
VESPA: Portable, Scalable, and Flexible FPGA-Based
Vector Processors

Peter Yiannacouras, J. Gregory Steffan, and Jonathan Rose
Department of Electrical and Computer Engineering

University of Toronto
10 King’s College Road

Toronto, Canada
{yiannac,steffan,jayar}@eecg.utoronto.ca

ABSTRACT
While soft processors are increasingly common in FPGA-
based embedded systems, it remains a challenge to scale
their performance. We propose extending soft processor
instruction sets to include support for vector processing.
The resulting system of vectorized software and soft vector
processor hardware is (i) portable to any FPGA architec-
ture and vector processor configuration, (ii) scalable to
larger yet higher-performance designs, and (iii) flexible,
allowing the underlying vector processor to be customized to
match the needs of each application. Using our robust and
verified parameterized vector processor design and industry-
standard EEMBC benchmarks, we evaluate the performance
and area trade-offs for different soft vector processor config-
urations using an FPGA development platform with DDR
SDRAM. We find that on average we can scale performance
from 1.8x up to 6.3x for a vector processor design that
saturates the capacity of our platform’s Stratix 1S80 FPGA.
We also automatically generate application-specific vector
processors with reduced datapath width and instruction set
support which combined reduce the area by up to 70% (61%
on average) without affecting performance.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture
Styles—Adaptable architectures

General Terms
Measurement, Performance, Design

Keywords
Soft processor, FPGA, vector, SIMD, microarchitecture,
VESPA, VIRAM, ASIP, SPREE, custom, application spe-
cific

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-469-0/08/10 ...$5.00.

1. INTRODUCTION
As FPGAs continue to gain traction as complete em-

bedded systems implementation platforms, so do the soft
processors which are often the heart of those systems. Soft
processors are implemented using the programmable fabric
of an FPGA, and have become primary parts of the design
environments provided by the major FPGA vendors: for
example Altera’s Nios II and Xilinx’s Microblaze. Soft
processors are compelling because they provide a very easy
way for a software programmer to target the hardware of an
FPGA without having to program in hardware description
language (HDL). The architecture of a soft processor can
also be customized to match the requirements of target
applications. However, a challenge for soft processors is to
scale-up performance by using increased FPGA resources.

There are several options for how to architect additional
resources to improve the performance of a soft processor.
While these options are similar to those for a hard processor,
an FPGA substrate leads to vastly different trade-offs and
conclusions. For example, one option is to consider a
wider-issue superscalar or VLIW design—however, such
architectures are challenging to scale due to the port
limitations of FPGA on-chip block memories [8] (which are
typically limited to only two accesses per cycle). A second
option is to pursue thread-level parallelism via multiple
uniprocessors—but this approach significantly complicates
software design and debugging. A third option is to provide
custom hardware for key functions through the use of custom
instructions or accelerator components, often to exploit the
data-level parallelism available in the application (eg., Al-
tera’s C2H or Xilinx’s AccelDSP)—however, this approach
specializes the resulting system, generally making future
development and modification more difficult without robust
and automated ASIP (Application-Specific Instruction-set
Processors) design tools, and does not easily port to a new
system. A fourth option that we pursue in this work is
to exploit data-level parallelism through a programmable
vector processor.

1.1 Scalable, Portable, and Flexible Soft Vec-
tor Processors

A vector processor supports vector instructions that each
describe multiple units of independent work, such that an
operation can be performed across many operands in paral-
lel. We propose extending a soft processor instruction set to
include vector processing—in particular, by augmenting a
scalar soft processor with a vector processing unit, allowing

a single thread of control to command large amounts of
data parallelism. We call our vector architecture VESPA
(Vector-Extended Soft Processor Architecture). While the
goal of VESPA is to exploit similar data-level parallelism as
that targeted by custom accelerators, soft vector processing
offers the following advantages.

Scalability A vector processor design provides a relatively
straightforward means to scale performance: by increasing
the number of vector lanes (the per-operand datapaths of
a vector processor), a vector processor designer can easily
increase the amount of data-level parallelism exploited. This
also allows designers to easily scale the vector processor
design to exploit the increased logic capacity of new gen-
eration FPGA devices that continue to grow with Moore’s
law. VESPA is shown to scale performance on average
between 1.8x to 6.3x for 2 to 16 lanes. We believe that
improved vector processor designs will achieve more linear
speedup compared to the first generation VESPA soft vector
processor described in this work.

Portability In contrast with the approach of modifying
software to exploit a specific custom hardware accelerator,
a vectorized program remains portable: the vectorization of
the software is mostly independent of the implementation of
the vector processor. At one extreme, the implementation
could simply be a sequential processor capable only of
executing vector element operations one-at-a-time. The
vector processor could instead be capable of many parallel
vector operations, at a cost of greater area. This allows a
system designer to easily adjust the computation power of
the vector processor without having to adjust or re-factor the
software. In addition, by not requiring any specific FPGA
architecture features, a vector processor can migrate to new
FPGA families. For example, VESPA was developed for
a Stratix-III FPGA while in this paper we evaluate using
Stratix-I.1 Hence the same vectorized code can easily be
ported between different vector processor implementations
and different underlying FPGAs.

Flexibility In contrast with hard IC-designed vector
processors, a soft vector processor can be customized to
match the needs of target applications. In addition to
adjusting architectural parameters, VESPA can also trade
some portability by automatically reducing the width of
each lane as well as the instruction set supported to achieve
average area savings of 61% with 16 lanes.

1.2 Related Work
Yu et. al. [18] recently demonstrated the potential for

vector processing as a simple-to-use and scalable accelerator
for soft processors. In particular, through simulation the
authors show that (i) a vector processor can potentially
accelerate three benchmark kernels better than Altera’s
C2H behavioral synthesis tool (even after manual code
restructuring to aid C2H), and (ii) how certain vector
operations can exploit FPGA architectural features. In
this paper we measure the performance benefits of VESPA
through a detailed evaluation using a real FPGA-based
system with DDR DRAM on the industry standard EEMBC
benchmarks, and further demonstrate that tuning the vector

1We will soon move to a Stratix-III platform.

processor architecture to match application requirements
can dramatically reduce area while maintaining perfor-
mance.

