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Abstract
In modeling of port dynamics it seems reasonable to assume that the ships arrive on a 
somewhat scheduled basis and that there is a constant lay period during which, in a uni-
form way, each vessel can arrive at the port. In the present paper, we study the counting 
process N(t) which represents the number of scheduled vessels arriving during the time 
interval (0,  t], t > 0 . Specifically, we provide the explicit expressions of the probability 
generating function, the probability distribution and the expected value of N(t). In some 
cases of interest, we also obtain the probability law of the stationary counting process rep-
resenting the number of arrivals in a time interval of length t when the initial time is an 
arbitrarily chosen instant. This leads to various results concerning the autocorrelations of 
the random variables X

i
 , i ∈ ℤ , which give the actual interarrival time between the (i − 1)

-th and the i-th vessel arrival. Finally, we provide an application to a stochastic model for 
the queueing behavior at the port, given by a queueing system characterized by stationary 
interarrival times X

i
 , exponential service times and an infinite number of servers. In this 

case, some results on the average number of customers and on the probability of an empty 
queue are disclosed.

Keywords  Vessel arrivals · Counting process · Probability generating function · Port 
dynamics modeling

Mathematics Subject Classification  Primary 60G55 · Secondary 60K25

1  Introduction

Every year about 11 billion tons of goods are transported by ship. Large volumes of 
products such as grain, oil, chemicals and manufactured goods are shipped by sea, so 
that around 90% of international trade is handled by bulk ports worldwide. Bulk ports 
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must be able to accomodate the vessels and to control in reasonable time the load or the 
unload of materials. They provide berth facilities for ships but the berth capacity is lim-
ited and costly, so that terminal operators try to minimize the berth utilization. Queuing 
theory has been considered since the early 60s as a tool to solve optimization of port 
handling service system. Use of queuing systems in modeling port dynamics relies on 
the interpretation of the ships as clients, the berths as server and the time spent by the 
ship at the berth as service time. Over time many authors have provided the solution 
for different types of systems. In certain cases it has been possible to obtain the exact 
solution (for instance, Frankel (1987) and Tsinker (2004)). Other researchers proposed 
approximations (see Artalejo et al. (2008), de la Peña-Zarzuelo et al. (2020)), statistical 
models or computational techniques (see Dahal et al. (2003), Wadhwa (1992)). In some 
recent papers, attention has been devoted to the customer waiting time management: the 
clients of a queuing system are regarded as active entities able to join or to leave the 
queue under particular conditions. The customers’ decision about the waiting time of 
service may be influenced by the observation of the queue length or by the knowledge 
of crucial information about the system, such as the arrival and the service rates (cfr. 
Bountali and Economou (2019) and Dimitrakopoulos et al. (2021)). Furthermore, cus-
tomers may be also characterized by an impatience time which is defined to describe the 
intolerance to delay. If the waiting time reaches the impatience time, then the customer 
leaves the system without receiving any service. Examples of this kind of a queueing 
system can be found in Bar-Lev et al. (2013) or in Inoue et al. (2018).

The random nature of vessel arrivals and terminal service processes have a sig-
nificant impact on port performance. Indeed, they often lead to significant handling 
delays. Hence, many arrival planning strategies have been provided in order to mitigate 
such undesirable effects (see, for instance, Lang and Veenstra (2010) and van Asperen 
et al. (2003)). In many studies, the arrival of a vessel in a certain area is assumed to 
follow a stationary Poisson process, which generally is not a realistic assumption, since 
it may be expected that during certain days or months of the year, ships will arrive  
in greater numbers than during other periods, cf. Goerlandt and Kujala (2011). Besides 
the assumption of exponential distribution, other distributions, such as the Erlang-2  
distribution, have been considered to describe the ships interarrival times, cf. van Vianen  
et al. (2014). However, as suggested by Altiok (2000) and Jagerman and Altiok (2003), 
vessels arrive on a somewhat scheduled basis and there should be one vessel arriving 
every time units. Unfortunately, due to bad weather conditions, natural phenomena or 
unexpected failures, vessels do not generally arrive at their scheduled times, so that 
each vessel is assigned a constant lay period during which, in a uniform way, it is sup-
posed to arrive at the port. Some examples of a pre-scheduled random arrivals process 
can be found in Guadagni et al. (2011) and Lancia et al. (2018) to describe public and 
private transportation systems.

Stimulated by the above mentioned researches, in this paper we investigate a sto-
chastic model describing the vessel arrivals and the port dynamics. We assume that the 
vessel are scheduled to arrive at multiples of a given period a > 0 , whereas the actual 
arrival time is increased by a uniformly distributed lay period. Differently from a pre-
vious model in which the lay period is uniform over (0,  a) (cf. Jagerman and Altiok 
(2003)), in the present investigation we consider the more general case in which it is 
uniform over (0, ka), k ∈ ℕ.

We mainly focus on the determination of explicit forms of the conditional probability 
distribution and the mean of the counting process describing the vessel arrivals. It should 
be noted that the analytical results available in the literature in this area are quite scarce and 
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fragmentary. Nevertheless, we are able to find several explicit results on the main probabil-
ity distributions of interest. In particular, in some special cases we determine (i) the uncon-
ditional probability distribution of the vessel arrival process, (ii) the probability distribution 
of the stationary process which represents the number of vessel arrivals when the initial 
time is an arbitrarily chosen instant, (iii) the distribution, the variance and the autocorrela-
tion of the interarrival times between consecutive vessel arrivals. We remark that the finding 
of such explicit analytical results represents a strength of the paper, compared to other arti-
cles in this area where only approximations are obtained by means of simulation techniques.

In addition, with reference to a vessel queueing system with infinite servers, whose ser-
vice times are exponentially distributed, we propose an application of the main results to 
determine the mean number of vessels in the queue seen at the arrival of a given ship. This 
is helpful to deal with resource allocation problems in the port.

1.1 � Plan of the Paper

We assume that the actual arrival time of the vessel scheduled to arrive at time �i ∶= ia , 
a > 0 , i ∈ ℤ , is given by Ai = ia + Yi − y0 , i ∈ ℤ , where the random variables Yi are inde-
pendent and identically distributed, with uniform distribution on (0, ka), k ∈ ℕ , and where 
y0 denotes the realization of Y0 . Section 2 is devoted to the study of the counting process 
N(t), which represents the number of scheduled vessels arriving during the time interval 
(0, t], t ≥ 0 , where 0 is an arrival instant. We provide the explicit expression of the probabil-
ity generating function of N(t), its probability distribution and expected value. Furthermore, 
we develop some cases of interest based on specific choices of k, i.e. k = 1 and k = 2.

For the same choices of k, in Section 3 we obtain the probability law of a stationary 
counting process, say Ne(t) . The latter process provides the number of arrivals in a time 
interval of length t, when the initial time is an arbitrarily chosen instant. The knowledge 
of the distribution of Ne(t) allows us to obtain some useful results concerning the variance 
and the correlations of the random variables Xi , representing the actual interarrival time 
between the (i − 1)-th and the i-th vessel arrival. In particular, for k = 1 we find that the 
correlations �h = Corr(Xi,Xi+h) , i ∈ ℤ , h ∈ ℕ , are vanishing for h ≥ 2 . Moreover, in the 
case k = 2 they are vanishing for h ≥ 4 , and negative increasing for h = 1, 2, 3.

Finally, in Section 4 we consider an application of the previous results to a queueing 
system, say SHIP/M/∞ , in which the service times have i.i.d. exponential distribution with 
parameter 𝜇 > 0 , and there is an infinite number of servers. Denoting by Qn the number 
of customers at the port seen by the arrival of the n-th customer, the knowledge of �[N(t)] 
allows us to obtain the explicit expression of the average number of customers �(Qn) , 
together with an upper and a lower bound for the probability of empty queue. In addition, 
from the stationarity of the interarrival times Xi we obtain that �(Qn) does not depend on 
n. Moreover, it depends on parameters a and � only through their product. In addition, it is 
decreasing in 𝜇a > 0 and increasing in k ∈ ℕ.

2 � The Model

Consider a system able to receive an infinite sequence of units, such as a stochastic flow 
of vessel arrivals occurring at epochs in the time domain (−∞,∞) . Specifically, for a 
fixed a > 0 , the i-th vessel is scheduled to arrive at the port at the time
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and it is expected to show up during a lay period having length 𝜔 > 0 . The lay period 
is assumed to be the same for every ship. Each vessel arrives at the port, independently 
from the others, at a random time which is uniformly distributed within the lay period. 
The assumption of uniformity of vessel arrivals within the lay period is justified recall-
ing that captains are only given the window of arrival and not a scheduled arrival time 
(see Jagerman and Altiok (2003)).

