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Objective: To evaluate vestibular compensation via measurement of the vestibulo-ocular 

re�ex (VOR) following vestibular schwannoma surgery and its relationship with changes 

in saccades strategy after surgery.

Patients: Thirty-six consecutive patients with vestibular schwannomas, without brain-

stem compression, underwent surgical resection. Patients were recruited from University 

Hospital of Salamanca, Spain.

Methods: We assessed the age, sex, tumor size, degree of canalicular weakness, and 

preoperative video head impulse test (gain and saccade organization measured with 

PR score). Gain and saccade organization were compared with postoperative values 

at discharge and also at 1, 3, and 6 months. PR scores are a measure of the scatter of 

re�xation saccades.

Results: Patients with normal preoperative caloric function had higher PR scores 

(saccades were scattered) following surgery compared to patients with signi�cant pre-

operative canal paresis (p < 0.05). VOR gain and the presence of covert/overt saccades 

preoperatively did not in�uence the PR score (p > 0.05), but a group of patients with very 

low VOR gain (<0.45) and covert/overt saccades before surgery had lower PR scores 

after surgery. The differences after 6 months were not signi�cant.

Conclusion: Patients with more severe vestibular dysfunction before vestibular schwan-

noma surgery show signi�cantly faster vestibular compensation following surgery, man-

ifested by changes in VOR gain and PR score. The scatter of compensatory saccades 

(as measured by the PR score) may be a surrogate early marker of clinical recovery, given 

its relationship to the Dizziness Handicap Inventory.

Keywords: vestibular compensation, covert saccade, overt saccade, video head impulse test, PR score, vestibular 

schwannoma, caloric
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INTRODUCTION

�e head impulse test (HIT) was �rst described by Halmagyi 
and Curthoys in 1988 as a test of the vestibulo-ocular re�ex 
(VOR) (1) and has become an established bedside assessment 
in the evaluation of the dizzy patient. It consists of providing a 
fast horizontal head thrusts while asking the subject to maintain 
gaze on a central target. Horizontal canal receptors ipsilateral 
to the direction of head movement are preferentially stimulated 
resulting in a re�exive eye movement with a low latency, similar 
velocity, and contrary direction to the head movement. In the 
presence of a peripheral vestibular de�cit, the eyes move with 
the head and a “catch-up” saccade is required to bring gaze back 
toward the �xation target (2). �e HIT is based on the detection 
of these “catch up” or re�xation saccades.

�e advent of the video HIT allowed online simultaneous 
recording of eye and head movements, facilitating measurement 
of the VOR gain (eye:head velocity) and identi�cation of overt 
(occurring once the head movement is �nished) (3) and covert 
(occurring while the head is still moving) (4, 5). In addition, the 
video HIT had allowed better qualitative and quantitative char-
acterization of re�xation saccades. �e video HIT has a greater 
sensitivity and larger positive predictive value for vestibular 
dysfunction than the clinical HIT (6).

�e taxonomy of re�xation saccades captured during the video 
HIT is based on their latency relative to the onset of the head 
movement; each saccade can be analyzed individually and clas-
si�ed as either “overt” or “covert.” Another way to classify re�xa-
tion saccades is based on the degree of synchrony of sequential 
re�xation saccades. Using this method, saccades can be divided 
into two groups yielding either isochronic impulses (�nal look 
of the response is gathered) or asynchronic impulses (�nal look 
is scattered) (7). Interestingly, when the organization patterns of 
re�xation saccades are considered, the scattered response cor-
relates well with an uncompensated vestibular de�cit in patients 
a�er surgery for a vestibular schwannoma and the gathered with 
a better clinical compensation (8).

Vestibular schwannoma is a slowly and irregularly growing 
benign tumor that induces a progressive vestibular function 
reduction. �e main symptoms at diagnosis are hearing loss, 
imbalance, and tinnitus (9). �e slow progressive reduction of 
vestibular function allows the gradual implementation of central 
adaptive mechanisms (vestibular compensation), which mini-
mize vestibular schwannoma-related symptoms and in�uence 
vestibular examination (5, 10, 11–13).