Other prior work has implemented vector processors on
FPGAs, including a vector floating-point processor for
matrix multiplication [14] and an integer SIMD processor
for multimedia kernels [2]—but neither investigated archi-
tectural variation nor customization.

1.3 Contributions
This paper makes the following contributions: (i) we

present VESPA, a fully-parameterized and robust vector
processor core, implemented on an FPGA development
platform and connected through first-level caches to an off-
chip DDR DIMM—allowing us to account for the behavior
of the memory hierarchy and modern DRAM; (ii) we quan-
titatively measure both the performance benefit and area
cost of a range of vector architecture configurations across
a hand-vectorized subset of the industry-standard EEMBC
benchmarks—fully capturing the effects of pipeline stalls,
memory system contention and latency, and communication
and parallelism between the scalar and vector cores; (iii) we
demonstrate the value of generating application-specific vec-
tor processors to dramatically reduce area without affecting
performance by reducing the lane width and instruction set
support to match the application.

2. TRADITIONAL VECTOR PROCESSING
There is a large body of research on vector processing [1,

6]—including decades of commercial development of vector
supercomputers by Cray Inc.—that we summarize here.
Vector processors provide direct ISA support for operations
on whole vectors—i.e., on multiple data elements rather
than on a single scalar. These instructions can be used to
exploit data-level parallelism in an application to essentially
execute multiple loop iterations simultaneously.

Conventional microprocessors increasingly exploit data-
level parallelism via SIMD (single-instruction, multiple-
data) support [5], including IBM’s Altivec, AMD’s 3DNow!,
MIPS’s MDMX, and Intel’s MMX/SSE/AVX support. How-
ever, such SIMD support is typically limited to a fixed
number of elements and exposes this limit to the application.
In contrast, true vector processing abstracts from the
software the actual number of hardware vector lanes. This
abstraction is key for FPGA-based systems, allowing one
to exploit flexibility by scaling the number of lanes while
maintaining the portability of the application to different
hardware implementations.

2.1 VIRAM
The VIRAM vector processor [9–11] was developed with

the motivation of including parallel processing and DRAM
on a single die. While this is hardly conventional, the
VIRAM ISA is a relatively straightforward extension of
the MIPS ISA—hence we designed VESPA to implement
the VIRAM vector ISA with some minor modifications
(described in Section 3). A VIRAM processor can operate on
any vector length (the number of elements in a vector) up to
a maximum vector length (MVL), with each element contain-
ing a maximum number of bits specified by the vector width.
In the VIRAM processor, each vector element is executed in
a 15-stage pipelined datapath referred to as a vector lane,
and the processor can contain any number of lanes from one

to MVL. Both the vector length and width can be configured
by software at runtime allowing the hardware to optionally
adapt to the application’s requirements. For example,
reducing the vector width results in a corresponding increase
to the MVL, since multiple smaller-width elements can be
combined to fit in the maximum width of the register file
and datapath—a feature that VESPA does not yet support.
Note that changing the processor’s MVL should alter the
vector length since software should use the MVL to set the
vector length.

3. VESPA
In this section we describe VESPA: a MIPS-based scalar

processor with a highly configurable VIRAM-like vector
coprocessor.

3.1 Scalar Instruction Set
The ISA used for our scalar processor core is a subset of

MIPS-I which excludes floating-point, virtual memory, and
exception-related instructions; floating point operations are
supported through the use of software libraries. This subset
of MIPS is the set of instructions supported by the SPREE
system [16, 17] which is used to automatically generate our
scalar processor.

3.2 Scalar Processor
Our scalar processor is a 3-stage MIPS-I pipeline with full

forwarding and a 4Kx1-bit branch history table for branch
prediction. The processor was automatically generated by
SPREE from a datapath description and can be connected
to the vector coprocessor without manual modification.
Execution in the scalar processor continues even when
the vector coprocessor is stalled, with the exception of
(i) communication instructions between the two cores and
(ii) scalar load/store instructions, which are serialized to
maintain sequential memory consistency.

The SPREE framework was modified in a number of ways
to better meet our needs. First, an integer divider unit
was added to the SPREE component library along with
instruction support for MIPS divide instructions. Second,
the original SPREE supported only on-chip memories as
a component in its library. We expanded the library to
include components with external bus interfaces that will
allow the user to attach the processor to a memory system
of their choice. Finally, we needed to insert support for the
coprocessor interface instructions to the vector coprocessor.
These instructions allow the SPREE processor to send data
to the vector coprocessor and vice versa. With these changes
in place we can automatically generate new scalar processor
cores and attach them directly to our memory system and
vector coprocessor without modification.

3.3 Vector Instruction Set
We selected the VIRAM instruction set [11] to support

vector operations for two primary reasons: (i) the VIRAM
ISA was designed with embedded/multimedia applications
in mind and directly supports predicated execution and
fixed-point operations, which are common in many EEMBC
benchmarks; and (ii) the ISA was designed as a coprocessor
interface to MIPS, matching our existing infrastructure [15].
We currently support all integer and fixed-point vector
instructions except for divide and multiply-accumulate, all
load/store variants, six flag operations, and five vector

Table 1: Configurable parameters for the vector
coprocessor.

Parameter Symbol Values

Vector Lanes L 1,2,4,8,16,. . .
Vector Lane Width W 1,2,4 (bytes)
Maximum Vector Length MVL 2,4,8,16,. . .
Memory Crossbar Lanes M 1,2,4,8, . . . L
Each Vector Instruction - on/off

manipulation instructions. Some exclusions were necessary
to better accommodate an FPGA implementation: for
example, the inclusion of the vector multiply-accumulate
instructions (which require 3 reads and 1 write) would
require further register file replication, banking, or a faster
register file clock speed to overcome the 2-port limitations
on FPGA block RAMs.

