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Abstract

Many viruses that enter cells by clathrin-dependent endocytosis are significantly larger than the dimensions of a typical
clathrin-coated vesicle. The mechanisms by which viruses co-opt the clathrin machinery for efficient internalization remain
uncertain. Here we examined how clathrin-coated vesicles accommodate vesicular stomatitis virus (VSV) during its entry
into cells. Using high-resolution imaging of the internalization of single viral particles into cells expressing fluorescent
clathrin and adaptor molecules, we show that VSV enters cells through partially clathrin-coated vesicles. We found that on
average, virus-containing vesicles contain more clathrin and clathrin adaptor molecules than conventional vesicles, but this
increase is insufficient to permit full coating of the vesicle. We further show that virus-containing vesicles depend upon the
actin machinery for their internalization. Specifically, we found that components of the actin machinery are recruited to
virus-containing vesicles, and chemical inhibition of actin polymerization trapped viral particles in vesicles at the plasma
membrane. By analysis of multiple independent virus internalization events, we show that VSV induces the nucleation of
clathrin for its uptake, rather than depending upon random capture by formation of a clathrin-coated pit. This work
provides new mechanistic insights into the process of virus internalization as well as uptake of unconventional cargo by the
clathrin-dependent endocytic machinery.
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Introduction

Clathrin-mediated endocytosis is the major transport pathway

from the plasma membrane to early endosomes. In this process,

the plasma membrane typically invaginates into a clathrin-coated

pit, in which adaptor molecules bridge the interaction of clathrin

with cargo. During invagination, the ubiquitous adaptor protein

complex, AP-2, binds to specific sorting signals in the cytosolic tails

of membrane proteins, and to phospholipids and clathrin. As the

coated pit grows, additional clathrin and adaptor molecules

assemble to form an enclosed and fully coated structure [1].

Separation of this pit from the plasma membrane requires a large

GTPase, dynamin [2,3]; clathrin rapidly uncoats from the

resulting coated vesicle through action of the Hsc70 ATPase and

its cofactor, auxilin [4,5].

Infection by many viruses is sensitive to inhibition of the clathrin

pathway. Among the best-studied examples is vesicular stomatitis

virus (VSV), a prototype of the Rhabdoviridae. Initial evidence for

the clathrin-dependent uptake of VSV comes from electron

micrographs that show viral particles present within coated pit

structures [6,7]. More recent experiments show that viral gene

expression is inhibited by a dominant negative mutant of

epidermal growth factor receptor pathway substrate clone 15

(Eps15), a protein involved in clathrin-mediated endocytosis, or by

treatment of cells with siRNA targeted to clathrin heavy chain [8].

A functional clathrin pathway is therefore required for efficient

viral infection.

Coated pit assembly in vivo has been followed in detail by live

cell imaging, using individual, fluorescently labeled low density

lipoprotein (LDL) and reovirus particles to visualize cargo [1]. The

kinetics of internalization are in both cases consistent with capture

of the cargo by randomly initiating coated pits. Moreover, the

amount of clathrin required to complete coated pit assembly scales

as the area needed to engulf particles having the relative diameters

of the two ligands. In studies using the same cell line, coated pits

containing influenza A particles were reported to resemble those

lacking virions (and presumed to contain other cargo molecules),

but internalization of the virus appeared to occur through pits that

formed directly at the site of virus binding, as if the influenza virus

induced its own uptake [9]. The differences in uptake kinetics

between LDL or reovirus and influenza virus suggest that there

may be multiple modes of coated-pit initiation and that distinct

initiation modes may entrain distinct assembly mechanisms and

possibly distinct destinations for the endocytosed cargo.
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Influenza and reovirus particles are both roughly spherical and

not greatly different in size (120 and 85 nm diameter, respectively),

so particle dimensions alone probably cannot explain the

apparently different uptake modalities. VSV is a bullet-shaped

particle, 180670 nm, much longer than the diameter of influenza

or reovirus and comparable in cross section. To probe the limits

and correlates of alternative endocytic mechanisms, we have

determined the kinetics of VSV endocytosis into clathrin-coated

vesicles. Vesicles internalizing VSV appear to contain insufficient

clathrin to coat fully a virus-containing vesicle. The coated pits

recruit actin and associated proteins in a step that is essential for

release of the vesicles from the plasma membrane. We integrate

these observations, together with evidence from electron micros-

copy, into a model of VSV internalization. We conclude that VSV

and potentially other cargo are internalized through an altered

mode of clathrin-based endocytosis.

Results

Live cell imaging of VSV entry
To image the internalization of single VSV particles in live cells,

we conjugated the fluorescent dye, Alexa Fluor 647 to purified

virions. This labeling process did not significantly reduce viral titer

as measured by plaque assay (Figure S1A). Examination of labeled

VSV particles by spinning disc confocal fluorescent microscopy

showed distinct, diffraction-limited puncta with a single Gaussian

distribution of fluorescence intensities (Figure S1B). This result is

consistent with a lack of aggregates and the presence of single virus

particles. To examine how clathrin-coated pits internalize VSV,

we infected BSC-1 cells stably expressing tomato-clathrin light

chain A1 (tom-LCa) and acquired images from the bottom surface

of cells using a spinning disc confocal microscope. Single VSV

particles attached to cells, and over the 6–10 min. time course of

28 time-lapse videos, more than 90% (133/146) of the attached

particles associated with tom-LCa (Figure 1A, B, S3). Moreover,

the tom-LCa fluorescence signal increased over time and then

abruptly disappeared as the vesicle uncoated (Figure 1A, C,

Videos S1, S2). More than 70% (98/133) of the captured particles

underwent rapid, directed movement shortly after disappearance

of the clathrin signal, indicating intracellular transport of virus-

containing vesicles (Videos S1, S2). The few particles that failed to

associate with clathrin remained at the cell surface and did not

exhibit this rapid, directed motion. Thus, clathrin-mediated

endocytosis accounts for the uptake of most attached VSV

particles.

AP-2 is a functional adaptor for productive internalization
of VSV through clathrin-coated pits
To determine if AP-2 is present in clathrin-coated pits that

contain VSV, we imaged virus internalization in cells expressing

tom-LCa and the s2 subunit of AP-2 fused to eGFP (s2-eGFP).

Without exception, s2-eGFP appeared and disappeared along

with tom-LCa (Figure 1C–E), demonstrating that VSV internal-

ization occurs in clathrin-coated pits that contain AP-2. We

examined the abundance and the association kinetics of tom-LCa

and s2-eGFP in pits that contain virus and compared them with

pits that lack virus. Clathrin and AP-2 recruitment are initially

similar, independent of virus (Figure 1D, E), but virus-containing

pits often show a transient plateau in the accumulation of tom-

LCa followed by a subsequent burst of clathrin accumulation

(Figure 1D, E). Pits containing virus showed longer lifetimes and

on average contained more clathrin and AP-2 than pits in the

same cell that lacked virus (Figure 1E, F). Combined with other

experiments in cells expressing tom-LCa (see below), we measured

clathrin accumulation and pit lifetime for 46 pits containing virus

and compared them with 92 that lacked virus. Pits containing virus

recruit on average 1.5-fold more clathrin, and have lifetimes of

110+/244 s, compared to 51+/216 s for pits lacking virus

(Figure 1F). Thus, efficient internalization of VSV occurs through

coated pits containing AP-2, and compared with pits lacking virus,

those containing virus have increased lifetimes and often contain

more clathrin and AP-2.