A�er surgery for the de�nite and complete exeresis of the 
tumor, compensation has to proceed again and di�erent mecha-
nisms are involved, although the commissural network is one 
of the preferential sites to occur between the normal and dam-
aged sides (14) and visual compensation will also contribute to 
vestibular compensation. In the initial postoperative phase, an 
intense vertigo as a manifestation of the acute modi�cation in 
vestibular function is experienced in 23–49 to 66–78% of patients, 
leading to disequilibrium while central compensation begins to 
take place (15). �is is paralleled by the reduction of spontaneous 
nystagmus intensity. Re�xation saccades in the vHIT also cause 
temporal modi�cations and result in a shi� from a combination 

of covert and overt saccades to mainly covert ones (16); this is 
mirrored in the observed change from scattered to gathered 
saccades.

Previous studies have shown the in�uence of vestibular 
damage before vestibular schwannoma surgery in vestibular 
compensation, showing that a severe vestibular de�cit before 
surgery achieves a faster recovery of patients (17). �is faster 
compensation has been measured with di�erent objective tests 
such as subjective visual vertical or computerized dynamic pos-
turography and semiquantitative measures such as the Dizziness 
Handicap Inventory (18).

We have previously studied long-term (>1  year) video HIT 
outcomes in a group of patients who underwent vestibular 
schwannoma surgery (8); the majority of patients had a “stabi-
lized” video HIT morphology, with a gathered pattern of re�xa-
tion saccades. A small group of patients had a scattered pattern 
in the re�xation saccades. With the term “stabilization,” we mean 
the way (in the �rst and medium terms) to get the de�nite sac-
cadic strategy to replace the absent VOR. A greater degree of 
scatter correlated with worse clinical outcomes (as measured with 
Dizziness Handicap Inventory).

�e aim of the present study was to evaluate the short- and 
medium-term VOR characteristics and re�xation saccade 
changes in patients undergoing vestibular schwannoma surgery.

PATIENTS AND METHODS

Subjects
�irty-six patients were diagnosed with a unilateral vestibular 
schwannoma who were prospectively scheduled for surgery 
between November 2011 and December 2015. All patients were 
subjected to retrolabyrinthine or translabyrinthine vestibular 
schwannoma surgery and were reviewed at 1, 3, and 6 months 
postoperatively.

Age, sex, tumor side, tumor size according to Koos’s clas-
si�cation (19), canal paresis, and video HIT �ndings were 
recorded. None of the patients underwent vestibular reha-
bilitation a�er surgery during the follow-up period. Written 
informed consent was obtained for all patients. Because of 
no new or exceptional interventions, local ethical committee 
approval was not needed.

�e study was performed in accordance with the ethical guide-
lines of the 1975 Declaration of Helsinki. Patients with brainstem 
compression or other conditions that could a�ect postural control 
were excluded.

Methods
VOR Assessment

�e VOR was evaluated with the HIT. �e physician stands 
behind the patient and grasps his or her head �rmly with 
both hands. �e patient is asked to keep looking at a station-
ary object on the wall that is at a distance of 90–100 cm. �e 
head is quickly and unpredictably turned through 10–20° 
in the horizontal plane either to the le� or the right, which 
permits testing of the corresponding horizontal semicircular 
canal. In order to register and measure head and eye velocity 
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TABLE 1 | Automated saccade analysis and PR score algorithm.

