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Abstract In this paper we describe in detail the implementation and main properties of a
new inversion code for the polarized radiative transfer equation (VFISV: Very Fast Inversion
of the Stokes Vector). VFISV will routinely analyze pipeline data from the Helioseismic and
Magnetic Imager (HMI) on-board of the Solar Dynamics Observatory (SDO). It will provide
full-disk maps (4096×4096 pixels) of the magnetic field vector on the Solar Photosphere
every ten minutes. For this reason VFISV is optimized to achieve an inversion speed that will
allow it to invert sixteen million pixels every ten minutes with a modest number (approx. 50)
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of CPUs. Here we focus on describing a number of important details, simplifications and
tweaks that have allowed us to significantly speed up the inversion process. We also give
details on tests performed with data from the spectropolarimeter on-board of the Hinode

spacecraft.

Keywords Magnetic Fields · Photosphere

1. Introduction and Motivation

The Solar Dynamics Observatory will be launched from Cape Canaveral in February 2010
on an Atlas V Booster. On-board this satellite there will be several instruments dedicated
to the study of the solar photospheric and coronal magnetic fields and their relation to
the interplanetary medium, space weather and Earth climatology (Norton et al., 2006).
The Helioseismic and Magnetic Imager is an instrument developed at Stanford University,
Lockheed-Martin Solar and Astrophysics Laboratory and at the High Altitude Observatory
(Graham et al., 2003). HMI consists of a combination of a Lyot filter and two Michelson in-
terferometers. Between the two Michelson interferometers there is a set of three 10th-order
retarders: λ/2, λ/4 and λ/2. Located after these, there is a beam splitter that divides the light
between two twin 4096×4096 CCD cameras. Each camera will acquire full-disk images of
the Sun with a pixel size of 0.5 arc sec.

The first camera, to be referred to as Doppler camera, will be devoted to the mea-
surement of the right and left circular polarization, I ± V , at six wavelength positions
across the Fe I (geff = 2.5) 6173.35 Å line every 50 s or less. With this, full-disk maps
of the line-of-sight components of the magnetic field and velocity will be produced with
a 50 s cadence for helioseismic studies. The second one, hereafter referred to as vector

camera, will measure the full Stokes vector I = (I,Q,U,V ) at the same wavelengths as
the Doppler camera. The cadence in the vector camera will be about 120 s. Borrero et

al. (2007) have conducted a detailed study of the vector camera performance, and con-
cluded that photon noise and p-mode cross-talk between the different Stokes parameters
makes the two-minute data inappropriate to determine the magnetic field vector accu-
rately. They suggest averaging the observed Stokes vector every ten minutes before it is
inverted.

Therefore our objective has been to create an inversion code for the radiative transfer
equation able to process 13.5 million pixels1 in ten minutes: 22 500 pixels s−1. Our task
benefits from the fact that each pixel is treated independently, and therefore our problem
can be parallelized in a straight-forward fashion, resulting in a time saving which is directly
proportional to the number of CPUs employed. Consequently, very fast (3000 – 10 000 pix-
els s−1 inversion strategies such a Principal Component Analysis (PCA; Rees et al., 2000;
Socas-Navarro et al., 2001) or Artificial Neural Networks (ANNs; Carroll and Staude, 2001;
Socas-Navarro, 2003, 2005) could meet the HMI requirements with a very small number of
CPUs. Without entering into details about the different methods, their accuracy and robust-
ness (the interested reader is referred to the recent reviews by Del Toro Iniesta, 2003a and
Bellot Rubio, 2006), it is generally acknowledged that these fast inversion techniques re-
trieve a magnetic field vector that is more suitable for a qualitative analysis such as active
region evolution and tracking, global magnetic field appearance. Our aim with HMI is to

1The CCD has sixteen million pixels; however, only about 13.5 million will be left after removing off-limb
pixels.



VFISV: Very Fast Inversion of the Stokes Vector 269

provide the magnetic field vector on the solar surface with an accuracy good enough to
carry out more quantitative studies. A further concern, from the point of view of HMI char-
acteristics and scientific objectives, is the fact that current implementations of ANNs do not
allow to obtain a measure of the goodness of the inversion, e.g. χ2. PCA does retrieve such a
measure in terms of the so-called PCA distance. However, Principal Component Analysis is
usually employed to reduce the dimensionality of the problem (e.g. by inverting the first PCA
or Fourier coefficients of the observed Stokes vector). It is unclear how PCA will perform
when inverting data from filtergram instruments, such as HMI, where the number of data
points is already very small (six points in wavelength across the four Stokes parameters).

A good compromise between accuracy and speed is achieved by traditional iterative non-
linear least-squares fitting algorithms, specially if applied to the Milne – Eddington (M – E)
solution of the radiative transfer equation (Landolfi and Landi Degl’Innocenti, 1982). The
reason for this lies in the simplified thermodynamics of this approximation, that avoids te-
dious iterative calculations and evaluations of the partial pressures, ionization and hydro-
static equilibrium, etc. (Ruiz Cobo, 2006). In addition, the analytical nature of the M – E
solution allows one to calculate also analytical derivatives, which significantly speeds up
the inversion process. The first M – E inversion code that fully takes into account magneto-
optical effects dates back, to the best of our knowledge, to Auer, House, and Heasley (1977)
(see also Skumanich and Lites, 1987). This has been for many years the standard inversion
technique employed in the analysis of Advanced Stokes Polarimeter data (ASP; previously
Stokes II: Baur et al., 1981), and thus it is widely known as the HAO/ASP inversion code.
As a consequence of the increase in the CPU speed since the late 80 s, the HAO/ASP code
has gone from inverting several pixels per hour to about 10 pixels s−1. Thus, meeting HMI’s
goal would require more than 2000 CPUs. Clearly further modifications and refinements
over these type of M – E inversion codes are necessary if we are to meet HMI’s require-
ments with a limited number (<60) of CPUs.

After a brief introduction to Stokes inversion (Section 2), we have divided these mod-
ifications into three groups: those made on the synthesis module of the code (Section 3);
modifications made on the inversion module of the code (Section 4), and implementation of
an accurate initial guess model for the inversion process (Section 5). In Section 6 we present
a study of the inversion code’s profile and speed. Section 7 shows results obtained from the
application of VFISV to Hinode/SP data and a comparison with the SIR inversion code, and
finally, Section 8 summarizes our results.

2. Introduction to Stokes Inversions

In this section we will describe very briefly how a Stokes inversion code typically works. The
idea is to familiarize the reader with the common procedures and nomenclature to facilitate
the understanding of the following sections. More details about this topic can be found in
(with different levels of complexity) Ruiz Cobo and Del Toro Iniesta (1992), Frutiger (2000),
Del Toro Iniesta (2003b), Borrero (2004) and references therein.