Using siRNA to target the m2 subunit of AP-2 in cells constitutively

expressing s2-eGFP, we showed that AP-2 depletion completely

inhibited clathrin-dependent VSV internalization (Figure 2). Loss of

m2 can be followed by disappearance of the s2-eGFP signal from

coated pits, as assembly of one AP-2 heterotetramer depends on all

four of its subunits. As expected, cells lacking detectable s2-eGFP

(.95% of the population) failed to take up an AP-2 dependent cargo,

transferrin, which remained trapped at the cell surface (Figure 2A,

red signal). Moreover, inspection of 37 virus particles attached to 5

different cells depleted for AP-2 showed that VSV remained attached

at the cell surface (Figure 2A, blue signal). By contrast, cells treated

with a control siRNA displayed normal levels of s2-eGFP, robust

transferrin uptake, and maintained the capacity to internalize VSV

(42/63 particles; 8 cells) (Figure 2A, B). In other cells, traces of AP-2

expression remained following siRNA treatment. Under such

conditions, we found that low levels of AP-2 accumulated beneath

particles, and that virus was internalized by clathrin (not shown).

Thus, low levels of AP-2 are sufficient for clathrin-dependent virus

uptake. Using a recombinant VSV that expresses firefly luciferase as a

marker of infection (rVSV-LUC), we further show that m2 depletion

resulted in diminished infection of cells as indicted by a 65%

reduction in luciferase activity (Figure 2C). These data demonstrate

that AP-2 is essential for the clathrin-dependent uptake of VSV.

Dynamin is required for VSV entry
Using cells expressing low levels of dynamin2-eGFP (dyn2-

eGFP) and tom-LCa, we compared dynamin recruitment to 11

pits containing virus with 18 that lacked virus. As previously

demonstrated for pits lacking virus, dynamin recruitment

increased rapidly during late stages of pit growth (Figure 3A–C).

Virus-containing pits also recruit dynamin, with a spike during the

later stages of growth (Figure 3A–C, Video S3). Quantitation of

Author Summary

Clathrin-dependent endocytosis accounts for the majority
of uptake from the plasma membrane. However, many
viruses that infect cells through an endocytic route are
larger than the dimensions of a typical clathrin-coated
vesicle. Working with vesicular stomatitis virus, we deter-
mined how this cargo enters cells. We present evidence that
VSV induces its own uptake by the clathrin-dependent
endocytic machinery following binding to the plasma
membrane. The clathrin-coated vesicles that contain virus
differ from vesicles that internalize conventional clathrin
dependent cargo such as LDL and transferrin. Specifically,
we show that VSV particles are internalized by vesicles that
are only partially coated with clathrin, rather than the
complete coat found on conventional vesicles. We show
that the clathrin-dependent endocytic adaptor AP-2 is
required for entry. Finally, we show for the first time that
actin is recruited to virus-containing pits and that particle
internalization depends upon actin function. Our work
provides new mechanistic insights into VSV entry that may
be directly relevant in understanding the clathrin depen-
dent uptake of other viruses.

Clathrin and Actin-Dependent VSV Entry
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the peak dyn2-eGFP fluorescence shows that virus-containing pits

recruit an average of five times more dynamin than pits lacking

virus (Figure 3C, D).

Using dynasore [10], a cell permeable small molecule inhibitor

of dynamin, we showed that dynamin function is required for

clathrin-dependent internalization of VSV. As previously reported

Figure 1. Live cell imaging of clathrin-dependent endocytosis of single VSV particles. (A) Split channel images of a single BSC-1 cell (left
and also in Video S1) transiently expressing tom-LCa (grey) highlight 3 virus particles (blue, circled) during internalization by clathrin-coated pits
(CCPs). Kymographs (right) of sections of the cell surface showing tom-LCa fluorescence over time for clathrin-coated vesicles (CCV) containing and
lacking virus. (B) A graph of the % of virus particles captured by a CCP or internalized by a CCV was plotted for 146 particles that attached to 28
different cells during image acquisition. (C) A tile view of images of a BSC-1 cell co-expressing s2-eGFP (green) and tom-LCa (red) cropped from a
time-lapse movie (Video S2), showing VSV appearing at the cell surface (time, t =218 s) relative to the point (t = 0) of clathrin detection above
background. (D) A graph of the kinetics of AP-2 and clathrin recruitment to the CCPs of panel C. Fluorescence intensities were plotted relative to the
time of clathrin detection, and are expressed as a % of the average maximum clathrin observed in all pits lacking virus. The points are a weighted
average of fluorescence intensities calculated as described in Materials and Methods. (E) A graph of the average kinetics of LCa and s2 recruitment to
CCPs containing (right, from 4 cells) or lacking (left, from 2 of the 4 cells) virus. Average fluorescence intensity and time are expressed as a % relative
to CCV lacking virus observed in the same cells. Fluorescence intensity was calculated at 8 equally-spaced intervals and is plotted+/2standard error.
(F) A graph of the clathrin fluorescence relative to vesicle lifetime for CCPs lacking (open circles) or containing (blue) virus. Fluorescence was
expressed as a % relative to the average maximum for tom-LCa in pits lacking VSV. The average lifetime for pits containing virus was 110+/244 s (15
cells), which was statistically distinct (Student’s t-test: p = 2e-12) to that for pits lacking virus (51+/216 s from 8 of the same cells). The peak clathrin
fluorescence intensities in pits containing and lacking virus was 155+/269 and 100+/234, respectively. The difference between these values is
statistically significant (Student’s t-test: p = 1e-6).
doi:10.1371/journal.ppat.1000394.g001

Clathrin and Actin-Dependent VSV Entry
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[10], addition of dynasore caused arrest of coated pit formation

and trapped clathrin structures at the plasma membrane

(Figure 3E). Clathrin-dependent uptake of VSV was likewise

completely inhibited (Figure 3E, F). Virus particles that entered

coated pits within the first minute following dynasore addition

failed to internalize and remained trapped for the 13 min.

duration of the time-lapse video in structures that contained

clathrin and AP-2 (Figure 3E and Video S4). Of 144 virus particles

that attached to cells in the presence of dynasore, none was

internalized by clathrin (Figure 3F), in contrast to the highly

efficient clathrin-dependent internalization of VSV in the absence

of dynasore (Figure 3F). Using the rVSV-LUC assay, we also

showed that dynasore functionally inhibits viral entry (Figure 3G).

VSV gene expression was relatively insensitive to the addition of

dynasore at 1 hour post-inoculation but not to its addition just

prior to virus inoculation (Figure 3G). These data show that

functional dynamin is critical for clathrin-dependent uptake of

VSV and concomitant productive infection of cells.

Auxilin recruitment to vesicles containing VSV
The cellular ATPase, Hsc70, and its cofactor, auxilin, catalyze

clathrin disassembly from endocytic vesicles. Auxilin1 is recruited

to coated pits upon completion of clathrin growth at the time of

vesicle budding, triggering rapid uncoating of the newly formed

vesicle [4,5]. Using cells co-expressing eGFP-aux1 and tom-LCa,

we examined whether coated pits that contain virus also recruit

auxilin. We acquired images at 2-second intervals to ensure that

we captured the full kinetics of auxilin arrival. We imaged the

internalization of 7 viral particles and compared the lifetimes and

abundance of tom-LCa and eGFP-aux1 in these vesicles with 12

that lacked virus. The extent of auxilin1 recruitment to coated pits

was unaltered by the presence of VSV (Figure 4A, Video S5). By

measuring the duration of the spike in eGFP-aux1 fluorescence,

we found a slight but statistically insignificant increase in the

duration of the auxilin burst from 5+/21 s to 7+/22 s during

VSV entry. These data show that virus-containing vesicles uncoat

similarly to those that lack virus (Figure 4B).