Saccade 

recognition 

sequence

PR score algorithm

Step 1 Low pass �lter of 

the head and eye 

graphs

Pattern classi�cation logic condition

If coef�cient of variation of eye peak >12 for �rst 

saccades group or coef�cient of variation >35 

for second saccades group, result is scattered

Step 2 Relative max values 

recognition, using 

conditions

Group PR score

Minimum velocity: 

65°/s

Coef�cient of variation of peaks in each group

Minimum distance 

between peaks 

in eye graph: 15 

samples

The group is determined by the order of 

appearance of saccades

Minimum distance 

with head velocity 

peak: 10 samples

Step 3 Outlier detection, 

only the two 

�rst peak values 

with +20 or −15 

difference from 

mean of peaks 

was unmarked as 

saccades

Global PR score calculation

2.5 × (0.8 × CV1 + 0.2 × CV2), where CV1 

is coef�cient of variation of �rst registered 

saccades and CV2 is coef�cient of variation of 

second registered saccades

Global PR score corrections

If score is >100, the value is reset to 100

If score is >35, the value is adjusted with 

the number of peaks detected: if only a few 

impulses have peaks over 35, these impulses 

have a low impact on the PR SCORE

Main steps in saccade recognition sequence and the PR score algorithm. For time 

samples, a frame rate of 250 frames per second is assumed.
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during the head impulse, we have used a video HIT system 
(vHIT, GN Otometrics, Denmark). �e patient wears a pair of 
lightweight, tight-�tting goggles on which is mounted a small 
video camera and a half-silvered mirror that re�ects the image 
of the patient’s right eye into the camera. �e eye is illuminated 
by a low-level infrared light-emitting diode. A small sensor on 
the goggles measures the head movement. �e whole goggle 
system weighs about 60  g and is secured tightly to the head 
to minimize goggle slippage. Calibration is performed and the 
procedure of vestibulo-ocular testing is initiated. �e speed 
of head movement is measured by the sensor in the goggles, 
and the image of the eye is captured by the high-speed camera 
(250 Hz) and processed to yield eye velocity. At the end of each 
head turn, the head velocity stimulus and eye velocity response 
are displayed simultaneously on the screen so that the clinician 
can see how good the stimulus and response were, thereby pro-
viding a quick way to maximize the quality of the head impulse. 
Twenty impulses were delivered randomly in each direction. 
We evaluated the VOR mean gain (ratio of eye velocity to head 
velocity for every head rotation) and the appearance of saccades 
a�er head impulses to the right and le� sides. �e amplitude 
of the head rotation was 18–20°, and the peak head velocity 
of the impulse varied between 150 and 240°/s with a resultant 
acceleration of between 4500 and 7500°/s2.

HITCAL and PR Score

Vestibulo-ocular re�ex data were post processed using HITCal, 
a so�ware tool designed to explore and analyze vHIT default 
output. Original results were exported from vHIT’s manufac-
turer so�ware in eXtensible Markup Language format. We used 
HITCal to explore and obtain main variables from the records 
of each patient’s test: mean gain, mean head amplitude, mean 
peak of head velocity, and mean peak of head acceleration. We 
also used HITCal to obtain a PR score for each test—a parameter 
developed to measure the aggrupation of the saccadic responses 
appearance in the time domain. To obtain the PR score, HITCal 
uses a proprietary algorithm that is summarized in Table 1; �rst 
step in this algorithm is to detect the saccadic responses for each 
eye response; in the �rst step, the detected saccades are not clas-
si�ed using the covert/overt paradigm. In the PR score algorithm, 
saccadic eye responses are classi�ed attending to the order of 
appearance a�er the positive peak of velocity in head impulse. 
With the detected saccadic responses, the algorithm computes 
the PR score for each group of appearance. �e PR score is based 
on the coe�cient of variation of the (time) moment of appear-
ance of the peak eye velocity in the saccadic response computing 
all the eye responses present in all the impulses recorded in the 
same test. In the second step, the PR scores obtained for the �rst 
and second appearance groups are computed as main parameters 
of an arithmetic average. Finally, to get the global PR score, this 
value is multiplied by a scale factor to �t it in the numeric inter-
val of 0–100. For each vHIT test, a low PR score result (near 0) 
means maximum gathered, high-grouped responses. A high PR 
score result (near 100) means maximum scattered, poor grouped 
responses. HITCal so�ware development process and source 
code, and PR score algorithm and methodology have been previ-
ously published by our research group (7) (Figure 1; Table 1).

