
67

VFC: The Vienna Fortran Compiler 1

Siegfried Benkner 2

Institute for Software Technology and Parallel

Systems, University of Vienna, Liechtenstein

Strasse 22, A-1090 Vienna, Austria

High Performance Fortran (HPF) offers an attractive high-

level language interface for programming scalable parallel

architectures providing the user with directives for the speci-

fication of data distribution and delegating to the compiler the

task of generating an explicitly parallel program. Available

HPF compilers can handle regular codes quite efficiently,

but dramatic performance losses may be encountered for ap-

plications which are based on highly irregular, dynamically

changing data structures and access patterns. In this paper we

introduce the Vienna Fortran Compiler (VFC), a new source-

to-source parallelization system for HPF+, an optimized ver-

sion of HPF, which addresses the requirements of irregular

applications. In addition to extended data distribution and

work distribution mechanisms, HPF+ provides the user with

language features for specifying certain information that de-

cisively influence a program’s performance. This comprises

data locality assertions, non-local access specifications and

the possibility of reusing runtime-generated communication

schedules of irregular loops. Performance measurements of

kernels from advanced applications demonstrate that with

a high-level data parallel language such as HPF+ a perfor-

mance close to hand-written message-passing programs can

be achieved even for highly irregular codes.

Keywords: High Performance Fortran, data parallel program-

ming, data distribution, parallelizing compilers, communica-

tion schedule reuse

1. Introduction

The High Performance Fortran Forum (HPFF),

which first convened during 1992, set itself the task of

defining language extensions for Fortran to facilitate

data parallel programming on a wide range of parallel

1The work described in this paper was partially supported by the

ESPRIT IV Long Term Research Project 21033 “HPF+” of the Eu-

ropean Commission.
2Present address: C&C Research Laboratories, NEC Europe

Ltd., Rathausallee 10, 53757 Sankt Augustin, Germany. E-mail:

benkner@ccrl-nece.technopark.gmd.de.

architectures, without sacrificing performance. Much

of the work on HPF-1 [19] focused on extending For-

tran 90 by directives for specifying at a high level of

abstraction regular data distributions in the context of
a single-threaded data parallel paradigm with a global

address space. Other extensions allow the specifica-

tion of explicitly parallel loops, in particular with the

FORALL statement and construct and the INDEPEN-

DENT directive, as well as a number of library routines.

A major advantage of the HPF approach compared

to parallel programming based on message-passing is
that the user writes a sequential program and speci-

fies how the data space of a program should be dis-

tributed by adding data distribution directives to the

declarations of arrays. It is then the responsibility of

the compiler to translate a program containing such

directives into an efficient parallel Single-Program-

Multiple-Data (SPMD) target code using explicit con-
structs for data-sharing, such as message-passing on

distributed memory machines. This style of program-

ming hides the machine specific details in the compiler

enabling the user to concentrate on the algorithmic is-

sues. As a consequence, HPF programs are not only

much simpler than message-passing programs but also
much more flexible. Changing, for example, the data

layout requires only minor program changes.

Although HPF-1 was very well suited for applica-

tions based on regular data structures and access pat-

terns, it soon became apparent that it did not provide

enough flexibility for an efficient formulation of many

advanced algorithms. For example, weather forecast-
ing codes [2] or crash simulations [15], are often char-

acterized by the need to distribute data in an irreg-

ular manner and dynamically balance the computa-

tional load of the processors. The current version of

HPF, HPF-2 [20], and in particular its “approved ex-

tensions”, is a significant step in supporting such algo-

rithms.
The study of real applications has, however, revealed

that even with the enhanced data and work distribu-

tions offered by the latest version of the language, cer-

tain information that may decisively influence a pro-

gram’s performance cannot be expressed. One such

example is information about the invariance of ar-

Scientific Programming 7 (1999) 67–81

ISSN 1058-9244 / $8.00 1999, IOS Press. All rights reserved

68 S. Benkner / VFC: The Vienna Fortran Compiler

ray access patterns in irregular parallel loops. In such

loops arrays are accessed indirectly via dynamically

defined index arrays. Consequently an HPF compiler

can not statically determine the access pattern and de-

rive the required communication in the parallel tar-

get program. Therefore, most HPF compilers gener-

ate code which at runtime analyzes the indirect ac-

cesses to distributed arrays and determines a commu-

nication schedule to handle the gathering and scatter-

ing of nonlocal data required for executing the parallel

loop. This pre-processing phase to compute a schedule

is called inspector [16]. Inspectors may be very time-

consuming in some cases dominating the execution

time for a whole program; as a consequence, the avoid-

ance of redundant inspector executions is a key issue

when parallelizing irregular codes. However existing

compile-time and runtime analysis techniques [28,30]

are not powerful enough to detect all instances of re-

dundant inspectors. Thus, language support is required

for this problem.

HPF+ [3], an improved variant of HPF for advanced

industrial applications which has been developed in

the Research Project “HPF+“, addresses these issue

by providing language features to express the redun-

dancy of schedule computations. Moreover, HPF+ of-

fers mechanisms to influence the mapping of compu-

tations to processors, to assert the locality of computa-

tions, and to specify in addition to the distribution of an

array the possibly irregular areas of non-local accesses.

In the remainder of this paper we describe the HPF+

compiler VFC with a special focus on language fea-

tures and parallelization techniques for advanced irreg-

ular applications which are currently not adequately

supported by the de-facto standard HPF-2 and com-

mercial HPF compilers. In Section 2 we describe the

overall structure of VFC followed by an overview of

the supported HPF+ language features in Section 3.

In Section 4 we present the main parallelization tech-

niques implemented in VFC. Section 5 presents perfor-

mance results of two irregular kernels developed in the

“HPF+” project. In the remaining sections we discuss

related and future work.

2. The VFC System

VFC is a source-to-source parallelization system

that translates Fortran95/HPF+ programs to Fortran90/

MPI message-passing SPMD programs. The system is

based on a Fortran 90 frontend initially developed at

GMD Berlin and extended at the University of Vienna.

Besides the main implementation languages C and

C++, the Cocktail compiler construction toolbox [18]

has been used extensively.

The system is currently available for the Solaris

operating system. Codes parallelized with VFC can

be executed on the QSW (Meiko) CS-2, the NEC

Cenju-3, the Fujitsu AP-3000, and on clusters of work-

stations.

VFC is the first HPF compilation system that of-

fers besides the basic block and cyclic data distribu-

tions, new data distribution formats required for ir-

regular codes, such as the generalized block distribu-

tions and indirect distributions, and that fully imple-

ments dynamic data redistribution. Unlike most other

HPF compilers, VFC provides powerful paralleliza-

tion strategies for a large class of non-perfectly nested

loops with irregular runtime-dependent access patterns

which are common in industrial codes. In this con-

text, the concept of communication schedule reuse and

halo areas (see Section 3), allows the user to reduce or

amortize the potentially large overhead of the associ-

ated runtime compilation strategies.

2.1. System components

The VFC system consists of six major components:

the frontend, the analysis module, the parallelization

module, the instrumentation system, the code genera-

tor, and the runtime system.

