© 2020 IET. Personal use of this material is permitted. Permission from IET must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Digital Object Identifier: 10.1049/iet-pel.2019.1159

IET Power Electronics
$V f$-Constrained $\eta \rho$-Pareto Optimization of Medium Frequency Transformers in ISOP-DAB Converters

Hamzeh Beiranvand
Esmaeel Rokrok
Marco Liserre

Suggested Citation

H. Beiranvand, E. Rokrok and M. Liserre, " $V f$-Constrained $\eta \rho$-Pareto Optimization of Medium Frequency Transformers in ISOP-DAB Converters," IET Power Electronics 13, no. 10 (2020): 1984-1994.

$V f$-Constrained $\eta \rho$-Pareto Optimization of Medium Frequency Transformers in ISOP-DAB Converters

Hamzeh Beiranvand ${ }^{1}$, Esmaeel Rokrok ${ }^{1 *}$, Marco Liserre ${ }^{2}$
${ }^{1}$ Department of Electrical Engineering, Lorestan University, Khorramabad, Iran
${ }^{2}$ Chair of Power Electronics, Christian-Albrechts-Universität zu Kiel, 24143 Kiel, Germany
* E-mail: rokrok.e@lu.ac.ir

Abstract

: This paper deals with $\eta \rho$ (efficiency-power density) Pareto optimization of medium frequency transformers (MFTs) with considerations of voltage and frequency ($V f$) constraints of semiconductors for mega-watt range input-series output-parallel (ISOP) connected dual-active bridges (DABs). A simple design methodology to include the litz wire configuration in the optimization process is proposed. Based on the presented design methodology, the effects of the semiconductors blocking voltage and switching frequency on the $\eta \rho$-Pareto optimization are evaluated. First, an idealized optimization is carried out to understand the general behavior of the optimum point. Second, brute-force optimization is utilized to find the practical optimum solution based on the market availability of MFT components. Designing MFTs for a $1 \mathrm{MW} 10 \mathrm{kV} / 600 \mathrm{~V}$ ISOP-DAB converter is the subject of numerical studies. The best trade-off between $\eta \rho-V f$ is selected as the final optimal solution and its design correctness is validated using 3D finite-element analysis (FEA). Experimental tests on a 3kW downscaled MFT prototype show that the proposed method is valid in practice.

	Nomenclature
A	Core yoke width
A_{c}	Core cross sectional area
$A_{\text {Cub }}$	Copper area of the litz wire bundle
B	Core window height
C	Core window width
Cost $_{\text {MFT }}$	Total cost of MFT
Cost $_{\text {Ucore }}$	Cost of one U core
$B_{\text {mag }}$	Flux density magnitude
$B_{\text {max }}$	Maximum flux density
D	Core yoke depth
E_{V}	Insulation material strength
$I_{\text {ac1,rms }}$	rms value of $i_{a c 1}$
$I_{m a}$ and $I_{m b}$	Current values at switching moments
J	Current density in MFT winding conductors
Lavg	Windings turn average length
$L_{b x}$ and $L_{b y}$	Litz wire bundle width and hight
$L_{\text {iso }}$	Inter-winding insulation average length
L_{σ}	MFT stray inductance
N	number of turns in a transformer
N_{x}	Number of winding layers in x direction
N_{y}	Number of turns per layer in y direction
V_{B}	Semiconductor blocking voltage
$V_{d c 1}$	Primary side DC voltage
$V_{d c 2}$	Secondary side DC voltage
$V_{M V D C}$	Medium voltage level (ISOP-DAB input voltage)
$V_{\text {max }}$	Maximum voltage applied to a transformer
Vol ${ }_{\text {Core }}$	Total volume of core
$V o l_{M F T}$	Total volume of MFT
R_{L}	Output DC load equivalent resistance
a_{n} and b_{n}	Fourier series coefficients of MFT current
a_{t}	MFT turn ratio
d_{s}	Litz wire strand diameter
d_{W}	Winding width in x direction
f_{s}	Switching frequency
h_{W}	Winding height in y direction
$i_{a c 1}$	MFT ac current in primary side

$k_{A R}$	Aspect ratio
$k_{c d}$	Copper density (filling factor) of litz wire
k_{r}	Dowells resistance factor
$k_{s a f e}$	Insulation material safety factor
$k_{t w}$	Twisting factor (=1.25)
$k_{c d}^{\prime}$	Litz wire copper density without outer
	insulation
n_{c}	Number of paralleled cores to form MFT core
$n_{\text {cell }}$	Number of DAB cells
n_{s}	Number of litz wire strands
$n_{s x}$ and $n_{s y}$	Number of litz wire strands
	in x and y-axis direction
$t_{c f}$	Coil former thickness
$t_{i b}$	Insulation tickness
$t_{i c}$	Inter-core insulation material thickness
$t_{i s o}$	Inter-winding insulation material thickness
$t_{i x}$ and $t_{i y}$	Inter-layer insulation thickness
u_{V}	in x and y-axis direction
δ	Semiconductor voltage utilization factor
η	Skin depth
ρ	Efficiency
$\rho_{C o s t, L i t z}$	Power density
σ	Cost density of litz wire
$\sigma_{C u}$	Cost density
φ	Copper conduction
ω	Phase-shift
	Angularger frequency

1 Introduction

Faraday's law of induction describes the phenomenon of electromagnetic induction in transformers, quantitatively. Based on the law, transformer core cross sectional area is proportional to the inverse of frequency, $A_{c}=v_{\max } /\left(2 \pi f N B_{\max }\right)$ [1]. This implies that with increase in operating frequency of a transformer, f, the transformer weight and volume can be reduced. Inspiring from this notion,
medium frequency transformers (MFTs) are operated at higher frequencies than that of conventional low frequency transformers to obtain higher power density. MFTs have a wide application in power electronic converters such as in grid-connected photovoltaic systems [2], railway applications [3], offshore DC grids [4], and solid-state transformers (SSTs) [5].

MFTs are the key isolating device for emerging power electronic converters such as SSTs [5]. SSTs are expected to be an ultimate solution for stable operation of future decentralized active distribution grids by controlling grid voltages and currents at the point of interfacing with upstream grid [6]. Design of MFTs for SSTs, in both traction and power distribution applications, demands for specific characteristics such as high power, high voltage and high power density with air cooling systems.