In the sequel, we denote by Ai , i ∈ ℤ , the actual (rescaled) arrival time of the i-th ves-
sel, which is scheduled to arrive at time (1). Specifically, we assume that (cf. Jagerman 
and Altiok (2003))

As specified, the r.v.’s Yi , i ∈ ℤ , representing the elapsed arrival time of the i-th vessel, 
are independent and identically uniformly distributed over (0,�) , with distribution func-
tion FY (⋅) . The random variable Y0 describes the elapsed arrival time of the 0-th vessel, 
and y0 denotes its realization used for the rescaling in Eq. (2). Hence, we have A0 = 0 , so 
that the arrival of the vessel scheduled at time −y0 actually occurs at time t = 0.

Note that, since the vessels can arrive in any order during the common period of sail-
ing, the order of the actual arrivals may differ from the scheduled ones. Hence, whereas 
the vessels are scheduled to arrive in increasing order, their actual arrival times are not 
necessarily ordered. Let Xi , i ∈ ℤ , be the actual interarrival time between the (i − 1)-th 
and the i-th vessel arrival, with X1 denoting the time length between time t = 0 and the 
subsequent arrival. It is known that {Xi} is a stationary sequence of identical distributed 
random variables. Moreover, the corresponding counting process N(t), which represents 
the number of scheduled vessels arriving during the time interval (0, t], with 0 an arrival 
point, is a non-stationary process in continuous time (see Cox and Lewis (1966)).

2.1 � Probability Generating Function

In this section we determine the probability generating function (pgf) of N(t), t > 0 , 
conditional on Y0 = y0 . Recalling that the arrival events are independent, we have

where, due to Eq. (2),

From Eqs. (3) and (4), for t > 0 , z ∈ (0, 1) , y0 ∈ (0,�) , the pgf of N(t) can be expressed as

(1)�i = ia, i ∈ ℤ,

(2)Ai = ia + Yi − y0, i ∈ ℤ, a > 0.

(3)

GN(t, z|y0) ∶= �
[
zN(t)|Y0 = y0

]
=

+∞∏
j=−∞, j≠ 0

(1 − pj + pjz), z ∈ (0, 1), y0 ∈ (0,�),

(4)
pj ∶= ℙ(0 < Aj < t) = ℙ(y0 − ja < Yj < t + y0 − ja) = FY (t + y0 − ja) − FY (y0 − ja).

(5)GN(t, z|y0) =
+∞∏

j=−∞, j≠ 0

[
1 − (1 − z)

(
FY (t + y0 − ja) − FY (y0 − ja)

)]
.
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In the sequel we shall assume that � = ka , with k ∈ ℕ , a > 0 , so that y0 ∈ (0, ka) . Under 
such assumption, it is possible to obtain the explicit expression of GN(t, z|y0) , for different 
ranges of values of t.

Theorem  2.1  Assuming that � = ka , for (n − 1)a < y0 < na , with n = 1,… , k , the pgf 
GN(t, z|y0) given in (5) can be expressed in the following way: 

	 (i)	 for 0 ≤ t < ka − y0 , 

	 (ii)	 for ka − y0 ≤ t < (k + n − 1)a − y0 , 

	 (iii)	 for t ≥ (k + n − 1)a − y0 , 

where s = ⌊(t + y0)∕a⌋ + 1 , with ⌊⋅⌋ denoting the integer part function, (x)n ∶=
Γ(x+n)

Γ(x)
 is the 

Pochhammer symbol, and Γ(⋅) is the Gamma function.

Proof  Starting from Eq. (5), the pgf of N(t) can be rewritten as

where FWj
(t) is the distribution function of a random variable Wj uniformly distributed over 

the interval 
[
ja − y0, (k + j)a − y0

]
 , 1A is the indicator function of the set A and we assume

Hence, the proof follows by considering different ranges of values of t. 	�  ◻

The knowledge of the pgf of N(t) is useful to determine suitable upper bounds to the 
probability that the number of scheduled vessels arriving during a time interval (0,  t] 
exceeds a given threshold. Indeed, from the well-known Chernoff bound we have

GN(t, z|y0) = (−1)s− n
[
1 − z

k

]2s− 2n
(
n −

y0

a
−

k

1 − z

)

s− n

(
n −

t + y0

a
+

k

1 − z

)

s− n

×

[
1 − (1 − z)

t

ka

]k− s+ n− 1

,

GN(t, z|y0) = (−1)−n+ s
[
1 − z

k

]2s− 1− 2n
(
n −

y0

a
−

k

1 − z

)

s− n

(
n −

t + y0

a
+

k

1 − z

)

s− n

×

[
1 − (1 − z)

t

ka

]n− s+ k

(
y0

a
+

kz

1−z

) ,

GN(t, z|y0) =
[
1 − z

k

]2k− 1 zs− k− n

(
y0

a
+

kz

1− z

)
(
n −

y0

a
−

k

1 − z

)

k

(
−s + 1 +

t + y0

a
−

k

1 − z

)

k

,

GN(t, z�y0) =
k− 1�
j= 1

�
1 − (1 − z)𝜙−

j
(t)1{y0 <(k− j)a}

�⌊y0∕a⌋�
j= 1

�
1 − (1 − z)𝜙+

j
(t)
� +∞�
j= 1+⌊y0∕a⌋

�
1 − (1 − z)FWj

(t)
�
,

𝜙−

j
(t) ∶=

{
t

ka
0 ≤ t < (k − j)a − y0,

(k−j)a−y0

ka
t ≥ (k − j)a − y0,

𝜙+

j
(t) ∶=

{
t

ka
0 ≤ t < (k + j)a − y0,

(k+j)a−y0

ka
t ≥ (k + j)a − y0.
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An example of the upper bond Bm(t | y0) is given in Fig. 1, where it is shown to be 
increasing in t, as expected. Finally, we remark that in the case (iii) of Theorem 2.1 it is 
not hard to see that Bm+ 1(t + a | y0) = Bm(t | y0).

The model (2) of the vessels’ arrival times is based on the assumption that the r.v.’s Yi , 
representing the elapsed arrival time of the i-th vessel, i ∈ ℤ , are uniformly distributed 
over (0,�) . It would be desirable to modify the latter assumption by considering other 
distributions for Yi , looking for more flexible models for the vessel arrivals. For instance, 
as an alternative model one can assume that Yi has a decreasing triangular probability 
density function (pdf) for describing arrivals that are more likely in proximity of the 
scheduled arrival times. However, unfortunately the determination of the pgf becomes 
more difficult even in this case, as shown in the following remark.

Remark 2.1  If the random variables Yi are independent and identically distributed, with 
decreasing triangular pdf on (0, ka), k ∈ ℕ , such that

then, due to Eq. (5), the pgf of N(t), t > 0 , can be expressed as

(6)ℙ
[
N(t) ≥ m |Y(0) = y0

]
≤ inf

� ≥ 0
e−�mGN(t, e

�|y0) =∶ Bm(t | y0).

FY (x) =
2x

ka

(
1 −

x

ka

)
, 0 ≤ x ≤ ka,

GN(t, z ∣ y0) =

⌊y0∕a⌋�
j= ⌊y0∕a− k⌋

�
1 − (1 − z)�1j(t)

� +∞�
j= ⌊y0∕a⌋+1

�
1 − (1 − z)�2j(t)

�
,

Fig. 1   Bound Bm(t | y0) , given in Eq. (6), as a function of t, for k = 5 , y
0
= 2 , a = 1 , n = 3 and m = 10 , with 

some exact values of ℙ
[
N(t) ≥ m |Y(0) = y

0

]
 shown below   
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where

and

In this case, the determination of the explicit form of the pgf is quite difficult and leads 
to heavy calculations since the functions �ij(t) , i = 1, 2 , have a quadratic dependence on t.