3.4 Vector Coprocessor
While the vector instruction set was borrowed from

VIRAM, the vector coprocessor architecture was designed
from scratch and hand-written in Verilog with built-in
parameterization. It communicates with the scalar processor
through the MIPS coprocessor interface instructions, while
sharing the instruction stream and data cache with the
scalar processor core—sharing the data cache avoids many
data coherence issues. The presence of a vector data cache,
the relatively short pipelining, and the accommodation
of few register file ports differentiate the VESPA vector
architecture from VIRAM and the recently proposed soft
vector processor from Yu et. al. [18].

3.4.1 Vector Architecture
The VESPA architecture is shown in Figure 1, which

is composed of three pipelines: a 3-stage scalar processor
pipeline, a 3-stage pipeline for vector control and vector
scalar operations, and a 7-stage vector pipeline2 which
contains the L lanes of functional units beginning after the
hazard check stage. The replicate pipeline stage divides the
elements of work requested by the vector instruction into
smaller groups that are mapped onto the L lanes. The hazard
check stage observes hazards for the vector and flag register
files and stalls if necessary. Execution occurs in the next
two stages (or three stages for multiply instructions) where
tt L operand pairs are read from the register file and sent to
the functional units in the L lanes. The port limitations in
FPGA block RAMs limit VESPA to executing instructions
in a SIMD fashion with one operation in the execution stages
at a time while traditional vector processors such as VIRAM
rely on multi-ported, multi-banked register files and chaining
to keep all functional units in the execution stages busy.

3.4.2 VESPA Vector Parameters
Table 1 lists the ranges of configurable parameters for

VESPA’s vector processor. The number of vector lanes (L)
determines the number of elements that can be processed in
parallel; hence we use this parameter to scale the processing
power of VESPA. The width of each vector lane (W) can be
adjusted to match the maximum element size required by
the application: by default all lanes are 32-bits wide, but

2Note that the VIRAM processor has 15-stages for func-
tional units alone.

Scalar
Pipeline

Vector
Control
Pipeline

Vector
Pipeline

Icache Dcache

Decode RF
A
L
U

M
U
X WB

VC
RF

VS
RF

VC
WB

VS
WB

Logic

Decode
Repli-
cate

Hazard
check

VR
RF A

L
U

x & satur.

VR
WB

M
U
X

Satu-
rate

Rshift

VR
RF A

L
U

x & satur.

VR
WB

M
U
X

Satu-
rate

Rshift

Mem
Unit

Figure 1: The VESPA architecture. The black vertical bars indicate pipeline stages, the darker blocks indicate
logic, and the light boxes indicate storage elements for the caches as well as the scalar, vector control (vc),
vector scalar (vs), and vector (vr) register files.

for some applications 16-bit or even 8-bit wide elements are
sufficient. We can also use W to create application-specific
vector processors (later in Section 6.1). The maximum
vector length (MVL) determines the capacity of the vector
register files: hence larger MVL values allow software to
specify greater parallelism in fewer vector instructions, but
increases the total area of the vector processor.

The number of memory crossbar lanes (M) determines
the number of memory requests that can be satisfied
concurrently, where 1 < M < L. M is independent of L

for two reasons: (i) a crossbar imposes heavy limitations
on the scalability of the design, especially in FPGAs where
the multiplexing used to build the crossbar is comparatively
more expensive than for conventional IC design; and (ii) the
cache-line size limits the number of memory requests one
can satisfy from a single cache-line request. Thus a crossbar
need not route to all L lanes, and the parameter M allows the
designer to choose a subset of lanes to route to in a single
cycle. Note that all integer parameters are generally limited
to powers of two to reduce hardware complexity. Finally
each vector instruction can be individually disabled thereby
eliminating the control logic and datapath support for it.

3.4.3 VESPA Portability
To maintain device portability in VESPA, the architected

design makes very few device-specific assumptions. First,
it assumes the presence of a full-width multiply operation
which is supported in virtually all modern day FPGA
devices—VESPA does not assume any built-in multiply-
accumulate, rounding, saturation, or fracturability support
since the presence of these features is more rare and can
vary from device to device. In fact, rounding and saturation
is required for VIRAM’s fixed point support but in VESPA
it is performed in the FPGA programmable logic instead
to preserve portability. Second, with respect to block
RAMs VESPA assumes no specific sizes or aspect ratios,
nor any particular behavior for read-during-write operations
on same/mixed ports. VESPA only uses one read port and

one write port for any RAM hence limiting the need for bi-
directional dual-port RAMs. These few assumptions allow
the VESPA architecture to port to a broad range of FPGA
architectures without re-design. However, although VESPA
was not aggressively designed for high clock frequency, any
timing decisions made are specific to the Stratix III it was
designed for, hence some device-specific retiming may be
needed to achieve high clock rates on other devices.

4. MEASUREMENT METHODOLOGY
In this section we describe the components of our infras-

tructure necessary to execute, verify, and evaluate VESPA.
Specifically, we describe our hardware platform, verification
process, CAD tool measurement methodology, benchmarks,
and compiler.

Hardware Platform We use the multi-FPGA Transmo-
grifier 4 (TM4) [4] to host the complete vector processor sys-
tems. The platform has four Altera Stratix EP1S80F1508C6
devices each connected to two 1GB PC3200 CL3 DDR
SDRAM DIMMs clocked at 133 MHz (266 MHz DDR). We
use Altera’s Quartus II 7.2 CAD software to synthesize our
processor systems onto one of the four Stratix I FPGAs and
clock the system at 50 MHz. Note our design was intended
for a faster Stratix III FPGA where it has a clock speed of
135 MHz, but we used the TM4 board since it was readily
available. Each design consists of the MIPS scalar processor
generated by SPREE, the VIRAM coprocessor extension,
separate 4KB, first-level, direct-mapped instruction and
data caches with 16 byte cache lines, and a custom-
made DDR controller employing a closed-page policy that
connects to one of the 1GB DDR DIMMs.