Some specific designs of MFTs have been deployed for SST projects. Universal and Flexible Power Management (UNIFLEXPM) project [7] was introduced with the focus on distribution applications where 12 MFTs have been used in a 300 kVA prototype. The design of UNIFLEX-PM MFTs has been discussed in [8] where metglas magnetic materials are operated in frequency range from 1 to 3 kHz . In the Future Renewable Electric Energy Delivery and Management (FREEDM) SST project, a 30 kVA coaxial MFT have been designed with Vitroperm 500 F material for frequencies higher than 20 kHz . Design considerations for a 3 MW MFT in offshore wind farm application have presented in [9]. Results show that high frequency behaviour of the MFT is significantly depending on the winding configuration. Three different MFT configurations have been evaluated for $1 \mathrm{MW} 20 \mathrm{kHz} 12 \mathrm{kV} / 1.2 \mathrm{kV}$ specifications [10]. Shell-type, core-type and matrix-type were compared and Ucore transformer with potted insulation selected as the best trade-off between mechanical design complexity and power density. Design of a $166 \mathrm{~kW} 1000 / 400 \mathrm{~V} 20 \mathrm{kHz}$ MFT has been analyzed as a part of Swiss SST project in [5]. Nanocrystalline magnetic materials were chosen. It achieved efficiency of 99.4% and power density of 44 $k W / d m^{3}$. It is notable that water cooling system dissipates 0.4% of the overall input power. A $100 \mathrm{~kW} 10 \mathrm{kHz} 750 / 750 \mathrm{~V}$ MFT prototype design procedure has been presented in [11]. The efficiency of the MFT in design stage is observed as 99.7% while it's actual prototype efficiency is measured as 99.3%. The focus of these researches is mainly on the MFT design for specified voltage ratings in the primary side and the effect of increasing voltage in the primary side on the Pareto optimal front behavior is not discussed.

The SST configurations in the mentioned projects are unable to provide MVDC energy port. While, MVDC energy port in SST architecture has many advantages such as low losses integration of renewable resources or direct connection to a MVDC distribution grid [12]. Therefore, suitable SST topology with medium voltage DC (MVDC) to low voltage DC (LVDC) conversion capability is required. One way to achieve this is to employ a galvanically isolated DC-DC converters with input-series output-parallel (ISOP) connection [13] where matured low-voltage semiconductors can be used.

Parameter sensitivity analysis of MFT design in an ISOP connected series resonance converter (SRC) has been performed in [14]. A $500 \mathrm{~kW} 10 \mathrm{kV} / 750 \mathrm{~V}$ ISOP-SRC was the subject of the design. SRC's main problem is its controllability. SRC controllability is a function of the variation of the switching frequency. Wide switching frequency variation can adversely affect on the switching losses and limit controllability [15]. In contrast to SCRs, dual-active bridge (DAB) converters have high controllability [16] over output voltage and current. Therefore, MFT is designed based on ISOP-DAB limitations in this paper. The MFT design for ISOP-DAB has been performed in [17]. However, only one voltage level has been presented and the effects of voltage and frequency limitations from the converter side is not taken into account.

Prime motivation behind this paper is to evaluate the effect of primary side H -bridge blocking voltage and frequency limits on the optimal $\eta \rho$-Pareto front of high-power MFTs. Moreover, a simple design methodology to include the rectangular litz wire configuration with optimization is proposed. Semiconductors blocking voltage and frequency limitations effects on the $\eta \rho$-Pareto optimal front
of the designs are studied for a 1 MW ISOP-DAB as a MVDC to LVDC power converter. Two optimization scenarios based on genetic algorithm (GA) and brute-force are considered for theoretical and practical designs, respectively. Finally, the achieved results are validated through 3D FEA simulations and experimental tests on a 3 kW downscaled MFT prototype.

2 MFT Steady-State Analysis

Configuration of an ISOP-DAB converter is shown in Fig. 1 (a) where MFTs are used to isolate DABs' primary and secondary side H -bridges. The number of cascaded DAB modules can be calculated by:

$$
\begin{equation*}
n_{\text {cell }}=\frac{V_{D C, M V}}{V_{d c 1}} \tag{1}
\end{equation*}
$$

where $V_{d c 1}$ can be achieved by $V_{d c 1}=u_{V} V_{B}$. This implies that $V_{d c 1}$ must be a percentage of V_{B} for safe operation of semiconductors. For example, if $u_{V}=0.55$ then $V_{d c 1}=0.55 V_{B}$. Power losses of the MFTs greatly depend on the steady-state quantities of the flux waveform in the core and current waveforms in the primary and secondary windings. MFT's current and flux density waveforms are shown in Fig. 1 (b).

To calculate current average and rms values, analytical formula for current waveforms must be determined. Following equation defines $i_{a c 1}$:

$$
\begin{align*}
& i_{a c 1}(t)= \\
& \left\{\begin{array}{lr}
\frac{I_{m a}+I_{m b}}{\varphi} t-I_{m a}, & 0 \leq t<\varphi \\
\frac{I_{m a}-I_{m b}}{\pi-\varphi}(t-\varphi)+I_{m b}, & \varphi \leq t<\pi \\
-\left[\frac{I_{m a}+I_{m b}}{\varphi}(t-\pi)-I_{m a}\right], & \pi \leq t<\pi+\varphi \\
-\left[\frac{I_{m a}-I_{m b}}{\pi-\varphi}(t-\varphi-\pi)+I_{m b}\right], & \pi+\varphi \leq t<2 \pi
\end{array}\right. \tag{2}
\end{align*}
$$

Where

$$
\begin{gather*}
I_{m a}=\frac{1}{L_{\sigma} f_{s}}\left[-\frac{a_{t} V_{d c 2}}{4}\left(1-\frac{2 \varphi}{\pi}\right)+\frac{V_{d c 1}}{4}\right] \tag{3}\\
I_{m b}=\frac{1}{L_{\sigma} f_{s}}\left[-\frac{V_{d c 1}}{4}\left(1-\frac{2 \varphi}{\pi}\right)+\frac{a_{t} V_{d c 2}}{4}\right] \tag{4}\\
a_{t}=\frac{N_{1}}{N_{2}} \tag{5}
\end{gather*}
$$

For an adopted phase-shift angle φ, cell output power is:

$$
\begin{equation*}
P_{c e l l}=\frac{a_{t} V_{d c 1} V_{d c 2}}{2 \pi f_{s} L_{\sigma}} \cdot \varphi \cdot\left(1-\frac{|\varphi|}{\pi}\right) \approx \frac{V_{d c 1}^{2}}{n_{c e l l} R_{L}} \tag{6}
\end{equation*}
$$

It is assumed that load is distributed among DAB cells equally. Hence, φ can be connected to the loading level. For the copper losses, Fourier series of its winding currents are required. Fourier series for $i_{a c 1}$ is

$$
\begin{equation*}
i_{a c 1}(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \omega x)+\sum_{n=1}^{\infty} b_{n} \sin (n \omega x) \tag{7}
\end{equation*}
$$

where $a_{0}=0$ because current does not include DC offset. Also, $\left(a_{n}\right)$ and (b_{n}) can be calculated as in equations (8) and (9), respectively:

$$
\begin{align*}
a_{n}=\frac{1}{\pi} \frac{1}{n^{2}}(1-\cos (n \pi)) & \left\{\frac{I_{m a}+I_{m b}}{\varphi}(\cos (n \varphi)-1)\right. \\
& \left.-\frac{I_{m a}-I_{m b}}{\pi-\varphi}(\cos (n \varphi)+1)\right\} \tag{8}
\end{align*}
$$

Fig. 1: ISOP-DAB converter as MVDC to LVDC stage of a 1MW SST.

$$
\begin{array}{r}
b_{n}=\frac{1}{\pi} \frac{1}{n^{2}}\left(\frac{I_{m a}+I_{m b}}{\varphi}-\frac{I_{m a}-I_{m b}}{\pi-\varphi}\right) \\
\cdot \sin (n \varphi)(1-\cos (n \pi)) \tag{9}
\end{array}
$$

In addition, the rms value of the ac current is calculated as:

$$
\begin{equation*}
I_{a c 1, r m s}=\sqrt{\frac{1}{3}\left(I_{m a}^{2}+I_{m b}^{2}+I_{m a} I_{m b}\right)-\frac{2 \varphi}{3 \pi}\left(I_{m a} I_{m b}\right)} \tag{10}
\end{equation*}
$$

It is notable that rms current of MFT can be directly calculated from the harmonic components without integration.