2.2 � Probability Distribution

For the model (2), with the r.v.’s Yi uniformly distributed over (0,�) , in this section we 
obtain the conditional probability of N(t) given that Y0 = y0 , denoted by

Even though the expressions for py0 (n, t) are given in a quite cumbersome form, they 
involve finite sums and hypergeometric functions that can be computed by use of any 
scientific software. In particular, we recall that the series of the Gauss hypergeometric 
function 2F1(a, b; c; z) , defined in Eq. (25), terminates if either a or b is a nonpositive 
integer, in which case the function reduces to a polynomial.

The following proposition provides the explicit expressions of the conditional prob-
ability distribution of N(t).

Proposition 2.1  Let us assume (n − 1)a < y0 < na , with n = 1,… , k . Denoting by 
s = ⌊(t + y0)∕a⌋ + 1 , we have 

	 (i)	 for 0 ≤ t < ka − y0 , 

	 (ii)	 for ka − y0 ≤ t < (k + n − 1)a − y0 , 

𝜙1j(t) =

⎧
⎪⎨⎪⎩

2t

ka

�
1 −

1

2ka
(t + 2(y0 − ja))

�
, 0 ≤ t < (k + j)a − y0,

1 −
2

ka
(y0 − ja)

�
1 −

y0−ja

2ka

�
, t ≥ (k + j)a − y0,

𝜙2j(t) =

⎧
⎪⎨⎪⎩

0, 0 ≤ t < ja − y0
2

ka
(t + y0 − ja)

�
1 −

t+y0−ja

2ka

�
, ja − y0 ≤ t < (k + j)a − y0,

1, t ≥ (k + j)a − y0.

(7)py0 (n, t) ∶= ℙ
(
N(t) = n |Y0 = y0

)
, n ∈ ℕ0 = {0, 1, 2,…}.

py0 (0, t) =
(−1)s− n

k2s− 2n

Γ

(
1 + k − n +

y0

a

)

Γ

(
1 + k − s +

y0

a

)
Γ

(
1 − k − n +

t+y0

a

)

Γ

(
1 − k − s +

t+y0

a

)
(
1 −

t

ka

)k+ n− s− 1

,

py0 (0, t) =
(−1)s− n

k2s− 1− 2n

a

y0

(
1 −

t

ka

)n− s+ k Γ

(
1 − k − n +

t+y0

a

)
Γ

(
1 + k − n +

y0

a

)

Γ

(
−k − s + 1 +

t+y0

a

)
Γ

(
−s + 1 + k +

y0

a

) ,
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	 (iii)	 for t ≥ (k + n − 1)a − y0 , 

Moreover, for h ≥ 1 , it results 

	 (i)	 for 0 ≤ t < ka − y0 , 

	 (ii)	 for ka − y0 ≤ t < (k + n − 1)a − y0 , 

	 (iii)	 for t ≥ (k + n − 1)a − y0 , 

where, for brevity, the expressions of Pi(h, t, n, a, y0) , i = 1, 2, 3 , and the proofs are pro-
vided in Appendix A.

Figures 2, 3 and 4 show some plots of the probability py0 (h, t) for different choices of 
the involved parameters, evaluated by means of the explicit expressions obtained in Propo-
sition 2.1. Similarly, the exact values of ℙ

[
N(t) ≥ m |Y(0) = y0

]
 shown in Fig. 1 have been 

evaluated by means of Proposition 2.1.

Remark 2.2  Tables 1, 2, 3 and 4 provide a comparison between the exact expression of the 
state probabilities py0 (h, t) obtained in Proposition 2.1 and the probabilities p̂y0 (h, t) evalu-
ated via numerical inversion of the pgf GN(t, z|y0) thanks to Theorem 1 of Abate and Whitt 
(1992). The results show that the numerical inversion provides a good approximation of 
the exact distribution for small values of h.

In the next theorem, the limiting behavior of GN(t, z|y0) is analyzed for t → 0+ and 
t → +∞.

Theorem  2.2  Assuming � = ka , with k ∈ ℕ and a > 0 , for (n − 1)a < y0 < na , with 
n = 1,… , k , the pgf of N(t) exhibits the following limiting behavior

py0 (0, t) = 0.

py0 (h, t) = P1(h, t, n, a, y0),

py0 (h, t) = P2(h, t, n, a, y0),

py0 (h, t) = P3(h, t, n, a, y0),

Fig. 2   Probabilities py
0
(h, t) for k = 4 , y

0
= 1.5 , a = 1 , n = 2 with s = 3 and t = 1 (left-hand side) and s = 4 

and t = 2 (right-hand side)
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where

Proof  It follows from Theorem 2.1.
By inspection of (9), the absence of singularity of the pgf GN(t, z|y0) for large t is ensured.

(8)GN(t, z�y0) ∼
⎧⎪⎨⎪⎩

�
1 − t

1−z

ka

�k− 1

as t → 0+

ak ⋅ z
t+ y0

a
− k− n

as t → +∞.

(9)ak = ak(k, n;y0, a, z) ∶=
[
1 − z

k

]2k− 1

(
n −

y0

a
−

k

1−z

)
k

(
1 −

k

1−z

)
k(

−k +
y0

a
+

k

1−z

) .

Fig. 3   Probabilities py
0
(h, t) for k = 4 , y

0
= 1.5 , a = 1 , n = 2 , s = 4 and t = 3

Fig. 4   Probabilities py
0
(h, t) for k = 4 , y

0
= 1.5 , a = 1 , n = 2 with s = 5 and t = 4 (left-hand side) and s = 6 

and t = 5 (right-hand side)
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Remark 2.3  Note that, in agreement with Eq. (A.13) of Jagerman and Altiok (2003), under 
the assumptions of Theorem 2.2, from (8) one has the large deviation limit

2.3 � Mean Values

Making use of Theorem 2.1, we can now determine the mean of N(t), conditional on Y0 = y0.

Proposition 2.2  For � = ka , a > 0 , k ∈ ℕ , the conditional mean of N(t), given that Y0 = y0 , 
is given by

Proof  Recalling Theorem 2.1, we consider the case 0 ≤ t < ka − y0 and s ≥ n . We have

where

lim
t→+∞

1

t
logGN(t, z|y0) = log z

a
, z ∈ (0, 1).

(10)�
[
N(t)|y0

]
=

{
t(k−1)

ak
for 0 ≤ t < ka − y0,

kt+y0−ak

ak
for t ≥ ka − y0.

�
[
N(t)|y0

]
= lim

z→ 1

�

�z
GN(t, z|y0)

= lim
z→ 1

(−1)1+ s− nak

[ak + t(z − 1)]2

(
1 +

t(z − 1)

ak

)k+ n− s

A1(z) ⋅

(
A2(z) + A3(z)

(z − 1)2

)
,

A1(z) ∶ =

(
1 − z

k

)2s− 2n
(
n −

t + y0

a
−

k

z − 1

)

s− n

(
n −

y0

a
+

k

z − 1

)

s− n

,

A2(z) ∶ = [2ak(n − s) − (−1 + k − n + s)t(z − 1)](z − 1),

A3(z) ∶ = k[ak + t(z − 1)]

[
� (0)

(
n −

t + y0

a
−

k

z − 1

)
− � (0)

(
s −

t + y0

a
−

k

z − 1

)

+� (0)

(
s −

y0

a
+

k

z − 1

)
− � (0)

(
n −

y0

a
+

k

z − 1

)]
,

Table 1   Probabilities py
0
(h, t) 

and p̂y
0
(h, t) , with the absolute 

and relative errors, for k = 4 , 
y
0
= 1.5 , a = 1 , n = 2 , s = 3 and 

t = 1 with r = 0.001

py
0
(h, t) p̂y

0
(h, t) |p − p̂| |p − p̂|∕p

h = 1 0.410156 0.410156 1.95312 ⋅ 10
−8

4.7619 ⋅ 10
−8

h = 2 0.138672 0.138672 1.07095 ⋅ 10
−11

7.7229 ⋅ 10
−11

h = 3 0.0195313 0.0195312 3.00991 ⋅ 10
−9

1.54107 ⋅ 10
−7

h = 4 0.0009765 0.0009853 8.76043 ⋅ 10
−6 8.97068 ⋅ 10

−3

Table 2   Same as Table 1, for 
k = 4 , y

0
= 1.5 , a = 1 , n = 2 , 

s = 4 and t = 2 with r = 0.001

py
0
(h, t) p̂y

0
(h, t) |p − p̂| |p − p̂|∕p

h = 1 0.371704 0.371704 1.27197 ⋅ 10
−7

3.422 ⋅ 10
−7

h = 2 0.330322 0.330322 1.256155 ⋅ 10
−11

3.8028 ⋅ 10
−11

h = 3 0.127197 0.127197 1.28944 ⋅ 10
−8

1.01373 ⋅ 10
−7

h = 4 0.0201416 0.0201783 0.0000367019 0.00182219
h = 5 0.00109863 0.00109884 2.10426 ⋅ 10

−7
1.91535 ⋅ 10

−4
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with � (0)(z) denoting the digamma function (see, for instance, Eq. (6.3.1) of Abramowitz 
and Stegun (1992)). By considering Eq. (6.3.6) of Abramowitz and Stegun (1992), the dif-
ferences of the polygamma functions in A3(z) can be expressed as

and

so that, by means of L’Hôpital’s rule, we have

Finally, since limz→1 A1(z) = (−1)s−n , the thesis follows. The other cases can be 
treated similarly.

