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VFD Machinery Vibration Fatigue Life and

Multilevel Inverter Effect
Xu Han and Alan B. Palazzolo

Abstract—This paper documents fatigue-related mechanical
failures in variable-frequency drive (VFD) motor machinery due
to mechanical vibrations excited by drive torque harmonics which
are created by pulse width modulation (PWM) switching. Present
effort models the coupled system with a full electrical system (in-
cluding the rectifier, dc bus, inverter, and motor), and an industrial
mechanical system (including flexible couplings, gearboxes, and
multiple inertias). The models are formed by a novel combination
of a commercial motor code with a general self-written mechanical
code. The approach extends failure prediction beyond the simple
occurrence of resonance to fatigue life evaluation based on the
rain-flow algorithm, which is suitable for both steady state and
transient start-up mechanical response. The second contribution
is a demonstration that the common use of a multilevel inverter to
reduce voltage/current harmonics may actually exacerbate reso-
nance and fatigue failure. This is shown to be caused by a resulting
amplitude increase of torque components in proximity to potential
resonance frequencies.

Index Terms—Fatigue, rain-flow, variable-frequency drive
(VFD), vibration.

I. INTRODUCTION

PREVIOUS papers in this area ascertained failure based

only on whether coincidence (resonance) of a variable-

frequency drive (VFD) torque harmonic frequency and a me-

chanical natural frequency occurred and provided examples

with models of relatively simple machinery trains. The short-

comings of this approach are that damping may act to mitigate

fatigue failure even with resonance, the amplitude of the torque

harmonic at resonance may be too small to cause large stresses,

high stresses due to resonance may occur only for a brief period

during the start-up of the motor, and the approach does not pro-

vide the time or number of cycles (events) to failure. Machinery

trains possess torsional vibration damping that originates in

specialized couplings that connect the machinery components

and/or have torque harmonics that are insignificant. Thus, judg-

ing that a machine will fail based solely on the coincidence of a

torque harmonic and a natural frequency may overly constrain

the design. A better design practice is to predict damage and
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life based on the simulated torsional stress response to VFD

motor-induced mean and alternating stresses.

II. LITERATURE REVIEW

The literature on vibration control and life prediction in non-

VFD torsional vibration machinery trains is quite extensive. For

instance, the transitory torsional resonance of a conventional

drive synchronous motor machinery train due to a dynamic

torque at twice the slip frequency is discussed in [1]–[3]. VFD-

related torque harmonics and their causes have been analyzed

in several references [4], [5]. Holmes [4] provides theoretical

expressions for the torque harmonic frequencies as a function

of the pulse width modulation (PWM) switching frequency.

Inverter control-induced torque harmonics, including the first,

second, and sixth torque harmonics, are analyzed in [5]. This

reference also considers the dc component of phase current,

asymmetric deadtime voltage, and magnetic saturation, which

play important roles in generating torque harmonics.

Torsional machinery vibration problems related to the usage

of VFDs were reported as early as the 1980s [6]. The case

history in [7] verified the earlier predictions with actual test

field operation measurements. This was followed by a series

of papers documenting failures that occurred in industrial VFD

machinery trains [8]–[13]. The measurements in [7] showed

that the incorporation of the VFD resulted in a significant

increase in torsional vibration. Accurate prediction of the VFD-

related torque harmonics at the design stage was a formidable

task, in part due to their dependence on the power switch type,

control law, measurement sensor, electrical and mechanical

system interactions, etc. This caused a high uncertainty in

reliability prior to the actual operation of the machinery.

