (2) for
Z, =P=O. Its shape in Cartesian coordinates can be
parametrized by

R(8,$) =C((J2+sin8)cosp, (J2+sin8)sing, cos8),

(4)

where C is an arbitrary scale factor and 0 ( 8, p (2x
are the internal coordinates. A famous conjecture due to
Willmore states that the energy F =4m x of the Clifford
torus is a lower bound to that of any toroidal shape, ir-
respective of v. For v & v *, the bending energy F of
the axisymmetric circular toroids increases again. These
shapes, however, do not correspond to the ground state,
as we shall see.

It has recently been recalled ' that the bending energy
(1) is invariant under conformal transformations (CT's)
of the three-dimensional embedding space. The non-
trivial CT s of this space are the inversions in a sphere,
i.e., R Ro+ (R —Ro)/(R —Ro), where Ro denotes
the inversion center. In general, such an inversion fails
to conserve the axisymmetry, the area, and the enclosed
volume. A simple spatial rescaling (also, a CT) of the
transformed shape may be used to restore the area; but,
V or v will remain changed. Therefore, a CT applied to
the CliA'ord torus leads in general to a nonaxisymmetric
shape with different relative volume v&v* but the same
energy F, =4m x, which, for v&v*, is lower than the en-
ergy of any of the axisymmetric shapes.

By discussing two limit cases, we now argue that the v

range accessible by CT's applied to the CliA'ord torus is
given by v* ~ v & 1. First, consider special CT's with
R (R/R~+a)/(R/R +a) which consist of the com-
position of an inversion with a translation about the vec-
tor a and a second inversion. For small a, the change in
reduced volume can be expanded, as derived generally in
Ref. 22. This leads for the CliA'ord torus to v(a) —v*
= ca~„~, where c & 0 and a~,~ is the component of a
perpendicular to the axis of symmetry. This result shows
that the special CT increases the relative volume v for
small a. Second, consider an inversion of the Clifford
torus in a sphere whose center approaches the surface of
the torus. In this limit, the transformed shape becomes a
sphere with a small handle and has a relative volume v

that goes to 1. Combining both results, one may con-
clude that for any v in the range of v* & v & 1 a toroidal
shape exists which is obtained by a CT of the Clifford
torus. Therefore (if Willmore's conjecture is true), the
shape of lowest bending energy is nonaxisymmetric for
v*~U &1.

In this region of the phase diagram, the three indepen-
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dent special CT's which correspond to the three linear
independent choices of the translation vector a can be re-
garded as zero-energy deformation modes. Since the
constraint on v provides one relation for the amplitudes
of these modes, there remain le "Goldstone modes"
which conserve v and cost no energy: The conformal
symmetry leads to a twofold continuous degeneracy of
the ground state.

The phase diagram for shapes of toroidal topology and
the type of transitions between them can be read off
from Fig. 2. Start at small v with a sickle-shaped
toroid. With increasing v, this shape reaches, at v =vM',
the limit of metastability and undergoes a discontinuous
transition to the axisymmetric circular toroid, which sub-
sequently, at v =v*, becomes nonaxisymmetric via a
continuous transition.

It is interesting to compare the energy F of toroidal
and spherical shapes' for the same v. For 0 & v ~0.72,
the toroidal ground state has lower energy than the
spherical one, while for 0.72( v ~ 1, the ground state of
spherical topology, as given by the prolate branch, has
lower energy than 4' rc, which is the toroidal minimum
in this range. Of course, the full vesicle energy F also in-
cludes the Gaussian curvature energy F „which contrib-
utes 4z~p for shapes of spherical topology. The compar-
ison between classes of different topology now depends
on the nonuniversal value of K'~, which favors toroidal
shapes for xt.- & 0. However, even for widely used mem-
branes, neither the sign nor the value of rag seems to be
known.

While the bending energy (l) constitutes a minimal
model for vesicle shapes, a more refined description may
require either the inclusion of a spontaneous curvature
Co [i.e. , (20) in (l) is replaced by (20 —Co) ] or an
additional constraint for the integrated mean curvature
which defines the so-called bilayer coupling model. ' '
As will be shown elsewhere, these extensions of the mod-
el do not alter the main results of this paper, i.e., the ex-
istence of three branches of axisymmetric toroidal shapes
and the dominance of nonaxisymmetric shapes over a
large range of parameters. However, for nonzero spon-
taneous curvature, the two Goldstone modes gain a
"mass, " i.e., an energy which behaves like —KCOA for
small Co. If it were possible to scan through a range of
spontaneous curvatures, e.g. , by adding diA'erent chemi-
cal ingredients to the solution, awhile keeping the osmo-
larity and, thus, v fixed, the point at which Co changes
sign should be reAected in enhanced fluctuations (which
may well be overdamped due to hydrodynamic eKects).

So far, the minimum of F for given v has been con-
sidered. On long time scales, water can permeate
through the membrane and the vesicle assumes the shape
which minimizes F with respect to v. This minimum is
characterized by P =0, since from Eq. (2), I' = —(6F,/
riV)~ c, where the derivative is taken along a branch of
stationary shapes. For CD=0, the CliAord torus and its

conformal transformations correspond to such a
minimum. For Co&0, the CliA'ord torus solves (2) with
P & 0 for Co & 0 and P & 0 for Co & 0, respectively.
This shows that the shape of lowest F, for CO~0 is not
given by the CliAord torus but rather by a shape with a
relative volume v & v* for Co&0 and v & v* for Co&0,
respectively.

We close with a comment on the toroidal shapes re-
cently observed for partially polymerized membranes. '

In this experiment, polymerizable but yet unpolymerized
membranes were first cooled below the chain melting
temperature T, which leads to tubular structures. This
sample was then partially polymerized by UV irradiation
and finally reheated above T . After this preparation,
several toroidal shapes were observed, which were stable
over days. Surprisingly, nearly all shapes seem to have
had a ratio of radii characteristic of the Clifford torus.
Although this nice observation demonstrates the ex-
istence of toroidal shapes, its quantitative analysis in
terms of the model for fluid membranes discussed here is
questionable. First, one has to suppose that the essential
eA'ect of the polymerization results in an effective spon-
taneous curvature Co. Second, if Co is large and nega-
tive as suggested in Ref. 18, the shape of lowest bending
energy is no longer the Clifford torus but rather a non-
axisymmetric shape with v & v *. If the corresponding
spontaneous curvature is small and distributed about
zero, one would expect that apart from the CliA'ord torus
also nonaxisymmetric shapes occur. This seems to have
happened only in rare cases. The available experimental
data, thus, seem to favor the conclusion that additional
eAects due to the polymerization, which are not yet in-
cluded in the model discussed here, somehow single out
the CliAord torus. Clearly, more experimental and
theoretical work for this type of membrane is required to
settle this important issue.

In summary, the theoretical study of toroidal shapes
for Auid vesicles has revealed (i) three dift'erent branches
of axisymmetric shapes, (ii) a large region of nonaxisym-
metric shapes obtained by conformal transformations,
and (iii) shape iluctuations of low energy for small spon-
taneous curvature.
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Note added. —After submission of this paper, the ob-
servation of fluid vesicles with toroidal topology which
indeed exhibit nonaxisymmetric shapes has been report-
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