Equation (10) shows that �
[
N(t)|y0

]
 is piecewise linear, continuous and increasing convex 

for t ≥ 0 . The unconditional expected value of N(t) is provided in the following proposition.

Proposition 2.3  For � = ka , a > 0 , k ∈ ℕ , the expected value of N(t) is given by

Proof  The proof follows from Eq. (10) and recalling that Y0 ∼ U(0, ka).

� (0)

(
n −

t + y0

a
−

k

z − 1

)
− � (0)

(
s −

t + y0

a
−

k

z − 1

)
= −

s− n− 1∑
j= 0

1

n −
t+y0

a
−

k

z−1
+ j

,

� (0)

(
s −

y0

a
+

k

z − 1

)
− � (0)

(
n −

y0

a
+

k

z − 1

)
=

s− n− 1∑
j= 0

1

n −
y0

a
+

k

z−1
+ j

,

lim
z→ 1

A2(z) + A3(z)

(z − 1)2
= t(k − 1).

(11)�[N(t)] =

{
t[2ak(k− 1)+t]

2(ak)2
for 0 ≤ t < ka,

2t− a

2a
for t ≥ ka.

Table 3   Same as Table 1, for 
k = 4 , y

0
= 1.5 , a = 1 , n = 2 , 

s = 4 and t = 3 with r = 0.01

py
0
(h, t) p̂y

0
(h, t) |p − p̂| |p − p̂|∕p

h = 1 0.172501 0.172531 0.000030649 0.000177675
h = 2 0.354866 0.354866 1.03036 ⋅ 10

−11
2.90352 ⋅ 10

−11

h = 3 0.306488 0.306488 2.24302 ⋅ 10
−11

7.31847 ⋅ 10
−11

h = 4 0.118263 0.118263 2.82999 ⋅ 10
−9

2.39296 ⋅ 10
−8

h = 5 0.0188141 0.0188142 1.16753 ⋅ 10
−7

6.20562 ⋅ 10
−6

Table 4   Same as Table 1, for 
k = 4 , y

0
= 1.5 , a = 1 , n = 2 with 

s = 5 and t = 4 with r = 0.01

py
0
(h, t) p̂y

0
(h, t) |p − p̂| |p − p̂|∕p

h = 1 0.0300574 0.0300926 0.0000351524 0.00116951
h = 2 0.168811 0.168811 1.91566 ⋅ 10

−10
1.1348 ⋅ 10

−9

h = 3 0.351512 0.351512 2.59209 ⋅ 10
−12

7.37412 ⋅ 10
−12

h = 4 0.307808 0.307808 3.58398 ⋅ 10
−10

1.16435 ⋅ 10
−9

h = 5 0.119851 0.119851 9.72167 ⋅ 10
−9

8.11149 ⋅ 10
−8
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From Eq. (11) we note that �[N(t)] is an increasing convex continuous function of t, and that

according to a well known result on point processes Cox and Lewis (1966).

2.4 � Some Cases of Interest

Aiming to provide a more detailed description of the considered model, hereafter we pro-
vide the explicit expressions of the probability generating function (5) and of the state prob-
abilities of N(t) (given in Proposition 2.1) in two cases: (i) k = 1 and (ii) k = 2 . These cases 
refer to the assumption that Yj is uniformly distributed over (0, a) and (0, 2a), respectively.

Note that for k = 1 the vessels’ arrival times are uniformly distributed in non-overlapping 
time intervals, this ensuring that the interarrival times between consecutive vessel arrivals 
are distributed as the difference between two uniform random variables.

Proposition 2.4  Under the assumptions of Theorem 2.1, in case k = 1 , a > 0 , we have

Moreover,

and, for n ≥ 1

Proof  The proof follows from Theorem 2.1 and Proposition 2.1 for k = 1.

The case k = 2 can be analyzed under two different scenarios: y0 ∈ (0, a) and y0 ∈ (a, 2a).

Proposition 2.5  Under the assumptions of Theorem 2.1, in case k = 2 , a > 0 and assuming 
y0 ∈ (0, a) , one has

(12)�[N(t)] ∼
t

a
as t → +∞,

GN(t, z|y0) =
{

1, 0 ≤ t < a − y0

zn− 1
[
1 − (1 − z)

t−na+y0

a

]
, na − y0 ≤ t < (n + 1)a − y0, n ≥ 1.

(13)py0 (0, t) =

⎧
⎪⎨⎪⎩

1, 0 ≤ t < a − y
0

1 −
t−a+y0

a
, a − y

0
≤ t < 2a − y

0

0, t ≥ 2a − y
0
,

(14)py0 (n, t) =

⎧
⎪⎪⎨⎪⎪⎩

0, 0 ≤ t < na − y0
t−na+y0

a
, na − y0 ≤ t < (n + 1)a − y0

1 −
t−(n+1)a+y0

a
, (n + 1)a − y0 ≤ t < (n + 2)a − y0

0, t ≥ (n + 2)a − y0.

GN(t, z�y0) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
1 − (1 − z)

t

2a

�
, 0 ≤ t < a − y0�

1 − (1 − z)
a−y0

2a

��
1 − (1 − z)

t−a+y0

2a

�
, a − y0 ≤ t < 2a − y0

zn− 2

�
1 − (1 − z)

a−y0

2a

�

×

�
1 − (1 − z)

t−(n−1)a+y0

2a

��
1 − (1 − z)

t−na+y0

2a

�
, na − y0 ≤ t < (n + 1)a − y0, n ≥ 2.
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The state probabilities given in Proposition 2.1 have the following expressions

and, for n ≥ 2,

where, for brevity, the expression of N1(h, t, a, y0) is provided in Appendix B.

If k = 2 , a > 0 and y0 ∈ (a, 2a) , we have

Moreover, one has

py
0
(0, t) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
1 −

t

2a

�
, 0 ≤ t < a − y

0�
1 −

a−y
0

2a

��
1 −

t−a+y
0

2a

�
, a − y

0
≤ t < 2a − y

0�
1 −

a−y
0

2a

��
1 −

t−a+y
0

2a

��
1 −

t−2a+y
0

2a

�
, 2a − y

0
≤ t < 3a − y

0

0, t ≥ 3a − y
0
,

py
0
(1, t) =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t

2a
, 0 ≤ t < a − y

0

a−y
0

2a

�
1 −

t−a+y
0

2a

�
+

�
1 −

a−y
0

2a

�
t−a+y

0

2a
, a − y

0
≤ t < 2a − y

0

a−y
0

2a

�
1 −

t−a+y
0

2a

��
1 −

t−2a+y
0

2a

�
+

�
1 −

a−y
0

2a

�
t−a+y

0

2a

×

�
1 −

t−2a+y
0

2a

�
+

�
1 −

a−y
0

2a

��
1 −

t−a+y
0

2a

�
t−2a+y

0

2a
, 2a − y

0
≤ t < 3a − y

0�
1 −

a−y
0

2a

��
1 −

t−2a+y
0

2a

��
1 −

t−3a+y
0

2a

�
, 3a − y

0
≤ t < 4a − y

0

0, t ≥ 4a − y
0
,

py0 (h, t) = N1(h, t, a, y0),

GN (t, z�y0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
1 − (1 − z)

t

2a

�
, 0 ≤ t < 2a − y

0�
1 − (1 − z)

t

2a

��
1 − (1 − z)

t−2a+y0

2a

�
, 2a − y

0
≤ t < 3a − y

0

zn− 3

�
1 − (1 − z)