Testing All instances of VESPA are fully tested in
hardware using the built-in checksum values encoded into
each EEMBC benchmark. Debugging is performed using
Modelsim and is guided by comparing traces of all writes to

Table 2: EEMBC Benchmarks Used.

EEMBC Largest Data Percent of Supported
Benchmark Suite Dataset Type Size VIRAM ISA used

autcor Telecom 2 4 bytes 9.6%
conven Telecom 1 1 byte 5.9%
fbital Telecom 2 2 bytes 14.1%
viterb Telecom 2 2 bytes 13.3%

rgbcmyk Digital Ent. 5 1 byte 5.9%
rgbyiq Digital Ent. 6 2 bytes 8.1%

the scalar and vector register files. This trace is extracted
from RTL simulation using Modelsim and compared against
an analogous trace obtained from instruction-set simulation
using the MINT [13] MIPS simulator which we have aug-
mented with the VIRAM extensions.

FPGA CAD Tools A key value of performing FPGA-
based processor research directly on an FPGA is that we
can attain high quality measurements of the area consumed
and the clock frequency achieved—these are provided by
the FPGA CAD tools. We use aggressive timing constraints
to maximize the CAD tool’s effort for default optimization
settings but with register retiming and register duplication
set to on. Through experimentation we found that these
settings provided the best area, delay, and runtime trade-
off. We also performed 8 such runs for every vector
configuration to average out the non-determinism in modern
CAD algorithms. The relative silicon area of each FPGA
resource relative to a single logic element (LE) was supplied
to us by Altera [3], and we used these equivalent areas to
calculate the total silicon area consumed on the Stratix 1S80
measured in units of equivalent LEs—the silicon area of a
single LE including its routing.

Benchmarks As listed in Table 2, for this study we use
six benchmarks from the Telecom and Digital Entertainment
suites of EEMBC, the industry-standard benchmark collec-
tion. We execute the largest dataset for each benchmark
with the test harness and benchmarks uncompromised, po-
tentially allowing us to calculate and report official EEMBC
scores. However, in this paper we report only number
of cycles in lieu of wall-clock-time, as clock frequency is
essentially constant at 135 MHz (on Stratix III) across our
designs as seen in Section 5.1. Note that cycle counts
are collected from a complete execution on our hardware
platform as described above.

Compilation Framework Benchmarks are built using
a MIPS port of GNU gcc 4.2.0 with -O3 optimization
level. Initial experiments with this version of gcc’s auto-
vectorization capability showed that it is in its infancy,
preventing us from automatically generating vectorized code
from key EEMBC program loops. Instead we ported the
GNU assembler to support VIRAM vector instructions.
Hand-vectorized assembly EEMBC routines were provided
to us by Kozyrakis who used them during his work on the
VIRAM processor [11].

0

2

4

6

8

10

12

14

autcor conven fbital viterb rgbcmyk rgbyiq GMEAN

C
yc

le
 S

p
ee

d
u

p

1 Lane
2 Lanes
4 Lanes
8 Lanes
16 Lanes
32 Lanes
64 Lanes

Figure 2: Cycle speedup relative to one lane for
an increasing number of vector lanes. Only 16 full
vector lanes fit on the Stratix I FPGA, but using
the area reduction customization in Section 6.1 we
can generate customized VESPA processors with up
to 64 lanes for some benchmarks

5. EVALUATING SCALABILITY AND
FLEXIBILITY

In this section we evaluate the scalability and trade-offs
within VESPA by varying the following parameters: the
number of lanes, the MVL and the memory crossbar size.

5.1 Scaling the Number of Vector Lanes (L)
Increasing the number of vector lanes in a vector processor

is a simple and scalable way to invest area to improve per-
formance: with more vector lanes, more element operations
can be performed in parallel. In this section we vary the
number of vector lanes in VESPA and measure the area of
the implementation as well as the performance across our
vectorized benchmark set. For this experiment we use a
32KB data cache size—the effect of cache size is examined
more closely in Section 7.

Figure 2 shows the speedup attained by increasing the
number of vector lanes. Speedup is measured relative
to a vector processor with a single lane executing the
identical benchmark binary—we do not compare against the
nonvectorized benchmark here since the vectorized code has
the advantage that it is hand-written in assembly. The figure
shows speedups ranging inclusively across all benchmarks
from 1.7x to 13.2x. On average the benchmarks experience
a 1.8x speedup for 2 lanes, with a steady increase to 6.3x
for 16 lanes—at which point the FPGA capacity saturates.
Using the area reduction customization described later in
Section 6.1 we can fit up to 64 lanes for benchmarks which do

0

5000

10000

15000

20000

25000

30000

35000

1 Lane 2 Lanes 4 Lanes 8 Lanes 16 Lanes

A
r
e
a
 (
E
q
u
iv
a
le
n
t
 L
E
s
)

Figure 3: Area of the vector coprocessor for an
increasing number of vector lanes on the Stratix
1S80.

not require the processing of full vector lanes. The continued
scaling of these benchmarks is also shown in the figure but
their performance scaling is significantly limited by the 16-
byte cache line size which necessitates several cache line
accesses to satisfy the memory requests across so many lanes.