Some VFD-related research shows that the reduction of the

total harmonic distortion (THD) is possible by implementing

higher level inverter schemes [14], [15]. Although this is true

and also beneficial from the standpoint of reducing electromag-

netic interference (EMI) and ohmic losses, it does not guarantee

that all components of torque are reduced, and as shown by

our example, certain harmonics may actually increase as the

inverter level increases and further exacerbate a high-cycle fa-

tigue problem. A recent publication [16] provides formulas for

the torque harmonic frequencies and the relationships between

torque and current harmonic frequencies, which are verified by

both simulations and tests. These authors develop a particularly

clever approach for eliminating entire series of torque harmon-

ics by implementing a PWM carrier frequency interleaving on

a four-thread VFD. A possible drawback to this approach is an

0093-9994 © 2013 IEEE
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Fig. 1. VFD machinery train with VSI.

increase in hardware cost and lower reliability. The example

presented here demonstrates alternative approaches for mitigat-

ing the effects of a problematic torque harmonic by increasing

the damping in the machinery couplings or by changing the

PWM switching frequency or the electrical frequency.

Although the aforementioned references provide excel-

lent treatment for the determination of VFD-related dynamic

torques, they lack a means for predicting vibrations and life of a

complete machinery train that has significant coupling between

its mechanical and electrical subsystems. This task is addressed

by the present approach that includes a high fidelity total system

model and analysis that extends from the three-phase power

input source of the dc bus to the torsional stresses and fatigue

life of all mechanical components. This enables one to optimize

the design of a torsional machinery system by selecting param-

eter values from a parameter space which includes mechanical

parameters (such as moments of inertias, coupling stiffness,

etc.), and electrical parameters (such as IGBTs, motor stator

inductances and resistances, etc.), in order to extend life. The

prediction of life is based on a rain-flow stress cycle counting

process that is applicable to transient phenomena such as start-

ups or steady-state harmonic near-resonance vibration.

III. THEORY

A. VFD System

A complete VFD machinery system can be divided into two

major subsystems—electrical and mechanical—as shown in

Fig. 1.

The electrical–mechanical subsystem interface is the electri-

cal motor. The electromagnetic torque is generated inside the

motor due to electromagnetic interactions, and the motor rotor

is part of the mechanical system. The mathematical model of an

induction motor shown hereinafter employs the q-d frame [17]

approach, which is obtained by coordinate transformation from

a three-phase a-b-c frame.

Kirchoff’s voltage balance equations are as follows:

vds = rsids + d/dtλds − ωλqs (1)

vqs = rsiqs + d/dtλqs + ωλds (2)

v′dr = r′ri
′
dr + d/dtλ′

dr − (ω − ωr)λ
′
qr (3)

v′qr = r′ri
′
qr + d/dtλ′

qr + (ω − ωr)λ
′
dr. (4)

Fig. 2. Two-level inverter topology.

Flux-current relation equations are as follows:

λds =Llsids + Lm (ids + i′dr) (5)

λqs =Llsiqs + Lm

(

iqs + i′qr
)

(6)

λ′
dr =L′

lri
′
dr + Lm (ids + i′dr) (7)

λ′
qr =L′

lri
′
qr + Lm

(

iqs + i′qr
)

. (8)

Torque-current relation equations are as follows:

Te =
3

2

P

2
Lm

(

iqsi
′
dr − idsi

′
qr

)

(9)

where v and i represent voltage and current qualities, re-

spectively; r, L, and λ represent resistance, inductance, and

flux qualities, respectively; subscripts q and d indicate q- and

d-axis components, respectively; subscripts s and r indicate

stator and rotor components, respectively; subscript m indicates

the magnetizing component; superscript ′ indicates the turn

ratio transformation; ωr is the rotor angular velocity in radians

per second; Te is the electromagnetic torque; and P is the

number of pole pairs.

The three-phase ac voltage source provides electric power

to the entire system. This voltage is applied to the input of a

rectifier stage which converts the ac power to dc. Capacitors/

inductors and filters are implemented on the dc bus to smooth

the voltage/current by filtering harmonics.

The inverter converts dc voltage/current into ac with the

desired amplitude and frequency by utilizing PWM techniques

controlled by switching signals from the controller, which
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Fig. 3. PWM signals for two- and five-level inverters. (a) Two-level inverter. (b) Five-level inverter.

determines the trigger sequence and time intervals based on the

control algorithm.

The conventional type of PWM inverter is a two-level in-

verter, which has two voltage levels and six switches for three

arms (see Fig. 2). The output is a square waveform as shown in

Fig. 3(a) with one high voltage level and one low voltage level.