3a−y0

2a

��
1 − (1 − z)

t−(n−1)a+y0

2a

��
1 − (1 − z)

t−na+y0

2a

�
,

na − y
0
≤ t < (n + 1)a − y

0
, n ≥ 3.

py
0
(0, t) =

⎧
⎪⎪⎨⎪⎪⎩

1 −
t

2a
, 0 ≤ t < 2a − y

0�
1 −

t

2a

��
1 −

t−2a+y
0

2a

�
, 2a − y

0
≤ t < 3a − y

0�
1 −

3a−y
0

2a

��
1 −

t−2a+y
0

2a

��
1 −

t−3a+y
0

2a

�
, 3a − y

0
≤ t < 4a − y

0

0, t ≥ 4a − y
0
,

py
0
(1, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t

2a
, 0 ≤ t < 2a − y

0

t

2a

�
1 −

t−2a+y
0

2a

�
+

t−2a+y
0

2a

�
1 −

t

2a

�
, 2a − y

0
≤ t < 3a − y

0

3a−y
0

2a

�
1 −

t−2a+y
0

2a

��
1 −

t−3a+y
0

2a

�

+

�
1 −

3a−y
0

2a

�
t−2a+y

0

2a

�
1 −

t−3a+y
0

2a

�

+

�
1 −

3a−y
0

2a

��
1 −

t−2a+y
0

2a

�
t−3a+y

0

2a
, 3a − y

0
≤ t < 4a − y

0�
1 −

3a−y
0

2a

��
1 −

t−3a+y
0

2a

��
1 −

t−4a+y
0

2a

�
, 4a − y

0
≤ t < 5a − y

0

0, t ≥ 5a − y
0
,
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and for n ≥ 2

where the expression of N2(h, t, a, y0) is given in Appendix B.

Proof  The proof follows from Theorem 2.1 and Proposition 2.1 for k = 2.

The probabilities py0 (h, t) , obtained in Proposition 2.5, are plotted in Fig.  5 for a = 1 
and two different choices of y0 . For h = 0 the probabilities py0 (h, t) are decreasing in t. 
Moreoever, for h ≥ 1 , the plots are composed of continuous, straight and curved lines. Such 
shape is partially inherited from the triangular distribution arising in the case k = 1 , when 
the times between consecutive vessel arrivals are distributed as the difference between two 
uniform random variables.

3 � The Stationary Arrival Counting Process

In the previous section we obtained the probability distribution of the counting process 
that describes the vessel arrivals, conditional on an arrival occurring at time 0. Unfortu-
nately, due to the difficulties in managing the expressions mentioned in Proposition 2.1, 
the unconditional distribution is very hard to be obtained in a closed form in the general 
setting. However, considering the relevance of the unconditional distribution in the appli-
cations, hereafter we devote our efforts to derive the mentioned distribution in some spe-
cial cases. We are confident that these results are useful to give a first insight of the proper-
ties and behavior of the considered processes.

Differently from Section 2.2, where the interest was oriented to study the conditional 
probability (7), in this section we deal with the (unconditional) distribution

In general, this distribution can be easily obtained in a formal way, but the explicit form 
requires hard calculations due to the lengthy and complicated forms obtained in Proposition 

py0 (h, t) = N2(h, t, a, y0),

(15)p(n, t) ∶= ℙ(N(t) = n), n ∈ ℕ0.

Fig. 5   Probabilities py
0
(n, at) obtained in Proposition 2.5 for a = 1 , n = 0, 1, 2 with y

0
= 0.5 (upper cases) 

and y
0
= 1.5 (lower cases)
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2.1. Furthermore, we also focus on the analysis of the stationary arrival counting process, 
namely Ne(t) , which represents the number of arrivals in a time interval of length t when the 
initial time is an arbitrarily chosen instant. This process is useful since it allows to determine 
some relevant information on the interarrival times between consecutive vessel arrivals. Let 
us denote by

the probability law of Ne(t) . The probability distributions of the counting processes N(t) 
and Ne(t) are linked by means of the following relations (see Chapter  4 of Cox and 
Lewis (1966)):

where X is identically distributed to the interarrival times Xi . Note that, due to (12), for all 
i ∈ ℤ one has

Hence, from (17) one has ∫ ∞

0
p(n, t) dt = a for all n ∈ ℕ0 , and

where T̃k+ 1 is the first-passage-time of Ne(t) through state k + 1.
Let us now obtain some results concerning the correlations of the random variables 

Xi . The difficulties due to the heaviness of the available expressions for the distribution 
of N(t) force us to consider only few instances. Hence, for both cases k = 1 and k = 2 , 
hereafter we focus on the expressions of (i) the (unconditional) probability law of N(t), 
(ii) the probability density function of the interarrival times Xi , (iii) the probability law 
of Ne(t) , and (iv) the variance and the autocorrelation coefficients of Xi.

3.1 � Case k = 1

Proposition 3.1  In the case k = 1 , for a > 0 , the probability law of N(t), defined in Eq. 
(15), is given by

and, for n ∈ ℕ,

(16)p̃(n, t) ∶= ℙ
(
Ne(t) = n

)
, n ∈ ℕ0,

(17)
p̃(0, t) = 1 −

1

𝔼(X) ∫

t

0

p(0, u) du,

p̃(n, t) =
1

𝔼(X)

[
∫

t

0

p(n − 1, �) d� −
∫

t

0

p(n, �) d�

]
, n ∈ ℕ,

(18)�(Xi) = a.

(19)ℙ(�Tk+ 1 > t) = 1 −
1

a �

t

0

p(k, 𝜏) d𝜏, t ≥ 0, k ∈ ℕ0,

p(0, t) =

⎧⎪⎨⎪⎩

1 −
t2

2a2
, 0 ≤ t < a

(2a−t)2

2a2
, a ≤ t < 2a

0, t ≥ 2a,
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Proof  The thesis follows from Eqs. (13) and (14) and recalling that Y0 ∼ U(0, a).

Remark 3.1  From Proposition 3.1, we have that the mode of p(n, t), t ≥ 0 , is given by

As an immediate consequence of Proposition 3.1, we obtain the following results about 
the density of the interarrival times.

Corollary 3.1  Under the assumptions of Proposition 3.1, the probability density function of 
the interarrival times Xi , for i ∈ ℤ , is given by

Proof  The thesis follows noting that ℙ(Xi > t) = ℙ(X1 > t) = p(0, t) , for all i ∈ ℤ.

The following proposition provides, for n ∈ ℕ0 , the explicit expression of the prob-
abilities p̃(n, t) introduced in Eq. (16).

Proposition 3.2  For k = 1 , a > 0 , the probability law of Ne(t) is given by

and, for n ∈ ℕ,

p(n, t) =

⎧
⎪⎪⎨⎪⎪⎩

[t−a(n−1)]2

2a2
, (n − 1)a ≤ t < na

1 −
(t−na)2

2a2
−

[a(n+1)−t]2

2a2
, na ≤ t < (n + 1)a

[a(n+2)−t]2

2a2
, (n + 1)a ≤ t < (n + 2)a

0, t ≥ (n + 2)a.

Mode (p(0, t)) = 0, Mode (p(n, t)) =
a

2
(2n + 1) for n ∈ ℕ.

fX(t) =

⎧⎪⎨⎪⎩

t

a2
, 0 ≤ t < a

2a−t

a2
, a ≤ t < 2a

0, t ≥ 2a.

(20)�p(0, t) =

⎧⎪⎨⎪⎩

1 −
t

a

�
1 −

t2

6a2

�
, 0 ≤ t < a

(2a−t)3

6a3
, a ≤ t < 2a

0, t ≥ 2a,

�p(1, t) =

⎧⎪⎪⎨⎪⎪⎩

t

a

�
1 −

t2

3a2

�
, 0 ≤ t < a

1 −
(2a−t)3

3a3
−

t−a

a

�
1 −

(t−a)2

6a2

�
, a ≤ t < 2a

(3a−t)3

6a3
, 2a ≤ t < 3a

0, t ≥ 3a,

�p(n + 1, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[t−a(n−1)]3

6a3
, (n − 1)a ≤ t < na

(t−an)

a

�
1 −

(t−na)2

3a2

�
+

[a(n+1)−t]3

6a3
, na ≤ t < (n + 1)a

1 −
t−a(n+1)

a

�
1 −

[t−a(n+1)]2

6a2

�
−

[a(n+2)−t]3

3a3
, (n + 1)a ≤ t < (n + 2)a

[a(n+3)−t]3

6a3
, (n + 2)a ≤ t < (n + 3)a

0, t ≥ (n + 3)a.
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Proof  The result follows from Proposition 3.1 and Eq. (18), due to Eq. (17).