The frontend performs scanning and parsing of the

input program, and constructs an intermediate repre-

sentation of the program in the form of an abstract syn-

tax tree.

The analysis module constructs different abstrac-

tions of the program such as the program dependence

graph, the call graph and a flow graph for each pro-

gram unit. These data structures are the basis for data

dependence analysis and for an advanced interproce-

dural analysis framework [24] which is currently being

developed.

The parallelization module, which transforms the

input program into a parallel message-passing SPMD

program, consists of several components. The normal-

ization component performs various transformations

such as array and loop normalization, normalization

of data distribution directives, substitution of func-

tion calls in expressions that reference distributed ob-

jects, normalization of procedure interfaces, and oth-

ers. The task of the classification component is to de-

termine the parallelization strategy that should be ap-

plied to each executable construct. A generalized in-

S. Benkner / VFC: The Vienna Fortran Compiler 69

spector/executor strategy is utilized for parallelizing ir-

regular loop nests. A parallelization technique based

on intersection of regular sections is applied to regu-

lar loops and explicitly parallel constructs such as ar-

ray assignments. A default strategy utilizing single-

element send/receive/broadcast operations, is applied

either to scalar assignments or to non-parallelizable

loops. Depending on the availability of analysis in-

formation or the presence of user assertions, different

variants of these strategies are applied. A major em-

phasis has been put on providing feedback to the user

about potential overheads introduced by the compiler

during parallelization. For example, if VFC has to se-

quentialize independent loops, if communication state-

ments are generated within loops, or if implicit redis-

tributions have to be generated at procedure bound-

aries, the user is informed by means of diagnostic mes-

sages.

The instrumentation component [10] inserts calls

to a measurement library in order to generate MPI

trace-files during execution of the program. The instru-

mentation can be triggered by the user by means of

command-line options, and it supports selective pro-

gram instrumentation, in order to provide the user

with detailed information about the execution of the

parallelized code. VFC trace-files can be analyzed

by post-execution performance analysis tool such as

MEDEA [10,11] and others.

The code generator translates the internal represen-

tation of the program into Fortran 90 source code,

which is then submitted to the Fortran 90 compiler of

the parallel target machine in order to generate the ex-

ecutable parallel program.

The runtime system of VFC consists of two ma-

jor parts: the VHPF and the PARS libraries. The main

task of the VHPF library is the management of dis-

tributed objects at runtime, including runtime support

for dynamic data redistribution. Moreover, the VHPF

library provides high level interfaces for communica-

tion primitives of the PARS library and the ADLIB li-

brary [12]. The PARS library is an extension of the

PARTI [16] library to support multidimensionally dis-

tributed arrays. It provides communication routines

based on MPI-1 [26] and supports all aspects of the

inspector/executor runtime parallelization strategy, in-

cluding the support for schedule reuse and halos. The

ADLIB library is utilized for the parallelization of ar-

ray assignment statements and intrinsic functions in

the context of regular distributions.

2.2. Input language

The input language of VFC is Fortran 95 with HPF+
extensions. Although VFC supports full Fortran 95 in
the context of non-distributed data objects, the sys-
tem imposes certain restrictions on the transfer of dis-
tributed arguments at procedure boundaries, the in-
put/output of distributed data, and the use of intrinsic
functions. In particular, VFC neither supports the re-
shaping of distributed arrays at procedure boundaries
nor the transfer of sections of distributed arrays to pro-
cedures.

The supply of important modularization features of
Fortran such as procedure interfaces, internal proce-
dures, and modules and the support for separate com-
pilation significantly alleviates the parallelization of
large programs.

HPF+ not only comprises the de-facto standard
HPF-2 but also includes many features that have been
adopted by the Approved Extensions of HPF-2. In ad-
dition HPF+ simplifies the distribution model of HPF
without sacrificing required functionality, and intro-
duces new features to provide the compiler with es-
sential information on the applicability of crucial opti-
mizations.

3. HPF+ language features

In the following we give a brief overview of the
HPF+ language as supported by VFC with a special
focus on features required for an efficient paralleliza-
tion of advanced irregular applications. For a more de-
tailed description of HPF+ the reader is referred to [3].
In Table 1 a comparison of the HPF+ language features
with those provided in the HPF-2 core language and
the Approved Extensions of HPF-2 is presented.

3.1. Processor arrays

Arbitrary multidimensional processor arrays may
be defined in order to provide an abstraction from
the topology of the parallel target architecture. Pro-
grams may be parallelized for an arbitrary number
of processors by using the intrinsic function NUM-

BER_OF_PROCESSORS() in processor declarations.
An explicit relationship between different processor
arrays may be established based on the concept of
processor views by means of the RESHAPE intrin-
sic function. This feature enables the user to impose
different views on the set of available processors, to
define named processor array sections, and to per-
mute the dimensions of multidimensional processor ar-
rays.

70 S. Benkner / VFC: The Vienna Fortran Compiler

Table 1

A comparison of selected language features in HPF+, HPF 2 and the

HPF 2 Approved Extensions

Feature HPF+ HPF-2 A.Ext.

Processors

processor views + – –

Data distribution

BLOCK distributions + + +

CYCLIC distributions + + +

GEN_BLOCK + – +

INDIRECT + – +

templates – + +

SHADOW specifications + – +

HALO specifications + – –

distribution to + – +

processor sections

dynamic distributions + – +

dynamic realignment – – +

distributions of + – +

derived type components

distribution of pointers + – +

Procedure interface

inherited distributions + + +

distribution ranges + – +

prescriptive mappings + + +

descriptive mappings – + +

transcriptive mappings – + +

procedures returning + – +

distributions

Other features

work distribution + – –

for parallel loops

PUREST procedures + – –

schedule REUSE + – –

EXTRINSIC procedures + + +

3.2. Data distribution features

In addition to the HPF-2 distribution mechanisms

such as block, cyclic, block-cyclic distributions, and

replication, VFC provides generalized block and indi-

rect distributions. General block distributions provide

enough flexibility to meet the demands of some irreg-

ular computations: if, for instance, the nodes of a sim-

ple unstructured mesh are partitioned prior to execu-

tion and then appropriately renumbered, the resulting

distribution can be described in this manner. Indirect

distributions offer the ability to express totally unstruc-

tured or irregular distributions that do not involve repli-

cation.

Distributions may be specified with respect to reg-

ular processor array sections. Simple alignments may

be used to specify groups of arrays that are to be dis-

tributed together. Moreover, VFC implements the dis-

tribution of components of derived types.

Dummy arguments may either be explicitly dis-

tributed using the above mechanisms or may inherit

their distribution from the corresponding actual argu-

ments. All distributions mentioned above may be de-

fined for statically allocated as well as dynamically al-

located objects such as allocatable arrays or pointers.

Moreover, VFC supports dynamic data redistribu-

tion either by means of the REDISTRIBUTE direc-

tive or by redistribution as a result of procedure calls.