3 Rectangular Litz Wire Modeling

Rectangular compact litz wires with a copper density, $k_{c d}$, in a range from 0.6 to 0.75 is a proper choice for high power MFTs and it can be constructed with different number of stands $\left(n_{s}\right)$ and aspect ratio $\left(k_{A R}\right)$ by manufacturers at demand [18]. Fig. 2 shows two possible litz wire strand arrangements in rectangular configuration. These configurations are called litz wire type A and B, in this paper.

3.1 Rectangular Litz Wire Type A

Width and height of litz wire type A, shown in Fig. 2 (a), can be calculated as:

$$
\begin{equation*}
L_{b x}=n_{s x} d_{s}+2 t_{i b}, L_{b y}=n_{s y} d_{s}+2 t_{i b} \tag{11}
\end{equation*}
$$

where $t_{i b}$ is calculated based on the selected insulator material. $t_{i b}$ is calculated for CoolPoly D5108 materials [19] with dielectric strength of $35 \mathrm{kV} / \mathrm{mm}$ and utilizing a safety factor of $k_{\text {safe }}=0.3$ as:

$$
\begin{equation*}
t_{i b} \geq \frac{V_{d c}}{k_{s a f e} E_{V}} \approx\left(1 \mathrm{~mm} \text { for } V_{d c}=10 k V\right) \tag{12}
\end{equation*}
$$

Aspect ratio, $k_{A R}$, is defined as:

$$
\begin{equation*}
k_{A R}=\frac{L_{b x}}{L_{b y}}=\frac{n_{s x} d_{s}+2 t_{i b}}{n_{s y} d_{s}+2 t_{i b}} \tag{13}
\end{equation*}
$$

Also, current density and rms current can be used to compute required litz wire copper area as:

$$
\begin{equation*}
A_{C U b}=\frac{I_{r m s}}{J} \rightarrow n_{s}=\frac{A_{C U b}}{\pi \frac{d_{s}^{2}}{4}} \tag{14}
\end{equation*}
$$

where J is a free parameter and can be determined from optimization and $I_{r m s}$ can be determined from MFT specifications. From Fig. $2 n_{s}=n_{s x} n_{s y}$. So, by substituting $n_{s x}=n_{s} / n_{s y}$ in (13) and rearranging it:

$$
\begin{equation*}
k_{A R} d_{s} n_{s y}^{2}+2\left(k_{A R}-1\right) t_{i b} n_{s y}-n_{s} d_{s}=0 \tag{15}
\end{equation*}
$$

which can be considered in the general form of $a_{e} n_{s y}^{2}+b_{e} n_{s y}+$ $c_{e}=0$. The discriminant of this quadratic equation is always positive:

$$
\begin{equation*}
\Delta_{e}=4\left(\left(k_{A R}-1\right) t_{i b}\right)^{2}+4 n_{s} k_{A R} d_{s}^{2}>0 \tag{16}
\end{equation*}
$$

So, it has two solutions in real number space. Additionally, $a_{e} c_{e}<0$ implies that only one acceptable solution exists as:

$$
\begin{equation*}
n_{s y}=\frac{-2\left(k_{A R}-1\right) t_{i b}+\sqrt{\Delta_{e}}}{2 k_{A R} d_{s}} \tag{17}
\end{equation*}
$$

Consequently, all unknown variables can be calculated for litz wire type A. Filling factor or copper density factor can be defined as the ratio of copper area to total rectangular litz wire area as:

$$
\begin{equation*}
k_{c d}=\frac{A_{C U b}}{L_{b x} L_{b y}} \tag{18}
\end{equation*}
$$

This equation can be rewritten as a function of strand's parameters. Copper density is calculated without considering the outer insulation material thickness as:

Fig. 2: Rectangular litz wire configurations.

$$
\begin{equation*}
k_{c d}^{\prime}=\frac{n_{s} \pi d_{s}^{2}}{4\left(L_{b x}-2 t_{i b}\right)\left(L_{b y}-2 t_{i b}\right)} \tag{19}
\end{equation*}
$$

Therefore, $k_{c d}^{\prime}=\frac{\pi}{4}$ is constant and can be used to calculate $k_{c d}$:

$$
\begin{equation*}
k_{c d}=\frac{A_{C U b}}{\frac{A_{C U b}}{k_{c c}^{\prime}}+\left[2 n_{s x} d_{s}+2 n_{s y} d_{s}+4 t_{i b}\right] t_{i b}} \tag{20}
\end{equation*}
$$

Now, the design of rectangular litz wire type A is complete.

3.2 Rectangular Litz Wire Type B

The design for litz wire type B, shown in Fig. 2 (b), can be obtained in the same way. However, there are some differences as:

$$
\begin{gather*}
L_{b x}=\left[1+\frac{\sqrt{3}}{2}\left(n_{s x}-1\right)\right] d_{s}+2 t_{i b} \tag{21}\\
\left.L_{b y}=\left[n_{s y}+\frac{1}{2}\right)\right] d_{s}+2 t_{i b} \tag{22}
\end{gather*}
$$

which results in the following quadratic equation:

$$
\begin{align*}
& k_{A R} d_{s} n_{s y}^{2}+\left[2\left(\left(k_{A R}-1\right) t_{i b}\right)\right. \\
& \left.\quad+\left(\frac{k_{A R}}{2}+\frac{\sqrt{3}}{2}-1\right) d_{s}\right] n_{s y}-\frac{\sqrt{3}}{2} n_{s} d_{s}=0 \tag{23}
\end{align*}
$$

where the discriminant is:

$$
\begin{align*}
\Delta_{e} & =\left(2\left(\left(k_{A R}-1\right) t_{i b}\right)+\left(\frac{k_{A R}}{2}+\frac{\sqrt{3}}{2}-1\right) d_{s}\right)^{2} \\
& +2 \sqrt{3} k_{A R} n_{s} d_{s}^{2}>0 \tag{24}
\end{align*}
$$

and final solution is

$$
\begin{align*}
n_{s y} & =\frac{-\left(2\left(\left(k_{A R}-1\right) t_{i b}\right)+\left(\frac{k_{A R}}{2}+\frac{\sqrt{3}}{2}-1\right) d_{s}\right)}{2 k_{A R} d_{s}} \\
& +\frac{\sqrt{\Delta_{e}}}{2 k_{A R} d_{s}} \tag{25}
\end{align*}
$$