The approach for avoiding some of the harmonics of the two-

level inverter is to employ a multilevel PWM inverter, which

has multiple voltage levels and more accurately approximates

a sine wave as illustrated in Fig. 3(b). The THD is reduced by

using multilevel inverters [14], [15], where THD is the ratio of

the sum of all higher harmonic amplitudes to the fundamental

frequency power amplitude when the input is an ideal sine wave

THD =
√

V 2
2 + V 2

3 + · · ·+ V 2
n /V1. (10)

Both the two-level and multilevel inverters “chop” the input

dc voltage at a high frequency. The chopped voltage/current

signal contains many high frequency harmonics which interact

with the motor fundamental frequency, resulting in relatively

low frequency torque harmonics as given in [16]

fT = |m · fPWM ± n · fe| (11)

where m and n are integers such that

(1)

{

m = 0
n = 6j, ∀ j = 1, 2, 3, . . .

(2)

{

m = 2i, ∀ i = 1, 2, 3, . . .
n = 3(2j), ∀ j = 0, 1, 2, . . .

(3)

{

m = 2i+ 1, ∀ i = 0, 1, 2, . . .
n = 3(2j + 1), ∀ j = 0, 1, 2, . . .

.

The frequencies provided by these formulas appear in the

numerical example’s torques provided later in this paper. A

resonance is said to occur if one of these torque frequencies

coincides with a mechanical natural frequency. The torsional

motion and stress amplitudes at resonance depend on the am-

plitude of the corresponding torque harmonic, its proximity to

the natural frequency, and the damping of the vibration mode in

resonance. Severe vibration and possible failure may result even

if the torque harmonic amplitude at the resonance frequency is

low when the damping is very light, so users and manufacturers

employ couplings that add damping.

For the sake of illustration and because of their widespread

usage, only voltage source inverters (VSIs) with open-loop

volt/hertz method are considered here. In addition to the torque

harmonic due to the PWM, other torque harmonics induced by

VSI are discussed in [5], including the effect of deadtime com-

pensation based on current measurement, asymmetric deadtime

voltage, and magnetic saturation.

B. Mechanical System

A mechanical system is composed of inertias, shafts, cou-

plings, bearings, gears, etc. In this paper, the machinery train is

modeled with lumped masses at n nodes and with n− 1 beam

elements that connect the nodes. Each element between two

neighboring nodes is modeled with a stiffness and a damping.

The gears are considered as rigid teeth for the torsional motion

model. There is only one degree of freedom (DOF) θi on each

node if only torsional motion is considered, where i indicates

the node number.

The inertia matrix for a n node model without gears is

I =

⎡

⎢

⎢

⎣

I1 0
I2

. . .

0 In

⎤

⎥

⎥

⎦

(12)

where Ii is the lumped inertia at the ith node.

The shaft element stiffness matrix and damping matrix con-

necting two nodes are given by

Ki,i+1 =

[

ki,i+1 −ki,i+1

−ki,i+1 ki,i+1

]

(13)

Ci,i+1 =

[

ci,i+1 −ci,i+1

−ci,i+1 ci,i+1

]

(14)
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where ki,i+1 and ci,i+1 are the stiffness and damping between

node i and i+ 1, respectively.

The shaft element stiffness connecting nodes i and i+ 1 is

ki,i+1 =
Gi,i+1Ji,i+1

Li,i+1

(15)

where G is the shear modulus of the element, L is the length of

the element, and J is the torsion constant.

The system stiffness and damping matrix is assembled from

ki,i+1, ci,i+1, and bearing damping at each node

K
n×n

=

⎡

⎢

⎢

⎢

⎢

⎣

k1,2 −k1,2 0 · · · 0
−k1,2 k1,2 + k2,3 −k2,3
0 −k2,3 k2,3 + k3,4
...

. . .
...