Groups
Patients were classi�ed into three groups according to the 
preoperative degree of canal paresis: Group A are patients with 
a normal caloric test, Group B are patients with a partial canal 
paresis from 26 to 70%, and Group C are patients with severe 
canal paresis (more than 71%).

Patients were also classi�ed according to video HIT gain 
parameters: Group A with normal gain (≥0.80) and Group B 
with abnormal gain (≤0.80). In order to distinguish between 
patients with a mild grade of vestibular damage and patients with 
a severe vestibular de�cit, a secondary arbitrary division was 
performed among Group B patients, according to whether the 
gain was between 0.46 and 0.79 (“low gain”) or below 0.46 (“very 
low gain”).

Finally, patients were divided in terms of the preoperative 
presence of overt or covert saccades: “no saccades,” “only overt 
saccades,” “only covert saccades,” and “covert and overt saccades.”

Statistical Analysis
All data were stored in an Excel �le and analyzed using SPSS 21.0. 
Non-parametric tests were preferred to assess statistic signi�cance 
of the di�erences found between quantitative variables due to 
sample size and Kolmogorov–Smirnov test’s results. Quantitative 
PR score values were compared before and a�er the operative 
procedures (Wilcoxon test) to assess correlation (ρ Spearman).
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FIGURE 1 | Two real data cases are plotted to illustrate the PR score signi�cance. In the �rst (left) plot, the saccadic eye responses appear mainly on a 

narrow interval of time; in this gathered plot, the computed PR score has a low value (PR score = 8). In the second (right plot), the saccadic eye responses appear 

on a wide interval of time; even in some cases, the �rst responses appear after the second responses registered on other impulses; in this scattered plot, the 

computed PR score is much higher (PR score = 68). “X” mark is for the �rst group of detected saccades, “*” mark is for the second detected group, and “+” mark is 

for the third detected group. Y axis is head and eye velocity in degree per second, and X axis is the time domain measured in samples (at an approximated sampling 

frequency of 250 frames per second). Both plots and PR score measurements were obtained using the open source software HITCal 4.0 (www.mlibra.com).
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RESULTS

Patients
From November 2011 to December 2015, 36 patients (21 females) 
were included in the study. Mean age for the total population was 
52 ± 14 years. �e a�ected side was the right in 20 patients and 
the le� in 16 patients. �ere were no group di�erences for age, 
gender, or the a�ected side.

According to the tumor size, there were 4 grade I patients, 11 
grade II patients, 17 grade III patients, and 4 grade IV patients. 
Surgical approaches were retrosigmoidal and translabyrinthine 
in 27 and 8 patients, respectively. Mean values of PR are shown 
in Table 2.

Caloric Test and PR Score
We studied the in�uence of the preoperative caloric test function 
upon postoperative video HIT results (Figure 2A). Mean canal 
paresis for all patients involved in the study was 46 ± 42% (in the 
lesion side in all the patients). According to the criteria elicited 
in the material and methods section, 9 patients were included 
in Group A (0–20% canal paresis), 18 patients were included in 
Group B (21–70% canal paresis), and 9 patients were included in 
Group C (71–100% canal paresis).

Mean PR score for the population before surgery was 6.8. 
We found that greater preoperative canal paresis was associated 
with higher PR scores. �us, the group with a normal caloric test 
before surgery (Group A) showed a PR score of 1.2. �e group 
with a mild vestibular de�cit (Group B) presented a mean PR 
score of 5.6, and the PR score before surgery in the group with 
a severe canal paresis was 13.2; di�erences between groups were 
statistically signi�cant (p = 0.002).