Local actin polymerization during VSV internalization
The effects of VSV on clathrin-coated pit formation suggest

parallels with internalization of large and more stable clathrin-

coated structures (Saffarian and Kirchhausen, submitted) and the

invasive bacteria Listeria monocytogenes [11]. Actin polymerization has

a role in the internalization of such structures, although it is not

required for internalization of conventional clathrin-coated pits [12]

and Saffarian and Kirchhausen, submitted. We therefore tested

whether actin, an actin nucleation factor, Arp3, or cortactin, an

activator of the Arp2/3 complex, is recruited to coated pits. We

used for this purpose, cells expressing tom-LCa and eGFP fused to

each of these proteins. During growth of virus-containing pits, the

levels of actin, Arp3, and cortactin increased steadily (Figure 5B, D

and F). Moreover, for both Arp3 and cortactin, there was a peak of

fluorescence just prior to the onset of vesicle uncoating (Figure 5A–

F, Videos S6, S7, S8). In contrast, pits that lacked VSV had low and

variable levels of actin and Arp3 fluorescence throughout the

growth phase that were barely above the background (Figure 5B

and D). Cortactin recruitment was approximately 4-fold lower than

observed in virus-containing pits (Figure 5F). We conclude that actin

assembly is associated with VSV entry through a clathrin pathway.

Inhibition of actin polymerization reduces the efficiency
of VSV internalization
To assess the importance of actin function during VSV

internalization, we used cytochalasin D (cytoD) or latrunculin B

(latB) to inhibit actin assembly. CytoD binds to the growing ends

of actin filaments [13], and latB sequesters G-actin monomers

[14]. As shown previously [12], cytoD or latB diminishes the

number of clathrin-coated pit nucleation events, but has no effect

on either the kinetics of coat assembly or the subsequent

internalization of these pits (Figure 6C). Pretreatment of cells with

Figure 2. AP-2 is a functional adapter for VSV internalization. (A) An image of BSC-1 cells (left) stably expressing s2-eGFP (green) treated
with non-targeting (NT) or m2-adaptin siRNAs and exposed to Alexa 568 labeled tf (red). Images were acquired from the bottom and middle of the NT
and m2 siRNA-treated cells, respectively. Dashed white lines demark the cell boundaries. A series of kymograph views showing VSV (blue)
internalization in siRNA treated cells (right). Note the lack of virus internalization in cells lacking s2-eGFP. (B) A graph of the % of bound VSV particles
that were internalized by 7 cells treated with the NT siRNA and 5 cells treated with the m2 siRNA and defective for transferrin uptake. (C) A graph
depicting the effect of m2 depletion on VSV gene expression. Cells were doubly transfected with the indicated siRNAs and inoculated with rVSV-LUC
at an MOI of 0.5. Virus particles were removed after 1 h, and luminescence was quantified at 4 h p.i. Values represent the mean+/2the standard
deviation of 2 independent experiments.
doi:10.1371/journal.ppat.1000394.g002

Clathrin and Actin-Dependent VSV Entry
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cytoD or latB did not affect the efficiency (Figure 6A) or time

(mean=160 s; Student’s t-test p = 0.24) to association of virus with

a clathrin-coated pit. Instead, both compounds inhibited entry by

blocking by at least 75% the transition of virus-containing pits to

completed vesicles (Figure 6B).

We further established that treatment with cytoD, which has little

detectable effects on the kinetics of virus-free coated pit formation,

freezes assembly of virus-containing clathrin coats (Figure 6D). In the

presence of cytoD, the increase in clathrin fluorescence at puncta

labeled by VSV reached a level similar to the average level for

untreated cells, but the two labels then remained associated, often for

the duration of the experiment (Figure 6D, Video S9). Those virus

particles that did internalize (as detected by loss of clathrin signal and

rapid motion of virus label away from the site of coated-pit formation)

Figure 3. Enhanced dynamin recruitment during viral internalization. (A) A tile view of images from a BSC-1 cell co-expressing dyn2-eGFP
(green) and tom-LCa (red) cropped from a time-lapse movie (Video S3), showing appearance of VSV at the cell surface (t =28 s) relative to detection
of clathrin (t = 0 s). (B) A graph of the kinetics of dyn2 and clathrin recruitment to the CCPs shown in panel A. The fluorescence was expressed as a %
of the average maximum clathrin measured in all pits lacking virus, and a weighted average was plotted as described in Materials and Methods. (C) A
graph of the average kinetics of LCa and dyn2 recruitment to CCP containing (right) or lacking (left) virus. Average fluorescence intensity and time are
expressed as a % relative to CCV lacking virus observed in the same cells. Fluorescence intensity was calculated at 8 equally-spaced intervals and is
plotted+/2standard error. Viral events were from 5 cells, and events lacking virus were analyzed in 3 of the same cells. (D) A graph of the maximum
dynamin recruitment relative to pit lifetime for CCVs containing (blue) or lacking (open circles) virus. Dynamin fluorescence is expressed as a % of the
average peak observed for pits lacking virus. The average lifetime of pits containing virus was 148+/271 s (5 cells), and was statistically distinct
(Student’s t-test: p = 7e-4) to that for pits lacking virus (55+/221 s from 3 of same cells). The peak dynamin fluorescence intensities in pits containing
and lacking virus were 548+/2221 and 100+/245, respectively. The difference between these values is statistically significant (Student’s t-test: p = 2e-
5). (E) A kymograph view of BSC-1 cells expressing s2-eGFP and tom-LCa. Note the lack of CCP internalization (arrows) and virus (blue) uptake in cells
treated with 80 mM dynasore. Video S4 depicts inhibition of VSV internalization following dynasore treatment. (F) A graph of the % of bound VSV
particles that were internalized in the presence (n = 4 cells) and absence (n = 5 cells) of dynasore. (G) Graphs of the effect of dynasore on VSV entry
and gene expression. Cells were infected with rVSV-LUC (MOI = 0.5), and exposed to the indicated concentration of dynasore 1–4 h p.i. (left) or prior
to infection 20.5–4 h p.i. (right). Luminescence values were measured at 5 h p.i. and are the average+/2standard deviation of triplicate samples.
doi:10.1371/journal.ppat.1000394.g003

Clathrin and Actin-Dependent VSV Entry
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remained associated with clathrin for 263+/234 s, albeit 3 times

longer than the mean life time of virus-free coated pits (Figure 6D).

Using rVSV-LUC, we also showed that treatment with cytoD and

latB during infection had a dose-dependent effect on luciferase gene

expression, while introduction of these compounds at 1 hour post-

infection had little effect for over three hours following addition of the

drug (Figure 6E, F). We conclude that actin assembly is critical for

internalization of VSV but not for gene expression once virus has

entered. Moreover, at least one actin-dependent step is essential for

completion, pinching and dissociation of the clathrin coat, but not for

its nucleation and initial assembly.

Clathrin assembly is locally induced by VSV particles
Is capture of VSV by a coated pit a random diffusional collision as

it is for LDL [1], or does the virus induce coat formation after

binding? We studied the trajectories of 37 virus particles at the cell

surface and found that most (n= 25) diffused randomly (Figure 7A,

B), with diffusion coefficients (D) between 5610211 cm2 s21 and

5610212 cm2 s21. A subset of particles moved more rapidly

(average D=5610210 cm2 s21) but eventually also slowed to

comparable diffusion rates (Figure 7A). Regardless of the initial

diffusion rate, all viral particles became essentially immobile at least

20 s (mean=42 s) prior to the earliest detection of clathrin

(Figure 7A, B). For the subset of particles that attached during

imaging and then entered productively (n= 98), the average time

between virus binding and clathrin detection was 122 s (Figure 7C).

Analysis of all virus capture events showed that clathrin colocalized

with particles from the moment of its detection, indicating that pits

that capture VSV form close to or directly beneath virions.