Figure  6 shows some plots of the probabilities p̃(n, t) obtained in Proposition 3.2 for 
k = 1 and different values of n.

Let us now provide the mean first-passage-time of Ne(t) through level n + 1 , n ∈ ℕ0 , 
which is asymptotically linear in n.

Corollary 3.2  Under the assumptions of Proposition 3.1, from (19) one has

With reference to the interarrival times Xi , i ∈ ℤ , the following proposition provides the 
variance and the autocorrelation coefficients

Proposition 3.3  In the case k = 1 , a > 0 , the variance of Xi , i ∈ ℤ , is

and the autocorrelation coefficients (21) are given by

Proof  Due to Eq. 8 of Jagerman and Altiok (2003), and recalling Eq. (20), we have

From this result, and by means of Eq. 9 of Jagerman and Altiok (2003), we obtain

The thesis then follows.

𝔼(T̃1) =
7

12
a, 𝔼(T̃n+ 1) =

a

2
(2n + 1), n ∈ ℕ.

(21)�h = Corr(Xi,Xi+ h), i ∈ ℤ, h ∈ ℕ.

Var(X) =
a2

6
,

�1 = −
1

2
, �h+ 1 = 0, h ∈ ℕ.

Var (X) = 2a
∫

+∞

0

p̃(0, t)dt − a2 =
a2

6
.

�1 = a

{
∫ +∞

0
p̃(1, t)dt − a

Var (X)

}
= −

1

2
, �h+1 = a

{
∫ +∞

0
p̃(h + 1, t)dt − a

Var (X)

}
= 0, h ∈ ℕ.

Fig. 6   Probabilities p̃(h, t) for a = 1 , k = 1 and h = 0, 1, 2 (from left to right)
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3.2 � Case k = 2

Proposition 3.4  In the case k = 2 , a > 0 , the probability law of N(t), defined in Eq. (15), is 
given by

and for n ≥ 3

Proof  The proof follows from Proposition 2.5 recalling that Y0 ∼ U(0, 2a).

Remark 3.2  Due to Proposition 3.4, the mode of p(n, t), t ≥ 0 , is given by

The following result thus holds.

Corollary 3.3  Under the assumptions of Proposition 3.4, the probability density function of 
the interarrival times Xi for i ∈ ℤ is given by

p(0, t) =

⎧
⎪⎪⎨⎪⎪⎩

1 −
t

2a

�
1 +

t

4a
−

t2

6a2

�
, 0 ≤ t < a

3a−t

3a

�
1 −

t

2a
⋅

6a−t

4a
⋅

a+t

4a

�
, a ≤ t < 2a

(3a−t)2

6a2
⋅

4a−t

4a
⋅

6a−t

4a
, 2a ≤ t < 3a

0, t ≥ 3a.

p(1, t) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

t(12a2+3at−4t2)

24a3
, 0 ≤ t < a

t(3a−t)(18a2+7at−3t2)

96a4
, a ≤ t < 2a

1

24
−

(4a−t)(5a−t)(5a2−8at+2t2)

48a4
, 2a ≤ t < 3a

(4a−t)2(5a−t)(7a−t)

96a4
, 3a ≤ t < 4a

0, t ≥ 4a.

p(2, t) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t3

12a3
, 0 ≤ t < a

t(−6a3+9a2t+8at2−3t3)

96a4
, a ≤ t < 2a

1

24
−

(t−a)(4a−t)(3a2−5at+t2)

16a4
, 2a ≤ t < 3a

1

24
−

(5a−t)(6a−t)(15a2−12at+2t2)

48a4
, 3a ≤ t < 4a

(5a−t)2(6a−t)(8a−t)

96a4
, 4a ≤ t < 5a

0, t ≥ 5a.

p(n, t) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

((n−5)a−t)((n−3)a−t)((n−2)a−t)2

96a4
, (n − 2)a ≤ t < (n − 1)a

1

24
−

((n−3)a−t)((n−2)a−t)(−3a2+2(an−t)2)

48a4
, (n − 1)a ≤ t < na

1

24
+

((n−1)a−t)((n+2)a−t)[a(−3a+an−t)+(an−t)2]
16a4

, na ≤ t < (n + 1)a

1

24
−

((n+3)a−t)((n+4)a−t)[a(−a+4an−4t)+2(an−t)2]
48a4

, (n + 1)a ≤ t < (n + 2)a

[(n+3)a−t]2[(n+4)a−t][(n+6)a−t]

96a4
, (n + 2)a ≤ t < (n + 3)a

0, t ≥ (n + 3)a.

Mode(p(0, t)) = 0, Mode(p(1, t)) ≈ a 1.4216, Mode(p(n, t)) =
a

2
(2n + 1) for n ≥ 2.
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The next proposition provides the explicit expression of the probabilities p̃(n, t) , defined 
in Eq. (16).

Proposition 3.5  For k = 2 , a > 0 , the probability law of Ne(t) is given by

and for n ≥ 3

fX(t) =

⎧
⎪⎪⎨⎪⎪⎩

(2a−t)(a+t)

4a3
, 0 ≤ t < a

25a3+9a2t−12at2+2t3

48a4
, a ≤ t < 2a

(3a−t)(39a2−18at+2t2)

48a4
, 2a ≤ t < 3a

0, t ≥ 3a.

�p(0, t) =

⎧
⎪⎪⎨⎪⎪⎩

(2a−t)(24a3−12a2t+t3)

48a4
, 0 ≤ t < a

1

240
+

(3a−t)2(53a3−18a2t−4at2+t3)

480a5
, a ≤ t < 2a

(3a−t)2(29a2−11at+t2)

480a5
, 2a ≤ t < 3a

0, t ≥ 3a.

�p(1, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

t

a

�
1 −

t(24a2+4at−3t2)

48a4

�
, 0 ≤ t < a

1

120
+

t

a

�
1 −

t(130a3+10a2t−15at2+2t3)

240a4

�
, a ≤ t < 2a

1

480
+

(t−5a)5

96a5
+

(4a−t)(745a3−492a2t+109at2−8t3)

96a4
, 2a ≤ t < 3a

(4a−t)3(41a2−13at+t2)

480a5
, 3a ≤ t < 4a

0, t ≥ 4a.

�p(2, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t2(12a2+2at−3t2)

48a4
, 0 ≤ t < a

113

240
−

(2a−t)2(29a3+29a2t+3at2−3t3)

240a5
, a ≤ t < 2a

13

240
+

(4a−t)2(3a3−7a2t+6at2−t3)

48a5
, 2a ≤ t < 3a

29

120
−

(3a−t)(7a−t)(49a3−46a2t+12at2−t3)

96a5
, 3a ≤ t < 4a

(5a−t)3(55a2−15at+t2)

480a5
, 4a ≤ t < 5a

0, t ≥ 5a,

�p(n, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1{n= 3}

�
t4

48a4

�
+ 1{n≥4}

�
[t−a(n−3)]3(t2+at(11−2n)+a2n2−11a2n+29a2)

480a5

�
, (n − 3)a ≤ t < (n − 2)a

1{n= 3}

�
2a5−10a3 t2+10a2 t3+5at4−2t5

240a5

�
+ 1{n≥4}

�
11

480
(n − 2)a ≤ t < (n − 1)a

+
(n−2)(−18−25n+31n2−10n3+n4 )

96
−

(32−174n+153n2−48n3+5n4 )t

96a

+
(−87+153n−72n2+10n3)t2

96a2
−

(51−48n+10n2)t3

96a3
+

(5n−12)t4

96a4
−

t5

96a5

�
,

29

120
+

11−15n2+n3+4n4−n5

48
+

n(30−3n−16n2+5n3 )t

48a
(n − 1)a ≤ t < na

−
(15−3n−24n2+10n3 )t2

48a2
+

(−1−16n+10n2)t3

48a3
−

(5n−4)t4

48a4
+

t5

48a5
,

113

240
+

n2 (−15−n+4n2+n3 )

48
−

n(−30−3n+16n2+5n3)t

48a
na ≤ t < (n + 1)a

+
(−15−3n+24n2+10n3 )t2

48a2
−

(−1+16n+10n2)t3

48a3
+

(4+5n)t4

48a4
−

t5

48a5
,

29

120
−

(n+1)(n+5)(−3+10n+6n2+n3 )

96
+

(32+174n+153n2+48n3+5n4)t

96a
(n + 1)a ≤ t < (n + 2)a

−
(87+153n+72n2+10n3)t2

96a2
+

(51+48n+10n2)t3

96a3
−

(5n+12)t4

96a4
+

t5

96a5
,

[a(n+3)−t]3 (t2−at(11+2n)+a2n2+11a2n+29a2 )

480a5
, (n + 2)a ≤ t < (n + 3)a

0, t ≥ (n + 3)a.
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Proof  The result follows from Proposition 3.4, recalling Eq. (17).