Consequently, copper density factor without outer insulator can be calculated as:

$$
\begin{equation*}
k_{c d}^{\prime}=\frac{n_{s x} n_{s y} \pi d_{s}^{2}}{\left.4\left[1+\frac{\sqrt{3}}{2}\left(n_{s x}-1\right)\right]\left[n_{s y}+\frac{1}{2}\right)\right] d_{s}^{2}} \tag{26}
\end{equation*}
$$

For litz wire type $\mathrm{B}, k_{c d}^{\prime}$ is not constant and its minimum value is $\frac{\pi}{4}$ when the litz wire has only one strands. Also, $k_{c d}^{\prime} \longrightarrow \frac{\pi}{2 \sqrt{3}}$ as $n_{s} \longrightarrow \infty$. Now, $k_{c d}$ can be written in term of $k_{c d}^{\prime}$ as:

$$
\begin{equation*}
k_{c d}=\frac{A_{C U b}}{\left.\frac{A_{C U b}}{k_{c d}^{\prime}}+\left[\frac{\sqrt{3}}{2}\left(n_{s x}-1\right)+n_{s y}+\frac{3}{2}\right)\right] d_{s}^{2} 2 t_{i b}} \tag{27}
\end{equation*}
$$

For a given set of control parameters $\left\{d_{s}, J, I_{r m s}, k_{A R}, t_{i b}\right\}$, geometrical dimensions and number of strands can be calculated, simply. So, this method can be used as a subroutine in a MFT optimization program.

4 MFT Calculations

4.1 Dimensional Calculations

Fig. 3 (a) shows a typical winding arrangement inside a U-core. Also, Fig. 3 (b) shows top and side view of a typical structure of MFT with natural convection. Primary and secondary winding width, hight and average length can be calculated as:

$$
\begin{gather*}
d_{W 1}=N_{x 1} L_{b x 1}+\left(N_{x 1}-1\right) t_{i x 1} \tag{28}\\
d_{W 2}=N_{x 2} L_{b x 2}+\left(N_{x 2}-1\right) t_{i x 2} \tag{29}\\
h_{W}=B-2 t_{c f} \tag{30}\\
L_{a v g 1}=2 n_{c} D+2 n_{c} t_{i c}+4 t_{c f}+4 d_{W 1} \tag{31}\\
L_{i s o}=2 n_{c} D+2 n_{c} t_{i c}+4 t_{c f}+4 d_{W 1}+4 t_{i s o} \tag{32}\\
L_{a v g 2}=2 n_{c} D+2 n_{c} t_{i c}+4 t_{c f} \\
+4 d_{W 1}+4 t_{i s o}+4 d_{W 2} \tag{33}
\end{gather*}
$$

where subscripts 1 and 2 are used to identify primary and secondary windings. A, B, C, and D, are core dimensions based on Fig. 3. Also, core volume and core cross-section are calculated as:

$$
\begin{gather*}
V_{C}=2 n_{c} A D(4 A+2 B+2 C) \tag{34}\\
A_{C}=2 n_{c} A D \tag{35}
\end{gather*}
$$

Additionally, $t_{\text {iso }}$ is considered as the main control variable for tuning leakage inductance of the MFT. In this paper, leakage inductance is calculated based on the method given in [20].

4.2 Copper Losses

For MFT parameters, the number of turns for primary and secondary side can be calculated as:

$$
\begin{equation*}
N_{1}=\frac{V_{d c 1}}{4 f_{s} B_{\text {mag }} A_{c}}, N_{2}=\frac{N_{1}}{a_{t}} \tag{36}
\end{equation*}
$$

In addition, number of layers are

$$
\begin{equation*}
N_{x 1}=\left\lceil\frac{N_{1}}{N_{y 1}}\right\rceil, N_{x 2}=\left\lceil\frac{N_{2}}{N_{y 2}}\right\rceil \tag{37}
\end{equation*}
$$

The current waveform, given in (9), flows in MFT primary winding and with a factor of a_{t} flows in the secondary side. So, it can be used to calculate copper losses as:

$$
\begin{gather*}
P_{C u}=P_{C u 1}+P_{C u 2} \tag{38}\\
P_{C u 1}=\frac{k_{t w} N_{1} L_{a v g 1}}{2 \sigma_{C u} A_{C u b 1}} \sum_{n=1}^{N_{h}} k_{r n}\left(a_{n}^{2}+b_{n}^{2}\right) \tag{39}\\
P_{C u 2}=\frac{a_{t} k_{t w} N_{2} L_{\text {avg } 2}}{2 \sigma_{C u} A_{C u b 2}} \sum_{n=1}^{N_{h}} k_{r n}\left(a_{n}^{2}+b_{n}^{2}\right) \tag{40}
\end{gather*}
$$

where k_{r} emulates high frequency effects on the increase of copper resistance [21]. k_{r} can be approximated with a high degree of precision by given equation (41):

(a) Windings geometry

(b) Side and top view MFT

Fig. 3: MFT geometry based on U cores and its perspective showing the number of stacked cores.

$$
\begin{align*}
k_{r n} & =\Delta_{n}\left(\frac{\sinh \left(2 \Delta_{n}\right)+\sin \left(2 \Delta_{n}\right)}{\cosh \left(2 \Delta_{n}\right)-\cos \left(2 \Delta_{n}\right)}\right. \\
& \left.+\frac{2 \Delta_{n}\left(N_{x}^{2}-1\right)}{3} \frac{\sinh \left(\Delta_{n}\right)-\sin \left(\Delta_{n}\right)}{\cosh \left(\Delta_{n}\right)+\cos \left(\Delta_{n}\right)}\right) \tag{41}
\end{align*}
$$

where n is harmonic order and $\Delta_{n}=d_{f} /(\delta \sqrt{n})$. This formula is valid for foil conductor. It can be adopted for rectangle litz wires by following transformation:

$$
\begin{equation*}
d_{L}=\frac{d_{f}}{2} \sqrt{\pi n_{s y} N_{y} d_{s} \frac{\sqrt{\pi}}{2 B}} \rightarrow \Delta_{n}=\frac{d_{L}}{\delta \sqrt{n}} \tag{42}
\end{equation*}
$$

4.3 Core Losses

Core losses is a function of used materials and magnetic flux density properties in the core. First approximation of this function

Fig. 4: Conceptualized thermal resistance network of MFT parts.
is presented by original Steinmetz equations (OSE) in [22] for sinusoidal flux density. Later in [23], OSE formula is extended to non-sinusoidal flux density waveform by improved generalized Steinmetz equation (iGSE) formula. Core losses share in MFT, assuming flux waveform of Fig. 2 (a), can be computed as:

$$
\begin{equation*}
P_{V, M F T}=2^{(\alpha+\beta)} k_{i} f_{s}^{\alpha} B_{m a g}^{\beta} \tag{43}
\end{equation*}
$$

This gives the specific losses per volume i.e. W / m^{3}. Also, k_{i}, α and β are constant parameters. In this paper, $k_{i}=1.3368, \alpha=1.25$ and $\beta=2.35$.