While dynamic data distribution is a very flexible fea-

ture, its unrestricted use may have a severe impact on

the performance of the generated parallel program. For

example, certain important optimizations may not be

performed if multiple distributions may reach a par-

ticular array reference. Since interprocedural reaching

distribution analysis [22,29] and similar techniques are

restricted, language support is needed, in order to pro-

vide the compiler with information about the set of

different distributions a dynamically distributed array

may be associated with at runtime. For this purpose

the RANGE attribute can be used in order to supply the

compiler with information on the set of different dis-

tributions a dynamically distributed array (or a dummy

array with an inherited distribution) may be associated

with. Fig. 1 shows some of the data distribution fea-

tures supported by VFC.

3.3. Independent loops

The INDEPENDENT directive may be used to assert

that the iterations of a subsequent DO loop are indepen-

dent and, therefore may be executed in any order. In

this context VFC supports the NEW clause for defining

variables that are private to a loop iteration, the RE-

DUCTION clause for performing reduction operations,

and the ON HOME clause to specify how the loop iter-

ations should be distributed.

3.4. Communication schedule reuse

Communication schedules are internal objects that

have to be constructed by the runtime system when a

parallel loop with irregular array accesses is entered.

This is done in a pre-processing phase called inspec-

tor [30], which is usually very time-consuming. Infor-

mally, a communication schedule of a distributed ar-

S. Benkner / VFC: The Vienna Fortran Compiler 71

!HPF$ PROCESSORS R(NP*NP)

!HPF$ PROCESSORS R2(NP,NP) = RESHAPE(R)

! multidimensional distributions

!

!HPF$ DISTRIBUTE(BLOCK,*,CYCLIC)

ONTO R2 :: A3

! general block distribution

!

INTEGER BS(4)

!HPF$ DISTRIBUTE(GEN_BLOCK(BS), *)

ONTO R1 :: A2

! indirect distributions

!

INTEGER MAP(100)

!HPF$ DISTRIBUTE(INDIRECT(MAP),*) :: A2

! distributed derived type components

!

! TYPE GRID

REAL, POINTER :: U(:,:), F(:,:)

!HPF$ DISTRIBUTE(BLOCK,BLOCK) :: U

!HPF$ ALIGN WITH U :: F

END TYPE GRID

TYPE (GRID), ALLOCATABLE :: MG(:)

! dynamic distribution and

! redistribution

!

!HPF$ DYNAMIC, DISTRIBUTE(BLOCK) :: A1

...

!HPF$ REDISTRIBUTE(CYCLIC(M)) :: A1

Fig. 1. HPF+ data distribution features supported by VFC. Besides

the basic block and cyclic distributions VFC offers generalized block

and indirect distributions, distributions to processor subsets, distri-

bution of derived type components, and dynamic data distributions.

ray describes for each processor participating in the

parallel execution of a loop the sets of array elements

that have to be sent to or received from other proces-

sor in order to guarantee correct execution. During the

inspector phase all indirect accesses to distributed ar-

rays in a parallel loop are analyzed and, based on the

access pattern, the data distribution, and the distribu-

tion of loop iterations, a communication schedule is

derived.

In many applications, however, parallel loops are

often enclosed in a sequential time-step loop and the

associated communication schedules may be invariant

over many or all time-steps. In such cases the prepro-

cessing cost of the inspector can be amortized by com-

DO t = 1, max_time ! time-step loop

CALL Solve(F, X, cond)

if (reconfigure()) then

...

! reset reuse condition

cond = .false.

else

cond = .true.

end if

END DO

SUBROUTINE Solve(F, X, cond)

!HPF$ INHERIT :: F, X

...

!HPF$ INDEPENDENT, ON HOME(F(X(I)),

REUSE(cond)

DO i = 1, n ! irregular loop

...F(X(I))...

END DO

END SUBROUTINE Solve

Fig. 2. Conditional communication schedule reuse. This example

shows how the communication schedules of an irregular loop may

be reused depending on a logical condition. From a time-step loop

a computational procedure Solve is called in which distributed ar-

rays are accessed indirectly within an INDEPENDENT loop. The

communication schedules required for this loop are computed when

Solve is executed for the first time and are reused on subsequent in-

carnations of Solve as long as the logical variable cond is true.

Whenever it is necessary to reconfigure the data domain by chang-

ing the indirection array X, the logical variable cond has to be set

to false, resulting in a re-computation of the required communi-

cation schedules by executing the inspector phase again.

puting the schedules once and reusing them across sub-

sequent time-steps as long as the schedules are invari-

ant.

The recognition of invariant communication sched-

ules is crucial in obtaining reasonable object code per-

formance. However existing analysis techniques [28]

are not powerful enough to detect all instances of re-

dundant schedule computations; runtime analysis tech-

niques [30] are similarly restricted. Thus, language

support is required for this problem.

VFC currently supports the reuse of communica-

tion schedules based on the HPF+ REUSE clause. The

REUSE clause may be specified in the context of an

independent loop to indicate to the compiler that the

access patterns as well as the distribution of all dis-

tributed arrays accessed in the loop are invariant. As a

consequence, the communication schedules associated

with these arrays have to be computed only once and

may be reused in subsequent executions of the loop.

The reuse clause may be combined with a scalar logi-

cal expression in order to support conditional commu-

nication schedule reuse as shown in Fig. 2.

72 S. Benkner / VFC: The Vienna Fortran Compiler

3.5. Halos

The (super) set of non-local elements of a distributed

array that may be accessed by a processor during the

execution of a program unit may be specified by means

of halo regions. A halo region is an irregular, non-

contiguous area describing the non-local access pat-

tern of a particular processor. Halo regions are spec-

ified by means of the HALO attribute which may be

combined with distribution specifications. Halos may

be used for statically as well as dynamically distributed

arrays. The halo of a dimension of a distributed ar-

ray is usually specified by means of a Fortran func-

tion which, when evaluated on a particular processor,

returns a one-dimensional integer array containing the

global indices of non-local array elements accessed on

that processor.

The information provided by halo regions can be uti-

lized by the compiler to allocate memory for all non-

local accesses, to establish a corresponding address

translation scheme, and to compute the required com-

munication schedule. In particular, the use of halo re-

gions may improve the parallelization of irregular in-

dependent loops significantly by enabling the compiler

to optimize the inspector phase of irregular loops.

Halos have been implemented in VFC in such a way

that it is always the responsibility of the user to up-

date the halo of distributed arrays by means of the

UPDATE_HALO directive. Thus, this feature may not

only be used to avoid redundant schedule computations

but also to avoid redundant communication. An exam-

ple of using a halo for a dynamically distributed array

is shown in Fig. 3.

3.6. Locality assertions

In order to call procedures which operate exclu-

sively on data private to a processor from within in-

dependent loops without introducing any overheads,

VFC supports the concept of purest procedures. In For-

tran 95, procedures that are called in the context of

data parallel constructs must have the PURE attribute,

which enforces that they are free of side-effects. How-

ever, for a parallelizing compiler the PURE attribute

is of limited use, since a pure procedure may, for ex-

ample, read distributed global data objects. Calling a

procedure that accesses distributed global data objects

from an independent loop may result in a serialization

of the loop because communication may be required to

reference the data. HPF+ extends the concept of pure

procedures by providing purest procedures. By spec-

INTERFACE

FUNCTION halo_function(i, map)

INTEGER i, map(:)

INTEGER,

POINTER :: halo_function(:)

END FUNCTION halo_function

END INTERFACE

!HPF$ PROCESSORS R(NUMBER_OF_PROCESSORS())

!HPF$ DYNAMIC :: A

...