The basic idea of any Stokes inversion code is to iteratively fit the observed Stokes vec-
tor at each wavelength position Iobs(λ) = (I,Q,U,V ).2 This fit is done by producing a
synthetic Stokes vector Isyn(λ, M), that it is then compared at each wavelength position

2I is the total intensity, Q and U are the linear polarization profiles and V is the circular polarization.
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with the observed one via the χ2 of the fit:
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where L is the number of wavelength points observed (L = 6 in HMI’s case) and F is the
number of free parameters. Therefore 4L − F refers to the number of degrees of freedom
in the inversion. I obs

j (λi) and I
syn
j (λi) refer to each of the four Stokes parameters (j index)

at each wavelength position (i index) for both the observed and synthetic Stokes vector.
Section 4.3 discusses in detail the parameters σj and wij .

The synthetic profiles depend on a series of model parameters M = {Mf } with f =
1, . . . ,F . These parameters define the physical model that we presume as valid: LTE, non-
LTE, multi-component atmospheres, gradients along the line of sight, etc. In the case of a
Milne – Eddington atmosphere, these typically are: M = {S0, S1, η0, a,�λD,B, γ,�,Vlos,

Vmac, αmag}. The first five of them are the thermodynamic parameters: source function at the
observer (S0), gradient of the source function (S1), center to continuum absorption coeffi-
cient (η0), damping (a), and Doppler width of the spectral line (�λD). The next three refer
to the three components of the magnetic field vector: strength B , inclination with respect
to the observer γ , and azimuth of the magnetic field vector in the plane perpendicular to
the observer � . The following two are kinematic parameters: line-of-sight velocity of the
plasma harboring the magnetic field (Vlos), and the macroturbulent velocity (Vmac; used to
model unresolved velocity fields). The last parameter, αmag, is a geometrical parameter that
defines what portion of the resolution element is filled with a magnetized plasma.

Isyn(λ, M) is computed in the synthesis module of the inversion code. This module also
retrieves the F derivatives of the synthetic Stokes vector with respect to the model parame-
ters (free parameters): ∂Isyn(λ, M)/∂Mf . Once the synthetic Stokes profiles are obtained,
we can determine the χ2 of the fit (Equation (1)). With the derivatives it is possible to com-
pute ∇χ2, which is an F -dimensional vector where each of its components can be expressed
as

∇χ2
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We can also compute the modified Hessian matrix: Hmod. This matrix is basically the
regular Hessian matrix, where the second-order derivatives of χ2 are approximated using
the first-order derivatives of the Stokes vector, and where diagonal elements are modified by
means of a parameter ǫ:

H
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H
mod
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[

∂2χ2
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]

. (4)

According to the recipe of the Levenberg – Mardquart algorithm (Press et al., 1986),
using ∇χ2 and Hmod allows us to determine the perturbations, δM, that must be applied to
the model parameters at iteration h, Mh, in order to improve χ2.

δM = −H
−1
mod∇χ2, (5)

Mh+1 = Mh + δM. (6)
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To avoid singularities in the inversion of the modified Hessian matrix (Equation (5)) the
Singular Value Decomposition method is often employed. Once the new model parameters
Mh+1 have been determined, the synthesis module is called again to produce the synthetic
Stokes vector and its derivatives, as depicted in Figure 1. Then, a new χ2 is computed and
the iteration continues.

3. Synthesis Module

3.1. Zeeman Pattern

VFISV will be employed for the automatic inversion of data of the Fe I (geff = 2.5)
6173.33 Å line (see Table 1). Therefore a straightforward implementation of its Zeeman
pattern can be hardcoded into the inversion code, avoiding needless extra calculations using
the quantum numbers L, S and J of the atomic levels involved.

Fe I 6173.33 Å is a normal Zeeman triplet (Jl = 1 → Ju = 0) and therefore its Zeeman
pattern will be composed by one π and two σ (red and blue) components. In the absence of
LOS velocities the former is unshifted with respect to its central laboratory wavelength λ0,
whereas the latter are shifted (with respect to λ0) by an amount given by �λB :

�λB = ±4.66685 × 10−10geffBλ2
0 = ±0.044635 × B

[

mÅ
]

(7)

here the positive and negative signs correspond to the red and blue components. �λB is
the only value that VFISV uses internally. Note that the fact that we are using a Zeeman
triplet does not allow VFISV to treat most of the magnetic sensitive spectral lines in the
solar spectrum. However it is important to point out that some of the most widely used ones
are indeed also Zeeman triplets: Fe I (geff = 3) 5250.2089 Å with �λB = 0.03859 ×B , Fe I

(geff = 2.5) 6302.4936 Å with �λB = 0.04634 × B and Fe I (geff = 3) 15648.515 Å with
�λB = 0.34284 × B . Therefore, VFISV can be modified to invert those spectral lines by
simply changing the value of �λB .

Having the Zeeman pattern hardcoded inside the code does not increase its speed, since
this one needs to be calculated only once. The real benefit comes from a simplicity point of
view, making the synthesis, and even more the inversion module, easier to write and debug.

3.2. Voigt and Faraday – Voigt Functions

The evaluations of the Voigt and Faraday functions are regarded as one of the most compu-
tationally expensive operations in the synthesis of solar and stellar spectra. A large number
of algorithms with different degrees of sophistication have been proposed, yielding different
speeds and accuracies (e.g. Letchworth and Benner, 2007). A widely used method is one
that obtains the Voigt and Faraday – Voigt functions as the real and imaginary parts of the
quotient of two complex polynomials of a certain order (Hui, Armstrong, and Wray, 1977).
This procedure yields very high accuracies at reasonable speeds. However, we have found
a method, based on the Taylor expansion of the Voigt and Faraday functions that, although
less accurate (but still within our requirements) is significantly faster. This method takes
advantage of the fact that the derivatives of the Voigt V (a,u) and Faraday F(a,u) functions
with respect to the damping a and frequency u have the following analytical form (see e.g.
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Table 1 Atomic parameters for the lower and upper levels of the atomic transition originating the Fe I

6173.33 Å spectral line (from Nave et al., 1994). The Landé factors have been calculated in the LS approxi-
mation (see for example Equation (8.30) in Del Toro Iniesta, 2003b).