4.4 Thermal Design

In some MFT designs [2], [24] and [25], a very simple thermal model is used during optimization. The simplified model which is based on the thermal convection from the surface of the MFT to ambient air is proper for small ratings with small dimensions. While, in highpower and medium voltage applications, geometrical dimensions are large and temperature rise cannot be modeled by only surface heat convection. It demands for a detailed thermal network for estimating hot spots inside the MFT.

Fig. 4 shows the conceptualized thermal network considered for MFT. Heat can be dissipated in three ways. First way is by conduction within materials. This is modeled by thermal resistances with subscripts $c d$ in Fig. 4. Second is by convection from the surfaces to ambient air and it is modeled by thermal resistances with a subscript $c v$ and third is by radiation from surfaces and identified by a thermal resistance subscripted by $r d$. The given model is applicable for steady-state analysis. It can be extended to model transient behavior by adding extra lumped thermal capacity elements analogous to electrical capacitors. Due to symmetry, only one fourth of the MFT needs to be modeled. So, one fourth of the power losses can be used to estimate hot spots of the device. Norton equivalent of the $T_{a m}$ (voltage sources) can be employed to solve the circuit.

$$
\begin{equation*}
\mathbf{T}=\mathbf{Y}_{t h}^{-1} \times \mathbf{I}_{t h} \tag{44}
\end{equation*}
$$

The details for computing thermal resistance values are presented in [26].

5 MFT Optimization Procedure

Multi-objective optimization can be applied to two or more incompatible objectives in a single problem. Four category of algorithms can be picked up to solve the problem. Brute-force or simple search is a proper choice when parameters are swept in a restricted search

Fig. 5: Flowchart of the MFT optimization procedure.
space. Gradient based algorithms are the best suited for continuous differentiable problems with a continuous search space where hessian matrix is positive or semi-positive definite. These types of algorithm are not proper in the case of discontinuous objectives and search spaces. Heuristic algorithms, such as simplex method [27], are proper for discontinuous and non-differentiable problems. This family performs local search and it is more robust than gradient based methods. Finally, meta-heuristic algorithms are capable of reaching global optimum point without sticking at local minimums in discontinuous non-differentiable objectives with multiple singularities. GA is one the most famous meta-heuristic algorithms and it has been used in many applications successfully [28]. However, there are many meta-heuristics inspiring from the nature and physical laws [29].

In this paper, following three objective functions are considered:

$$
\begin{align*}
f_{1} & =P_{C u}+P_{V, M F T} \times V_{C o l e} \tag{45}\\
f_{2} & =V o l_{M F T}=\left(4 A+2 C+t_{i c}\right) \times(2 A+B) \\
& \times\left(n_{c} D+\left(n_{c}-1\right) t_{i c}+2 t_{c f}+d_{W 1}+t_{i s o}+d_{W 2}\right) \tag{46}\\
f_{3} & =\text { Cost }_{M F T}=4 n_{c} \text { Cost }_{U c o r e} \\
& +\left(N_{1} L_{a v g, 1} A_{C U b 1}+N_{2} L_{a v g, 2} A_{C U b 2}\right) \rho_{C o s t, L i t z} \tag{47}
\end{align*}
$$

Where f_{1}, f_{2} and f_{3} are the total losses, total volume and total cost of the MFT, respectively. Every successful design must satisfy the geometrical and thermal constraints:

$$
\begin{gather*}
C-\left(d_{W 1}+d_{W 2}+t_{i s o}+2 \cdot t_{c f}\right) \geq 0 \tag{48}\\
T_{\max }-\max \{\mathbf{T}\} \geq 0 \tag{49}\\
L_{\sigma}-L_{\sigma, \min } \geq 0 \tag{50}\\
t_{i n s}-\frac{V_{i n s}}{k_{\text {safe }} E_{V}} \geq 0 \tag{51}
\end{gather*}
$$

Now, the designs can be evaluated for arbitrary solutions such as $x=\left[A, B, C, D, J_{1}, J_{2}, k_{A R 1}, k_{A R 2}, N_{x 1}, N_{x 2}\right]$. Flowchart of the MFT optimization procedure is shown in Fig. 5. Due to the discontinuous nature of control parameters and consequently nondifferentiable objective functions, meta-heuristics and brute-force optimization are selected and utilized in the rest of this paper.

6 Optimization Results

The design methodology is applied to find the optimal MFT solution in a 1 MW ISOP-DAB converter in the next subsections.

6.1 $\quad V_{B}$ and f_{s} Operating Constraints

Calculation of IGBT power losses as a function of V_{B} is carried out based on the presented work in [13] for ISOP-DAB converter. For sweeping switching frequency from 500 Hz up to 50 kHZ , semiconductor losses are given in Fig. 6 (a). It is assumed that ZVS condition is satisfied. Optimum V_{B} is obtained for every frequency and shown by a black solid line in Fig. 6 (a). It is observed that optimum blocking voltage varies from 1800 to 900 V as frequency increases from 0.5 to 50 kHz . In IGBT switches, switching losses are proportional to V_{B}^{3} and f_{s} [30]. So, optimum value of V_{B} decreases versus increase in f_{s}, inversely.

There are some positive consequences of increasing switching frequency such as small volume of MFT and filter size. However, increase of power losses and heatsink volume adversely restricts f_{s} [31]. Hence, a trade-off for selecting frequency must be taken into account. In [5], optimal switching frequency has been approximated as $f_{\text {opt }}=\sqrt{\frac{1}{a}\left(\frac{\beta}{\alpha}-1\right)}$ where a includes the effect of windings AC resistance. However, the given inference is valid for a design where variation of frequency does not result in flux saturation due to limitation in the number of turns. Hence, its difficult to find the optimum frequency for a given transformer geometry where core dimension and number of turns are predetermined for the design frequency. For a given number of turns, maximum increase in the frequency is limited by flux saturation and frequency can be varied for smaller values than the design frequency.

Generally, if IGBTs' voltage is low, then the number of cells and switching frequency are high. Low voltage rating causes low $d v / d t$ stress on the MFT windings and high frequency causes less number ferrite cores. On the other side, the number of strands and AWG (American Wire Gauge) of stands are increased to compensate the high frequency copper losses in the windings. Fig. 6 (c) illustrates the introduced trade-offs by the blocking voltage of semiconductor in the HV side of ISOP-DAB converter.

In DAB converters, switching frequency is equal to the operating frequency of MFT. Hence, this frequency can be determined based on the selected optimum V_{B} - f_{s} trade-off in Fig. 6 (a). Fig. 6 (b) shows the frequency and semiconductors efficiency versus optimal blocking voltage. Threshold efficiency of 98% is reached at optimum $V_{B}=1010 \mathrm{~V}$ and $f_{s}=25 \mathrm{kHz}$. In practice, the nearest standard blocking voltage which is commercially available is 1200 V. Corresponding switching frequency and semiconductor efficiency are 10 kHz and 98.74%. The next commercially available blocking voltage is 1700 V and its optimum frequency and efficiency are 1.2 kHz and 99.21%, respectively. Any switching frequency higher than 1.2 kHz is not optimal for operation of a DAB converter constructed with 1700 V IGBTs. While, increase in the switching frequency is required for the reduction in volume. Optimum frequency of a DAB

(c) Illustration of the trade-off introduced by the voltage rating of semiconductors in the HV side of ISOP-DAB converter.