0 · · · kn−1,n

⎤

⎥

⎥

⎥

⎥

⎦

(16)

Cs
n×n

=

⎡

⎢

⎢

⎢

⎢

⎣

c1,2 −c1,2 0 · · · 0
−c1,2 c1,2 + c2,3 −c2,3
0 −c2,3 c2,3 + c3,4
...

. . .
...

0 · · · cn−1,n

⎤

⎥

⎥

⎥

⎥

⎦

(17)

Cb
n×n

=

⎡

⎢

⎢

⎢

⎢

⎣

cb1 0 0
0 cb2 0
0 0 cb3

. . .
...

0 · · · cbn

⎤

⎥

⎥

⎥

⎥

⎦

(18)

where cbi is the bearing damping of node i.
The external torque applied to the system is

T
n×1

=

⎡

⎣

T1

...

Tn

⎤

⎦ . (19)

The complete mechanical system equation of motion is

I
n×n

θ̈
n×1

+

(

Cs
n×n

+ Cb
n×n

)

θ̇
n×1

+ K
n×n

θ
n×1

= T
n×1

. (20)

For a system with n nodes and m set of gears, the system

has n−m DOFs since a gear set adds a motion constraint

between the driver gear and the follower. The system state mass,

stiffness, and damping matrices can be easily derived with a

gear ratio transform. Details are provided in [18].

Note that the gear can induce torsional vibration at the

frequency of the number of the gear tooth times the rotating

speed. This is critical when considering premature tooth wear.

However, this paper only focuses on the resonance of lower

shafting-related modes.

Fig. 4. Typical S–N curve.

C. Torsional Fatigue and Life Prediction

1) S–N Curve: The cyclic stress–life relation for ductile

materials undergoing cyclic constant amplitude stress is typi-

cally described by an S–N curve [19], as shown in Fig. 4.

The S–N curve is typically expressed in the form shown in

Fig. 4, where Sf is the cyclic stress amplitude, N is the number

of cycles to failure, and the constants a and b are typically

defined from the N = 103 and N = 104 points as

a =(fSut)
2/Se (21)

b = −1/3 log(fSut/Se) (22)

where f is the fatigue strength fraction, Sut is the ultimate

stress, and Se is the endurance limit.

Then, the number of cycles to failure can be calculated from

N = (σa/a)
1/b (23)

where σa is the alternating stress amplitude.

2) Effective Shear Stress: The combination of mean and

alternating stresses requires the definition of an effective stress

for determining fatigue life by using the S–N curves. The shear

stress in a shaft or coupling due to pure torsional loading is

given by

τ =Ttrans · router/J (24)

J =π/2
(

r4outer − r4inner
)

(25)

where τ is the shear stress, Ttrans is the transmitted torque

through the coupling/shaft, router is the outer radius of the

coupling/shaft, rinner is the inner radius of the coupling/shaft,

and J is the torsion constant.

Wang [19] states that: “Experimental results tend to show

that the value of the mean shear stress has no influence on

the fatigue life of a ductile structural component subjected to

cyclic torsional loading as long as the maximum stress is less

than the yield strength of the material. Shigley and Mitchell

stated ‘up to a certain point, torsional mean stress has no

effect on the torsional endurance limit’. Hence, the plot of the

alternating shear stress τa versus mean shear stress τm bound

by a horizontal line with τa = τe and a 45 deg yield line.” This

is illustrated in Fig. 5.
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Fig. 5. Pure torsion load criterion, where τe is the endurance limit, τy is the
torsional yield strength, τm is the mean stress, and τa is the alternating stress.

Loss of life occurs for a fluctuating pure torsional load with

τm and τa when either

τm < τy − τe and τa > τe

⇒ τeff = τa (mean stress has no influence) or

τm > τy − τe and τa > τy − τm

⇒ τeff =
τa

(

τy−τm
τe

) (mean stress has influence).