�e inverse relationship was observed postoperatively. �us, 
immediately post-surgery, PR values were higher in the group 

with a normal caloric test before surgery (30.5; Group A) and 
compared to a PR value of 35.4 for the group with a mild canal 
paresis before surgery (Group B). Equally, PR score immediately 
a�er surgery in the group with a severe canal paresis before 
surgery (Group C) was 20.5, lower than Group B and Group A. 
Di�erences were signi�cant between three groups in the �rst 
postoperative assessment (p = 0.005). In the follow-up (1 month 
a�er surgery, 3 months a�er surgery, and 6 months a�er surgery), 
PR values were reduced in the three groups but retained their 
group relationship such that they were always higher in Group A 
than Group B and Group C. However, di�erences were signi�cant 
only at Post 1 (p = 0.005), Post 2 (p = 0.017), and Post 3 (p = 0.038) 
follow-up but not a�er Post 4, that is, 6 months a�er surgery, in 
which PR values were similar for the three groups.

VOR Gain and PR Score
Mean VOR gain before surgery was 0.71 ± 0.26 for all patients in 
the a�ected side and 0.90 (0.90 ± 0.12) in the non-a�ected side.

Gain before surgery was considered normal (≥0.80) in 22 
patients (Group normal) and abnormal (<0.80) in 14 patients 
(Group abnormal). Mean PR score in the group with normal gain 
before surgery was 0.6 (±0.3), and mean PR score in the group 
with abnormal gain before surgery was 8.2 (±1.4).

A�er surgery, mean gain for all patients was 0.31 (±0.08) in the 
operated side and 0.73 (±0.06) in the normal side.

No signi�cant di�erences were observed in the PR score before 
and a�er surgery (at discharge, 1, 3, and 6  months) for either 
group (normal and abnormal gain before surgery) (p  >  0.05) 
(Figure 2B).

Given such a large range of “abnormal VOR gain” (0.79–0.21), 
we created an arbitrary threshold (0.46) to separate patients 
with abnormal gain and a severe de�cit (very low gain) from 
those with a mild de�cit (low gain) (Figure 2C). �us, PR score 
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TABLE 2 | Mean PR values and SDs in the patient’s follow-up according 

to the different variables.

Mean PR values

Caloric test Normal Moderate canal 

paresis

Severe canal 

paresis

Pre 1.2 ± 0.6 5.6 ± 2.3 13.2 ± 4.5

Post 1 35.4 ± 7.2 30.5 ± 6.7 20.5 ± 5.6

Post 2 29.6 ± 6.1 22.9 ± 5.7 16.7 ± 5.1

Post 3 25.3 ± 4.9 18.4 ± 4.2 14.6 ± 4.3

Post 4 17.1 ± 4.1 15.6 ± 3.8 13.3 ± 3.6

Gain Normal Low gain

Pre 0.6 ± 0.4 8.2 ± 3.4

Post 1 36.6 ± 7.7 32.9 ± 8.7

Post 2 28.7 ± 6.2 25.4 ± 7.0

Post 3 24.2 ± 4.8 19.4 ± 6.1

Post 4 18.3 ± 3.9 17.6 ± 5.6

Gain Normal Low gain Very low gain

Pre 0.6 ± 0.4 6.2 ± 2.8 16.4 ± 4.1

Post 1 36.6 ± 7.7 34.1 ± 9.1 25.3 ± 5.4

Post 2 28.7 ± 6.2 27.2 ± 7.8 20.1 ± 4.2

Post 3 24.2 ± 4.8 21.5 ± 5.6 18.4 ± 4.0

Post 4 18.3 ± 3.9 17.6 ± 5.1 14.3 ± 4.1

Covert saccades Yes No

Pre 5.4 ± 2.3 0

Post 1 36.2 ± 9.1 37.5 ± 8.3

Post 2 26.6 ± 7.6 27.6 ± 7.3

Post 3 21.8 ± 5.8 22.7 ± 5.1

Post 4 15.7 ± 4.1 16.5 ± 4.2

Overt saccades Yes No

Pre 7.8 ± 3.4 0

Post 1 32.6 ± 8.1 37.5 ± 8.3

Post 2 24.5 ± 6.9 27.6 ± 7.3

Post 3 19.7 ± 5.3 22.7 ± 5.1

Post 4 15.3 ± 3.7 16.5 ± 4.2

Covert and overt 

saccades

Yes No

Pre 16.8 ± 5.2 0

Post 1 27.1 ± 7.7 37.5 ± 8.3

Post 2 20.9 ± 5.5 27.6 ± 7.3

Post 3 18.3 ± 3.8 22.7 ± 5.1

Post 4 14.3 ± 3.2 16.5 ± 4.2

5

Batuecas-Caletrio et al. VOR and Vestibular Schwannoma

Frontiers in Neurology | www.frontiersin.org January 2017 | Volume 8 | Article 15