Fig. 6: Deriving optimum V_{B} and f_{s} based on the semiconductor losses characteristics.
operating with 1700 V IGBT is pretty lower than the frequency of a DAB with 1200 V IGBTs. Therefore, 1200 V IGBTs are preferred to reduce the volume effectively.

Region III, determined in Fig. 6 (b), is the optimum solution space and any blocking voltage can be adopted in this region in theory. In practice, there are only two options. In this paper, 1200 V IGBTs
are considered as a trade-off between efficiency and switching frequency.

6.2 Multi-objective GA Optimization

In this subsection the effect of V_{B} and f_{s} on the optimum design behavior of MFT is presented. Considered objective functions are f_{1} and f_{2}. To this aim, multi-objective GA optimization is applied to the problem of MFT design. Two scenarios are considered. In the first scenario, the operating frequency is considered 10 kHz and in the second f_{s} swept from 1 to 25 kHz as discussed in previous subsection. In all studies, population and maximum number of iterations are 400 and 500 , respectively.

In GA optimizations, all control variables are considered as continuous variables in the real number space. Their upper and lower bounds are adopted based on the selected materials in the market which are discussed in the next subsection. Fig. 7 (a) shows $\eta \rho$-Pareto front obtained by multi-objective GA for blocking voltages $600,1200,1700,3300,4500$, and 6500 V. From this figure, the effect of increasing the input voltage, i.e. blocking voltage of primary H-bridge, results in higher efficiency and higher power density for the same frequency. In theory, it can be concluded that for $V_{B}=6500 \mathrm{~V}$ maximum η and ρ can be achieved.

Fig. 7 (b) shows $\eta \rho$-Pareto fronts of MFT designs where frequency is varied from 1 to 25 kHz and $V_{B}=1200 \mathrm{~V}$. As it can be observed from Fig. 7 (b), the maximum efficiency belongs to frequencies around 10 kHz . But, maximum efficiency is not significantly violated by increasing frequency and it is around 99.7%. Also, maximum power density belongs to frequencies around 25 kHz . Therefore, selected switching frequency for $V_{B}=1200 \mathrm{~V}$ is highly recommended in theory.

6.3 Discrete Brute-force Optimization

To achieve feasible solutions, parameter sweep over the defined optimization parameters is performed. Considered objective functions are f_{1} and f_{2}. Current density in the primary and secondary windings is limited to the interval 0.5 to $5 \mathrm{~A} / \mathrm{mm}^{2}$. Number of 17 AWG sizes are selected for designing litz wires as in [32]. Therefore, the number of strands can be calculated as a function of current density, aspect ratio, and the strand AWG size. To keep the generated solutions manageable with a personal computer, current density is split in 6 steps with $0.5 \mathrm{~A} / \mathrm{mm}^{2}$ distances. Also, for aspect ratio 10 steps in the range 0.1 to 0.6 is generated. Same AWG size, current density and aspect ratios are considered for both primary and secondary side litz wires to simplify the design.

Thermally conductive insulation materials, CoolPoly D5108 of Celanese Corporation [19], are adopted as insulating material of inter-winding and inter-layer distances. These materials are electrically insulative and thermally conductive. CoolPoly D5108 thermal conductivity is $10 \mathrm{~W} / \mathrm{m} . \mathrm{K}$ and dielectric strength is $35 \mathrm{kV} / \mathrm{mm}$. In the case of core material, 8 N 87 U -shaped ferrite cores from Epocs AG [33] are considered. Peak of flux density, $B_{m a g}$, is considered constant 0.22 T . Maximum number of layers set to 4 .

These assumptions results in $8 \times 17 \times 10 \times 6 \times 4=32640$ possible solutions for every design. For considered blocking voltages at frequency of 10 kHz , acceptable solutions are depicted in Fig. 7 (c). The obtained results verify the correctness of the given inferences in the previous subsection. It can be seen that there is a small difference between the brute-force and GA Pareto fronts. The limited number of the selected parts is the preliminary reason. Another reasons such as thermal constraints reduce the number of acceptable solutions. As it can be seen the number of acceptable solutions for 6500 V is much lower than 600V. Moreover, Fig. 7 (d) shows optimization results for frequencies from 1 to 25 kHz and $V_{B}=1200 \mathrm{~V}$. It can be seen that the maximum realized power density is half of the achieved value by GA theoretical results. In general, brute-fore optimization results imply the correctness of the theoretical results.

Fig. 7: Efficiency and power density Pareto optimal solutions for blocking voltages from 600 to 6500 V for different frequencies.

Table 1 Selected Optimal solutions from Brute-force optimization for $V_{B}=1200 \mathrm{~V}$ and $f_{s}=10 \mathrm{kHz}$

	Parameter [unit]	Litz wire type A	Litz wire type B
Specifications	$\begin{gathered} P_{c e l l}[k W] / n_{c e l l} \\ V_{d c 1} / V_{d c 2}[V] \\ I_{r m s 1} / I_{r m s 2}[A] \end{gathered}$	67/15 660/600 102/111	67/15 660/600 102/111
Litz wire Parameters	$\begin{gathered} n_{s x 1} / n_{s x 2} \\ n_{s y 1} / n_{s y 2} \\ J_{1} / J_{2}\left[A / m m^{2}\right] \\ k_{A R 1} / k_{A R 2} \\ L_{b x 1} / L_{b x 2}[m m] \end{gathered}$	$\begin{gathered} 208 / 230 \\ 79 / 80 \\ 490 / 490 \\ 2 / 4 \\ 10.3 / 11.2 \end{gathered}$	$\begin{gathered} 240 / 83 \\ 78 / 254 \\ 430 / 430 \\ 2 / 0.4 \\ 10.3 / 4.9 \end{gathered}$
MFT Parameters	$\begin{gathered} N_{1} / N_{2} \\ N_{x 1} / N_{x 2} \\ N_{y 1} / N_{y 2} \\ L_{\text {avg1 }} / L_{\text {avg2 }}[m m] \\ h_{W} / t_{i s o}[m m] \\ n_{c} \times \text { Core Type } \end{gathered}$	$\begin{gathered} 15 / 14 \\ 1 / 1 \\ 15 / 15 \\ 360.2 / 498.4 \\ 92 / 6.5 \\ 3 \times(U 93 \times 76 \times 30) \end{gathered}$	$\begin{gathered} 15 / 14 \\ 1 / 2 \\ 15 / 7 \\ 360.1 / 494.9 \\ 92 / 6.3 \\ 3 \times(\mathrm{U} 93 \times 76 \times 30) \end{gathered}$
General Results	$\begin{gathered} \text { Pcore } / P_{C U}[W] \\ \eta[\%] / \rho\left[k W / d m^{3}\right] / \sigma[W / \$] \\ \text { Cost }[\$] \end{gathered}$	$\begin{gathered} 91.75 / 157.65 \\ 99.63 / 18.61 / 50.39 \\ 1323 \end{gathered}$	$\begin{gathered} 91.75 / 140.58 \\ 99.65 / 18.71 / 45.69 \\ 1459 \end{gathered}$

6.4 Optimal Solution of the MFT

In previous subsections, 1200 V is selected as the optimum value of the semiconductor's blocking voltage in ISOP-DAB converter. Consequently, optimal number of ISOP-DAB cells is 15 which results
in number of 15 identical DAB converters. The power rating of each DAB is 67 kW and frequency is 10 kHz . Final optimization can be carried out based on the specified parameters of each MFT.