To test whether our experimental observations are consistent or

not with a random capture of VSV by clathrin, we performed a

Monte-Carlo simulation. We used MATLAB to approximate the

random motion of VSV particles on a 1006100 grid with the

experimentally determined diffusion rate of 1610211 cm2 s21. We

estimated a viral footprint of 1206120 nm2, which is a generous

estimate of the surface area directly contacted by a virus of

180670 nm. We introduced clathrin-coated pits with lifetimes of

20 s (the time beyond which a pit would be too constricted to

accommodate a VSV particle) at random locations according to

the experimentally determined nucleation rate of 0.6 pits/

108 nm2 s21, which was derived from 6 cells. To estimate the

diffusion coefficient, we calculated the typical rate of particle

displacement by plotting the square of the mean displacement

versus time (Figure 7B). The slope of the line of best-fit provides a

rate of 0.0041 m
2 s21, which we used to calculate a representative

diffusion coefficient (D) of 1610211 cm2 s21 using the formula:

(mean displacement)2=4Dt. This most accurately reflects the rate

of virus diffusion at the time of capture (Figure 7B). Using these

parameters, the average time to virus capture was 2000 s, which is

markedly different to the measured time of 122 s (Figure 7C). Our

simulation predicts a mean capture time of 18 seconds for an LDL

particle, which is in good agreement with the experimental value

of 20 seconds [1]. This validates our simulation protocol, and

together with the virus data, provides evidence that pits engaged in

virus uptake preferentially nucleate in close proximity to VSV

particles.

Discussion

We examined how VSV enters host cells via the clathrin-

dependent endocytic machinery using a combination of high-

resolution live cell imaging, electron microscopy and quantitative

assays for viral infectivity. By comparing clathrin-dependent

uptake of single virus particles with canonical coated vesicle

formation, we uncovered striking differences between these two

processes. Unlike typical coated vesicles, virus-containing vesicles

lacked a full clathrin coat and required local actin polymerization

after coat assembly for efficient internalization. We also obtained

evidence that VSV promotes its own uptake by inducing clathrin

coat formation in close proximity to the virus particle. This study

uncovers one mechanism by which mammalian cells internalize

large clathrin-dependent cargo through the coordinated action of

endocytic and cytoskeletal components. This mode of clathrin-

dependent endocytosis shares some features of the clathrin

endocytic machinery of Saccharomyces cerevisae, as well as the uptake

of large bacteria such as Listeria monocytogenes into mammalian cells.

VSV internalization through partially clathrin-coated
structures
We previously established the direct relationship between coat

size and clathrin or AP-2 fluorescent intensity associated with

endocytic coated pits and vesicles [1]. We compared the amount of

Figure 4. Auxilin recruitment during uncoating of vesicles
containing VSV. (A) Kymograph views of VSV internalization by a BSC-
1 cell expressing tom-LCa and eGFP-aux1 (left), along with a graph of
the kinetics of auxilin (aux1) and clathrin (LCa) recruitment (right). The
internalization event shown is depicted in Video S5. (B) Graphs of the
average kinetics of clathrin and auxilin recruitment to CCP containing
(right) or lacking (left) virus. Average fluorescence intensity and time are
expressed as a % relative to CCV lacking virus observed in the same
cells. Fluorescence intensity was calculated at 8 equally-spaced intervals
and is plotted+/2standard error. Viral events were from 2 independent
cells, and events lacking virus were analyzed in 1 of these cells. The
difference between the maximum aux1 fluorescence in pits containing
and lacking VSV is not statistically significant (Student’s t-test: p = 0.1).
doi:10.1371/journal.ppat.1000394.g004

Clathrin and Actin-Dependent VSV Entry
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clathrin associated with vesicles containing and lacking VSV. On

average, virus-containing vesicles contained 1.5-fold more clathrin,

with a maximum of 2.5-fold more, and in some instances, less

clathrin than vesicles lacking virus (Figure 1F). Although pits

internalizing VSV tend to have more clathrin, the increase is

insufficient to coat fully a vesicle containing a viral particle. The

size of VSV particles is 180670 nm, which could fit within a

spherical vesicle with an internal radius of 90 nm, or within a

Figure 5. Actin cytoskeletal dynamics during clathrin-dependent uptake of VSV. (A, C, and E). VSV internalization events in BSC-1 cells co-
expressing tom-LCa and eGFP-actin (A), arp3-eGFP (C), or cortactin-eGFP (E) are shown as kymographs and in Videos S6, S7, S8 respectively. The
fluorescence over time (left to right) of the actin cytoskeletal component (top), tom-LCa (middle), and a merge of these traces with the virus are
shown (bottom) and are represented graphically at the right using the same approach as in Figure 1D. (B, D, and F) Graphs of the average kinetics of
clathrin and actin (B), arp3 (D) and cortactin (F) recruitment to vesicles lacking (left) or containing (right) virus are shown. Average fluorescence
intensity and time are expressed as a % relative to CCV lacking virus observed in the same cells. Fluorescence intensity was calculated at 8 equally-
spaced intervals and is plotted+/2standard error. Virus internalization data was collected from 5, 3, and 2 cells for panels B, D and F respectively, and
compared with events lacking virus from 2, 2, and 3 of the same cells, respectively. The differences between the maximum actin, Arp3, and cortactin
fluorescence values in pits containing and lacking VSV are statistically significant. Student’s t-test: actin p = 2e-5; Arp3 p= 4e-4; cortactin p = 0.003.
doi:10.1371/journal.ppat.1000394.g005
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prolate spheroid with a polar radius of 90 nm and an equatorial

radius of 35 nm. The surface area of such vesicles is respectively 9

and 3 times greater than that of a conventional clathrin-coated

vesicle with an internal radius of 30 nm. Thus to be completely

coated with clathrin, virus-containing vesicles would require at

least 3 times the amount of clathrin observed on a conventional

vesicle. Our data are not consistent with this level of clathrin on

vesicles internalizing VSV, which leads us to conclude that clathrin

does not fully coat such vesicles. Further support for this

conclusion is provided by electron micrographs that show VSV

present within clathrin-coated structures that contain an elongated

tubular neck that lacks the characteristic clathrin density

(Figure 8A). These images are also consistent with earlier electron

micrographs that show VSV entering cells where clathrin is

apparent on only a portion of the vesicle [15,16,17]. However, it

was uncertain from this earlier work as to whether the static EM

images represent an intermediate stage of the clathrin assembly

process during virus internalization. By examining this process in

real time in live cells, our data provides compelling evidence that

virus enters cells in vesicles that lack a full clathrin coat.

Clathrin adaptor usage during virus internalization
The heterotetrameric AP-2 adaptor complex recruits clathrin