λ0 = 6173.3356 Å geff = 2.5

Level Electronic config. L S J Landé factor Excitation potential [eV]

Lower a5P 1 2 1 gl = 2.5 2.223

Upper y5D0 2 2 0 gu = 0 4.230

Del Toro Iniesta, 2003b):

∂H(a,u)

∂a
= −

∂F (a,u)

∂u
= −

2
√

π
+ 2aH(a,u) + 2uF(a,u) = α, (8)

∂H(a,u)

∂u
=

∂F (a,u)

∂a
= 2aF(a,u) − 2uH(a,u) = β. (9)

With this, it is straightforward to write the second derivatives as

∂2H(a,u)

∂a2
= −

∂2H(a,u)

∂u2
= −

∂2F(a,u)

∂a∂u
= 2H(a,u) + 2aα + 2uβ, (10)

∂2F(a,u)

∂a2
=

∂2H(a,u)

∂a∂u
= −

∂2F(a,u)

∂u2
= 2F(a,u) + 2aβ − 2uα. (11)

Let us now create a two-dimensional table with tabulated values for H and F for different
pairs of (a,u). This table can be evaluated using any existing algorithm. In our case we have
employed Hui, Armstrong, and Wray (1977). By knowing H and F at those grid points, it
is possible to evaluate H and F in the vicinity by extrapolating using a Taylor expansion
(second order in this example) around the tabulated value:

H(a + da,u + du) ≃ H(a,u) + α da + β du +
[

H(a,u) + aα + uβ
]

(da2 − du2)

+ 2
[

F(a,u) + aβ − uα
]

da du, (12)

F(a + da,u + du) ≃ F(a,u) + β da − α du +
[

F(a,u) + aβ − uα
](

da2 − du2
)

− 2
[

H(a,u) + aα + uβ
]

da du. (13)

For a fixed size of the tabulated values of H(a,u) and F(a,u) increasing the order of
the Taylor expansion increases of course the accuracy to which H(a + da,u + du) and
F(a + da,u + du) can be determined. The additional number of mathematical operations
also increases the computation time. Figure 2 shows the difference in the determination of
H(a + da,u + du) (at 106 frequency u points for a fixed damping of a = 1) between our
method and the algorithm by Hui, Armstrong, and Wray (1977). The upper panel shows the
results using only a first-order Taylor expansion, whereas the lower panel was obtained using
a second-order expansion. The table of tabulated H(a + da,u + du) values had 500 points
in frequency and 100 points in damping. The differences between Hui’s algorithm and our
approach are always smaller than 10−4, even for a first-order expansion. As expected the
difference drops to zero at the frequencies where the table has been evaluated, and is max-
imum in between them. Figure 3 shows the time employed to evaluate the Voigt, H(a,u)
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Figure 2 Top panel: differences
between the Voigt function
calculated using the algorithm of
Hui, Armstrong, and Wray
(1977) and the Voigt function
calculated with a first-order
Taylor expansion. In both cases
the Voigt function H(a,u) was
evaluated for 106 frequency u

points for a fixed damping a = 1.
Lower panel: same but this time
using a second-order Taylor
expansion.

Figure 3 Time required to
evaluate the Voigt and Faraday
functions with increasing number
of frequency points. Solid line
corresponds to the algorithm by
Hui, Armstrong, and Wray
(1977), whereas dashed and
dashed-dotted lines correspond to
Taylor expansions of first and
second order, respectively.

and Faraday – Voigt F(a,u), functions for different numbers of frequency points. The com-
parison reveals that using a second-order Taylor expansion decreases the time needed by a
factor of 3.4 as compared to Hui, Armstrong, and Wray (1977). The improvement reaches a
factor 5.4 when using a first-order Taylor expansion.

We have also studied the performance of interpolating H(a + da,u + du) and F(a +
da,u + du) in the original table (100 points in damping and 500 in frequency) using the
four nearest tabulated points. It turns out that bilinear interpolation is less accurate that using
Taylor expansions, because it does not take advantage of Equations (8) and (9). In addition,
it is far slower since it requires a larger number of evaluations. In fact it is even slower than
the algorithm of Hui, Armstrong, and Wray (1977).

4. Inversion Module

4.1. Damping and Macroturbulence

The damping parameter a (see Section 2) controls the distance from line center at which
the spectral profile shifts from a Gaussian-like (thermal broadening) to a Lorentzian-like
profile (radiative and collisional broadening). Even in its classical approximation, a is a
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complicated function of the temperature and partial pressures (Unsold, 1955; Wittmann,
1974). In the Milne – Eddington approximation the damping is considered to be constant
and is treated as a free parameter during the inversion.

The macroturbulent velocity Vmac is another free parameter that accounts for other
sources of broadening, such as limited spectral resolution and velocity fields occurring at
horizontal scales smaller than the resolution element. This is usually taken into account by
convolving the synthetic Stokes profiles with a Gaussian kernel of certain width (measured
typically in km s−1 instead of wavelength units).

In M – E atmospheres these two parameters are usually degenerated with other thermo-
dynamic quantities: η0 and �λD (Section 2; see Orozco Suárez and Del Toro Iniesta, 2007).
This means that these four free parameters have very similar effects on the synthetic Stokes
profiles and thus, it is not generally possible to distinguish, for instance, between a large
macroturbulence Vmac and a combination of a small η0 with a large Doppler width �λD.
This situation is even more pronounced when we are dealing with low spectral resolution
line profiles (≃69 mÅ in HMI’s case).

VFISV allows one to consider all four of them as free parameters (a, η0, �λD and Vmac)
but in order to speed up the inversion process it is important to see if some of them can be
skipped. Besides the immediate benefit in the speed of the calculation of Hmod (Equations (3)
and (4)) and its singular values, not having a as a free parameter increases also the speed
at which we can calculate the Voigt function, since da = 0 in Equations (12) and (13). In
addition, having Vmac = 0 during the inversion saves precious time that is otherwise spent
in expensive Fast Fourier Transforms. The question is, of course, how does this affect the
determination of important quantities such as the three components of magnetic field vector
and line-of-sight velocity of the plasma?

To study this we have carried out a series of inversions over spectro polarimetric data of
AR 10953 (see also Section 7). This region was observed, on 14 November 2006, with the
spectropolarimeter on the Solar Optical Telescope on-board the Japanese spacecraft Hinode

(Lites, Elmore, and Streander, 2001; Kosugi et al., 2007). Only the Fe I line at 6302.5 Å
was inverted (see Section 3.1). We have carried out five different inversions. In the first
one, 31 wavelength points around the selected spectral line (with a wavelength separation
of 21.5 mÅ) were inverted having both a and Vmac as free parameters. The remaining four
inversions were carried out over only six wavelength positions, that were obtained after ap-
plying the HMI filters to the original profiles. In each of these three inversions the parameters
a and Vmac were fixed or left free.