Ideally, speedup would increase linearly with the number
of vector lanes, but this is prevented by a number of factors:
(i) only the vectorizable portion of the code can benefit
from extra lanes, hence benchmarks such as conven that
have a blend of scalar and vector instructions are limited by
the fraction of actual vector instructions in the instruction
stream; (ii) some applications do not contain the long vectors
necessary to scale performance, for example viterb executes
predominantly with a vector length of only 16; (iii) the
movement of data is a limiting factor as each load/store
instruction contains start and finish delays and each cache
line request requires at least 2 cycles—limiting streaming-
type benchmarks such as autcor, rgbcmyk, and rgbyiq.3

Figure 3 shows the total area cost of the vector coprocessor
in VESPA as we increase the number of vector lanes. The
growth seen in the figure indicates that the vector lane
logic quickly dominates the area. At 16 lanes the vector
coprocessor consumes 31500 LEs worth of silicon area,
which is less than a quarter of the 130160 LEs worth of
silicon on the Stratix 1S80 FPGA. However, we are unable
to double the number of lanes further since each vector
lane requires a 32-bit multiplier while the 1S80 supports
only 22 32-bit multiply operations. Newer generations of
FPGAs have both significantly more logic resources and
also an increased proportion of supplied multipliers [7].
Moreover, the configurability of FPGAs can be leveraged
to customize and significantly trim the area needed by the
vector processor as we will show in Section 6.1.

All results in this paper are with respect to the Stratix
1S80 FPGA on our hardware platform, but VESPA was
originally designed to target a Stratix III 3SL200C2. On
such a device we can scale the number of vector lanes up
to 64 as shown in Table 3 (synthesis results only). The
table shows that the clock frequency remains steady until
64 lanes when the broadcast of the base address to each

3rgbcmyk and rgbyiq are more adversely affected because
they employ strided memory access instructions to extract
and write every 3rd or 4th byte of the stream.

0

5000

10000

15000

20000

25000

30000

35000

40000

1 Lane 2 Lanes 4 Lanes 8 Lanes 16 Lanes

A
re

a
(E

q
u

iv
al

en
t

L
E

s)

MVL=32
MVL=64
MVL=128
MVL=256

Figure 4: Silicon area of the vector coprocessor
across different MVL and lane configurations.

lane for address generation becomes critical. The amount
of logic used grows at 570 ALMs per lane. There is one
32-bit multiplier (built out of four 18-bit multipliers) for
the scalar processor and one for each lane resulting in a
growth of 4∗(1+L) until 16 lanes where some multipliers are
used for address generation as well. Finally the block RAM
usage stays constant until 32 lanes where the more wide
and shallow register file begins wasting the M9Ks storage
capacity.

The linear area cost may become expensive in the strin-
gent embedded design space, however two factors help to
counter this cost. First, along with the faster speeds and
lower power consumption of each new FPGA generation
comes an enormous boost of logic resources. Soft vector
processors allow a designer to write code once and auto-
matically extract more parallelism at the rate of Moore’s
law by increasing the vector lanes in the vector processor
implementation without any redesign. Second, a soft
vector processor can be customized to reduce the area cost,
examples of this are shown in Sections 6.1 and 6.2.

5.2 Altering Maximum Vector Length (MVL)
Increasing the MVL allows a single vector instruction

to encapsulate more element operations, but also increases
the vector register file size and hence the total number of
FPGA block RAMs required. This growth is potentially
exacerbated by the fact that the entire vector register file
is replicated to achieve the three ports (2-read and 1-write)
necessary, since current FPGAs have only dual-ported block
RAMs. The performance impact of varying the MVL results
in an interesting tradeoff: higher MVL values result in fewer
loop iterations, in turn saving on loop overheads—but this
savings comes with more time-consuming vector reduction
operations. For example, as MVL grows, the Log(MVL) loop
iterations required to perform a tree reduction that adds all
the elements in a vector grows with it. We examine the
resulting impact on both area and performance below.

The area impact of increasing MVL is isolated entirely
within the vector register file and hence affects solely the
FPGA block RAM usage. But because of the discrete sizes
and aspect ratios of those block RAMs, the area savings
from decreasing MVL will plateau. For example, the Stratix
M4K block RAM has 4096 bits and can output a maximum
of 32-bits in a single cycle, hence a 16-lane vector processor
requires 16 of these M4Ks to output the 32-bit elements

Table 3: VESPA design characteristics on Stratix III 3SL200C2.

Design Characteristic 1 lane 2 lanes 4 lanes 8 lanes 16 lanes 32 lanes 64 lanes

Maximum Clock Frequency (MHz) 135 137 140 137 137 136 122
Logic Used (ALMs) 2763 3606 4741 7031 11495 20758 38983
Multipliers Used (18-bit DSPs) 8 12 20 36 76 172 388
Block RAMs Used (M9Ks) 45 46 46 46 46 78 144

0

0.5

1

1.5

autcor conven fbital viterb rgbcmy rgbyiq

C
yc

le
 S

p
ee

d
u

p

1 Lane 2 Lanes

4 Lanes 8 Lanes

16 Lanes

Figure 5: Cycle speedup measured when MVL is
increased from 32 to 256.

for each lane. This results in 64Kbits being available which
exactly matches the demand of the MVL=64 case, but when
MVL=32 the block RAMs are only half-utilized resulting
only in wasted area instead of area savings.

Figure 4 shows the area of the vector processor for
different values of MVL and for a varying number of lanes.
The graph shows that increasing the MVL causes significant
growth when the number of lanes are few, but as the
lanes grow and the functional units dominate the vector
coprocessor area, the growth in the register file becomes
less significant as seen in the 16 lane vector processor.
Of particular interest is the identical area between the 16
lane processors with MVL equal to 32 and 64. This is an
artifact of the discrete sizes and aspect ratios of FPGA block
RAMs. At 16 lanes the vector processor demands such a
wide register file read that multiple FPGA block RAMs are
required to match that width. As a result, the storage space
for vector elements is distributed among these block RAMs
causing, in this specific case, only half of each block RAM’s
capacity to be used. We avoid this under-utilization by
setting MVL to 64 by default for this research, which allows
lanes between 1 and 16 with no under-utilization. Note that
in our area measurements we count the entire silicon space
of the block RAM used regardless of the number of memory
bits actually used.