(a) $\eta-\rho$ Pareto front

(b) $\eta-\sigma$ Pareto front

(c) $\rho-\sigma$ Pareto front

Fig. 8: $\eta-\rho-\sigma$ Pareto optimal solutions for litz wire type A at $V_{B}=1200 \mathrm{~V}$ and $\mathrm{fs}=10 \mathrm{kHz}$.

Cost $\left(f_{3}\right)$ is also considered. The litz wire cost density is calculated as $\rho_{\text {Cost }, A W G 46}=3.7711 U S D / \mathrm{mm}^{2}$ per unit length. This

(b) $\eta-\sigma$ Pareto front

(c) $\rho-\sigma$ Pareto front

Fig. 9: $\eta-\rho-\sigma$ Pareto optimal solutions for litz wire type B at $V_{B}=1200 \mathrm{~V}$ and $\mathrm{fs}=10 \mathrm{kHz}$.
cost density is extracted from the price of 300 ft length litz wire AWG46 $\times 300$ (300 strands) from eBay website. In addition, core

Fig. 10: 3kW MFT prototype results.
prices are extracted from Digi-Key Electronics website. Brute-force optimization is carried out for litz wire type A and B. Only litz wire AWG46 is considered to increase the preciseness of the estimated cost. Aspect ratio is swept from 0.1 to 10 in 19 steps. The best designs for litz wires type A and B are selected based on the $\eta-\rho-\sigma$ compromise. Main control parameters and design objective for both litz wires types are given in Table 1. Moreover, the derived results for litz wire type A and B are shown in Fig. 8 and Fig. 9 in the same order. In these figures, the selected solution is shown by a golden star.

From the achieved results, best efficiency and power density for litz wire type A are 99.63% and $18.61 \mathrm{~kW} / \mathrm{dm}^{3}$, respectively. Its cost density and a single MFT price are $50.39 \mathrm{~W} / \$$ and 1323 USD, respectively. Therefore, total price of 15 MFTs is 19845 USD. The number of both primary and secondary turns are 15 and 14 , respectively. Maximum temperature rise is $76.17^{\circ} \mathrm{C}$ which is far away from considered maximum temperature, i.e. $100^{\circ} \mathrm{C}$. The results for litz wires type A snd B are similar. So, the results of type B are not discussed.

6.5 FEA Verification

In this paper, Ansys Maxwell 3D FEA tools are utilized to verify the selected design. The calculated theoretical core losses is 91.75 W and resultant core losses of 3D FEA is 86.73 W . The error between analytical method and FEA is 5.79%. The difference is coming from the simplifications made (such as uniform flux density distribution) in the analytical calculation methods while the distribution of the flux in 3D FEA model is not uniform specially at core corners. Litz wire losses are directly calculated based on Ansys Maxwell capabilities and compared versus analytical results. Total copper losses
are 157.65 W and 146.20 W for analytical method and FEA, respectively. The error of copper losses calculation is 7.26%. The error of total losses calculation from analytical method versus FEA is 6.61%. It can be concluded that the achieved solutions from the analytical method are valid.

7 Experimental Validation

A 3 kW downscaled MFT prototype is build at the chair of power electronics, Christian-Albrecht University of Kiel, Germany, to validated the correctness of the given analytical calculations. The nominal current of the prototype is 10 A and nominal voltage is 300 V . The number of turns in the primary and secondary windings of the MFT are $N_{1}=26$ and $N_{2}=22$, respectively. Windings are arranged in three layers in both primary and secondary sides. In this prototype, round litz wire (Rupalit V155) with 90 strands, each 0.2 mm diameter, are used. Two E-cores (E65/32/27, N87, TDK) are used in parallel. Total four E-cores are used in the MFT prototype construction. Fig. 10 (a) shows the built MFT prototype. Overall setup for measurements of the MFT electrical parameters are illustrated in Fig. 10 (b) where measurement devices, power supply, electronic load and the DAB converter are discriminated. Moreover, square voltage waveforms of the MFT primary and secondary sides are shown in Fig. 10 (c) as well trapezoidal current waveform in the MFT primary side. These waveforms are recorded at nominal load of the MFT prototype.

Yokogawa WT1800 power analyzer is employed to measure power losses in open-circuit and short-circuit tests. In opencircuit tests, core losses are measured at voltage level set $V_{d c 1}=$ $\{200 \mathrm{~V}, 250 \mathrm{~V}, 300 \mathrm{~V}\}$. In short-circuit tests, currents are passed
through windings from 5 to 10A. Fig. 10 (d) shows the measured core and winding losses versus their calculated values at different operating points. It can be observed from this figure that the measured and calculated power losses mismatch is small. Maximum mismatch is 15% for core losses at $V_{d c 1}=300 \mathrm{~V}$. The calculated and measured total losses are 15.04 and 16.0 W at nominal load, respectively. Total power losses mismatch is 6.25%. Calculated and measured efficiency are 99.50% and 99.46% in the same order. Achieved results show the correctness of the utilized analytical calculations in the previous sections. So, it can be concluded that the proposed design methodology and results are applicable in practice.

8 Conclusion

In this paper, a comprehensive $\eta \rho$-Pareto optimization is performed for medium frequency transformers (MFTs) in a 1MW ISOP-DAB converter. A simple design method is presented for rectangular litz wires. Moreover, optimum blocking voltage and operating frequency are determined based on the semiconductor losses behavior. Two sets of theoretical and practical optimizations are executed by GA and brute-force optimization methods, respectively. The theoretical optimal results show that the efficiency and power density of MFT increase by increasing voltage of the primary side H -bridges, i.e. blocking voltage. It is shown that semiconductors impose constraints on the MFT frequency and nominal voltage rather than MFT itself in high-power high-voltage converters. 1200V IGBTs and switching frequency 10 kHz are achieved as the best compromise between blocking voltage and switching frequency. In these designs, the best trade-off between efficiency, power density and cost density are $99.63 \%, 18.61 \mathrm{~kW} / \mathrm{dm}^{3}$ and $50.39 \mathrm{~W} / \$$, respectively. Maximum temperature rise is approximately $76.17^{\circ} \mathrm{C}$ in the core. Comparing the calculated losses versus the measurement results in a 3 kW MFT prototype shows a mismatch about 6.25%. The promising experimental and 3D FEA results demonstrate the applicability of the proposed design considerations.