!HPF$ REDISTRIBUTE (INDIRECT(map)), &

!HPF$ HALO (halo_func(I, map)) ON R(I) :: A

...

!HPF$ UPDATE_HALO :: A

Fig. 3. The HALO Directive. The set of non-local indices of array A

that may be accessed by a particular processor R(I) is obtained by

evaluating the array-valued function halo_func() on each pro-

cessor with the corresponding processor index I. The execution of

the high-level communication directive UPDATE_HALO results in

communication to update the halo-area on each processor.

ifying the PUREST attribute, the user asserts to the

compiler that the called procedure is pure (free of

side effects) and that its invocation does not result in

communication on entry, during execution, and upon

exit from the procedure. This information, which is

usually difficult to determine automatically, supports

the compiler in generating efficient code for indepen-

dent loops despite the presence of procedure calls.

The RESIDENT clause may be specified together

with an ON HOME clause in the context of independent

loops to indicate that a loop may be parallelized with-

out the need for generating communication.

3.7. Extrinsics

VFC supports the extrinsic interfaces of HPF-2,

HPF_LOCAL and HPF_SERIAL, by implementing

the associated argument transfer mechanisms and the

most basic functions from the HPF_LOCAL library

such as MY_PROCESSOR, GLOBAL_SIZE,

GLOBAL_SHAPE and a few others. By means of the

extrinsic HPF_LOCAL interface HPF+ may be used in

a more flexible way by allowing the user to switch from

the global HPF+ view to a local view. Extrinsic pro-

cedures not only provide an escape mechanism from

HPF+, for example to integrate program units that are

written in an other paradigm such as message-passing,

but also a means to integrate existing sequential code

or to express coarse-grain data parallelism. This is dis-

cussed in more detail in Section 5.2.

S. Benkner / VFC: The Vienna Fortran Compiler 73

4. Parallelization techniques

The parallelization strategy of VFC is based on the

SPMD programming model. VFC translates a source

program into an SPMD message-passing target pro-

gram, which is parameterized in such a way that it can

be executed on an arbitrary number of processors3. At

runtime each processor of the target machine executes

the same target program operating on its own data.

4.1. Overview

The support of advanced concepts, in particular dy-

namic redistribution and inheritance of distributions

by dummy arrays, requires a parallelization strategy

which is able to deal with multiple reaching distri-

butions. In order to handle these features efficiently,

VFC provides, besides additional language support

and analysis techniques, a sophisticated management

scheme for distributed arrays, as well as advanced par-

allelization strategies and runtime support.

Management of distributed arrays

VFC analyzes the distribution specifications and

generates calls to runtime routines that initialize the

layout descriptor of each distributed array. Layout de-

scriptors contain all information concerning the distri-

bution of an array (or a class of arrays) together with

global and local shape information. In addition, layout

descriptors store auxiliary information about buffers

required for storing non-local data and communication

schedules for updating halo areas.

Distributed arrays as supported by VFC may be stat-

ically or dynamically allocated and statically or dy-

namically distributed. A distributed array is either a

distributee or an alignee. The distribution of arrays is

usually parameterized with respect to the number of

processors the program will be executed on based on

the intrinsic functionNUMBER_OF_PROCESSORS().

To support all these features, VFC transforms the input

program in such a way that each distributed array is

allocated at runtime at the earliest point at which both

the shape and distribution information are available.

A statically distributed array has a fixed distribution

within its scope of declaration. Thus, in the generated

SPMD program, at the beginning of the executable sec-

tion of the program unit where such an array is de-

clared, the distribution or alignment specifications are

evaluated and the results are stored in the array’s lay-

3This is only true if the program has been written in such a way

that it is not dependent on a specific number of processors.

out descriptor. The array is allocated dynamically on

each processor according to its local shape stored in the

memory component of the layout descriptor, either at

the beginning of the executable section, if it was stat-

ically allocated in the HPF+ program, or, if it is dy-

namically allocated, at the time of allocation when an

ALLOCATE statement is executed for it. This process

is first carried out for all distributees and then for all

alignees of the corresponding program unit. Note that

for a statically distributed array the distribution com-

ponent of the layout descriptor does not change within

the scope of the array’s declaration, but the memory

component may change if, for example, the shape of

the array is modified.

A dynamically distributed array may change the dis-

tribution within its scope of declaration. Thus, when-

ever such an array is redistributed, the distribution

component of the descriptor is updated and the array is

reallocated with the new distribution, provided that its

shape is known.

Transformation of procedure calls

In order to implement the transfer mechanisms of

distributed arguments at procedure boundaries VFC

analyzes all procedure calls and determines whether

the distribution of an actual argument and the corre-

sponding dummy argument are different, or whether a

distributed actual argument is associated with a non-

distributed actual argument or vice versa. This analy-

sis utilizes information from interface blocks with the

goal to avoid implicit redistributions or copy-in/copy-

out argument transfers whenever possible.

In cases where actual and formal distribution match

or the formal argument inherits the distribution, calls

are transformed in such a way that each distributed ar-

gument is passed together with its layout descriptor

without the need of redistribution or copying.

If, for example, a distributed actual argument is as-

sociated with a non-distributed formal argument, or a

dummy with a different distribution, an implicit redis-

tribution to replicate the actual argument is generated

prior to the call, and after the call, if it is required to re-

store the original distribution. Whenever such a redis-

tribution is generated, or arguments have to be copied,

the user is informed about this potential runtime over-

head by corresponding diagnostic messages.

4.2. Array assignments

Unlike most HPF compilers, array statements are

not converted into loops, but are transformed by VFC

74 S. Benkner / VFC: The Vienna Fortran Compiler

to array statements that operate on the local memory

on each processor. The main advantage of this strat-

egy is that the parallelism of the original construct is

preserved. Therefore, both inter- and intra-processor

parallelism can be exploited by the Fortran 90 com-

piler of the parallel target machine. Currently VFC dis-

tinguishes three different classes of array assignments

which are handled with varying overheads.

The first class of array assignments can be handled

in an optimal way without the need for any transfor-

mations. This requires that each dimension of all ar-

rays on the right-hand-side with a non-scalar subscript

is distributed in exactly the same way as the associated

dimension of the left-hand-side array, and that all dis-

tributed dimensions of all arrays involved are accessed

identically and as a whole.

The second class comprises array assignment state-

ments for which only work distribution and index con-

version has to be performed, but which can be pro-

cessed without introducing inter-processor communi-

cation. This strategy is applied if, for all arrays on the

right-hand-side, each dimension with a non-scalar sub-

script is distributed and accessed in exactly the same

way as the associated dimension of the left-hand-side

array. Such statements are transformed by adapting the

section-subscripts of distributed dimensions in such a

way that each processor only accesses its local data.

These local section-subscripts are determined at run-

time by intersection of the local index set of an ar-

ray dimension with the original global section sub-

scripts and converting the resulting section into local

indices.