Endurance limit τe values provided in the reference literature

typically correspond to highly polished “ideal” specimens. The

reduction in endurance limit due to manufacturing, installation,

loading, and environmental conditions is accounted for by

multiplying the ideal endurance limit by so-called Marin factors

[20], as expressed by

τ ′e = τe × ka × kb × kc × kd × ke × kf (26)

where ka = 1.58× S−0.086
ut is the surface factor using ground

finish (Sut in megapascals); kb = 1.24× d−0.107(2.79 < d <
51) or 1.51× d−0.157(51 < d < 254) is the size factor, where

d is the shaft diameter in millimeters; kc = 0.577 is the loading

factor for torsion; kd = 1 is the temperature factor for 20 ◦C;

ke = 0.897 is the reliability factor for 90% reliability; and

kf = 1 is the miscellaneous effect factor.

The effective shear stress should be multiplied by a stress

concentration factor if geometric discontinuities, such as key-

ways, occur along the shaft [20].

3) Varying Fluctuating Stress and Rain-Flow Algorithm:

Usage of the aforementioned approaches assumes constant

values for the mean stress τm and alternating stress τa. The rain-

flow algorithm is utilized for the case that τm and τa vary with

time, e.g., during a machinery train start-up.

The rain-flow algorithm decomposes a varying fluctuating

stress load into a series of simple stress load reversals, which

have constant τm and τa (for details, please refer to [21]–[23]).

Then, the accumulated damage D can be derived by Miner’s

rule by obtaining the number of cycles for each simple stress

level

D =
∑ ni

Ni
(27)

where ni is the number of cycles obtained from the rain-flow

algorithm for the ith stress amplitude reversal level and Ni

Fig. 6. Example electrical system.

Fig. 7. Example mechanical system.

TABLE I
MOTOR ELECTRICAL PARAMETERS

TABLE II
SYSTEM MECHANICAL PARAMETERS

is the number of cycles to failure for the ith stress reversal

obtained from an S–N curve. Failure is estimated to occur

when D exceeds 1, so 1/D indicates how many times the

original stress load can be applied before failure.

D. Coupled Electrical/Mechanical System

The electrical and mechanical systems are coupled at the mo-

tor rotor. The electrical subsystem generates electromagnetic

torque, which is the input to the mechanical subsystem. For

the sake of illustration, MATLAB SimPowerSystems is used to

model the electrical system, including the three-phase voltage

source, rectifier, inverter, and motor, while the mechanical

system is modeled in state-space form and implemented via the

Simulink State-Space block. The electromagnetic torque of the

motor output is one of the inputs to the mechanical state-space

block (the other input is the mechanical load torque).
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Fig. 8. Model block diagram.

Damping and stiffness torques occur along the shafting at

couplings, shaft segments, and bearings. For example, the

flange or coupling torque has the following general form, is

calculated in the mechanical state-space model, and is fed back

to the motor block in SimPowerSystems:

Tc = kc(θ1 − θ2) + bc(ω1 − ω2) (28)

where Tc is the transmitted torque through motor coupling, kc is

the coupling stiffness, bc is the coupling damping, θ1 − θ2 is the

relative angular displacement of the two ends of the coupling,

and ω1 − ω2 is the relative angular velocity of the two ends of

the coupling.

The motor rotor inertia is modeled twice, once in the motor

model of SimPowerSystems and once in the mechanical state-

space model. These two inertia models are subjected to the

same drive torque and drag torque and have exactly the same

torsional motion. The effects of motor rotor lateral motion on

internal magnetic fields and forces are neglected for the sake of

simplicity.

IV. SIMULATION VERIFICATION FOR

STEADY-STATE RESONANCE

A simple mechanical machinery train with two inertias is

simulated to illustrate resonance vibration due to VFD. The

system includes a simple open-loop volt/hertz control method

and only pure torsional motions. The prediction of system life

for the case of resonance response is considered.

A. System Description

1) Electrical System: The power electronic system shown

in Fig. 6 includes six diodes in the rectifier circuit that rectifies

the input three-phase voltage into a dc voltage, a capacitor to

smooth the dc bus link to supply a constant dc voltage, and a

three-arm two-level inverter composed by six IGBTs.

The switching signal is generated by a carrier-based PWM,

which compares the triangular carrier signal with the sinusoidal

modulation signal. The magnitude of the sinusoidal modulation

TABLE III
POWER ELECTRONIC DEVICE SETTINGS

signal is proportional to the electrical frequency to keep a

constant volt/hertz ratio.