9 Acknowledgments

The authors would like to thank Dr. Amit Kumar, PhD of Electrical Engineering, NIT Rourkela, India, for his revision of the revised manuscript.

The authors would like to appreciate Mr. Felix Hoffmann, PhD student at the Chair of Power Electronics, Christian-Albrecht University of Kiel, Germany, for building the MFT prototype and measuring electrical parameters.

10 References

1 Hurley, W.G., Wölfle, W.H.: 'Transformers and inductors for power electronics: Theory, design and applications' (John Wiley \& Sons, 2013)
2 Barrios, E.L., Ursua, A., Marroyo, L., Sanchis, P.: 'Analytical design methodology for litz-wired high-frequency power transformers', IEEE Transactions on Industrial Electronics, 2014, 62, (4), pp. 2103-2113
3 Steiner, M., Reinold, H.: 'Medium frequency topology in railway applications'. In: 2007 European Conference on Power Electronics and Applications, 2007, pp. 110
4 Zhang, L., Zhang, D., Shui, H., Yuan, Y., Pei, Q., Zhu, J.: ‘Optimisation design of medium frequency transformer for the offshore dc grid based on multi-objective genetic algorithm', IET Power Electronics, 2017, 10, (15), pp. 2157-2162
5 Leibl, M., Ortiz, G., Kolar, J.W.: 'Design and experimental analysis of a mediumfrequency transformer for solid-state transformer applications', IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 5, (1), pp. 110-123
6 Beiranvand, H., Rokrok, E.: 'Asymptotically stable controller for ssts based on lyapunov direct stability method', IET Power Electronics, 2017, 10, (15), pp. 2065-2075
7 Bifaretti, S., Zanchetta, P., Watson, A., Tarisciotti, L., Clare, J.C.: 'Advanced power electronic conversion and control system for universal and flexible power management', IEEE Transactions on Smart Grid, 2011, 2, (2), pp. 231-243
8 Villar, I.: 'Multiphysical characterization of medium-frequency power electronic transformers'. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, 2010
9 Meier, S., Kjellqvist, T., Norrga, S., Nee, H.P.: 'Design considerations for medium-frequency power transformers in offshore wind farms'. In: 13th European Conference on Power Electronics and Applications (EPE 2009) Barcelona, SPAIN, SEP 08-10, 2009, pp. 757-768

10 Ortiz, G., Biela, J., Bortis, D., Kolar, J.W.: ' 1 megawatt, 20 khz , isolated, bidirectional 12 kv to 1.2 kv dc-dc converter for renewable energy applications' In: The 2010 International Power Electronics Conference-ECCE ASIA, 2010, pp. 3212-3219
11 Mogorovic, M., Dujic, D.: ' $100 \mathrm{kw}, 10 \mathrm{khz}$ medium-frequency transformer design optimization and experimental verification', IEEE Transactions on Power Electronics, 2018, 34, (2), pp. 1696-1708
12 Liserre, M., Buticchi, G., Andresen, M., De.Carne, G., Costa, L.F., Zou, Z.X.: 'The smart transformer: Impact on the electric grid and technology challenges', IEEE Industrial Electronics Magazine, 2016, 10, (2), pp. 46-58
13 Beiranvand, H., Rokrok, E., Liserre, M.: 'Theoretical evaluation of semiconductor loss components behavior in isop-dab converters'. In: IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering, 2019.
14 Mogorovic, M., Dujic, D.: 'Sensitivity analysis of medium-frequency transformer designs for solid-state transformers', IEEE Transactions on Power Electronics, 2018, 34, (9), pp. 8356-8367
15 Lenke, R., Mura, F., De.Doncker, R.W.: 'Comparison of non-resonant and superresonant dual-active zvs-operated high-power dc-dc converters'. In: 2009 13th European Conference on Power Electronics and Applications, 2009. pp. 1-10
16 De.Doncker, R.W., Dick, C.P., Mura, F., Butschen, T.: 'Power electronic devices for renewable power systems'. In: 2010 22nd International Symposium on Power Semiconductor Devices \& IC's (ISPSD), 2010. pp. 19-25
17 Bahmani, M.A., Thiringer, T., Kharezy, M.: 'Design methodology and optimization of a medium-frequency transformer for high-power dc-dc applications', IEEE Transactions on Industry Applications, 2016, 52, (5), pp. 4225-4233
18 New England Litz Wire Technologies: 'Litz wire technical information', 2005
19 Celanese Corporation: 'Celanese coolpoly d5108 thermally conductive polyphenylene sulfide', 2014
20 Bahmani, M.A., Thiringer, T.: 'Accurate evaluation of leakage inductance in highfrequency transformers using an improved frequency-dependent expression', IEEE Transactions on Power Electronics, 2014, 30, (10), pp. 5738-5745
21 Dowell, P.: 'Effects of eddy currents in transformer windings'. In: Proceedings of the Institution of Electrical Engineers. vol. 113, 1966. pp. 1387-1394
22 Steinmetz, C.P.: 'On the law of hysteresis', Transactions of the American Institute of Electrical Engineers, 1892, 9, (1), pp. 1-64
23 Venkatachalam, K., Sullivan, C.R., Abdallah, T., Tacca, H.: ‘Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only steinmetz parameters'. In: 2002 IEEE Workshop on Computers in Power Electronics, 2002. Proceedings, 2002, pp. 36-41
24 Garcia.Bediaga, A., Villar, I., Rujas, A., Mir, L., Rufer, A.: 'Multiobjective optimization of medium-frequency transformers for isolated soft-switching converters using a genetic algorithm', IEEE Transactions on Power Electronics, 2016, 32, (4), pp. 2995-3006
25 Xu, Y., Chen, L., Guo, W., Shangguan, C., Zuo, J., He, K.: 'Optimal design of medium-frequency fe-based amorphous transformer based on genetic algorithm', IEEE Transactions on Plasma Science, 2018, , (99), pp. 1-9
26 Valchev, V.C., Van den Bossche, A.: 'Inductors and transformers for power electronics'. (CRC press, 2005)
27 Nelder, J.A., Mead, R.: 'A simplex method for function minimization', The computer journal, 1965, 7, (4), pp. 308-313
28 Chambers, L.D.: 'The practical handbook of genetic algorithms: applications' (Chapman and Hall/CRC, 2000)
29 Beiranvand, H., Rokrok, E.: 'General relativity search algorithm: a global optimization approach’, International Journal of Computational Intelligence and Applications, 2015, 14, (03), pp. 1550017
30 Huber, J.E., Kolar, J.W.: 'Optimum number of cascaded cells for high-power medium-voltage ac-dc converters', IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 5, (1), pp. 213-232
31 Beiranvand, H., Rokrok, E., Liserre, M.: 'Volume optimization in si igbt based dual-active-bridge converters'. In: 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), 2019. pp. 577-582
32 Sullivan, C.R., Zhang, R.Y.: 'Simplified design method for litz wire'. In: 2014 IEEE Applied Power Electronics Conference and Exposition-APEC, 2014. pp. 2667-2674
33 TDK: 'Epcos data book 2017: Ferrites and accessories', 2017