All other array assignment statements are trans-

formed by introducing appropriate calls to runtime li-

brary routines that determine the work distribution and

generate the required communication of non-local data

into temporary arrays.

4.3. Parallelization of irregular loops

In contrast to most existing HPF compilers, VFC

provides powerful runtime parallelization strategies for

non-perfectly nested irregular independent loops. Such

loop nests may access arrays that are distributed in

more than one dimension and may contain condi-

tional statements, reduction statements, and procedure

calls. Previous work [9] in parallelizing irregular loops

was based on linearization of arrays with multidimen-

sional distributions. Our approach for handling arrays

with multi-dimensional distributions is characterized

by a dimension-wise processing of array subscripts and

hence does not incorporate such aggressive program

restructuring as caused by linearization.

In general, irregular loop nests are transformed by

VFC based on the Inspector/Executor [16] paradigm

into three phases: the work distribution phase, the in-

spector phase and the final executor phase. If dis-

tributed arrays appear in the body of conditional-

statements, or if they are accessed by means of dis-

tributed indirection arrays, VFC applies different vari-

ants of this strategy. In addition, the information pro-

vided by means of the HALO directive or the REUSE

and RESIDENT clause is utilized by VFC to perform

crucial optimizations.

Work distribution

In this phase the iteration space of a loop nest is

distributed to the available processors based on the

ON HOME clause. If no ON HOME clause has been

specified it is determined automatically based on sim-

ple heuristics. Depending on the distribution of the

array in the ON HOME clause, different work distri-

bution strategies are applied. For regular distributions

(i.e., BLOCK(M), CYCLIC(M) and GEN_BLOCK)

the distribution of the loop iterations is determined by

intersecting the iteration space of each loop with the

local index set of the array in the on-clause using an-

alytical formulas [7]. For irregular distributions the lo-

cal iterations on each processor are determined by eval-

uating the ON HOME clause for all iterations of the

loop.

Inspector

The major task of the inspector is to determine the

access patterns of distributed arrays in a loop nest and

to construct the corresponding communication sched-

ules for non-local data accesses. Schedules are data

structures representing the communication patterns re-

quired for exchanging non-local data between the pro-

cessors participating in the execution of a parallel loop.

The inspector code generated by VFC usually con-

sist of a series of loops in order to evaluate and store

the subscripts of all distributed arrays accessed in the

loop. In order to minimize storage requirements ac-

cess patterns of distributed arrays are represented on

a dimension-by-dimension basis. The access patterns

are passed to runtime procedures which determine the

non-local data accesses, transform the original global

indices into local indices, and construct the associated

communication schedules required for communicating

non-local data into buffers.

Multi-level indirections are handled by a multi-

phase Inspector/Executor approach. First the schedules

S. Benkner / VFC: The Vienna Fortran Compiler 75

are computed for all of the distributed index arrays

at the deepest level. They are then used for gather-

ing non-local data for the indirection arrays at the next

higher level. This process is repeated until a top-level

data array is reached, which is processed as described

above.

Executor

In the executor phase all non-local data read in

the loop nest are gathered according to the computed

schedules, and the restructured loop nest is executed.

In case non-local data has been written, a final scatter

communication is performed.

VFC generates the executor by restructuring the

original loop nest in several steps as follows. The it-

eration space of each independent loop is changed ac-

cording to the work distribution. Subscript expressions

in distributed dimensions of top-level arrays are trans-

formed such that the original global indices are substi-

tuted by local indices. Finally, depending on whether

non-local data is read or written, calls to gather and

scatter communication routines are inserted before and

after the loop nest, respectively.

Schedule reuse

The goal of schedule reuse is to reduce the over-

heads of runtime preprocessing performed in the work

distribution and inspector phases of an irregular in-

dependent loop by reusing the information obtained

during these phases across subsequent executions of

the loop. However, in many cases, the compiler does

not have sufficient information to decide whether an

inspector computation is redundant. Therefore, elimi-

nating redundant inspectors of irregular loops is per-

formed in VFC based on the REUSE clause. For an

independent loop with a REUSE clause the work dis-

tributor and inspector of a loop are guarded by means

of conditional statements to enforce that they are exe-

cuted only if the reuse-condition is true or if the loop

is executed for the first time.

As the performance results in Section 5 clearly

show, the reuse of communication schedules is the

key feature in achieving acceptable performance for

codes processed with runtime parallelization tech-

niques. Note, however, that the reuse of communica-

tion schedules usually increases the memory require-

ments of a program, since data structures allocated dur-

ing the preprocessing phases for storing access patterns

and communication schedules can no longer be deallo-

cated after an independent loop.

Optimizations based on halos and RESIDENT

For distributed arrays for which the user has speci-

fied the HALO attribute the inspector phase can be dras-

tically simplified. A halo specifies all non-local ref-

erences to a particular distributed array for the dura-

tion of the program execution. At the time the distri-

bution of an array is determined, the information pro-

vided by a halo is used to allocate storage for non-local

data on each processor and to compute a communica-

tion schedule. This schedule is then used for all occur-

rences of this array in the program. As a consequence,

references to such an array do not require a full inspec-

tor phase; only the conversion from global to local in-

dices has to be performed. The same holds for arrays

for which the RESIDENT clause has been specified.

5. Performance results

We present performance results on two distributed

memory machines, a QSW CS-2 with 32 SPARC

processors (50 MHz) and a NEC Cenju-3 with 128

VR4400 (75 MHz) processors, for two kernels devel-

oped in the HPF+ project. The HPF+ kernels have been

parallelized with VFC 1.1 and the generated message-

passing programs have been compiled with the SUN

F90 1.2 compiler on the QSW-CS-2 and with the NEC

F90 2.1 compiler on the NEC Cenju-3, respectively.

In Figs 6 and 7 the performance of these kernels,

both in terms of absolute times and speed-ups with re-

spect to the sequential code versions, is compared to

the performance of the HPF+ program compiled with

the Fortran 90 compiler and executed sequentially, and

to hand-written MPI message-passing programs. In or-

der to assess the importance of the reuse of commu-

nication schedules Figs 6 and 7 also include the tim-

ings for a variant of the HPF+ kernels that did not reuse

communication schedules.

5.1. Crash simulation kernel

The first kernel, developed by Guy Lonsdale, rep-

resents the basic stress-strain calculation of a crash-

simulation code [15] based on 4-node shell elements.

The kernel used in our evaluation employed an un-

structured mesh with 25760 nodes and 25600 ele-

ments. The total size of the kernel is approximately 600

lines of code. A simplified structure of the kernel is

shown in Fig. 4. Array X represents the coordinates of

the nodal points, IX captures the connectivity of the el-

ements in the unstructured mesh, and F and V represent

76 S. Benkner / VFC: The Vienna Fortran Compiler

REAL x(3,NNP), ix(4,NEL), f(6,NNP),

v(6,NNP)

!HPF$ PROCESSORS R(NUMBER_OF_PROCESSORS())

!HPF$ DISTRIBUTE(*,BLOCK) :: X, IX, F, V

...

DO i=1, MAX_TIMES

...