Figure 5 shows the performance of a set of vector pro-
cessors with varying numbers of lanes and MVL=256, each
normalized to an identically-configured vector processor
with MVL=32. The benchmarks autcor and fbital both
have reduction operations and hence show a decrease in
performance caused by the extra cycles required to perform
vector reductions. The performance degradation is more
pronounced for low numbers of lanes: as the number of lanes
increase the reduction operations themselves execute more
quickly, until finally the amortization of looping overheads
dominates and results in an overall benchmark speedup

0

0.5

1

1.5

2

2.5

3

autcor conven fbital viterb rgbcmyk rgbyiq GMEAN

C
yc

le
 S

p
ee

d
u

p

M=1
M=2
M=4
M=8
M=16

Figure 6: Speedup achieved on a 16-lane vector
processor for different values of M, the memory
crossbar size, compared to the same vector processor
with M = 1.

for 16 lanes. The remaining benchmarks do not contain
significant reduction operations and hence experience faster
execution times for the longer vectors when MVL=256. For
conven, which has a very tight vectorized loop, the speedup
is quite significant: 43% for 16 lanes. The remaining
benchmarks have larger loop bodies which already amortize
the loop overhead and hence have only very minor speedups.

5.3 Sizing the Memory Crossbar (M)
The parameter M controls the number of lanes that the

memory crossbar connects to and hence directly controls
the crossbar size and the amount of parallelism possible for
memory operations. For example, a 16-lane vector processor
with M = 4 can complete 16 add operations in parallel,
but can only satisfy up to 4 vector load/store operations
provided all 4 are accessing the same cache line. Decreasing
M reduces area but also decreases the performance of vector
memory instructions. Note that the useful range of M is
bounded by the number of lanes and the number of bytes
in a cache line divided by the access size. Since our data
cache line is 16 bytes wide, a 16-lane vector processor can
only make use of an M = 16 crossbar on unit-stride byte
accesses, while unit-stride word accesses can only make use
of an M = 4 crossbar.

Figure 6 shows the impact on performance of varying
the memory crossbar size for a 16-lane vector processor.
The results are normalized to the case where M = 1—i.e.,
with memory operations executed serially. The performance
benefit of the larger crossbar is clearly a significant compo-
nent of overall system performance resulting in up to 2.5x
speedup for the M = 16 crossbar, which matches the number
of vector lanes in the system. On average, with only a single
memory lane, M = 1, the performance of the 16-lane VESPA
processor is less than a 4-lane VESPA processor with M = 4,

stressing the importance of configuring VESPA with enough
memory bandwidth. In some cases the performance benefit
is much less significant: for fbital and viterb performance
saturates at M = 8 suggesting that the memory crossbar size
can be halved from M = 16 for free, resulting in a 2200 LE
savings from the 36000 LE design.

The memory crossbar has the potential to severely limit
the processor’s clock frequency. We have designed our
pipeline and clock frequency to accommodate an M =
16 memory crossbar and hence have prevented any clock
frequency impact for our range of study (note that even
in the 32-lane and 64-lane VESPA processors we limit the
crossbar to M = 16 to match the cache line size as discussed
previously). Any increases to the cache line size would
greatly increase the memory crossbar size and reduce the
maximum value of M we can achieve without impacting clock
frequency.

6. CUSTOMIZING VESPA
In this section we evaluate the customization opportuni-

ties in vector width and instruction set support to reduce
area without affecting performance. We also combine the
two approaches to achieve even greater area savings.

6.1 Impact of Vector Width Customization
We can leverage the reconfigurability of the FPGA to

customize the vector coprocessor to the application. Table 2
shows that with the exception of autcor, none of the
benchmarks actually require 32-bit datapaths, and can
instead use only 8 or 16-bit vector datapaths. By changing
a single parameter entry, our vector coprocessor can auto-
matically implement different vector lane datapath widths.
We modify the width to match the largest data type size
specified in Table 2 for each benchmark, thereby creating
width-optimized application-specific vector processors with
reduced area. The area of a conventional processor cannot
be reduced once it is fabricated so designers opt instead
to dynamically (with some area overhead) reclaim any
unused vector lane datapath width to emulate an increased
number of lanes, hence gaining performance. Our current
benchmarks each operate on a single data width, making
support for dynamically configuring vector lane width and
number of lanes uninteresting—however for a different set
of applications this could be motivated.

Figure 7(a) shows the area for each of the width-optimized
application-specific vector processors normalized to the orig-
inal full vector processor. The autcor benchmark utilizes
4-byte (32-bit) data types resulting in no area savings for
the width-optimized vector coprocessor over the full vector
coprocessor. The benchmarks with 2-byte (16-bit) data
types experience up to a 37.5% area reduction when 16 lanes
are implemented, while those with 1-byte (8-bit) data types
experience up to a 54% area reduction. The figure also shows
that the width-customization technique has a greater impact
as the lanes increase.

6.2 Impact of Instruction Set Subsetting
With VESPA we can also automatically eliminate hard-

ware support for any unused instructions. We parse each
benchmark binary and eliminate control logic and datapath
hardware for instructions that are not found. The area
savings achieved depends not only on the fraction of the
VIRAM ISA used, as specified in Table 1, but also on which

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

au
tc

or
 (

4)

co
nv

en
(1

)

fb
ita

l (
2)

vi
te

rb
 (

2)

rg
bc

m
yk

(1
)

rg
by

iq
 (

2)

N
o

rm
al

iz
ed

 A
re

a

1 Lane
2 Lanes
4 Lanes
8 Lanes
16 Lanes

(a) Area of vector coprocessor after reducing lane width
to match the application. The number in parenthesis
indicates the number of bytes of the largest data type
in the application, and hence indicates the vector lane
width implemented.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

au
tc

or

co
nv

en

fb
ita

l

vi
te

rb

rg
bc

m
yk

rg
by

iq

G
M

E
A

N

N
o

rm
al

iz
ed

 A
re

a

1 Lane
2 Lanes
4 Lanes
8 Lanes
16 Lanes

(b) Area of the vector coprocessor after eliminating
hardware support for unused instructions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

au
tc

or
 (

4)

co
nv

en
 (

1)

fb
ita

l (
2)

vi
te

rb
 (

2)

rg
bc

m
yk

 (
1)

rg
by

iq
 (

2)

G
M

E
A

N

N
o

rm
al

iz
ed

 A
re

a

1 Lane
2 Lanes
4 Lanes
8 Lanes
16 Lanes

(c) Area of the vector coprocessor after eliminating both
unused lane-width and hardware support for unused
instructions.