Using the 31-wavelength inversion as a reference, we have calculated the errors in the
three components of the magnetic field vector: B (field strength), γ (field inclination) and
� (field azimuth) and LOS velocity Vlos for the other four inversions, where only six wave-
lengths were considered. Results are displayed in Figure 4 for a = free and Vmac = free
(solid), a = free and Vmac = 0 (dotted), a = 1 and Vmac = free (dashed) and finally: a = 1
and Vmac = 0. This figure shows that it is possible to fix a and ignore the macroturbulent
velocity (making Vmac = 0) without significantly affecting the accuracy in the determination
of the magnetic field vector and LOS velocity. It also highlights that main source of errors
is the limited spectral sampling: going from 31 to six wavelength positions.

4.2. Convergence, Exits and Restarting

As already mentioned in Section 2, the inversion algorithm is based on the Levenberg –
Marquardt least-square fitting algorithm. This iterative algorithm combines the steepest de-

scent and Hessian methods to search for a minimum in the χ2-surface, both far away and
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Figure 4 Errors in the determination of the magnetic field strength B (upper left), magnetic field inclination
γ (upper right), magnetic field azimuth � (lower left) and line-of-sight velocity Vlos (lower right) when the
damping a and macroturbulence Vmac are considered free parameters (solid), only a is free (dotted), only
Vmac is free (dashed) or neither of them are free parameters (dashed-dotted).

close to this minimum. It uses a modified Hessian matrix Hmod, where the diagonal elements
H

mod
nn are modified with a parameter ǫ (see Equations (3) and (4)) that weighs them more

or less, as compared to the non-diagonal elements, whenever the minimum is believed to be
far away or close, respectively. The traditional recipe for the Levenberg – Marquardt algo-
rithm (see Press et al., 1986) advises to decrease or increase ǫ by one order of magnitude,
depending upon a successful (χ2 decreased) or unsuccessful (χ2 increased) iteration. How-
ever, in practice this recipe is not always reliable. For instance, after a number of consecutive
successful iterations ǫ becomes very small. This implies that the modified Hessian matrix
corresponds basically to the real Hessian and therefore the algorithm assumes that we are
close to the minimum. However, if after this pattern an unsuccessful iteration appears, then
ǫ starts increasing again. The problem is that since ǫ is so small it will take a large number
of extra unsuccessful iterations to bring the modified Hessian matrix to a more diagonal
topology, where the algorithm mimics the steepest descent. For this reason, in our imple-
mentation, the parameter ǫ is not always decreased by one order of magnitude after a good
iteration. An analogous argument can be made whenever a successful iteration appears after
a pattern of bad ones, and therefore we do not always increase ǫ by one order of magnitude
after a bad iteration. Table 2 gives details on how VFISV treats the parameter ǫ depending
on the success of the previous iteration.

Unlike other inversion codes that stop iterating if χ2 is already small, VFISV performs
always a fixed number of iterations.3 This is done purposely because a small χ2 does not
guarantee that the global minimum in the χ2-surface has been found (i.e., local minima).
In order to minimize the chances of falling into a local minimum we prefer to restart the

3This number can be changed by individual users running the code. Currently it is set to 30.
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Table 2 Modification (new) on the ǫ parameter during the inversion with the Levenberg – Marquardt algo-
rithm according to the previous (old) value and whether the previous iteration was successful, χ2

new < χ2
old,

or not, χ2
new > χ2

old .

χ2 ǫold ǫnew

decreases >104 ǫold/100

≥10−4 ǫold/10

<10−4 ǫold/2

increases <10−4 ǫold × 100

>104 ǫold × 10

≤104 ǫold × 2

inversion using a randomly perturbed model, obtained out of the best model so far, and
continue the inversion until the maximum number of iterations has been completed.

This restarting method is performed if: i) after the first 10 iterations χ2 has not decreased
by at least one order of magnitude from its first value; ii) χ2 has not improved after five con-
secutive iterations. The restart can happen more than once, with increasing amplitude of the
perturbations each time it happens. This level of randomization enables VFISV to escape
from local minima. Of course, it cannot be compared to the more elaborated randomiza-
tions performed by other methods (simulated annealing or genetic algorithms), but at least it
includes this possibility while retaining the speed of the Levenberg – Marquardt algorithm.

4.3. Definition and Normalization of χ2

The definition of χ2 adopted is shown in Equation (1). Here we discuss the meaning of σi

and wij , which were left apart intentionally back then. σi refers to the noise level, which can
be different for I , Q, U and V depending on the polarization calibration and the observing
scheme used. The factor wij is a weighting function that is used to give different weights
to the different polarization signals. wij are invoked because the amplitude of Stokes I

signal is typically much larger than that of the Stokes Q, U and V . If wij = 1 always,
it often happens that the derivatives of χ2, and consequently the Hessian matrix too, are
dominated by the derivatives of the Stokes I . This leads the inversion code to focus on fitting
only this Stokes parameter. For this reason most inversion codes try to compensate for this
by making wQ,U > wV > wI . For example, the SIR inversion code (Ruiz Cobo and Del
Toro Iniesta, 1992) adjusts those weights such that the amplitudes in each of the observed
Stokes parameter are the same. Unfortunately this procedure makes χ2 normalization pixel
dependent and, thus, makes it impossible to decide whether the fit in a given pixel is better
than in another one.

Other inversion codes adopt constant values for wij such that χ2 values can be directly
compared to each other. In the case of MERLIN (Milne – Eddington gRid Linear Inversion
Network) and LILIA (Lites et al., 2007) these are set by default to: wQ,U = 10wV = 100wI

(linear polarization is given ten times more weight than circular polarization, which is given
ten times more weight than total intensity). Since HMI will take full-disk observations, it
is very important that χ2 normalization is as homogeneous as possible, therefore we have
decided to follow the same approach as MERLIN, that is, employing constant weights. How-
ever, we find that the recipe of wQ,U = 10wV = 100wI is somewhat unreliable when invert-
ing pixels inside the sunspot umbra, where the amplitude of all four Stokes profiles is very
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similar. We have also tested the other possibility (give all four Stokes parameters the same
weight: wQ,U = wV = wI ). This approach seems to work well in active regions, but in the
quiet Sun the inversion code tends to ignore, as expected, the polarization signals and fit only
the intensity I . This translates into a pattern for the magnetic field strength and retrieved χ2

that closely follows the continuum intensity. These results seem to indicate that the larger
the continuum intensity the smaller weight should be given to the Stokes I .