was higher before surgery in the group with “very low gain” 
(p = 0.009) and lower a�er surgery (p = 0.002 in Post 1, p = 0.017 
in Post 2, and p = 0.035 in Post 3) than the groups with low gain 
or normal gain.

Saccades and PR Score
�e PR score was compared between patients with “no saccades” 
before surgery and those with “covert and overt” saccades before 
surgery (Figure 2D). Signi�cant di�erences were observed in the 
pre-surgical evaluation (p = 0.012); these results were expected as 
from the de�nition of PR calculation. During follow-up, patients 
with re�xation saccades before surgery had a signi�cantly lower 
PR score at 1 week (p = 0.001), 1 month (p = 0.012), and 3 months 
(p = 0.02).

However, if the PR score is compared between patients show-
ing isolated covert saccades before surgery (11 patients) with 
patients showing any saccade before surgery, no di�erences were 
obtained. �e same situation was observed for patients showing 
isolated overt saccades (eight patients) (in both cases p > 0.05).

DISCUSSION

In our work, we were interested in the modi�cation of the PR 
score a�er a de�nite vestibular loss in which a restoration of the 
VOR gain was not expected. �is PR score re�ects the amount 
of organization of re�xation saccades across sequential head 
impulses and, indirectly, the level of vestibular disability of the 
patients as measured by the Dizziness Handicap Inventory (8). 
Saccadic reorganization is thus a useful marker of vestibular com-
pensation following a complete unilateral vestibular ablation (18, 
20). Although all patients su�er from dizziness a�er a vestibular 
schwannoma surgery, the manifestation of individual symptoms 
and therefore compensatory mechanisms is variable, despite a 
homogenous clinical syndrome (vestibular nerve transection). 
Our aim was to better understand these individual di�erences.

Our key �nding is that patients with more severe vestibular 
dysfunction before schwannoma surgery show signi�cantly 
faster vestibular compensation following surgery, manifested by 
changes in VOR gain and PR score. From a clinical perspective, 
a lower VOR gain and low PR score are more likely to cause 
oscillopsia during head movements, impacting negatively on the 
ability to carry out daily activities (21). One hypothesis is that 
patients with more severe preoperative canal paresis are more 
likely to induce central compensation (22) and thus recover 
more quickly post operatively (higher PR score). Second, we 
found a �oor e�ect for PR scores over time; thus, regardless of 
preoperative canal dysfunction, there was a minimum PR score 
with associated re�xation saccades that did not fully normalize. 
From a clinical perspective, such a PR score could be regarded as 
a target “recovery” value; it will be interesting to know in future 
works if this is the baseline for these patients, which represents 
eventually a good clinically compensated status. An elevated PR 
score (meaning heterochrony in re�xation saccades between 
impulses) in the late postoperative phase would be an indicative 
of impaired vestibular adaptation, which is the necessary �rst step 
to compensation.

Vestibular compensation is an active process that in part 
impacts functionally upon the e�ectiveness of the VOR to 
stabilize gaze. When there is a chance of vestibular restoration 
a�er an acute vestibular failure (vestibular neuritis), both gain 
changes and saccade changes could in�uence the VOR contribu-
tion to vestibular compensation. But when vestibular failure is 
complete, this contribution can only be held by the changes in 
the saccades’ ability to compensate for the de�cit of the VOR. �e 
recovery of balance a�er vestibular schwannoma surgery is a slow 
process that begins early in the immediate postoperative phase 
and continues progressively but appears to be maximal during 
the �rst 3 months (23, 24).