triskelions to the plasma membrane through direct interactions

with phospholipids, receptor molecules, and clathrin. Almost all

clathrin-coated pits at the cell surface contain AP-2, and depletion

of its m2 subunit reduces pit formation .10-fold [18]. Function-

ally, AP-2 depletion inhibits transferrin uptake [18]; however, its

effect on other clathrin-dependent cargo is less clear. For example,

depletion of the s2 subunit of AP-2 inhibits EGF uptake at 37uC

Figure 6. Chemical inhibition of actin polymerization reduces the efficiency of VSV internalization. (A–D) Where indicated, BSC-1 cells
were treated with 20 mM cytochalasin D (cytoD), or 6.3 mM latrunculin B (latB) for 10 min. prior to inoculation with VSV and acquisition of time-lapse
images. Video S9 depicts the effect of cytoD treatment on VSV internalization. The % of attached particles captured by a coated pit (A), and
subsequently internalized (B), along with the % of CCP lacking virus that complete within 80 s (C), were plotted to generate the graphs shown. Data
in (A) and (B) are from 28 independent control cells, 5 cells treated with cytoD, and 2 cells treated with latB. Data in (C) are from 2 independent cells in
each condition. (D) The graphs show clathrin fluorescence vs. CCV lifetime for complete (circles) or incomplete (triangles) internalization events, for
pits containing (blue) or lacking (open circles) VSV. Clathrin fluorescence is expressed relative to its intensity in untreated pits lacking virus, which
were set to 100. Internalization was analyzed from 4 cells in the absence of cytoD (16 complete VSV internalizations, 23 complete non viral events) or
3 cells (8 complete and 11 incomplete VSV events, 24 complete non viral events) in the presence of cytoD. The peak clathrin fluorescence in viral
events was not statistically significantly different in the presence and absence of cytoD (Student’s t-test p = 0.2 for complete and incomplete events).
(E) Effect of cytoD on VSV entry and gene expression. Cells were infected with rVSV-LUC (MOI = 0.5) and exposed to the indicated concentration of
cytochalasin D 2–5 h p.i. (left) or prior to infection 20.5–5 h p.i. (right). Luminescence values were measured at 5 h p.i. as described in Materials and
Methods. The values shown are the mean of triplicates+/2standard deviation. (F) Effect of latB on VSV entry and gene expression. Cells were treated
as in (E) except latB was substituted for cytoD.
doi:10.1371/journal.ppat.1000394.g006
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[19] but not after preincubation of cells with the ligand at 4uC

[18,19,20]. For influenza A virus, depletion of epsin 1 [21], but not

the a-subunit of AP-2 [20], impaired the clathrin-dependent

internalization of virus particles. Following submission of this

manuscript, a related study of the internalization of VSV reported

that depletion of the a- and m-subunits of AP-2 in HeLa cells did

not inhibit infection [22]. However, the authors were unable to

directly image the viral entry step and thus could not determine

whether the virus entered the AP-2 depleted HeLa cells in a

clathrin-dependent or independent manner. In the present study,

we found that depletion of m2-adaptin in BSC-1 cells prevents

clathrin-dependent uptake of VSV and diminishes viral VSV gene

expression (Figure 2). In BSC-1 cells simultaneously expressing

s2-eGFP and tom-LCa, AP-2 ablation reduced the rate of coated

vesicle formation by ,10-fold, and pits that formed contained low

levels of AP-2. Importantly, VSV was only internalized by clathrin

containing structures that also contained s2-eGFP fluorescence.

Thus, our data supports an essential requirement for AP-2 in the

clathrin-dependent uptake of VSV, at least in BSC-1 cells. Why

the clathrin-dependent endocytosis of influenza A virus is

insensitive to AP-2 depletion and appears to depend on Epsin 1

is not clear. Perhaps this distinction reflects differences in cellular

receptor usage or the capacity to trigger recruitment of specific cell

factors to sites of virus binding.

The actin machinery plays a key role in virus
internalization
Although much evidence supports a role for the actin

machinery in clathrin-dependent endocytosis in the yeast Saccha-

romyces cerevisae, its role in mammalian cells is uncertain. In S.

cerevisae, clathrin-coated patches on the cell surface mature into

,200 nm tubular invaginations with coat proteins at their tip [23].

The actin cytoskeletal machinery is recruited after coat formation

and provides an essential force for membrane deformation and

internalization [24]. In mammalian cells, clathrin structures differ

in their actin dependency for internalization. Chemical inhibitors

of actin polymerization reduce the rate of clathrin-coated pit

formation by 2-fold but do not block the uptake of conventional

coated pits [12]. Live cell imaging studies have provided evidence

that a subset of clathrin structures assembled at the plasma

membrane recruit the actin machinery and require actin function

for their internalization [12,25,26,27,28]. What distinguishes this

subset of structures is uncertain, but they may correspond to large

arrays of clathrin, as their lifetimes are much longer (.60 s) than

that of conventional coated pits.

In the present study, we found that clathrin structures

internalizing VSV require actin polymerization for efficient uptake

into cells (Figure 6). Analogous to the situation in yeast [24,29],

actin polymerization is required downstream of clathrin recruit-

Figure 7. Kinetics of VSV diffusion and capture by clathrin-coated pits. (A) A graph of the diffusion (mean squared displacement) of 4 single
particles relative to the time of clathrin detection (t = 0) is shown. Note the break in the Y axis to emphasize the difference between rapidly (open
circles) and slowly (blue) diffusing particles. (B) A graph of the average rate of diffusion (mean square displacement) for 13 particles (n = 4 cells)
tracked for 60 s prior to clathrin detection (t = 0) is shown. (C) A histogram of the time between VSV attachment and the appearance of clathrin or
adaptor is shown for 98 particles (left; n = 28 cells), and compared with the simulated kinetics of random capture of VSV (middle) or LDL (right) by
CCPs. The mean times to cargo capture are shown in the upper right corner of each panel.
doi:10.1371/journal.ppat.1000394.g007
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ment (Figure 6D). Precisely what step of internalization is actin-

dependent is uncertain, but perhaps actin filament formation

facilitates the invagination and possibly fission of coated pits

containing a VSV particle. Our findings of a requirement for the

actin machinery in VSV internalization contrast with earlier work,

which showed that VSV infection of polarized MDCK cells from

the apical but not from the basolateral surface was inhibited on

treatment of cells with cyto D [30]. In those experiments, however,

the basolateral uptake of luciferase yellow, a general tracer for all

forms of internalization, was not affected. Thus, basolateral entry

Figure 8. Visual comparison of CCV formation and VSV entry. (A) Electron micrographs depicting successive stages of CCV formation (top)
and VSV entry (bottom). Clathrin appears as an electron dense coat on the cytosolic side of the plasma membrane, and early stages of clathrin
assembly are indistinguishable. Conventional pits then adopt a constricted U shape, while virus-containing structures form elongated clathrin-coated
tubes. Pits lacking virus become fully coated and pinch off from the membrane as spherical vesicles, but viral pits mature into much larger, partially
uncoated structures. In the indicated samples, cells were treated with 20 mM cytoD for 10 min., and incubated with rVSV at an M.O.I. of 5000 for
15 min. Cells were fixed and stained as described in Materials and Methods. (B) Model of VSV internalization by the clathrin and actin machinery.
Conventional clathrin-coated vesicles (top) constitutively nucleate on the cell surface and grow by addition of clathrin and adaptor proteins until a
fully-coated, constricted pit is formed. Pits are severed from the plasma membrane in a dynamin-dependent, but actin-independent manner, and the
clathrin coat is rapidly disassembled by Hsc70 and auxilin. During clathrin-dependent internalization of VSV, pits preferentially form in close proximity
to virus particles. The growing clathrin lattice imparts a curvature to the tip of the pit, but coat assembly ceases when the constricted edge of the pit
meets the enclosed particle. The actin cytoskeletal machinery is then recruited by dynamin to drive further invagination of the particle. Dynamin,
possibly in conjunction with actin, mediates fission of the virus-containing pit, and clathrin is uncoated.
doi:10.1371/journal.ppat.1000394.g008
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of VSV through a clathrin/actin-independent route can explain

the successful infection of cytoD-treated MDCK cells, and future

direct imaging studies could establish the entry route.

What regulates actin polymerization during VSV entry is

uncertain. However, we did not observe global changes in the

actin cytoskeleton during viral entry, indicating that this must

occur locally. Perhaps a physical association between components

of the actin and clathrin machineries regulates local actin

polymerization during virus uptake. One possible candidate that

could provide this association is dynamin, which contains binding

sites for several proteins that directly or indirectly activate the

Arp2/3 complex, including cortactin [31,32], syndapin [33,34],

and intersectin [35,36]. Consistent with this possibility, the

recruitment of dynamin is coincident with the recruitment of

cortactin during the late stages of virus internalization (Figures 3,

5). Further investigation will be required to fully understand the

requirement for actin function during VSV entry.