After several tests (in which many maps from Hinode’s spectropolarimeter have been
inverted) we have come up with the following empirical recipe. The weights in the polariza-
tion signals are left to 1: wQ = wU = wV = 1, but the weight in the Stokes I is calculated
as

wI = 0.7778
∥

∥Icont(μ) − Icont(x, y)
∥

∥ + 0.3, (14)

where Icont(x, y) is the quiet-Sun continuum intensity of a given pixel with coordinates
(x, y) on the solar disk. Icont(μ) is an estimation of the continuum intensity depending on
the μ = cos� angle (see Neckel and Labs, 1994; � is the heliocentric angle) at a reference
wavelength close to 6173 Å:

Icont(μ) = 0.33644 + 1.30590μ − 1.79238μ2 + 2.45050μ3

− 1.89979μ4 + 0.59943μ5. (15)

To avoid negative values of wI whenever the continuum intensity at (x, y) is very large,
we are taking the absolute value of the difference between Icont(μ) and Icont(x, y) (see Equa-
tion (14)). These formulas ensure that wI ≃ 0.3 in quiet Sun regions, where the continuum
intensity is large, but wI ≃ 1 in sunspots. Equations (14) and (15) make the χ2 normalization
pixel dependent, therefore one of our objectives to retain an homogeneous normalization is
not totally fulfilled. However, considering that the only one that changes is wI (the rest are
fixed to one) and taking into account that in the worst case scenario wI ≃ wQ,U,V , we can
consider that χ2 normalization changes very slowly in neighboring pixels.

Finally, it is important to mention that VFISV also includes the possibility to assign
different weights to different wavelength positions, hence the wij indexes. The reason for
this is that the data compression and transfer is never 100% accurate and therefore there will
surely be some missing filtergrams (combinations of the four Stokes parameters at a given
wavelength). Although we have not carried out any experiments with it, this will certainly
be something to look into during commissioning time.

4.4. Derivatives and Hessian

Derivatives of χ2 with respect to the free parameters (Section 2) are the basic constituents of
the divergence vector and Hessian matrix needed in the Levenberg – Marquardt minimiza-
tion algorithm (Section 2). VFISV calculates these derivatives analytically in its synthesis
module, by taking advantage of the fact that the synthetic profiles Isyn(λ) are analytical func-
tions of those free parameters. This saves a significant amount of time as compared to other
Milne – Eddington inversion codes where derivatives are obtained numerically by calling
multiple times the synthesis model, each time slightly modifying the free parameters (e.g.

MELANIE; see Lites et al., 2007). For instance, calculating numerical derivatives for ten
free parameters require twice as many calls to the synthesis module, while having analytical
derivatives requires only one call to the synthesis module.

Although in the case of numerical derivatives the synthesis module runs faster (since it
does not calculate internally the derivatives), it is not fast enough to compensate the ex-
tra number of calls needed. We have confirmed this point by comparing the speed of the
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Figure 5 Time needed by
VFISV’s synthesis module to
compute analytical (dashed line)
and numerical derivatives (solid
line). The analytical calculation
is 6.36 times faster than the
numerical one.

derivatives by i) calling the VFISV synthesis module and asking it to calculate the analyti-
cal derivatives internally, and ii) calculating the numerical ones via multiple callings to the
synthesis module, while commenting the parts of the code where analytical derivatives are
computed. As can be seen in Figure 5, calculating derivatives analytically is almost a factor
6.4 times faster than doing it numerically.

Another place where we have improved significantly the speed of the code is in the way
the derivatives are called. As stated in Section 2 (see also Figure 1), some Stokes inversion
codes determine the synthetic profiles Isyn(M, λ) and their derivatives ∂Isyn(λ, M)/∂Mf

every time the synthesis module is called. It turns out that these derivatives are only needed
if the iteration is successful: χ2

h < χ2
best, otherwise the derivatives employed are those corre-

sponding to the previous best iteration. In a typical inversion about 50% of the iterations are
unsuccessful, meaning that about 50% of the derivatives (costly calculated) are unnecessary.
In this sense, we have modified VFISV to call the synthesis module twice: once to determine
only Isyn(M, λ), and a second time to calculate ∂Isyn(λ, M)/∂Mf only if χ2 has decreased
(see modified scheme in Figure 6).

Another computationally expensive part of VFISV is the calculation, at each iteration
step, of the modified Hessian matrix. To avoid this, VFISV does not calculate the modified
Hessian matrix whenever we are close to a minimum. Instead, VFISV reuses the Hessian
matrix from the previous iteration (if that one was also close to the minimum). This can be
done because close to the minimum the modified Hessian matrix represents the curvature of
the χ2-surface, and this curvature is approximately the same around the minimum. This is
also indicated in Figure 6 (cf. Figure 1).

5. Initialization Module

A very critical part in the inversion of Stokes profiles is the selection of a suitable set of
model parameters to start the iterative process: M0 (see Figure 1). Although in general these
inversion codes are robust enough (Westendorp Plaza et al., 1998) to guarantee that similar
results are achieved regardless of the starting point (specially if the inversion includes some
randomization; see Section 4.2), the closer the initial model is to the solution, the fewer
iterations will be needed. In a problem such as ours, where speed is critical, it is mandatory
to reduce these iterations by determining a good initial model. Of course, whatever method
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Figure 7 Top panel: Standard
deviation in the magnetic field
strength (σB ) between the
initialized value and the final one
obtained from the full inversion,
as a function of the polarization
level in the observed Stokes
profiles. The initializations were
obtained with Artificial Neural
Networks (solid line) and the
Weak Field Approximation
(dashed line). Bottom panel:
same but for the inclination of the
magnetic field γ .

is used to initialize the full inversion, it must require only a very small fraction of the total
inversion time.

VFISV uses two different methods to calculate an initial guess model. The first method,
based on Artificial Neural Networks, is applied to determine B and γ whenever the total po-
larization signal p is above 6% (see Equation (3.22) in Del Toro Iniesta, 2003b). The second
technique, based on a combination of the magnetograph formula and the Weak Field Ap-
proximation (Jefferies and Mickey, 1991), is also applied to B and γ if the polarization level
is below 6%. This threshold was selected by determining how close each of two different
initializations was to the final solution obtained through the full inversion (see Figure 7).

The azimuthal angle � is always determined using the approach proposed by Auer,
House, and Heasley (1977). We find this method more reliable than applying the well known
formula: � = 1

2 tan−1 U
Q

. It is also far superior than results from Neural Networks. Finally,
the line-of-sight velocity Vlos is always determined using Artificial Neural Networks.