2) Mechanical System: The mechanical system shown in

Fig. 7 represents a simple two-mass system with a compressor

driven by a motor. The motor electrical parameters and system

mechanical parameters are listed in Tables I and II, respectively.

The system’s undamped natural frequency is 37.24 Hz, and the

damped natural frequency is 37.23 Hz. The constant load acting

on the compressor is 800 N · m, and the mean coupling shear

stress is about 9.032e7 N/m2.

B. Modeling

The entire system is modeled using MATLAB SimPow-

erSystems and Simulink. The model block diagram shown

in Fig. 8 includes the mechanical system modeled in state-

space form as a Simulink block and the electrical components

modeled with SimPowerSystems blocks. The parameter values

of the power electronic devices are listed in Table III.

C. Torque Harmonic Verification

The motor input voltage frequency is set to 60 Hz (electri-

cal frequency), which determines the mechanical spin speed

which is approximately 30 Hz. The PWM carrier frequency

is held constant at 1080 Hz. The resultant motor speed, elec-

tromagnetic torque spectrums, coupling shear stress, and shear
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Fig. 9. fe = 60 Hz simulation results. (a) Motor speed. (b) Torque spectrum. (c) Coupling shear stress. (d) Shear stress spectrum.

stress spectrums are shown in Fig. 9. The harmonic frequen-

cies match the theoretical formula described in [16]. For the

60-Hz case, fe = 60 Hz, and fpwm = 1080 Hz. By (12), fT =
180, 360, 540 . . . Hz.

Fig. 10 shows an interference plot with the torque harmonics

based on (12) with fpwm = 1080 Hz. The horizontal axis indi-

cates the electrical frequency, while the vertical axis presents

the torque harmonic frequency. The horizontal line indicates

the system natural frequency of 37.24 Hz. The intersecting

points are possible resonance points where the torque harmonic

coincides with the system natural frequency.

Fig. 11 shows responses for an electrical frequency of

53.2 Hz, which clearly indicates a resonance condition. The

torque spectrum shows a harmonic component at 37.2 Hz which

is very close to the system natural frequency of 37.23 Hz. The

shear stress zero-peak alternating component is approximately

1.004e7 N/m2 at steady state, which far exceeds its counterpart

stress at the electrical frequencies of 60 Hz, indicating the

occurrence of a resonance. Clearly, the magnitude (6.067 N · m, Fig. 10. Interference diagram for fpwm = 1080 Hz.
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Fig. 11. fe = 53.2 Hz simulation results. (a) Motor speed. (b) Torque spectrum. (c) Coupling shear stress. (d) Shear stress spectrum.

zero-peak) of the 37.2 Hz torque harmonic in Fig. 11(b) is

smaller than other ones, i.e., at 320 Hz (22.48 N · m, zero-

peak). However, the shear stress spectrum in Fig. 11(d) shows a

strong dominance of the 37.2 Hz component, supporting the ev-

idence of resonance. This supports the assertion in [16] that the

frequency of a torque harmonic has much greater importance

than its magnitude.

D. Life Prediction

Large shear stresses that result from the resonant operation of

machinery may significantly reduce shaft or coupling life even

after a relatively short duration. The S–N curve and rain-flow

algorithm are employed to provide a quantitative estimate of the

life reduction and estimated time to failure, as discussed earlier.

The coupling material specifications are listed in Table IV for

this example.

The torsional stress specifications are obtained from the

following equations [24], [25] relating tensile and torsional

TABLE IV
COUPLING TENSILE SPECIFICATION

strength:

Torsional Endurance Limit τe =Sut/25 (29)

Torsional Yield Strength τy =0.55Sy. (30)

Resonance life prediction is based on the shear stress record

between t = 4 s and t = 5 s in Fig. 11(c). Failure is predicted
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Fig. 12. Alternating shear stress versus electrical frequency with fpwm =

1080 Hz and fe = 45 ∼ 60 Hz.

TABLE V
ALTERNATING SHEAR STRESS AND PREDICTED LIFE VERSUS

ELECTRICAL FREQUENCY WITH fpwm = 1080 Hz AND

MEAN SHEAR STRESS OF 9.032e7 N/m2

to occur after 46.05 repetitions of this operation cycle, which,

in this case, is a very short duration: 46.05 s.