The plots of some probabilities of Ne(t) given in Proposition 3.5 are shown in Fig. 7.
Hereafter we show the mean first-passage-time of Ne(t) through n + 1 , which is identical 

to that of case k = 1 for n ≥ 3.

Corollary 3.4  Under the assumptions of Proposition 3.4, from (19) one has

Also in this case, similarly to Proposition 3.3, we are able to provide the variance and 
the autocorrelation coefficients �h of the interarrival times.

Proposition 3.6  For k = 2 , a > 0 , the variance of the interarrival times is given by

and the autocorrelation coefficients (21) are given by

Proof  Due to Eq. 8 of Jagerman and Altiok (2003), and recalling Proposition 3.5, we have

�(T̃1) =
409

576
a, �(T̃2) =

443

288
a, �(T̃3) =

1441

576
a, �(T̃n+ 1) =

a

2
(2n + 1), n ≥ 3.

Var(X) =
121

288
a2,

�1 = −
9

22
, �2 = −

21

242
, �3 = −

1

242
, �h = 0, h ≥ 4.

Var(X) = 2a
∫

+∞

0

p̃(0, t) dt − a2 =
121

288
a2.

Fig. 7   Probabilities p̃(n, t) for a = 1 , k = 2 and n = 0, 1, 2, 3
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The expression of the autocorrelation coefficients �i , i = 1, 2, 3 , follows from Eq. (9) of 
Jagerman and Altiok (2003) and noting that

Moreover, for h ≥ 4 , one has

so that

Remark 3.3  Note that for both cases k = 1 and k = 2 , we have that 
∑+∞

h=0
�h = −

1

2
 , accord-

ing to a well-known result concerning the stationary time series, cf. Hassani (2009).

4 � Application to the SHIP/M/∞ Queue

This section provides an application of the previous results, in which we assume that the 
counting process N(t) introduced in Section 2 is the arrival process of a suitable queue-
ing system having an infinite number of servers. Furthermore, we assume that the ser-
vice times are independent and identically distributed, having exponential distribution 
with parameter 𝜇 > 0 . Henceforth, the resulting system is named SHIP/M/∞ queue. The 
assumption of an infinite number of servers is suitable to approximate a real situation 
in which the port facilities are wide enough to ensure the service even for a large num-
ber of arriving vessels. Clearly, in this setting a more realistic model should include a 
finite number of servers rather than an infinite one. Hence, the following analysis of the 
SHIP/M/∞ queue can be viewed as a first step toward the investigation of the bulk port 
queueing mechanism.

Hereafter, we purpose to study the number Qn of customers at the port seen by the 
arrival of the n-th customer. The main result is based on Eq. (2.1) of Brandt (1987) that, 
upon a correction, reads

where Sn−i denotes the service time of the (n − i)-th customer. The expected value of Qn is 
obtained in the following proposition. It is worth mentioning that �(Qn) does not depend 
on n, since by assumption the interarrival times Xi are stationary and the service times Sj 
are i.i.d.

Proposition 4.1  In the case of the SHIP/M/∞ queue, for k ∈ ℕ and 𝜇 > 0 , the expected 
number of customers at the port seen by the arrival of the n-th customer is

∫

+∞

0

p̃(1, t) dt =
53

64
a,

∫

+∞

0

p̃(2, t) dt =
185

192
a,

∫

+∞

0

p̃(3, t) dt =
575

576
a.

∫

+∞

0

p̃(h, t) dt = a,

�h = a

{
∫ +∞

0
p̃(h, t) dt − a

Var(X)

}
= 0.

(22)Qn =

∞∑
i= 1

1

(
n− 1∑

j= n− i

Xj < Sn−i

)
, n ∈ ℕ,
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Proof  Due to Eq. (22), one has

Hence, recalling that 
{
Xi

}
 is a stationary sequence and that Sn , n ∈ ℤ , is a sequence of 

independent random variables exponentially distributed with parameter � , we have

so that the thesis follows from Eq. (11).

Note that the mean number of customers at the port seen by the arrival of a customer 
depends on parameters � and a only through their product. Moreover, �(Qn) is decreas-
ing in �a , it tends to 0 (+∞) as �a increases ( �a tends to 0). Furthermore, �(Qn) is 
increasing in k ∈ ℕ and it tends to 1∕(�a) as k → ∞.

The knowledge of �(Qn) allows to determine the parameters such that the expected 
number of customers equals a given value, say q. Indeed, thanks to (23) we are able 
to find numerically the solutions of the equation �(Qn) = q , for q > 0 . Fig. 8 shows an 
example of the solution in terms of �a . We can see that the solution is decreasing in q 
and is increasing in k. This means that a small number of customers is expected when k 
is small and �a is large, i.e. when the mean service time is small and when there are rare 
overlaps in the vessels arrival.

(23)𝔼(Qn) =
1 − e−�ak + �ak(k − 1)

(�ak)2
, n ∈ ℕ.

𝔼(Qn) =

∞∑
i= 1

ℙ

(
n− 1∑

j= n− i

Xj < Sn− i

)
.

𝔼(Qn) =

∞∑
i= 1

ℙ

(
i∑

j= 1

Xj < Sn− i

)
=

∞∑
i= 1

�

+∞

0

𝜇e−𝜇tℙ(N(t) ≥ i)dt =
�

+∞

0

𝜇e−𝜇t𝔼[N(t)]dt,

Fig. 8   Values of �a such that �(Qn) = q , for 0.1 < q < 10 , for k = 1 (solid curve) and k = 10 (dashed curve)
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In the following proposition we provide the expression of an upper and a lower bound 
for the probability of empty queue.

Proposition 4.2  In the case of the SHIP/M/∞ queue, for k ∈ ℕ and 𝜇 > 0 , the probability 
of empty queue satisfies

where �1 is given in terms of (23) and the expression of �2 is provided in Appendix C, for brevity.

Proof  The thesis follows from Eq. (22).

Remark 4.1  From Proposition 4.2 we have

this suggesting that, for large a and � , one has ℙ(Qn = 0) ≈ 1.

Proposition 4.3  In the case of the SHIP/M/∞ queue, for k = 1 and 𝜇 > 0 , one has

and, for k = 2,

where g(a,�) =
[
4a� e

3a�(4a3�3 − 2a
2�2 − a� + 2) − e

2a�(a� + 2)2 + 2e
a�(a� − 2)2 − (a� − 2)2

].

Proof  The thesis is a consequence of Proposition 4.2.

In Fig. 9, we provide some plots of the bounds �1(k, a,�) and �2(k, a,�) for different 
choices of the parameters by considering the expressions obtained in Propositions 4.2 and 
4.3. From the picture one can note that the bounds approach 1 more slowly as k increases.

(24)

�1(k, a,�) ∶= max{0, 1 − 𝔼(Qn)} ≤ ℙ(Qn = 0) ≤
�

+∞

0

ℙ(N(t) = 0)�e−�tdt ∶= �2(k, a,�)

lim
a→+∞

�1(k, a,�) = lim
a→+∞

�2(k, a,�) = 1, lim
�→+∞

�1(k, a,�) = lim
�→+∞

�2(k, a,�) = 1,

max

{
0, 1 −

1 − e−a�

(a�)2

}
≤ ℙ(Qn = 0) ≤ 1 −

(1 − e−a�)2

(a�)2
,

max

{
0, 1 −

1 − e−2a� + 2a�

(2a�)2

}
≤ ℙ(Qn = 0) ≤

e−3a� g(a,�)

(2a�)4
.