Artificial Neural Networks for B , γ and Vlos were individually trained using a back-
propagation method (Bishop, 1994). We employed a three-layered net with 30 neurons per
layer. Non-linear transformations were performed between the layers. For each of the train-
ing model parameters two different sets of profiles were created: the training and the control
set (with 250 000 Stokes profiles each). The Stokes profiles were obtained by producing
synthetic profiles using the synthesis module of the SIR inversion code and randomizing
all its properties: Vmac, T (τ) (temperature stratification), B , γ , � and Vlos. The profiles
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Figure 8 Top panel: error
(standard deviation) in the
determination of the line-of-sight
velocity σv , using neural
networks, as a function of the
training time. Bottom panel:
scatter plot of the real Vlos versus
the one determined using ANNs.

were convolved with the theoretical HMI filter functions to obtain six wavelength posi-
tions. Finally, we also added random noise to the level of 10−3 to the synthetic Stokes pro-
files.

Two different sets are needed because the error in the training set always drops to zero
with time (the ANN specializes), but in the control set it only decreases initially. The op-
timum moment to stop the learning process is when the error in the control set starts to
increase, as this indicates that Neural Network is loosing generality and is becoming too
specialized. Figure 8 (top panel) shows and example of how the error in the determina-
tion of the line-of-sight velocity Vlos decreases with the training time (in the control set).
After 24 hours of training σv started to increased again (see vertical dashed line). At that
point the error was σv ≃ 93 m s−1. Figure 8 (bottom panel) shows a scatter plot of the
velocity in the control set of Stokes profiles and the velocity determined by the Neural Net-
work.

6. VFISV Profiling and Speed

In this section we present Tables 3 – 5, where we show the time spent in each of the VFISV
modules and subroutines, as well as a brief description. These results correspond to the dif-
ferent levels of optimization described in the previous sections. They were obtained after
inverting a sample of 25 FITS files, using a single CPU, from Hinode/SP data (a total of
25 600 Stokes profiles). The inversion was performed not considering the damping parame-
ter nor the macroturbulent velocities as free parameters in the inversion, instead they were
fixed to Vmac = 0 and a = 1 (see also Section 4.1).

Between Tables 3 and 4 the only change was the optimization in the calculation of the
Voigt and Faraday – Voigt functions, which was originally computed using the algorithm by
Hui, Armstrong, and Wray (1977) and changed into a second-order Taylor expansion. In the
first case, the subroutine Voigt took 3.99 seconds, whereas in the second case Voigt−taylor

needed only 1.30 seconds. This is very close to the factor 3.4 already foreseen in Section 3.2.
Note also that, as requested in Section 5, the initialization performed in subroutine Guess

needs a negligible amount of time compared to the rest of the inversion.
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Table 3 Profiling of the Very Fast Inversion of the Stokes Vector (VFISV) without any optimization. The
inversion run at a speed of 479.75 profiles s−1/CPU. The indexes for each subroutine correspond to 1: Com-
putes synthetic Stokes vector and its derivatives; 2: Computes singular values of modified Hessian matrix;
3: Computes elements of absorption matrix and its derivatives; 4: Computes the modified Hessian matrix H;
5: Computes Voigt and Faraday – Voigt functions; 6: Main driver of the program; 7: Computes divergence of
χ2vector: ∇χ2; 8: Normalizes derivatives of Synthetic Stokes profiles; 9: Solves linear system of equations
(see Equation (5)); 10: Determines initial guess model M0 (see Figures 1 and 6); 11: Determines χ2 at each
iteration step; 12: Checks for overflows, NaN and Inf.

Subroutine name Module Time [%] Time [s] Calls

Forward1 Synthesis 38.82 18.14 742 400

Svdcmp2 Inversion 21.28 9.94 742 400

Gethess4 Inversion 12.07 5.64 742 400

Absmat3 Synthesis 10.10 4.72 742 400

Voigt5 Synthesis 8.53 3.99 2 227 200

VFISV6 MAIN 2.44 1.14 1

Getdiv7 Inversion 1.78 0.83 742 400

Normalize−dsyn8 Inversion 1.26 0.59 530 336

Svbksb9 Inversion 0.83 0.39 742 400

Getchi211 Inversion 0.30 0.14 742 400

Dnanchk12 MAIN 0.22 0.11 19 302 400

Guess10 MAIN 0.21 0.10 25 600

Table 4 Profiling of the Very Fast Inversion of the Stokes Vector (VFISV) including optimization for the
Voigt function (see Section 3.2). The inversion run is at a speed of 514.66 profiles s−1/CPU.

Subroutine name Module Time [%] Time [s] Calls

Forward1 Synthesis 42.86 18.71 742 400

Svdcmp2 Inversion 21.22 9.26 742 400

Absmat3 Synthesis 12.74 5.56 742 400

Gethess4 Inversion 10.67 4.67 742 400

Voigt−Taylor5 Synthesis 2.98 1.30 2 227 200

VFISV6 MAIN 2.43 1.06 1

Getdiv7 Inversion 1.82 0.80 742 400

Normalize−dsyn8 Inversion 1.26 0.55 514 146

Svbksb9 Inversion 1.21 0.53 742 400

Getchi211 Inversion 0.39 0.17 742 400

Guess10 MAIN 0.21 0.09 2 5600

Dnanchk12 MAIN 0.07 0.03 19 302 400

In Table 5 we show a similar profiling where we now also include the optimization in
the derivatives and Hessian matrix described in Section 4.4. Note that the Synthesis module
(subroutines Forward and Absmat) are now called about 50% more times (see Figure 6).
However, the total amount of time they run was significantly less (about 50% faster). In
addition, the Hessian matrix was calculated much less often, which translated into a smaller
time running subroutine Gethess.
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Table 5 Profiling of the Very Fast Inversion of the Stokes Vector (VFISV) including optimization for the
Voigt function (see Section 3.2) and optimization in the derivatives and Hessian matrix (see Section 4.4). The
inversion run is at a speed of 686.24 profiles s−1/CPU.