Figure 7: Effect of customizing the VESPA lane
width and instruction set support to each bench-
mark.

vector instructions are unused—since some functional units
are larger than others.

Figure 7(b) shows the area of the resulting subsetted
vector coprocessors. Up to 55% of the area is reduced in
some cases, but on average a 16-lane vector processor saves
46.5% of its area, and the benefit increases with the number

0.00

0.25

0.50

0.75

1.00

1.25

1.50

autcor conven fbital viterb rgbcmy rgbyiq

S
p

ee
d

u
p

4KB
8KB
16KB
32KB
64KB

Figure 8: Cycle speedup achieved for a 16-lane
vector processor with varying data cache sizes,
normalized to a 4KB data cache.

of lanes. The cycle behavior of the processor is unaltered
with this technique and allows the instruction set to grow
without necessarily increasing the vector processor area.
For example, the area overhead of supporting fixed-point
operations in VESPA can easily be removed by a designer
who is not using them.

6.3 Impact of Combining Width Reduction
and Instruction Set Subsetting

We can additionally customize both the vector width
and the supported instruction set of VESPA for a given
application, thereby creating highly area-reduced VESPA
processors with identical performance to a full VESPA
processor. Since these customizations overlap, we expect
that the savings will not be perfectly additive: for example,
the savings from reducing the width of a hardware adder
from 32-bits to 8-bits will disappear if that adder is elimi-
nated by instruction set subsetting. Figure 7(c) shows the
area savings of combining both the width reduction and
the instruction set subsetting. Such an application-specific
vector processor can drastically reduce the area-cost for a
16-lane processor by up to 70%, and 61% on average.

7. IMPACT OF DATA CACHE
Previous work has indicated that soft processor systems

were largely compute-bound and hence that memory system
performance was not a significant limiter of overall system
performance [12]. In this work we show that after acceler-
ating the computation through vectorization, that memory
system performance indeed becomes significant. Using a 16
lane vector processor and our parameterized direct-mapped
cache we measure the area and performance of the system for
cache sizes ranging from 4KB to 64KB. This 16-fold increase
in cache size can be achieved with only 2000 equivalent
LEs of silicon (recall that this measurement also includes
all memory bits), making the overall area cost relatively
minor with respect to the complete system. This result is
somewhat expected since the relative cost of logic is much
higher than for memory on an FPGA with dedicated blocks
of RAM.

Figure 8 shows the speedup for caches up to 64KB in size.
The performance of the streaming benchmarks rgbcmy
and rgbyiq are unaffected due to the lack of temporal
locality in those applications. These applications are good

Table 4: Cycle speedup of VESPA (assembly-coded
and vectorized benchmarks) versus Scalar MIPS (C-
coded benchmarks).

L=1 L=2 L=4 L=8 L=16

autcor 1.3 2.6 4.7 8.1 11.4
conven 6.9 12.5 21.4 32.9 43.6
fbital 1.2 2.2 3.7 5.5 6.9
viterb 1.0 1.8 2.8 3.6 3.9
rgbcmyk 1.0 1.8 2.4 3.2 3.8
rgbyiq 2.4 4.2 6.7 9.6 12.0
GMEAN 1.8 3.1 5.1 7.4 9.2

candidates for a simple prefetching policy, a topic we will
investigate in the future. autcor is also unaffected because
of its small data set size which fits in the 4KB cache.
However large performance gains between 39% and 49%
are evident for the remaining benchmarks. The increase in
computational power has allowed data movement to become
a larger component of overall system performance, whereas
previous work limited performance growth of a perfect cache
to only 12% faster than a 4KB direct-mapped cache [12]. In
the future, we plan to architect and explore better memory
systems for soft vector processors.

8. IMPACT OF ASSEMBLY
PROGRAMMING

As mentioned previously, the EEMBC benchmarks, origi-
nally written in C, were vectorized using assembly language
due to the current lack of availability of a high quality
vectorizing compiler for VIRAM. The resulting vectorized
benchmarks used in this study have two advantages over
the original benchmarks: i) they are vectorized, and ii) they
are written in assembly and hence may benefit from manual
optimization and instruction scheduling. So far we have fo-
cussed only on the former advantage by normalizing against
the vectorized benchmarks—in this section we examine and
quantify the latter advantage.

Table 4 shows the speedup of the vectorized bench-
marks run on VESPA processors with varying lanes against
the original scalar C-written benchmarks executed on the
SPREE-generated MIPS scalar processor. The VESPA
processor with only one vector lane has minimal benefit
from vectorization hence exposing the advantage of assembly
programming. The viterb and rgbcmyk benchmarks
perform the same on the 1-lane VESPA as originally on
the scalar MIPS, suggesting that any assembly-level man-
ual optimization was nullified by the extra vector control
instructions inserted into the instruction stream. In the
conven benchmark, a significant amount of code respon-
sible for modelling a shift register was eliminated as a result
of manual optimization. Hence even with the same number
of functional units as in the scalar MIPS processor core,
the vectorized assembly version exhibits a 6.9x speedup on
VESPA with one lane.

9. CONCLUSIONS
Soft vector processors provide a scalable, flexible, and

portable framework for trading area for performance for
FPGA applications that contain data-level parallelism. We
have shown that with VESPA, our parameterized FPGA-

based vector processor, we can easily scale the number of
vector lanes to exploit the available resources of an FPGA:
the Stratix 1S80 that we target accommodates 16 full vector
lanes, and on our EEMBC benchmarks achieves an average
speedup of 6.3x (versus a single lane vector processor).