CALL update(f, v, x)

CALL kforce(f, x, ix)

END DO

...

SUBROUTINE kforce(f, x, ix, ...)

...

!HPF$ INHERIT, RANGE(*,BLOCK) :: f, x, ix

INTERFACE

SUBROUTINE mforce(fn, xn)

!HPF$ PUREST

...

END SUBROUTINE mforce

END INTERFACE

...

!HPF$ INDEPENDENT, NEW(n1,..,fn,xn), &

!HPF$ REDUCTION(f), ON HOME(ix(1,i)), REUSE

DO i = 1, NEL

n1 = ix(1,iel)

...

DO j = 1, 3

xn(j,1) = x(j,n1)

...

END DO

CALL mforce(fn, xn)

DO j = 1, 6

f(j, n1) = f(j, n1) = fn(j, 1)

...

END DO

END DO

END SUBROUTINE kforce

Fig. 4. Fragment from crash simulation kernel.

the forces and velocities at nodal points. The kernel

is based on an explicit time-marching scheme which

is represented by an outer time-step loop performing

1000 iterations. From within this loop, the subroutine

KFORCE to calculate the shell-element forces and UP-

DATE to update the velocities and displacements ac-

cording to the computed forces are called. The IN-

DEPENDENT loop in KFORCE represents the element-

wise force calculation. Before the call to MFORCE all

required data is gather into private temporary variables

which are declared as NEW in the INDEPENDENT di-

rective. The communication required for gathering dis-

tributed data is determined at runtime by means of an

inspector. The major part of the computational cost of

the algorithm is within the procedure MFORCE which

exclusively operates on processor-private data only,

and thus does not require communication. This is in-

dicated to the compiler by providing the PUREST at-

tribute in the interface of MFORCE. After the call to

MFORCE a sum-scatter reduction operation to add back

the elemental forces to the forces stored in the nodes is

performed.

The irregular loop in KFORCE is processed with the

runtime parallelization techniques as described in Sec-

tion 4.3. VFC generates two inspectors to generate the

communication schedules required for accessing X and

F, respectively. Since the loop iteration space, the dis-

tribution of F, X, and IX, and the contents of IX

are invariant, these schedules, once computed, can be

reused for all time-steps. In the code this is expressed

by means of the REUSE clause.

In Fig. 6 two variants of the HPF+ kernel, with and

without schedule reuse, are compared with the sequen-

tial Fortran 90 version (i.e., the HPF+ program com-

piled with the Fortran 90 compiler), with a sequen-

tial Fortran 77 version, and with a hand-written For-

tran 77 message-passing program. The figures clearly

show that acceptable performance of the HPF+ code

can be achieved only in the case where the schedules

of the irregular loop in MFORCE are computed only

once and reused in the remaining 999 iterations. The

gap between the version of the HPF+ kernel with and

without schedule resue is more than a factor 10. Sim-

ilar and even larger slow downs have been observed

using commercial HPF compilers. Although the HPF+

kernel (with schedule reuse) shows a quite good scal-

ing behaviour the total slow-down w.r.t the hand-coded

MPI/F77 kernel is still about 2.5 on the CS-2 and about

2.2 on the Cenju-3.

This overhead results to a large extent from the less

efficient executor code generated by the VFC com-

piler for the main computational loop. In this loop the

MPI/F77 code utilizes temporary scalar variables to

reduce the number of accesses to the indirection ar-

ray IX. The VFC compiler, however, substitutes these

scalar variables prior to parallelizing the loops, and

does not yet perform common sub-expression elimina-

tion in the code generation phase. The worse scaling of

the HPF+ kernel on more than 32 processors is mainly

due to the communication overhead generated by the

VFC compiler.

5.2. Weather prediction kernel

The second kernel, developed by George Mozdzyn-

ski, was extracted from the Integrated Weather Fore-

casting System (IFS) [2] of the European Centre

for Medium Range Weather Forecasts (ECMWF). It

S. Benkner / VFC: The Vienna Fortran Compiler 77

!HPF$ PROCESSORS R1(NP)

!HPF$ PROCESSORS R2(NP1,NP2)=RESHAPE(R1)

!HPF$ DISTRIBUTE(GEN_BLOCK(B),INDIRECT(MF)) :: ZGL

!HPF$ DISTRIBUTE(INDIRECT(MAPGP),*) :: ZGA,ZGB

ALLOCATE(ZGL(NPROMAG,NGT))

ALLOCATE(ZGA(NGPTOTG,NGT), ZGB(NGPTOTG,NGT))

...

DO I=1, MAX_TIMES

!HPF$ INDEPENDENT,NEW(J),REUSE(LREUSE)

DO JFLD=1,NGT ! GTOL transposition

!HPF$ INDEPENDENT

DO J=1,NGPTOTG

ZGL(INDL(J),JFLD)=ZGA(J,JFLD)

ENDDO

ENDDO

CALL SIMFFT(ZGL,...) ! HPF_LOCAL routine

!HPF$ INDEPENDENT,NEW(J),REUSE(LREUSE)

DO JFLD=1,NGT ! LTOG transposition

!HPF$ INDEPENDENT

DO J=1,NGPTOTG

ZGB(J,JFLD)=ZGL(INDL(J),JFLD)

ENDDO

ENDDO

CALL SIMPHYS(ZGB,...) ! HPF_LOCAL routine

...

END DO

Fig. 5. Fragment from weather prediction kernel.

presents key issues arising in the representation of

the IFS grid-point data spaces and the transpositions

performed therein. As shown in Fig. 5, the kernel

is characterized by two computational phases (sim-

ulated FFTs and physics) where no communication

is required, and the two grid-point space transposi-

tions, which require communication. grid point space

(or physical space) is a quasi-regular (so-called re-

duced) 3 dimensional grid in which the number of

grid points per latitude is reduced as the poles are

approached. Grid point space cannot be represented

by simple BLOCK or CYCLIC distributions without

the severe overhead of additional interprocessor com-

munication during the algorithmic stages. Instead a

combination of GEN_BLOCK and INDIRECT distri-

butions is required. As in the IFS production code,

the computational routines to perform the Fast Fourier

Transforms (SIMFFT) and to simulate the physics

calculations (SIMPHYS) have been integrated based

on the efficient HPF_LOCAL extrinsic mechanism.

The subroutines SIMPHYS and SIMFFT are sequen-

tial routines which operate exclusively on data lo-

cal to a processor and thus are not modified by the

compiler. For the transpositions in grid point space

nested INDEPENDENT loops with indirect array ac-

cesses were used. The communication schedules of

these irregular loops were computed only once in the

first time-step and reused in subsequent time-steps

based on the information provided by the REUSE

clause.

The kernel has been coded using modules with al-

locatable arrays. This dynamic structure allows to use

the same executable for different resolutions, and re-

sembles exactly the structure used in the IFS produc-

tion code. The kernel used in our evaluation employed

a grid point space at resolution T213 with a total of

134028 grid points and performed a total of 1000 time-

steps. It consists of 42 source files with a total of ap-

proximately 5000 lines of code.