VSV induces its own uptake by clathrin-coated pits
Transferrin and LDL-receptor complexes diffuse rapidly on the

plasma membrane prior to their capture by pits, which constitutively

sample areas of the cell surface [1]. Here wemeasured the diffusion of

VSV particles and show that they diffuse 60 times slower than LDL-

receptor complexes (Figure 7B). However, the 122 s average time

between binding of VSV to the cell and its capture by a pit is only 6-

fold longer than the measured time to capture LDL [1]. Using a

simulation that accurately predicts the average capture time of LDL

as 20 s, we estimate that random capture of VSV requires 2000 s

(Figure 7C). How might we account for this substantial difference

between the predicted and observed time to VSV capture? We tested

how adjusting the parameters used in our simulation, which

accurately predicts the time for LDL capture, would alter the

predicted time to VSV capture. Biologically relevant adjustments to

the rate of virus diffusion or the density of pit formation on the plasma

membrane are unable to generate a predicted time to virus capture

that is close to the measured value of 122 s (Figure S2A). Our data

further show that the difference between the observed and predicted

time to capture does not reflect the time taken to visualize a coated

pit. If we assume that most conventional clathrin-coated vesicles

contain 60 clathrin triskelions (consistent with a soccer ball shape), the

peak fluorescence associated with such vesicles indicates that 7

triskelia are sufficient for detection. The average lifetime of a

conventional vesicle is 50 seconds, indicating that pits may initiate up

to 6 seconds before we can visualize them. Finally, adjustments to the

assumed footprint of the virus on the plasmamembrane ranging from

the area contacted by a single G trimer to the entire virus particle

cannot account for the rapid virus uptake (Figure S2B). Thus,

adjusting any of the parameters of our simulation fails to approximate

the observed time to virus uptake. We therefore propose that VSV

induces its own uptake by the clathrin machinery. Precisely howVSV

particles can influence pit nucleation is unknown. Earlier studies

measured the time between attachment and capture for reovirus [1]

and influenza A virus [9] particles by coated pits. Influenza particles

were captured after an average of 190 s, while reovirus remained on

the cell membrane for 280–1500 s before associating with clathrin.

Although the basis for the different uptake times of these viruses is

unknown, it may reflect properties inherent to the virus particles

themselves or the engagement of specific receptors during entry.

Model for the clathrin and actin-dependent
internalization of VSV
Our data support the following model of VSV entry by clathrin-

dependent endocytosis (Figure 8B). Virus interaction with the cell

surface promotes its own uptake by the clathrin machinery. The

clathrin machinery appears to nucleate in close proximity or

directly beneath the virus particle. The coated pit grows at a steady

rate that is similar to a conventional one, except that the growth

phase is prolonged, perhaps reflecting the larger size of the viral

cargo. We suggest that the clathrin coat is unable to encircle

completely the virus particle, at least in part because the virus

serves as physical barrier to closing the pit. This inhibits the

incorporation of additional clathrin molecules into the coat leading

to the formation of a partially coated structure with an elongated

neck (Figure 8B). We propose that actin polymerization facilitates

the invagination of this partially coated pit by generating a force

that helps lift the membrane away from the vesicle or pushes the

vesicle into the cell (Figure 8B). The process of scission may be

accomplished by a mechanochemical activity of dynamin. More

dynamin may be required for this process, and consistent with this

idea, virus-containing pits recruit increased quantities of dynamin.

The separated pit is then rapidly uncoated in a manner that

depends upon auxilin and appears similar to that of conventional

vesicles.

Parallels with the clathrin-dependent uptake of bacteria
Our findings with VSV also share parallels with the clathrin-

dependent uptake of L. moncytogenes. Specifically, clathrin, dynamin,

auxilin, and actin are recruited during entry of both pathogens, and

actin polymerization is critical for their endocytosis but not the

clathrin assembly process [11,37]. In addition, localization of the

actin machinery to sites of Listeria invasion appears to require the

prior recruitment of clathrin and dynamin [11]. The nature of this

linkage between the clathrin and actin systems is unknown, but

perhaps VSV and Listeria also utilize similar mechanisms to

coordinate actin polymerization during their uptake [11,37].

Despite these commonalities, the adaptor protein involved in L.

monocytogenes entry is unclear, as neither AP-1, -2, nor -3 accumulate

[11]. This may reflect differences in receptor usage or differences

inherent to the clathrin structure that forms.

Our observations demonstrate a requirement for the actin

machinery in the clathrin-dependent uptake of VSV. It will be

important to determine if linkage of coated pits to the actin

cytoskeleton is a general response of cells to the presence of large

clathrin-coated structures or whether the interaction is triggered in

a receptor-specific manner. Bacterial pathogens such as L.

monocytogenes and Staphylococcus aureus induce recruitment of the

clathrin machinery through the interaction of bacterial surface

proteins with their cognate cellular receptors [11]. Whether viruses

share this capacity is unknown, but several viruses, including SV40

[38], poliovirus [39,40], group B coxsackievirus [41], and vaccinia

virus [42] are known to promote their own uptake in a clathrin-

independent manner.

Materials and Methods

Cells and virus
BSC-1 cells (ATTC CCL-26) were maintained in DMEM

(Invitrogen Corporation; Carlsbad, CA) supplemented with 10%

fetal bovine serum (Tissue Culture Biologicals; Tulare, CA). Cells

stably expressing s2-eGFP [1] were maintained as above in the

absence of selective agent. Recombinant VSV (rVSV) [43] and

rVSV eGFP-P [44] were amplified in BHK-21 cells (ATTC) and

purified on linear 15–45% sucrose gradients prepared in NTE

(10 mM Tris pH 7.4, 100 mM NaCl, 1 mM EDTA). Concen-

trated virus stocks were stored in PBS containing 10 mM HEPES

(pH 7.4) at 280uC. A recombinant VSV, rVSV-LUC, expressing

firefly luciferase was generated by insertion of the luciferase coding

region flanked by the conserved VSV gene-start and -end
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sequences between the leader and N gene. Virus was recovered

from cDNA as described [43].

Dye conjugation to VSV particles
Alexa Fluor 647 (Molecular Probes, Invitrogen Corporation)

was solubilized in DMSO at 10 mg/mL and incubated at a final

concentration of 62.5 mg ml21 with purified VSV (1 mg ml21) in

0.1 M NaHCO3 (pH 8.3) for 90 min. at room temperature. Virus

was separated from free dye using a NAP-5 gel filtration column

(GE Healthcare; UK), eluted in PBS containing 10 mM HEPES

(pH 7.4) and stored at 280uC. To measure the effect of labeling

on virus infectivity, equivalent amounts of total viral protein from

labeled and unlabeled preparations were titrated by plaque assay

on Vero cells.

Nucleic acid transfection
Approximately 60,000 BSC-1 cells were seeded on glass

coverslips (25 mm diameter, no. 1.5, Electron Microscopy Sci-

ences; Hatfield, PA) 16–20 h prior to transfection with the

indicated plasmid. Parental BSC-1 cells or BSC-1 cells stably

expressing rat s2-adaptin [1] were transfected with 0.5 mg of

plasmid encoding either rat brain clathrin light chain A1 fused to

the tandem repeat tomato open reading frame (tom-LCa, [4]), or

rat dynamin2-eGFP (kind gift of Dr. Sandra Schmid; The Scripps

Research Institute, La Jolla, CA), or bovine eGFP-auxilin1 [4], or

mouse cortactin-eGFP (kind gift of Dr. David Drubin; The

Department of Molecular and Cell Biology, University of

California, Berkeley, CA) [45,46], or human arp3-eGFP (kind gift

of Dr. Timothy Mitchison; Department of Systems Biology,

Harvard Medical School, Boston, MA) [47], or human eGFP-b-

actin (pAcGFP1-actin; Clonetech Laboratories, Inc.; Mountain

View, CA) [25,48] using FUGENE 6 according to the manufac-

turer’s instructions (Roche Diagnostics; Indianapolis, IN). Cells

were imaged 20–24 h post-transfection as described below.