Fig. 12 and Table V show the effect of varying the elec-

trical frequency on alternating shear stress and life, with the

PWM switching frequency maintained at 1080 Hz for all cases.

Fig. 12 should not be interpreted as a standard frequency re-

sponse plot as utilized in control modeling or resonance studies

since the electrical frequency is not the excitation frequency but

instead changes the excitation frequency according to (12) and

Fig. 10.

Fig. 13 and Table VI show the effect of coupling damping

on alternating shear stress and coupling life. With increased

coupling damping, the shear stress is seen to be significantly

reduced, and life is seen to be significantly increased. This

represents a common remedy for torsional shear stress-induced

high-cycle fatigue failures in machinery.

E. Simulation With Multilevel Inverters

1) Resonance Case fe = 53.2 Hz: A comparison between

the three- and five-level inverter approaches is made for the

resonance case, where fe = 53.2 Hz.

The simulation results are shown in Figs. 14 and 15 for three-

and five-level inverter approaches, respectively. The five-level

Fig. 13. Alternating shear stress versus coupling damping with fe = 53.2 Hz
and fpwm = 1080 Hz.

TABLE VI
ALTERNATING SHEAR STRESS AND PREDICTED LIFE VERSUS

ELECTRICAL FREQUENCY WITH fe = 53.2 Hz, fpwm = 1080 Hz,
AND MEAN SHEAR STRESS OF 9.032e7 N/m2

inverter shear stress responses are smaller than the three-level

one but are still significant at resonance.

A comparison of the steady-state torque, resonance alternat-

ing shear stress component, and steady-state operation time be-

fore failure between two-, three-, and five-level inverter systems

is shown in Table VII. The mean shear stress is approximately

9.032e7 N/m2.

Note that, although the overall peak–peak steady-state torque

pulsation magnitude decreases as the number of the inverter

level increases, the torque component near the resonance fre-

quency may increase. This explains why the three-level inverter

shear stress is much larger than the two-level inverter shear

stress. The five-level inverter shear stress is less than the three-

level inverter shear stress but is larger than the two-level inverter

shear stress.

The reason for this is explained based on the torque–current

relationship developed in [16] with the assumption that it is

dominated by large dc components. As stated in [16], the torque

harmonic frequencies and current harmonic frequencies can be

written as

fτ = |m · fPWM ± n · fe| (31)

fc = |x · fPWM ± y · fe| (32)

x =m, y = n± 1 (33)
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Fig. 14. fe = 53.2 Hz three-level inverter simulation results. (a) Motor speed. (b) Torque spectrum. (c) Coupling shear stress. (d) Shear stress spectrum.

where

(1)

{

m = 0
n = 6j, ∀j = 1, 2, 3. . . .

(2)

{

m = 2i, ∀i = 1, 2, 3, . . .
n = 3(2j), ∀j = 0, 1, 2, . . .

(3)

{

m = 2i+ 1, ∀i = 0, 1, 2, . . .
n = 3(2i+ 1), ∀j = 0, 1, 2, . . . .

The resonance frequency is 37.2 Hz, where fpwm = 1080 Hz

and fe = 53.2 Hz. The corresponding m and n values for fT =
37.2 Hz are

m = 1, n = 21. (34)

The current harmonics that cause the resonance inducing

torque harmonic at 37.2 Hz are those at 16.0, 90.4, 2144, and

2250.4 Hz and are calculated by

x =1, y = 21± 1 =
{

20
22

(35)

fc = |x · fPWM ± y · fe| =

{

|1 · fPWM ± 20 · fe|
|1 · fPWM · fe| .