As shown in Fig. 7 the HPF+ kernel performs almost

as well as the hand-coded message-passing kernel ex-

hibiting a speed-up of 120 on 128 processors.

78 S. Benkner / VFC: The Vienna Fortran Compiler

Fig. 6. HPF+ Crash Simulation Kernel. This diagram shows the speed-up and absolute run-times of the hand-coded MPI message-passing crash

simulation kernel and the equivalent HPF+ kernel on the QSW CS-2 and the NEC Cenju-3. On the QSW CS-2 (Fig. 6.1 and 6.2) the MPI kernel

was compiled with the SUN F77 compiler, while the VFC employed the SUN F90 to compile the generated message-passing program. Similarly,

on the NEC Cenju-3 (Fig. 6.3 and 6.4) the MPI kernel was compiled with the F77 compiler while the VFC used the NEC F90 compiler to compile

the parallelized HPF+ kernel. The speed-up of the HPF+ kernel has been computed with respect to the HPF+ program compiled with the F90

compiler of the target architecture and executed on a single node. The scalability obtained with HPF+ and VFC is quite satisfactory and close

to the message-passing kernel. However, on the Cenju-3 it can be seen that scalability on more than 32 processors is significantly worse than

that observed for the hand-written message-passing kernels. This is mainly due to the less efficient communication generated by VFC. In the

hand-written message-passing code communication is performed on each processor only with its direct neighbors, whereas the code generated

by VFC is based on all-to-all communication primitives. The elapsed times of the HPF+ kernel are approximately a factor 2.5 slower than those

of the MPI kernel. Besides the all-to-all communication, this overhead results to a large extent from the less efficient executor code generated by

VFC which does not employ common sub-expression elimination to reduce the number of accesses to the indirection array IX.

6. Related work

A number of research compilers for HPF and HPF-

like languages have been or are being developed. In the

following, some are briefly discussed.

The PARADIGM compiler [1] is a source-to-source

parallelizing compiler based upon Parafrase-2 which

accepts a sequential Fortran 77 or HPF program and

produces an optimized message-passing Fortran 77

parallel program.

S. Benkner / VFC: The Vienna Fortran Compiler 79

Fig. 7. HPF+ Weather Prediction Kernel. Figure 7.1 shows the speed-up of the hand-coded MPI message-passing and the equivalent HPF+ kernel

with respect to the same serial version of the kernel. Fig. 7.2 shows the average time of 1 time-step of the serial kernel, of the HPF+ kernel without

and with schedule resue, and of the hand-coded message-passing kernel. Unlike the crash-simulation kernels, the NEC Fortran 90 compiler

was used to compile both the MPI message-passing program and the code generated by VFC. The HPF+ kernel performs almost as well as the

message-passing kernel, which shows perfect scaling. The HPF+ code shows a speed-up of 120 on 128 processors. In terms of elapsed time the

HPF+ kernel is only about 10% slower than the hand-coded MPI kernel. The HPF+ kernel could not be run on two processors due to memory

constraints.

The sHPF system [25] transforms a Subset HPF pro-

gram into a message-passing Fortran 90 program with

calls to the ADLIB runtime library [12]. Parallel exe-

cution in sHPF is obtained from the use of Fortran 90

array syntax.

ADAPTOR [8] is a source-to-source transformation

system for HPF that generates Fortran SPMD pro-

grams containing calls to the DALIB runtime sys-

tem. Besides block and cyclic distributions ADAPTOR

supports generalized block distributions. Moreover the

system provides language support for reusing commu-

nication schedules based on the TRACE option, which

allows the user to specify that the compiler should keep

track of certain indirection arrays. Besides optimizing

compilation techniques for regular loops and array as-

signments, ADAPTOR implements a limited form of

the inspector/executor strategy. Unlike the VFC com-

piler which generates inspector code, ADAPTOR im-

plements the inspector phase by calls to runtime library

procedures. As a consequence, it can not handle non-

perfectly nested loops or coupled array subscripts.

HPFC [23] is a Fortran 77 based prototype HPF

compiler generating Fortran 77 message-passing pro-

grams with calls to a PVM based runtime library.

HPFC provides extensions of HPF for the specification

of local code regions. Although both ADAPTOR and

HPFC provide preliminary support for dynamic redis-

tribution, none of these systems can handle multiple

reaching distributions.

The Fortran D compiler [22] converts Fortran D

programs to F77 SPMD message-passing programs.

Data distributions are restricted to single array dimen-

sions and the number of processors has to be fixed at

compile-time. Inspector/Executor parallelization tech-

niques are applied for irregular computations.

The VFCS [5], the predecessor of VFC, is a source-

to-source transformation system for Fortran 77 with

Vienna Fortran and HPF extensions. VFCS supports

besides block and generalized block distributions re-

stricted forms of indirect distributions. Unlike VFC,

VFCS supports only static distributions and requires

the number of processor to be fixed at compile-time.

The PREPARE [9] compiler transforms a subset

HPF-1 program into an SPMD message-passing pro-

gram. Besides implementing a number of optimization

techniques for regular codes, the system can handle

limited forms of irregular loops based on the inspec-

tor/executor strategy.

Most of the above mentioned source-to-source com-

pilers transform distributed multidimensional arrays

into one-dimensional arrays. This linearization usually

results in more complicated subscript expressions, and

as a consequence, may inhibit important optimizations

of the underlying target compiler. In contrast, VFC

80 S. Benkner / VFC: The Vienna Fortran Compiler

transforms distributed arrays into ALLOCATABLE ar-

rays. Accesses to distributed arrays are not linearized,

but subscript expressions are translated in a dimension-

wise fashion.

7. Conclusions

In this paper we presented the HPF+ compiler

VFC, a source-to-source parallelization system that

transforms Fortran95/HPF+ programs to Fortran 90

message-passing programs. VFC provides special sup-

port for an efficient handling of advanced codes based

on highly irregular, possibly dynamically changing

data structures and access patterns. VFC implements

most features of HPF+, an optimized version of HPF

for irregular codes. This includes block, cyclic, gen-

eralized block and indirect distributions, distributed

components of derived types, processor views, distri-

bution to processor subsets, dynamic data redistribu-

tion, and on-clauses. VFC offers powerful compilation

strategies for nested loops with indirect accesses to ar-

rays distributed in multiple dimensions, and performs

important optimizations that decisively influence a pro-

gram’s performance such as the reuse of runtime gen-

erated communication schedules. Performance results

with kernels extracted from advanced industrial appli-

cations indicate that the HPF paradigm, if suitably ex-

tended, may be successfully applied to irregular codes.

Future extensions of the VFC system will include

additional analysis and optimization techniques. The

parallelization strategy for irregular loop nests will

be extended to loops with a non-rectilinear iteration

space. Furthermore, distributed arrays of derived types

will be implemented. This will include mechanisms for

serializing derived type data objects. Task parallel fea-

tures based on on-directives and task-regions [20] and

coordination mechanism as proposed in OPUS [14] are

currently being implemented. For an efficient handling

of such features we plan to utilize one-sided communi-

cation primitives of MPI-2 [27].