Subroutine name Module Time [%] Time [s] Calls

Forward1 Synthesis 33.80 10.86 1 055 429

Svdcmp2 Inversion 28.99 9.31 742 400

Absmat3 Synthesis 14.85 4.77 1 055 429

Gethess4 Inversion 5.42 1.74 296 833

Voigt−Taylor5 Synthesis 4.90 1.58 3 166 287

VFISV6 MAIN 3.42 1.10 1

Getdiv7 Inversion 2.62 0.84 742 400

Svbksb9 Inversion 1.15 0.37 742 400

Normalize−dsyn8 Inversion 0.84 0.27 313 029

Getchi211 Inversion 0.56 0.18 74 2400

Guess10 MAIN 0.39 0.13 2 5600

Dnanchk12 MAIN 0.06 0.02 19 302 400

7. Testing VFISV

In this section we present results from the application of VFISV to spectropolarimetric data
from Hinode/SP (Kosugi et al., 2007; Tsuneta et al., 2008; Suetmatsu et al., 2008; Ichi-
moto et al., 2008; Shimizu et al., 2008). We have used here observations carried out on
14 November 2006. This dataset contains active region (AR 10923), which was located at
μ = 0.99. These observations contain 538 FITS files, therefore have 550 912 pixels. Since
Hinode/SP record the full Stokes vector from the Fe I line pair at 6301.5 and 6302.5 Å we
have trimmed the observations to use only 31 wavelength points across the second spectral
line (see Section 3.1).

Since VFISV is a code that can be used both for low and high spectral resolution data
we have tested our code with two different kind of inversions. The first one has been carried
out to showcase the capabilities of VFISV when applied Hinode/SP data and to encourage
users to employ this inversion code when analyzing data from this instrument. To that end
we have performed an inversion of the aforementioned map using Hinode/SP full spectral
resolution: 31 wavelength positions with a spectral resolution of 21.5 mÅ.

The second type of inversion has been carried out over only six wavelengths points out
of the original 31 points across the Fe I 6302.5 Å spectral line. These six wavelength posi-
tions have been obtained after applying HMI’s filter transmission functions (see Figure 1 in
Borrero et al., 2007) to the observed Hinode/SP data. This test was done in order to study
VFISV’s performance when applied to HMI-like data.

7.1. Test with Hinode/SP Data

In this case, the inversion of the full Stokes vector (on 31 wavelength positions) of
550 912 pixels took just 405.88 seconds running on a Quad-core (4-CPUs) Intel Xeon ma-
chine at 2.66 GHz. Thus, inverting 22 500 profiles/seconds (as required for HMI; see Sec-
tion 1) is possible with only 35 – 40 CPUs. The results from the inversion for the magnetic
field strength, inclination and line-of-sight velocity for AR 10923 are presented in Figure 9.
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Figure 9 Results from the inversion, using VFISV, of the spectropolarimetric data from Hinode/SP of the
active region AR 10923. This region was observed in 14 November 2006 close to disk center: μ = 0.99.
Continuum intensity map is displayed on the upper left panel, whereas magnetic field strength, magnetic
field inclination and line-of-sight velocity are presented in the upper-right, lower-left and lower-right panels,
respectively. In this inversion we used 31 wavelength positions across Fe I 6302.5 Å. The colors in the
continuum intensity map refer to pixels selected as representative of: umbra (blue), penumbra (green), pores
(orange), and plage (red).

The maps of the different physical parameters indicate that VFISV yields adequate (i.e.

expected within values in the literature) results in different photospheric structures: net-
work, plage, penumbra and umbra. To illustrate the reliability of the results we show also in
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Figure 10 Probability Densities, �(B,σ), for the errors in the magnetic field strength B (upper-left), incli-
nation of the magnetic field with respect to the observer γ (upper right), and line-of-sight velocity (lower left),
as a function of the magnetic field strength. The errors have been obtained following the formal calculation in
Equation (16). Here, the VFISV inversion code was applied to Hinode/SP data with full spectral resolution:
31 wavelength points with a resolution of 21.5 mÅ across Fe I 6302.5.

Figure 10, the errors in the magnetic field strength and inclination, as well as line-of-sight
velocity, as retrieved by the inversion code. VFISV performs formal error calculations fol-
lowing the approach by Sánchez Almeida (1997). This basically shows that the error, due to
the lack of guarantee when reaching the true-χ2 minimum during the inversion, in the pa-
rameter f (see Section 2) is given by the f -diagonal element of the inverse of the modified
Hessian matrix:

σ 2
f =

χ2

F

[

H
−1
mod

]

ff
. (16)

Note that this equation is valid both close and far away from the true minimum in the
χ2-surface. Figure 10 actually shows the density distribution function of these errors. The
density distributions, �(B,σ), have been defined as

�(B,σ) = log

{

N(�B,�σ)
∫

N(�B,�σ)dσ

}

. (17)

According to Equation (17), �(B,σ) has been obtained by calculating the number of
points within one rectangular bin (�B�σ ) and diving it by the total number of points within
one field strength bin (i.e. total number of points lying across one column). By doing so we
remove any selection effects that would arise from having many more points concentrated
around one particular regime of field strengths, inclinations, etc.. Note that Figure 10 shows
a logarithmic color scale, thus red indicates that 70 – 90% of the pixels within that range
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of magnetic fields (vertical column) posses that error (σ ), orange: ≈10% of pixels, green:
≈0.1% of the pixels, and blue: ≈0.01%. For instance, Figure 10 (top left panel) shows that
the error given by VFISV (Equation (16)) is about 20 – 30 gauss in about 90% of the pixels
(red region) for all regimes of field strengths, although increases a little bit towards the
umbra, B > 3000 gauss. At the low end of field strengths, B < 1000 gauss, still the vast
majority of pixels posses an error of about 20 – 30 gauss, but a long tail with larger errors
(σ > 70) and a small amount of pixels appears. The amount of pixels with large errors
becomes more and more significant as the field strength weakens.

These formal errors (for each pixel inverted) are a default output from the VFISV in-
version code and they should be used as a guidance of the reliability of the inversion at
each spatial location. For scientific research these errors should be used instead of the val-
ues of χ2. This is so because small χ2 values do not directly translate into small errors
(Equation (16)). One should indeed consider also the degeneracy and interdependency of
the different free parameters of the inversion (given my the inverse of the modified Hessian
matrix), and therefore Equation (16) gives a much more reliable tool to estimate those un-
certainties.

7.2. Test with HMI-like Data

In this case, the inversion of the full Stokes vector (on six wavelength positions) of
550 912 pixels took 387.56 seconds running on a Quad-core (4-CPUs) Intel Xeon machine
at 2.66 GHz. The speed gain with respect to the previous case with 31 wavelengths is only
marginal. The reason for this is that any speed gained by inversion module, which runs on six
wavelength instead of 31, is compensated by a larger computing time taken by the synthesis
module. The synthesis module now takes longer time because all calculations are performed
over the original wavelength resolution, and then converted into six wavelength points by
applying HMI’s filters curves. The added convolutions is what makes the synthesis module
to run significantly slower than before.4

The results from the inversion for the magnetic field strength, inclination and line-of-sight
velocity for AR 10923 are presented in Figure 11. Visual inspection and comparison with
Figure 9 reveals very similar results to the case when the full spectral profile of Fe I 6302.5
Å was used. This supports our argument (see Borrero et al., 2007) that it is still possible
to perform reliable inversions with only a few wavelength points. Of course this applies
mostly to regions on the solar photosphere with strong magnetic fields: B > 200 gauss
or so. For weaker magnetic fields (i.e. internetwork) we cannot expect VFISV to provide
reliable inversions when applied to HMI-like data. Nevertheless, our original intent is to
invert all observed pixels on the 4096×4096 CCD regardless of the polarization signal.5

The reason for that is that there are still physical parameters that can be obtained accurately
(e.g. line-of-sight velocity) even if the polarization signals are very weak.