Where indicated, prior to image acquisition, cells were doubly

transfected with 200 nM of SMARTpool siRNA targeting firefly

luciferase (siGENOME non-targeting siRNA pool #2; D-001210-

02-05; Dharmacon, Chicago, IL) or a RNA duplex targeting

human m2-adaptin [18] in OPTIMEM (Gibco, Invitrogen

Corporation) using Oligofectamine (Invitrogen Corporation)

according to the manufacturer’s instructions. Six hours after each

transfection, DMEM containing 10% FBS was added to each

sample, and cells were incubated for 48 h at 37uC. The efficiency

of m2 depletion was assessed by exposing cells to 50 mg ml21 Alexa

568-labeled human transferrin (Molecular Probes, Invitrogen

Corporation) for 5 min. prior to addition of virus particles.

Viral gene expression assay
Luciferase assays were performed in 96-well plates (PerkinEl-

mer) seeded with 8,000 cells per well 16–18 h before infection.

Where indicated, cells were treated with siRNA or specific

chemical inhibitors. Cells were then infected with rVSV-LUC at

an MOI of 0.5, and virus was removed after 1 h. At 4–5 h p.i.,

luminescence was measured using Steady-Glo firefly luciferase

reagent (Promega) according to the manufacturer’s instructions.

The luminescence values were recorded on a MicroBeta TriLux

scintillation counter (PerkinElmer).

Electron microscopy
BSC-1 cells on 25 mm plastic coverslips were fixed as described

previously [49]. Briefly, cells were inoculated with 20 mM cytoD in

DMEM containing 10% FBS or left untreated for 10 min. at

37uC. Cells were inoculated in the presence or absence of

compound with rVSV at an MOI of 5000 and incubated for an

additional 15 min. Infected cells were fixed with a 37uC solution of

1% glutaraldehyde (Electron Microscopy Sciences), 0.5 mg/mL

saponin (Sigma-Aldrich), and 2 mg/mL tannic acid (Mallinckrodt

Inc.; St Louis, MO) in 100 mM sodium phosphate, 50 mM KCl,

5 mM MgCl2, pH 7.0 (Buffer A) for 30 min. at RT. Fixed cells

were rinsed twice with Buffer A at pH 6.0 and treated with 1%

osmiumtetroxide (OsO4)+1.5% potassiumferrocyanide (KFeCN6)

for 30 min. Treated samples were washed in water, stained in 1%

aqueous uranyl acetate for 30 min., and dehydrated in grades of

alcohol (50%, 70%, 95%, 26100%) for 5 min. each. After the

dehydration, excess alcohol was blotted off on a filter paper, and

the cover slips were immediately covered with a thin layer of Epon

and left to polymerize at 60uC overnight. After polymerization, the

plastic coverslip was peeled off and the embedded cells were glued

onto a resin block and sectioned. Ultrathin sections (about 60–

80 nm) were cut on a Reichert Ultracut-S microtome, picked up

on to copper grids stained with uranylacetate and lead citrate.

Images were acquired using a G2 Spirit Bio Twin (Fei, Hillsboro,

OR) transmission electron microscope.

Live cell imaging
Cells on 25 mm coverslips were placed into a perfusion

chamber and overlayed with a-MEM lacking phenol red

supplemented with 20 mM HEPES pH 7.4 and 2% FBS. The

chamber was placed into a sample holder (20/20 Technology Inc.;

Wilmington, NC) kept at 37uC, and the humidified air above the

cells was maintained at 37uC and 5% CO2. To image virus

internalization, cells were inoculated with Alexa Fluor 647 rVSV

or rVSV eGFP-P at a MOI of ,500 following brief centrifugation

of the virus stock to eliminate aggregates. Direct visual inspection

of virus particles in the stock confirmed a lack of such aggregates

and presence of single, isolated viral particles (Figure S1B).

Samples were sequentially illuminated at 2–8 s intervals for 50–

150 ms using the previously described laser and confocal

microscope configuration [1,50].

Image and data analysis
Virus entry and coated pit formation were analyzed using

Slidebook 4.2 (Intelligent Imaging Innovations; Denver, CO).

Complete virus internalization events were defined by an initial

absence of adaptor or clathrin, followed by the colocalization of

coat proteins with a particle and detectable displacement of the

virion from its original position after coat disassembly. Only

complete internalization events were included in the analyses of pit

lifetime, kinetics of coat protein recruitment, and protein

abundance deduced from fluorescence intensity of the tagged

proteins. The following events were excluded from these analyses:

(1) events in which coat proteins colocalized with virus prior to the

start or were still associated at the end of a time-lapse acquisition;

(2) events in which particles moved rapidly during colocalization

with clathrin (endosomal virions) or failed to move after its

disappearance; and (3) events in which the fluorescence of another

clathrin structure collided with a virus-containing pit. Figure S3

summarizes the relative frequencies of all events analyzed in this

study.

Conventional coated vesicles were identified and analyzed

based on previously-defined spatial and kinetic parameters

[1,4,51]. The rate of coated pit nucleation (Figure 7) and the

efficiency of pit completion in the presence and absence of cytoD

and latB (Figure 6C) were estimated using an automated image

analysis application (IMAB) created with MATLAB 7 (Math-

works; Natick, MA) [4]. Images were processed and analyzed as

above, and all events were verified manually. SigmaPlot 8.0
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(SYSTAT; Point Richmond, CA) was used to plot data and

perform statistical analyses. Movies were created using ImageJ (U.

S. National Institutes of Health, Bethesda, Maryland; http://rsb.

info.nih.gov/ij/).

To define the position of a particle over time, a mask

encompassing the virion was manually applied to each time-lapse

image and centered on the peak fluorescence intensity of the virus-

associated dye. The X, Y coordinates of the mask centroid were

used to calculate the particle displacement at any new position

(Xn, Yn) relative to the origin of virus attachment (X0, Y0)

according to the equation: displacement = (Xn2X0)+(Yn2Y0).

The rate of particle displacement was estimated by plotting the

square of the mean displacement versus time, and the diffusion

coefficient (D) was calculated using the relationship: (mean

displacement)2=4Dt.

The fluorescence intensity of coat-associated proteins was

measured by applying a mask that encompassed the pit

fluorescence. Local background was subtracted by measuring the

fluorescence associated with an equal number of pixels. To obtain

the fluorescent traces of individual viral events, values were scaled

relative to the average maximal fluorescence of clathrin observed

in pits lacking virus from the same cells. The normalized values

were graphed as a weighted average of every third value, where

60% was applied to the median value and 20% to each adjacent

value. Comparative plots of the internalization lifetime and protein

recruitment kinetics were generated in the following manner: (1)

the fluorescence intensity of each protein was averaged over time

for all pits containing or lacking virus; (2) the average maximum

fluorescence and total lifetime of clathrin in pits lacking virus was

set to 100; (3) both parameters were normalized proportionally for

virus-containing pits; (4) the protein fluorescence was plotted at 8

equally-spaced intervals+/2the standard error.

Estimation of vesicle surface area
The surface area (SA) of spherical vesicles was estimated based

on their internal radius (r), according to the equation: SA= 4pr2,

or for a prolate spheroid with a polar radius (c) and an equatorial

radius (a) using the equation: SA=2pa2+2p(ac/e)sin21e, where

the ellipticity (e) = !12(a2/c2).