A soft vector processor design can be quite portable, as
evidenced by VESPA which was designed for Stratix III yet
implemented and evaluated on Stratix I FPGAs. Soft vector
processors can be implemented on any FPGA device family
while maintaining software compatibility, largely due to the
abstraction of the VIRAM instruction set. Such portability
could allow FPGA vendors to provide vectorized software
IP libraries, allowing systems developers to tune the area
and performance of their designs without modifying their
software. Such a design flow could significantly enhance
existing FPGA design flows, which currently struggle with
respect to IP-core reuse.

The flexibility of soft vector processors is perhaps their
most appealing quality: for VESPA, designers can tune
the vector lane length and width, maximum vector length,
and the size of the memory crossbar. We demonstrated
that vector lane width can be tuned to match application
requirements, reducing the area of the vector coprocessor
by as much as 54%. Similarly, we showed that eliminating
support for unused instructions can reduce the area of the
vector coprocessor by up to 55%. While these approaches
both trade portability for area savings, when combined for a
16 lane vector coprocessor they can result in an area savings
of up to 70% (61% on average).

We are currently migrating VESPA to a hardware plat-
form with a Stratix III FPGA and DDR2-DRAM. We also
intend to develop customizable memory systems which can
be adapted to the memory access patterns of applications,
and to explore the potential for custom vector instructions.

10. ACKNOWLEDGEMENTS
We would like to sincerely thank Christos Kozyrakis for

his help with the benchmarking infrastructure used in this
research. We would also like to acknowledge the funding
support we received from both Altera Corporation and
NSERC. Finally we would like to thank the anonymous
reviewers for their feedback and insightful comments.

11. REFERENCES
[1] K. Asanovic, J. Beck, B. Irissou, B. Kingsbury, and

N. Morgan. The TO Vector Microprocessor. Hot
Chips, 7:187–196, 1995.

[2] J. Cho, H. Chang, and W. Sung. An fpga based simd
processor with a vector memory unit. Circuits and
Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE
International Symposium on, pages 4 pp.–, 21-24 May
2006.

[3] R. Cliff. Altera Corporation. Private Comm, 2005.

[4] J. Fender, J. Rose, and D. R. Galloway. The
transmogrifier-4: An fpga-based hardware
development system with multi-gigabyte memory
capacity and high host and memory bandwidth. In
IEEE International Conference on Field
Programmable Technology, pages 301–302, 2005.

[5] J. Gebis and D. Patterson. Embracing and Extending
20th-Century Instruction Set Architectures.
Computer, 40(4):68–75, 2007.

[6] J. L. Hennessy and D. A. Patterson. Computer
Architecture; A Quantitative Approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
1992.

[7] P. Jamieson and J. Rose. Enhancing the area-efficiency
of fpgas with hard circuits using shadow clusters. Field
Programmable Technology, 2006. FPT 2006. IEEE
International Conference on, pages 1–8, Dec. 2006.

[8] A. K. Jones, R. Hoare, D. Kusic, J. Fazekas, and
J. Foster. An fpga-based vliw processor with custom
hardware execution. In FPGA ’05: Proceedings of the
2005 ACM/SIGDA 13th international symposium on
Field-programmable gate arrays, pages 107–117, New
York, NY, USA, 2005. ACM.

[9] C. Kozyrakis and D. Patterson. Vector vs. superscalar
and VLIW architectures for embedded multimedia
benchmarks. Microarchitecture, 2002.(MICRO-35).
Proceedings. 35th Annual IEEE/ACM International
Symposium on, pages 283–293, 2002.

[10] C. Kozyrakis and D. Patterson. Overcoming the
limitations of conventional vector processors.
SIGARCH Comput. Archit. News, 31(2):399–409,
2003.

[11] C. Kozyrakis and D. Patterson. Scalable, vector
processors for embedded systems. Micro, IEEE,
23(6):36–45, 2003.

[12] M. Labrecque, P. Yiannacouras, and J. G. Steffan.
Scaling Soft Memory Systems. In IEEE Symposium on
Field-Programmable Custom Computing Machines
(FCCM’08)., Palo Alto, CA, April 2008.

[13] J. E. Veenstra and R. J. Fowler. MINT: a front end
for efficient simulation of shared-memory
multiprocessors. In Proceedings of the Second
International Workshop on Modeling, Analysis, and
Simulation of Computer and Telecommunication
Systems (MASCOTS ’94)., pages 201–207, Durham,
NC, January 1994.

[14] H. Yang, S. Wang, S. G. Ziavras, and J. Hu. Vector
processing support for fpga-oriented high performance
applications. In ISVLSI ’07: Proceedings of the IEEE
Computer Society Annual Symposium on VLSI, pages
447–448, Washington, DC, USA, 2007. IEEE
Computer Society.

[15] P. Yiannacouras. SPREE.
http://www.eecg.utoronto.ca/∼yiannac/SPREE/.

[16] P. Yiannacouras, J. Rose, and J. G. Steffan. The
Microarchitecture of FPGA Based Soft Processors. In
CASES’05: International Conference on Compilers,
Architecture and Synthesis for Embedded Systems,
pages 202–212. ACM Press, 2005.

[17] P. Yiannacouras, J. G. Steffan, and J. Rose.
Application-specific customization of soft processor
microarchitecture. In FPGA’06: Proceedings of the
International Symposium on Field Programmable Gate
Arrays, pages 201–210, New York, NY, USA, 2006.
ACM Press.

[18] J. Yu, G. Lemieux, and C. Eagleston. Vector
processing as a soft-core cpu accelerator. In FPGA ’08:
Proceedings of the 16th international ACM/SIGDA
symposium on Field programmable gate arrays, pages
222–232, New York, NY, USA, 2008. ACM.