Similarly to Figure 10, Figure 12 displays the probability distribution functions of the
formal errors (Equation (17)) in the different physical parameters as a function of the mag-
netic field strength. Note that the errors in all parameters are now larger than in the previous
case (Section 7.1). This is due to the smaller number of wavelengths observed in HMI-like
data as compared to Hinode/SP.

4The synthesis module convolves, not only the full Stokes vector evaluated with the original wavelength
resolution, but also its derivatives with respect to the free parameters.
5This option is still under debate. A final decision will be made only during commissioning time, and once
we have the chance to evaluate the quality of the real data and the reliability of the inversion.
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Figure 11 Same as Figure 9 but inverting the full Stokes vector only at six wavelength positions (HMI-like)
across Fe I 6302.5 Å. These six wavelengths were obtained after applying HMI’s transmission filters to the
original Hinode/SP data.

7.3. Comparison VFISV/SIR

Until now we have studied the levels of uncertainty in the different physical parameters ex-
pected from the application of the VFISV code to Hinode/SP and HMI-like data. However,
another very important study is to test whether VFISV yields results that are compatible
with those from other well tested inversion codes available. To that end we have performed
inversions of a subset of AR 10923 (see Figure 9) with the SIR inversion code (Stokes In-
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Figure 12 Same as Figure 10 but inverting only 6 wavelength points (HMI-like) across Fe I 6302.5 Å. Note
the larger errors as compared to the case when 31 wavelength points were considered.

version based on Response functions; Ruiz Cobo and Del Toro Iniesta, 1992) and compared
them with our results.

The pixels inverted with SIR for this comparison amount to a total of 12 946. The limited
amount of pixels was constrained by SIR being about a factor 1000 slower than VFISV. In
addition, SIR does not include a proper initialization module as VFISV does (Section 5),
and therefore, the likelyhood of SIR not converging was found to be much larger. To avoid
this possibility we repeated each inversion with SIR as many as 10 times starting each time
from a randomly generated initial model and retaining the one yielding the smallest χ2.
Furthermore, to facilitate the comparison, SIR was set up to simulate the properties of a
Milne – Eddington atmosphere: B , γ , φ, Vlos were assumed to be constant with optical depth.
The temperature stratification, T (τ) was allowed to change with three nodes. In addition,
a macroturbulent Vmac, and microturbulent velocities, Vmic, were introduced. As explained
in Section 4.1 VFISV (despite having this capability) did not consider the macroturbulence
nor the damping a as free parameters. This is so because their effect can be efficiently
mimicked by the Doppler width �λD and abortion of the line η0. Note that even though SIR
can simultaneously fit both Fe I lines in the 630 nm range, we considered only the same
spectral region (containing only Fe I 6302.5 Å) as with VFISV. An added complication was
to run the inversion with VFISV using different weighting schemes different from the ones
described in Section 4.3. Again, this was necessary because each inversion code has its own
approach to the weights given to each of the Stokes parameters.

All these complications illustrate the difficulties and caveats of comparing two inversion
codes. In fact, to properly carry out this comparison, a much more detailed analysis would
be needed. However, here we only aim at showing that results from both inversion codes



290 J.M. Borrero et al.

Figure 13 Differences between the retrieved values for the magnetic field strength between the VFISV and
the SIR inversion code as a function of the magnetic field strength. The standard deviation of these differences
is also displayed. The color represent the same regions as the upper-left panels in Figures 9 and 11: umbra
(blue; upper left), penumbra (green; upper right), plage (red; lower left), and pores (orange; lower right).

are compatible, without attempting to study the sources of the differences nor to minimize
them.

The selection of pixels to be inverted with SIR has been done attending to their polar-
ization and continuum intensity levels. We have chosen these such that our subset contains
from: umbra (blue; 4558 pixels), penumbra (green; 3782 pixels), plage (red; 3893 pixels)
and pores (orange; 916 pixels). The selected pixels have been overplotted with their corre-
sponding colors in Figures 9 and 11.

The comparison between the results yielded by VFISV and HMI can be found in Fig-
ures 13, 14 and 15. Despite the obvious differences, caused by the two different kinds of
codes employed and by our limited control over SIR’s inner workings, these plots demon-
strate a large degree of compatibility between SIR and VFISV. In the case of the magnetic
field, the standard deviation between SIR’s and VFISV’s results is below 90 gauss, being
much smaller for the case of umbra and pores. The magnetic field inclination retrieved is
also highly compatible, with differences (except for the pixels at the pore) below 3 degrees.
Finally the line-of-sight velocity is also very similar in both cases, with a standard deviation
smaller than 60 m s−1 in all cases.

8. Conclusions

We have developed an inversion code for the polarized radiative transfer equation. The
code’s name is VFISV: Very Fast Inversion of the Stokes Vector. This code assumes that
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Figure 14 Same as Figure 13, but for the inclination of the magnetic field with respect to the observer: γ .

Figure 15 Same as Figure 13, but for the line-of-sight velocity: Vlos.
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the properties of the solar photosphere are well described by the Milne – Eddington approx-
imation. It will be employed to routinely invert polarimetric data from the Helioseismic and
Magnetic Imager (HMI) that will fly on-board of the Solar Dynamics Observatory (SDO) in
February 2010. The code is written in Fortran 90 and parallelized with MPICH-2. We have
introduced a number of improvements in this code that makes it able to achieve an inversion
speed of about 600 pixels per seconds per CPU. At this pace it will be possible to provide
solar full-disk maps (with 1′′ resolution) of the solar magnetic field vector every ten minutes,
using less than 40 CPUs.

The code has been tested with observations from the spectropolarimeter on-board Hin-

ode. It is freely available for download through the Community Spectropolarimetric Analy-
sis Center initiative at the High Altitude Observatory and National Center for Atmospheric
Research (Lites et al., 2007; http://www.hao.ucar.edu/projects/csac/).
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