(36)

Vibrations and stresses are caused by torques which are, in

turn, caused by currents. The currents result from voltages,

and therefore, the cause of the vibration may be understood

by considering voltages. The voltage harmonics at 16.0, 90.4,

2144, and 2250.4 Hz are compared for the two-, three-, and

five-level inverter cases, as shown in Fig. 16.

The spectrum clearly shows that the voltage harmonic mag-

nitudes at 16.0, 90.4, 2144, and 2250.4 Hz increase as the

inverter level changes from two, to five, and to three. The

bigger the voltage harmonic, the bigger the current harmonic,

and the bigger the corresponding torque harmonic component

at 37.2 Hz. Thus, the torque harmonic at 37.2 Hz increases
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Fig. 15. fe = 53.2 Hz five-level inverter simulation results. (a) Motor speed. (b) Torque spectrum. (c) Coupling shear stress. (d) Shear stress spectrum.

TABLE VII
COMPARISON OF STEADY-STATE ALTERNATING SHEAR STRESS FOR

TWO-, THREE-, AND FIVE-LEVEL SYSTEMS WITH fe = 53.2 Hz

as the inverter level changes from two, to five, and to three.

This and the presence of the mechanical natural frequency at

37.2 Hz explain why the vibration and stress increase as the

inverter level changes from two, to five, and to three. This

result is consistent with the theory presented in [16] which

provides formulas for related current and torque harmonic

frequencies.

The resonance shear stress can be significantly reduced by

changing the PWM switching frequency as illustrated for the

case shown in Fig. 17 where the five-level inverter fpwm is in-

creased from 1080 to 1090 Hz while maintaining the electrical

frequency fe = 53.2 Hz. This causes the total alternating shear

stress to reduce from 4.497e7 N/m2 zero-peak to 2.997e6 N/m2,

and the steady-state operation time before failure increases

from less than 1 s to infinity. Care should be taken in using

this approach though since the new fpwm may produce torque

harmonics that cause resonance at some other fe.

V. CONCLUSION

The major contributions of this paper include the following.

1) A systematic approach for evaluating the fatigue life of a

complex machinery train powered by a VFD motor and

undergoing torsional vibration. A realistic model is uti-

lized, including detailed power electronics, motor, gears,

couplings, and shaft components. Life prediction is based
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Fig. 16. Comparison of voltage harmonics at 16.0, 90.4, 2144, and 2250.4 Hz with fe = 53.2 Hz and fpwm = 1080 Hz. (a) Two-level inverter. (b) Three-level
inverter. (c) Five-level inverter.

on the rain-flow approach which is applicable to tran-

sient start-up events and to sustained steady-state cyclic

stress related to resonance. Prior approaches in the liter-

ature are too restrictive in assuming that all resonances

will cause failure and also do not provide a means to

estimate life.
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Fig. 17. Simulation results for five-level inverter with fe = 53.2 Hz and fpwm = 1090 Hz. (a) Motor speed. (b) Torque spectrum. (c) Coupling shear stress.
(d) Shear stress spectrum.

2) Demonstration that, although utilizing higher level invert-

ers will reduce the THD in the motor torque, individual

frequency components near resonance frequencies may

actually increase in amplitude and exacerbate resonance

with higher inverter levels. Prior approaches provide a

misconception that reducing THD is sufficient to lower

all individual torque component amplitudes.

3) Mitigation of damaging resonance conditions that are

not alleviated by utilizing a higher level inverter may be

accomplished with a PWM carrier frequency interleaving

on a four-thread VFD as demonstrated in [16]. This paper

provides the alternative approaches of slight shifting of

fpwm or utilizing a coupling with increased damping.

VI. FUTURE WORK

Areas of future work include the following: 1) increasing

the fidelity of the modeling components, such as including

the deadtime voltage due to switching mentioned in [5] and

closed-loop drive; 2) improving the mechanical model with

torsional–lateral motion coupling; 3) correlation of predictions

and experimental verification; and 4) modeling the entire ma-

chinery train with the four-thread VFD as mentioned in [16]

to eliminate certain selected torque components in the torque

spectrum.
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