Fig. 9   �
1
(k, a,�) (dashed line) and �

2
(k, a,�) (solid line) for a = 1 with k = 1 (left-hand side), k = 2 

(center) and k = 3 (right-hand side)
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5 � Concluding Remarks

In this paper we have studied the model of port dynamics proposed in Jagerman and Altiok 
(2003), in which it is assumed that each vessel has a scheduled arrival time but there is also a 
constant lay period during which, in a uniform way, it can arrive at the port. In particular, we 
have considered the counting process N(t), which represents the number of scheduled vessels 
arriving during the time interval (0,  t], t > 0 , and we have obtained the explicit expression 
of its probability generating function. The latter allowed us to get the probability distribution 
of N(t) and also its expected value. Differently from other papers in which approximations 
or simulation techniques are used, we have been able to disclose explicit analytical results. 
Starting from the probability law of N(t), standard computations have allowed us to obtain the 
probability law of the stationary counting process related to N(t), and also various results con-
cerning the autocorrelations of the random variables {Xi} , i ∈ ℤ , giving the actual interarrival 
time between the (i − 1)-th and the i-th vessel arrival.

The final part of the paper has been dedicated to the queueing system characterized by 
stationary interarrival times {Xi} , exponential service time and infinite number of servers. The 
latter assumption is a suitable formal approximation of a real situation in which the port facili-
ties are wide enough to ensure the service even for a large number of arriving vessels. Some 
results on the average number of customers at the port and on the probability of an empty 
queue have been disclosed.

The given results can be further exploited for the analysis both of the more general case 
when the lay period � is a real number (not necessarily a multiple of the parameter a) and of a 
more realistic SHIP/M/N queue. This will be the object of a future investigation.

Appendix

A. Conditional Distribution of N(t)

In this appendix we provide the explicit expressions of the conditional probabilities of N(t) 
under different scenarios.

A.1 Expression of P1(h, t, n, a, y0)

Let us assume (n − 1)a < y0 < na , for n = 1,… , k and 0 ≤ t < ka − y0 . Denoting by 
s = ⌊(t + y0)∕a⌋ + 1 , we have 

	 (i)	 if 1 ≤ h ≤ n − s + k − 1 , 

P
1
(h, t, n, a, y

0
) =

(−1)s− n

k2s− 2n

Γ

(
1 + k − n +

y0

a

)

Γ

(
1 + k − s +

y0

a

)
Γ

(
1 − k − n +

t+y0

a

)

Γ

(
1 − k − s +

t+y0

a

)
(
1 −

t

ka

)k+ n− s− 1

×

(
t

ka − t

)h
(
n− s+ k− 1

h

)
2
F
1

(
−h,−2s + 2n, k + n − s − h, 1 −

ka

t

)

+
(−1)s−n

k2s− 2n

(
1 −

t

ka

)k+ n− s− 1
h∑

m= 1

�m(t)

×

(
t

ka − t

)h−m

(
n − s + k − 1

h − m

)
2
F
1

(
−h + m,−2s + 2n, k + n − s − h + m, 1 −

ka

t

)
,
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	 (ii)	 if h = n − s + k

	 (iii)	 if n − s + k + 1 ≤ h ≤ s − n + k − 1

	 (iv)	 if h ≥ s − n + k

P
1
(h, t, n, a, y

0
) = (−1)s− n+ 1

Γ

(
1 + k − n +

y
0

a

)

Γ

(
1 + k − s +

y
0

a

) ⋅

Γ

(
1 − k − n +

t+y
0

a

)

Γ

(
1 − k − s +

t+y
0

a

) ⋅

(2s − 2n)

k2s− 2n

×

(
1 −

t

ka

)k+ n− s− 1 ( t

ka − t

)n− s+ k− 1

2
F
1

(
2n − 2s + 1, 1 − k − n + s, 2, 1 −

ka

t

)

+
(−1)s−n

k2s− 2n

(
1 −

t

ka

)k+ n− s− 1
n− s+ k∑
m= 1

�m(t)

×

(
t

ka − t

)n− s+ k−m

(
n − s + k − 1

n − s + k − m

)
2
F
1

(
−n + s − k + m,−2s + 2n,m, 1 −

ka

t

)
,

P1(h, t, n, a, y0) =

Γ

(
1 + k − n +

y0

a

)

Γ

(
1 + k − s +

y0

a

)
Γ

(
1 − k − n +

t+y0

a

)

Γ

(
1 − k − s +

t+y0

a

) (−1)h− k+ 1

k2s− 2n

×

(
1 −

t

ka

)k+ n− s− 1 ( t

ka − t

)k+ n− s− 1
(

2s − 2n

h − k − n + s + 1

)

× 2F1

(
h + 1 + n − k − s, 1 − k − n + s, 2 + h − k − n + s, 1 −
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t

)
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k2s− 2n

(
1 −

t

ka

)k+ n− s− 1
h∑

m=max{1,h−(n− s+ k− 1)}

�m(t)
(

t

ka − t

)h−m

×

(
n − s + k − 1

h − m

)
2F1

(
−h + m,−2s + 2n, k + n − s − h + m, 1 −
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t

)

+
(−1)s− n

k2s− 2n

(
1 −

t
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�m(t)
(

t
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)h−m

×

(
1 −
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t
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(
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)

× 2F1

(
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t

)
,

P1(h, t, n, a, y0) =
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(
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t
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h∑
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(

t
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)h−m

×
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×
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,
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where

is the Gauss hypergeometric function and we have set

with

for S(j, r) denoting the Stirling number of the first kind.

Proof  Due to Eq. (52.2.1) of Hansen (1975), we have
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With a similar reasoning, it can be shown that

Hence, due to Eqs. (29) and (30), we have

where �m(t) has been defined in Eq. (26). Moreover, we have

where

Finally, recalling Eqs. (31) and (32), the proof follows from Theorem  2.1 after 
some calculations.

A.2 Expression of P2(h, t, n, a, y0)

For (n − 1)a < y0 < na , with n = 1,… , k , and ka − y0 ≤ t < (k + n − 1)a − y0 , with 
s = ⌊(t + y0)∕a⌋ + 1 , recalling Eq. (33) we have 
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	 (ii)	 if h ≥ k − n + s

where we set

with

and where �qm(k;w1;w2) is defined in Eq. (27).

Proof  The proof proceeds similarly as for P1(h, t, n, a, y0) and so is omitted.

A.3 Expression of P3(h, t, n, a, y0)

Let us assume (n − 1)a < y0 < na (with n = 1,… , k ), t ≥ (k + n − 1)a − y0 and denote by 
s = ⌊(t + y0)∕a⌋ + 1 . Recalling Eqs. (27) and (34), it is 
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	 (iii)	 if h ≥ s + k − n

where

with � jm(k;w1;w2) and �i
m

(
l1; l2;w1;w2

)
 defined in Eqs. (27) and (34), respectively.

The proof proceeds similarly as for P1(h, t, n, a, y0) and so is omitted.

B. Conditional Probabilities of N(t)

In this appendix we provide the explicit expressions of the conditional probabilities of N(t) in 
the case k = 2.

B.1 Expression of N1(h, t, a, y0)

Let us assume k = 2 , a > 0 and y0 ∈ (0, a) . For h ≥ 2 we have
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B.2 Expression of N2(h, t, a, y0)

Let us assume k = 2 , a > 0 and y0 ∈ (a, 2a) . For h ≥ 2 it is

C. Upper Bound for the Probability of Empty Queue

In this appendix we give the explicit expression of the upper bound �2(k, a,�) for the probabil-
ity of empty queue, defined in Eq. (24). To this aim, we need the following preliminary result.

Lemma C.1  Recalling Eq. (7), we have

where

is the confluent hypergeometric function.

Proof  The proof follows from Theorem 2.1 noting that

and recalling the definition of Pochhammer symbol, the second relationship of Section I.4.6 
of Prudnikov et al. (1986) and the expansion 24.1.3 of Abramowitz and Stegun (1992).
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The expression of �2(k, a,�) is provided in the following proposition.

Proposition C.1  For all k ∈ ℕ , a,𝜇 > 0 we have

where �(s, ⋅) denotes the lower incomplete gamma function, S(n, k) are the Stirling number 
of the first kind, and 1F1 is defined in (35). Moreover, we have set
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where Γ(s, ⋅) is the upper incomplete gamma function. Moreover, the following limits hold

Proof  The proof follows from Proposition C.1, by taking into account the expansion 24.1.3 
of Abramowitz and Stegun (1992) and recalling that Y0 ∼ U(0, ka).
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