Acknowledgment

The author would like to thank Viera Sipkova, Bob

Velkov and Kamran Sanjari for their work in imple-

menting the VFC compiler, and Guy Lonsdale and

George Mozdzynski for providing the MPI and HPF+

kernels.

References

[1] P. Banerjee, J.A. Chandy, M. Gupta, E.W. Hodges, J.G. Holm,

A. Lain, D.J. Palermo, S. Ramaswamy and E. Su, The

PARADIGM compiler for distributed-memory multicomput-

ers, IEEE Computer 28(10) (1995).

[2] S. Barros, D. Dent, L. Isaksen, G. Robinson, G. Mozdzyn-

ski and F. Wollenweber, The IFS model: A parallel production

weather code, Parallel Computing 21 (1995).

[3] S. Benkner, HPF+: High Performance Fortran for advanced in-

dustrial applications, in: Proceedings International Conference

on High Performance Computing and Networking (HPCN’98),

Amsterdam, April 1998, Springer, Berlin.

[4] S. Benkner, P. Mehrotra, J. Van Rosendale and H. Zima, High-

level management of communication schedules in HPF-like

languages, in: ACM Proceedings International Conference on

Supercomputing, Melbourne, Australia, July 1998. Also avail-

able as: NASA Contractor Report 201740, ICASE, Hampton,

VA, September 1997.

[5] S. Benkner et al., Vienna Fortran Compilation System. Version

1.2. User’s Guide, Univ. of Vienna, Inst. for Software Technol-

ogy and Parallel Systems, February 1996.

[6] S. Benkner, Handling block-cyclic distributed arrays in Vienna

Fortran 90, in: IEEE Proceedings International Conference on

Parallel Architectures and Compilation Techniques (PACT’95),

Limassol, Cyprus, June 1995.

[7] S. Benkner, Vienna Fortran 90 and its compilation, Ph.D. The-

sis. TR 94-8, University of Vienna, Institute for Software Tech-

nology and Parallel Systems, 1994.

[8] T. Brandes and F. Zimmermann, ADAPTOR – A transforma-

tion tool for HPF programs, in: Programming Environments

for Massively Parallel Distributed Systems, Birkhäuser-Verlag,

1994, pp. 91–96.

[9] P. Brezany, O. Cheron, K. Sanjari and E. van Konijnen-

burg, Processing irregular codes containing arrays with multi-

dimensional distributions by the PREPARE HPF compiler, in:

Proceedings International Conference on High Performance

Computing and Networking, Milan, May 1995.

[10] M. Calzarossa, L. Massari, A. Merlo, M. Pantano and

D. Tessera, Integration of a compilation system and a perfor-

mance tool: The HPF+ approach, in: Proceedings International

Conference on High Performance Computing and Networking,

Amsterdam, April 1998, Springer, Berlin.

[11] M. Calzarossa, L. Massari, A. Merlo, M. Pantano and

D. Tessera, Medea: a tool for workload characterization of par-

allel systems, IEEE Parallel Distrib. Technol. 3(4) (1995), 72–

80.

[12] B. Carpenter, Adlib: A distributed array library to support HPF

translation, in: Proceedings 5th Workshop on Compilers for

Parallel Computers, Malaga, June 1995.

[13] B. Chapman, H. Zima and P. Mehrotra, Extending HPF for Ad-

vanced Data Parallel Applications, IEEE Parallel Distrib. Tech-

nol. (Fall 1994).

[14] B. Chapman, H. Zima, M. Haines, P. Mehrotra and

J. Van Rosendale, OPUS: A coordination language for multi-

disciplinary applications, J. Sci. Programming (1995).

S. Benkner / VFC: The Vienna Fortran Compiler 81

[15] J. Clinckemaillie, B. Elsner, G. Lonsdale, S. Meliciani, S. Vla-

choutsis, F. de Bruyne and M. Holzner, Performance issues of

the parallel PAM-CRASH code, J. Supercomput. Appl. High-

Performance Comput. 11(1) (1997).

[16] R. Das and J. Saltz, A manual for PARTI runtime primitives –

Revision 2. Internal Research Report, University of Maryland,

December 1992.

[17] R. Das, J. Saltz and R. von Hanxleden, Slicing analysis and in-

direct accesses to distributed arrays, in: Proceedings 6th Work-

shop on Languages and Compilers for Parallel Computing, Au-

gust 1993, Springer, Berlin.

[18] J. Grosch and H. Engelmann, A tool box for compiler construc-

tion, in: Lecture Notes Comput. Sci., Vol. 447, Springer, Berlin,

1990, pp. 106–116 .

[19] High Performance Fortran Forum, High Performance For-

tran Language Specification. Version 1.1. TR, Rice University,

November 10, 1994.

[20] High Performance Fortran Forum, High Performance Fortran

Language Specification. Version 2.0. TR, Rice University, Jan-

uary 31, 1997.

[21] ISO, Fortran 90 Standard, May 1991, ISO/IEC 1539 :1991 (E).

[22] M.W. Hall, S. Hirandani, K. Kennedy and C.-W. Tseng, In-

terprocedural compilation of Fortran D for MIMD distributed-

memory machines, in: Proceedings of Supercomputing (SC92),

Minneapolis, November 1992.

[23] R. Keryell, C. Ancourt, F. Coelho, B. Creusillet, F. Irigoin and

P. Jouvelot, PIPS: A framework for building interprocedural

compilers, parallelizers and optimizers, Technical Report 289,

CRI, Ecole des Mines de Paris, April 1996.

[24] J. Knoop and E. Mehofer, Interprocedural distribution assign-

ment placement: More than just enhancing intraprocedural

placing techniques, in: IEEE Proceedings International Con-

ference on Parallel Architectures and Compilation Techniques

(PACT’97), San Francisco, CA, November 1997.

[25] J.H. Merlin, D.B. Carpenter and A.J.G. Hey, SHPF: A Subset

High Performance Fortran compilation system, Fortran Jour-

nal (March/April 1996), 2–6.

[26] Message Passing Interface Forum, MPI: A Message-Passing

Interface Standard Vers. 1.1, June 1995.

[27] Message Passing Interface Forum, MPI-2: Extensions to the

Message-Passing Interface, 1997.

[28] R. von Hanxleden, K. Kennedy, C. Koelbel, R. Das and J. Saltz,

Compiler analysis for irregular problems in Fortran D, in: Pro-

ceedings of the 5th Workshop on Languages and Compilers for

Parallel Computing, New Haven, August 1992.

[29] D.J. Palermo, E.W. Hodges and P. Banerjee, Interprocedural ar-

ray redistribution data-flow analysis, in: Proceedings of the 9th

Workshop on Languages and Compilers for Parallel Comput-

ing, San Jose, CA, August 1996.

[30] R. Ponnusamy, J. Saltz and A. Choudhary, Runtime compila-

tion techniques for data partitioning and communication sched-

ule reuse, Technical Report, UMIACS-TR-93-32, University of

Maryland, April 1993.

[31] H. Zima, P. Brezany, B. Chapman, P. Mehrotra and A. Schwald,

Vienna Fortran – a language specification, ICASE Internal Re-

port 21, ICASE, Hampton, VA, 1992.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