Monte-Carlo simulation of virus capture
MATLAB 7 (Mathworks) was used to simulate the random

motion of a VSV particle on a grid of 1006100 points. Assuming

a specific distance between the grid points dg (in nm), the time (ts)

required for the particle to move between points was estimated

from ts= a(dg)2/4D, where D is the VSV diffusion coefficient

(Figure 7B; 1610211 cm2 s21), dg is the distance between two

neighboring grid points, and a is a correction factor derived from

calibration of the simulation. Each simulation was performed

using 2.5 s step intervals. The number of coated pits in the first

step was estimated as follows: (rate of pit formation)6(pit

lifetime)6(1006dg)2. The number of new pits in each step was

calculated by (rate of pit formation)6(ts)6(1006dg)2. Using these

parameters, a VSV particle with a footprint equal to

1206120 nm2 was allowed to diffuse on the grid until it

encountered a coated pit, and the elapsed time between the start

of the simulation and particle capture was recorded for 100

particles. The average rate of pit nucleation (0.6 events per

108 nm2 s21; total 703 events) was measured in the presence of

VSV for 6 cells expressing s2-eGFP. IMAB [4] was used to

identify and score all AP-2 spots that appeared during an imaging

time course and exclude those that lasted fewer than 2 consecutive

time points (6–8 s).

Supporting Information

Figure S1 Visualizing individual VSV particles. (A) Virus plaque

assays depicting the effect of Alexa Fluor 647 conjugation on viral

titer. Purified VSV particles were labeled using the indicated

concentrations of dye as described in Materials and Methods, and

virions were subjected to plaque assay on Vero cells following

removal of the free dye molecules. The titer of each virus stock is

provided in plaque forming units per ml (pfu ml21). (B) Net

fluorescence intensity of VSV particles labeled with Alexa Fluor 647.

Virions on a glass coverslip were imaged by confocal fluorescence

microscopy, and the fluorescence intensity (arbitrary units) of each

particle minus the local background was measured. The distribution

of particle fluorescence intensities is displayed as a histogram plot in

which the red line depicts the best fit Gaussian curve. The inset shows

a representative image of virus particles (blue).

Found at: doi:10.1371/journal.ppat.1000394.s001 (1.17 MB TIF)

Figure S2 Parameters influencing the simulated time to VSV

capture by clathrin. (A) Effect of altering the VSV diffusion coefficient

(black) and the rate of coated pit nucleation (grey) on the elapsed time

between onset the of virus diffusion and capture by a coated pit. The

Monte-Carlo simulation was run for 100 VSV particles using the

indicated alterations in each parameter while maintaining a constant

virus footprint (dg) of 1206120 nm2 and a pit lifetime of 20 s. The pit

nucleation rate was set to 0.6 events / 108 nm2 s21 when the

diffusion coefficient was altered, and the latter was set to

1610211 cm2 s21 when the nucleation rate was changed. (B) Effect

of altering the pit lifetime (black) and virus footprint size (grey) on the

elapsed time between the onset of virus diffusion and capture by a

coated pit. Simulations were run as for panel A.

Found at: doi:10.1371/journal.ppat.1000394.s002 (0.21 MB TIF)

Figure S3 Fate of all membrane-bound VSV particles analyzed in

this study. (A) Fate of virions (n= 522 from 28 cells) already attached

to the cell surface at the onset of image acquisition. The fate of each

particle was categorized according to the nature of its association

with clathrin, and a description of each outcome is displayed, along

with the number of particles in each category. The box represents

the total length of a representative time-lapse acquisition (ranged

from 6–10 min.), and the left and right sides of the box correspond

to the first (start) and last (end) image acquired, respectively. (B) Fate

of virions (n= 144 from 28 cells) that attached to the cell surface

during image acquisition. Particle fates are depicted as in A.

Found at: doi:10.1371/journal.ppat.1000394.s003 (4.94 MB TIF)

Video S1 Clathrin-dependent uptake of VSV. Time lapse

depicting the internalization of single VSV virions (blue) by an

individual BSC-1 cell (same as in Figure 1A) co-expressing tom-

LCa (red) and s2-eGFP (green). A portion of the bottom cell

surface is shown as an overlay of the three channels, and three

examples of virus internalization events are highlighted by blue

circles surrounding the virions (blue). The frame rate in this and all

subsequent videos was increased by 10-fold relative to real time,

which is provided in the timestamp.

Found at: doi:10.1371/journal.ppat.1000394.s004 (2.45 MB AVI)

Video S2 AP2 and clathrin recruitment during VSV internal-

ization. A zoomed view of the cell depicted in Video S1

highlighting three additional virus uptake events. The second

circled virion corresponds to the internalization event described in

Figure 1C and 1D.

Found at: doi:10.1371/journal.ppat.1000394.s005 (8.84 MB AVI)

Video S3 Dynamin recruitment during internalization of VSV.

An overlay of the VSV (blue), tom-LCa (red), and dyn2-eGFP

(green) channels is shown, and the virion of interest is circled.
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Found at: doi:10.1371/journal.ppat.1000394.s006 (3.20 MB AVI)

Video S4 Effect of dynasore on VSV internalization. BSC-1 cells

expressing tom-LCa (red) and s2-eGFP (green) were inoculated

with VSV particles (blue), and dynasore was added to 80 mM after

5 min. The video depicts two VSV particles (circled) in coated pits

at the start of a time-lapse acquisition that began 12 min post-

addition of dynasore. Note that neither particle is internalized.

Found at: doi:10.1371/journal.ppat.1000394.s007 (4.00 MB AVI)

Video S5 Recruitment of auxilin1 during VSV internalization.

The movie depicts the internalization event shown in Figure 4A.

The left panel is an overlay of the VSV (blue), tom-LCa (red), and

eGFP-auxilin1 (green) channels, and the right panel shows only

the aux1 fluorescence. The position of the virion is indicated by a

circle in both panels.

Found at: doi:10.1371/journal.ppat.1000394.s008 (6.61 MB AVI)

Video S6 Actin dynamics during VSV internalization. The

video depicts the event shown in Figure 5A. The left panel is an

overlay of the VSV (blue), tom-LCa (red), and actin-eGFP (green)

channels, and the right panel shows the actin fluorescence alone.

The position of the virion is indicated by a circle in both panels.

Found at: doi:10.1371/journal.ppat.1000394.s009 (6.01 MB AVI)

Video S7 Arp3 accumulation during VSV internalization. The

left panel is an overlay of the VSV (blue), tom-LCa (red), and arp3-

eGFP (green) channels, and the right panel shows the arp3

fluorescence alone from the virus internalization event shown in

Figure 5C. The position of the virion is indicated by a circle in

both panels. Note the transient increase in arp3 fluorescence

shortly before virus uptake.

Found at: doi:10.1371/journal.ppat.1000394.s010 (4.15 MB AVI)

Video S8 Cortactin accumulation during VSV internalization. The

left panel is an overlay of the VSV (blue), tom-LCa (red), and

cortactin-eGFP (green) channels, and the right panel shows the

cortactin fluorescence alone from the event shown in Figure 5E. The

position of the virion is indicated by a circle in both panels. Note the

burst in the cortactin fluorescence shortly before virus uptake.

Found at: doi:10.1371/journal.ppat.1000394.s011 (8.41 MB AVI)

Video S9 Effect of cytochalasin D on VSV internalization. BSC-

1 cells expressing tom-LCa (red) were treated with 20 mM

cytochalasin D (cytoD) for 10 min and inoculated with VSV

particles (blue). Time-lapse images were acquired starting 1 min

after virus addition. The video depicts a single virion (circled) that

attaches to the cell surface 15 min post-addition of cytoD and

becomes trapped in a coated pit. An overlay of the VSV and LCa

channels is shown.

Found at: doi:10.1371/journal.ppat.1000394.s012 (5.60 MB AVI)
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