When a vestibular loss is complete, visual cues both from 
peripheral and central vision are critical to improve the VOR (25). 
Indeed, in order to improve visual stabilization in relation to head 
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FIGURE 2 | (A) Mean PR score according to canal paresis before surgery and during follow-up. Group A are patients with a normal caloric test, Group B are 

patients with a partial canal paresis from 26 to 70%, and Group C are patients with a severe canal paresis (more than 71%). (B) Mean PR score according to gain 

in the vHIT before surgery. Group A showing patients with normal gain (≥0.80) and Group B for low gain (<0.80). (C) Mean PR score according to gain in the vHIT 

before surgery. Group A showing patients with normal gain (≥0.80), Group B for low gain (<0.80 and >0.46), and Group C when gain <0.46 (“very low gain”). 

(D) Mean PR score in patients without saccades (Group “no saccades”) and patients with both covert and overt saccades (Group “covert and overt saccades”) 

before surgery.
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movement, the combination of modi�cations in the amplitude 
and direction of compensatory saccades and their central pre-
programing are fundamental components of vestibular compen-
sation (26, 27). �erefore, the gain of the VOR re�ects the raw 
vestibular signal, but re�xation saccades represent the resource 
used to solve the problem when the gain is low. �e origin of 
such saccades has not been fully elucidated, but it is believed that 
quick compensatory saccades are related to pontine reticular 
formation and controlled by the cerebellum, with involvement 
of the interpositus nucleus and the nodulus (28), although also 
presumably under higher order cortical in�uence.

Previous studies showed a strong correlation between pre-
operative caloric weakness and both Subjective Visual Vertical 
and Dizziness Handicap Inventory outcomes a�er surgery (18). 
Our �nding further suggests that vestibular compensation 
occurs faster in patients with greater vestibular de�cit before 
surgery (29).

�e occurrence of the covert saccades was related to severity 
of vestibular hypofunction (25), and they are present during both 
predictable and unpredictable head rotations (30). Although their 
latency suggests that they are triggered by non-visual a�erences 
and/or central pre-programing, they can reduce gaze error siz-
ably for ipsilesional head rotations (25, 31) and de�nitely have a 
symbiotic relationship with the VOR, there being even an inverse 

relationship between their recruitment and amplitude and the 
VOR gain for passive head rotations (32).

�us, the presence of covert saccades suggests that the ves-
tibular dysfunction has been compensated and eye–head coor-
dination anticipates movements in the real-life situation (16).

As expected, patients with both covert and overt saccades 
before surgery manifest low or very low VOR gain. Given that 
VOR adaptation in patients with low VOR gain and saccades 
before surgery is a slow process, this could explain the minimal 
changes observed in VOR and PR scores a�er surgery.

In our opinion, it is very important to understand how the 
patient compensates for the loss of the VOR, given its implica-
tions for vestibular rehabilitation and prevention of long-term 
disability. In light of our �ndings, one can predict that patients 
who compensate with a “gathered pattern” saccadic strategy, with 
covert saccades always with the same latency, will have lower 
levels of disability (8) and postural instability, compared to those 
with a “scattered” saccadic strategy.

�is is a very important consideration because VOR adapta-
tion and the organization of the re�xation saccades into a gath-
ered pattern could be arti�cially induced in patients who have 
not developed it naturally, and improves imbalance symptoms in 
patients with unilateral vestibular loss and vestibular disability. 
Indeed, it has been demonstrated that the close relationship 
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between a lower value of PR and a better score in DHI is an 
indicative of better clinical outcomes (27).

In summary, we have shown that patients with more severe 
vestibular dysfunction before vestibular schwannoma surgery 
show signi�cantly faster vestibular compensation following sur-
gery, manifested by changes in VOR gain and PR score. Second, 
a thorough preoperative vestibular assessment in patients under-
going vestibular schwannoma surgery may identify early poor 
prognostic factors that could be addressed in the early postop-
erative stages to minimize clinical disability through promoting 
vestibular compensation.
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